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Abstract: Image segmentation plays a central role in computer vision applications such
as medical imaging, industrial inspection, and environmental monitoring. However, eval-
uating segmentation performance can be particularly challenging when ground truth is
not clearly defined, as is often the case in tasks involving subjective interpretation. These
challenges are amplified by inter- and intra-observer variability, which complicates the use
of human annotations as a reliable reference. To address this, we propose a novel valida-
tion framework—referred to as the three-blind validation strategy—that enables rigorous
assessment of segmentation models in contexts where subjectivity and label variability
are significant. The core idea is to have a third independent expert, blind to the labeler
identities, assess a shuffled set of segmentations produced by multiple human annotators
and/or automated models. This allows for the unbiased evaluation of model performance
and helps uncover patterns of disagreement that may indicate systematic issues with ei-
ther human or machine annotations. The primary objective of this study is to introduce
and demonstrate this validation strategy as a generalizable framework for robust model
evaluation in subjective segmentation tasks. We illustrate its practical implementation
in a mammography use case involving dense tissue segmentation while emphasizing its
potential applicability to a broad range of segmentation scenarios.

Keywords: deep learning; image segmentation; mammography

1. Introduction
Image segmentation, the process of partitioning an image into meaningful regions, is a

critical task in computer vision. By identifying and delineating objects or regions of interest,
segmentation serves as a foundational step in numerous applications. In industrial settings,
it is used for quality control, defect detection, and autonomous navigation, enabling
robots to identify and manipulate objects on assembly lines [1]. In the medical domain,
segmentation aids in the analysis of anatomical structures, the identification of pathologies,
and treatment planning, such as delineating tumors for radiotherapy [2]. Environmental
applications, including land-use mapping and disaster management, also rely heavily on
accurate segmentation [3]. These examples highlight the importance of segmentation across
diverse domains, underscoring its role in advancing technological and societal goals.

Despite its utility, image segmentation faces significant challenges. Inter- and intra-
observer variability pose problems, especially in domains requiring subjective interpre-
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tation, such as medical imaging. In radiology, differences in training, experience, and
judgment can lead to inconsistent annotations, affecting diagnoses and treatment plans [4].
Similarly, in industrial applications, variability in manual quality assessments can result in
inefficiencies or the misclassification of defects [5]. This variability underscores the need
for standardized methodologies and robust automated systems to enhance reliability in
segmentation tasks across all application areas.

Addressing these challenges requires the extensive validation of segmentation algo-
rithms. Deep learning models, particularly those designed for segmentation, need rigorous
evaluation to ensure their robustness and generalizability across diverse datasets [6]. A
comprehensive validation framework includes performance metrics, such as precision and
recall, and assessments of the model’s ability to handle variations in data quality, resolution,
and noise [7]. These systematic validation efforts are crucial to bridging the gap between
algorithmic performance in controlled experimental settings and real-world deployment,
ultimately improving the trust in and adoption of these models.

A specific example of these challenges can be found in mammography, where the
accurate assessment of breast dense tissue is critical. Breast density, assessed from digital
mammograms, is a known biomarker related to a higher risk of developing breast can-
cer. Its precise quantification is essential for improving cancer detection and screening
effectiveness. Therefore, precise segmentation of dense tissue in mammograms is crucial
for enhancing diagnostic accuracy. Recent advancements in segmentation techniques,
particularly those leveraging deep learning, have demonstrated enhanced capabilities in
distinguishing between dense and non-dense tissues, thereby facilitating more accurate
breast cancer assessments [8].

Building on these advancements, this study introduces a three-blind validation strat-
egy for deep learning-based segmentation. While dense tissue segmentation in mammogra-
phy serves as a use case, the proposed approach is applicable to various segmentation tasks
across different domains. A key challenge in evaluating deep learning-based segmentation
models is the inherent subjectivity of the task, leading to intra- and inter-observer variability.
Since no perfectly defined ground truth exists, discrepancies between the model and human
experts cannot always be attributed to errors in one or the other. This validation strategy
provides a structured way to assess agreement between labelers and the model, offering
insights that can support the refinement of human annotations and the improvement of
automatic segmentation models.

2. Materials and Methods
2.1. Validation Strategy

Ensuring reliable, high-quality segmentations is essential for developing and evaluat-
ing deep learning models for image segmentation. To address this, we propose a three-blind
validation strategy, as illustrated in Figure 1. This approach compares the performance of
deep learning models with human specialists by anonymizing annotation sources, ensuring
unbiased evaluation by an expert validator. A predefined set of images is annotated by
multiple human labelers and deep learning models. The annotations are then shuffled to
remove identifying information about their origin. An independent validator reviews these
shuffled annotations, providing an impartial assessment of their quality.

This strategy enables the analysis of inter-observer variability by comparing annota-
tions from different human labelers and the model. Additionally, intra-observer variability
can be assessed by having the validator unknowingly review a subset of segmentations
twice at random. By ensuring that these repeated segmentations are presented to the
validator without their awareness of the repetition, this approach provides assessment of
the validator’s consistency.
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Figure 1. Workflow of the three-blind validation strategy for image segmentation. Multiple human
labelers and deep learning models annotate a defined number of images. The annotations are then
shuffled to anonymize their source, and an independent validator reviews them to ensure an impartial
assessment of their quality. While the figure illustrates two human labelers and one deep learning
model, the strategy can be extended to any number of human or automatic annotators. This figure
has been designed using resources from flaticon.com (accessed on 13 December 2024).

2.2. Validation Tool

A custom interactive tool was developed to support the three-blind validation strategy
by enabling a third specialist (validator) to independently assess segmentation masks. Built
using the Python-based Streamlit library [9], the tool provides a user-friendly interface
where the validator is presented with one segmentation mask at a time, without any
indication of its origin (human or model). The tool randomly determines the order of
presentation for segmentations from different sources, ensuring blinding.

For each displayed segmentation, the validator selects one of four predefined cate-
gories: correct, oversegmented, undersegmented, or incorrect. The tool also includes a com-
ment box for optional qualitative feedback. This structure supports the standardized quan-
titative and qualitative evaluation of segmentations while preserving the independence of
the assessment.

Figure 2 shows a screenshot of the interface used in our breast dense tissue segmenta-
tion use case. In this version, the interface was tailored to display digital mammograms
and associated masks. A generalized version of the tool has also been developed and made
publicly available via GitLab (https://egitlab.iti.es/praia-salud/segmentation-validation-
tool.git, (accessed on 1 May 2025)). This version is designed to be compatible with any
segmentation task, as it can be easily configured for different label categories and im-
age modalities.

2.3. Use Case: Breast Dense Tissue Segmentation

The objective of this use case is to exhaustively validate a model for segmenting dense
tissue in digital mammograms. The main challenges include variations in images from
different acquisition devices and inter- and intra-reader variability [10]. Variability in
human annotations is a critical consideration in this use case. Inter-observer variability

flaticon.com
https://egitlab.iti.es/praia-salud/segmentation-validation-tool.git
https://egitlab.iti.es/praia-salud/segmentation-validation-tool.git
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refers to differences in annotations between different radiologists, while intra-observer
variability reflects the consistency of annotations made by the same radiologist at different
times. These sources of variability complicate the evaluation of model performance, as
discrepancies may arise not only from model errors but also from human subjectivity. As
such, our validation strategy incorporates analyses to assess both inter- and intra-observer
agreement as described in the analyses presented below.

Figure 2. Screenshot of the tool used for three-blind validation in the breast dense tissue segmentation
use case.

2.3.1. Dataset

We utilized a dataset comprising 500 studies obtained from the Hospital del Mar
Research Institute (IMIM). This dataset was exclusively extracted for the three-blind valida-
tion presented here. It consists of mammograms from four different acquisition devices,
collected over a period of 10 years (2011–2021). To simplify the procedure, only craniocau-
dal (CC) views were used. All the mammograms are of the type for presentation. Figure 3
illustrates the distribution of mammograms by year and acquisition device, highlighting
a well-balanced representation across five distinct devices over the covered period. This
diverse composition emphasizes the dataset’s robustness and suitability for validating
segmentation performance.

2.3.2. Deep Learning Model

The CM-YNet is a deep learning model developed by our group that automatically
segments the dense tissue in digital mammograms. For full architectural and training
details of CM-YNet, including the model’s design rationale and evaluation against expert
annotations, readers are referred to Larroza et al. [8]. Our previous results indicate that the
CM-YNet model performs well, achieving a Dice Similarity Coefficient (DSC) comparable
to that obtained between two specialists. This suggests that radiologists tend to agree more
with the CM-YNet segmentation than with each other. Table 1 and Figure 4 show the DSC
values obtained for the 500 validation images compared with the expert labelers. Given
the well-known variability among expert readers, the next step is to verify that a third
specialist agrees with CM-YNet as much as with the other two specialists, introducing the
concept of three-blind validation strategy outlined in Section 2.1.
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Figure 3. Distribution of the 500 mammograms according the year and acquisition device.

Table 1. DSC values obtained by the CM-YNet model compared against the expert labelers on the
500 validation images.

L1 vs. L2 L1 vs. CM-YNet L2 vs. CM-YNet Closest vs. CM-YNet

0.790 ± 0.160 0.710 ± 0.187 0.743 ± 0.162 0.773 ± 0.157
The Closest vs. CM-YNet Dice Similarity Coefficient (DSC) is computed by selecting, for each individual image,
the higher DSC value between L1 vs. CM-YNet and L2 vs. CM-YNet. The reported value is the average of these
per-image maxima across the 500 validation images.

Figure 4. Distribution of DSC values between the labelers and the output generated by the CM-YNet
model on 500 validation craniocaudal (CC) images.

2.3.3. Data Annotation

Data annotation was performed with an in-house developed tool named Futura Breast,
which can be used to interactively segment the dense tissue using two parameters: the
brightness corrector α and the fibroglandular tissue threshold thF. These parameters guide
the segmentation process as described in detail in Larroza et al. [8]. Two expert radi-
ologists (L1 and L2) were instructed to perform data annotation with this tool. In total,
each expert independently annotated 500 validation CC images. The same 500 images
were also segmented by the automatic CM-YNet model. Therefore, we obtained a total of
1500 segmentations that were used for the three-blind validation. Additionally, 300 ran-
domly selected images (100 from L1, 100 from L2, and 100 from CM-YNet) were included
twice. This random sample allowed for the calculation of intra-observer variability for
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the specialist conducting the validation. In total, the third specialist (validator) randomly
validated 1800 segmentations.

The use of two human annotators was a pragmatic choice, balancing the need for
reliable expert annotations with the high cost and time demands of manual labeling in
clinical imaging. Recruiting two board-certified radiologists was considered the minimum
acceptable setup to ensure diversity in expert opinion while maintaining feasibility within
project constraints.

We conducted the three-blind validation twice using two independent radiologists
with experience in breast imaging, referred to as Validator 1 (V1) and Validator 2 (V2).
These validators were not involved in the initial annotations and had no prior knowledge
of the segmentation sources (L1, L2, or CM-YNet). The first validation was performed by
V1, and the second validation was carried out by V2. For the second validation, the breast
delineation method was improved using the approach presented in [11]. Additionally,
based on lessons learned from the first validation, V2 received refined instructions on
the label definitions to improve consistency and reduce potential discrepancies. The
specific results and observations from both validation rounds will be described in the
Results Section.

2.3.4. Evaluation Metrics

To assess the validation results, we employed a range of commonly used evaluation
metrics. We provide brief definitions and contexts for each metric used.

• Dice Similarity Coefficient (DSC): The DSC is a spatial overlap index widely used
to evaluate segmentation tasks. It quantifies the similarity between two sets by
computing the overlap relative to their combined size. It can take values ranging from
0 to 1, with a higher value indicating a higher similarity [12].

• Accuracy: Accuracy is defined as the proportion of correctly classified instances among
the total number of instances. While it provides a general sense of performance, it can
be misleading in imbalanced datasets [13].

• Cohen’s Kappa: Cohen’s Kappa measures the agreement between two raters while
accounting for agreement occurring by chance. It is especially useful when comparing
annotations from different sources or observers [14].

• Balanced Accuracy: Balanced Accuracy accounts for imbalanced class distributions by
averaging the recall obtained on each class. It is computed as the average of sensitivity
(recall) and specificity [15].

• F1 Score: The F1 score is the harmonic mean of precision and recall, providing a single
metric that balances both. It is particularly useful when the dataset has class imbalance
and when false positives and false negatives carry different costs [13].

• Precision: Precision measures the proportion of true positive predictions among all
positive predictions, reflecting the model’s ability to avoid false positives [13].

• Recall: Recall, also known as sensitivity, measures the proportion of true posi-
tives among all actual positives, capturing the model’s ability to detect relevant
instances [13].

3. Results
3.1. First Validation

The validation tool provided four labels for assessing segmentations: correct, incorrect,
oversegmented, and undersegmented. The incorrect label was originally intended for cases
where the segmentation was entirely wrong and could not be classified as either overseg-
mented or undersegmented. However, after reviewing the 1800 segmentations, validator
V1 reported that he used the incorrect label only rarely and did not consistently apply a



J. Imaging 2025, 11, 170 7 of 21

clear criterion for distinguishing between oversegmented, undersegmented, and incorrect.
For example, some cases involving the segmentation of the pectoral muscle as dense tis-
sue were labeled interchangeably as either oversegmented or incorrect. Consequently, to
evaluate the results of V1, we decided to simplify the classification by grouping the labels
into two broader categories: agreement and disagreement. This issue was resolved for the
second validation, for which a clearer validation criterion was established in advance.

3.1.1. Agreement with Each Labeler

Figure 5 presents the agreement percentages for each evaluated labeler (L1, L2, and
CM-YNet). The agreement with manual segmentations (L1 and L2) is higher than that
with the automatic segmentation (CM-YNet). These percentages are based on a total of
1500 segmentations.

Figure 5. Agreement percentages between V1 and each evaluated labeler for a total of
1500 segmentations.

Subsequently, we analyzed the DSC between labelers, based on V1’s agreement or
disagreement with each segmentation presented. For each validated image, we indicate
whether the validator’s agreement or disagreement with two of the labelers was the same
or not, as illustrated in Figure 6.

The DSC values are presented in Table 2. It is noteworthy that the DSC is higher in
cases where V1 had the same label on two given segmentations, which corresponds to the
highest percentage of images across all cases.

3.1.2. Intra-Observer Variability

To analyze intra-observer variability, the 300 segmentations that were randomly pre-
sented to V1 twice were used. Figures 7 and 8 illustrate the confusion matrices for V1’s first
and second evaluations of these segmentations. The results indicate that, in most cases, V1
demonstrated consistency in his decisions. Table 3 summarizes the corresponding metrics.

Table 2. DSC values for the different labelers (L1, L2, and CM-YNet), based on the of labels assigned
by V1 to the evaluated segmentations.

Labelers V1 Label Is the Same DSC 95% CI

L1 vs. L2 No (55) 0.636 ± 0.215 (0.578, 0.694)
Yes (445) 0.809 ± 0.141 (0.796, 0.822)

L1 vs. CM-YNET No (78) 0.614 ± 0.225 (0.563, 0.664)
Yes (422) 0.728 ± 0.174 (0.712, 0.745)

L2 vs. CM-YNET No (73) 0.648 ± 0.202 (0.601, 0.695)
Yes (427) 0.760 ± 0.149 (0.746, 0.774)
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Figure 6. Given two labelers, which in our case can be any combination of L1, L2, or CM-YNet, we
indicate if the validator marked the same label (agreement or disagreement) for both labelers.

Figure 7. Confusion matrix for the 300 segmentations shown twice to V1. V1 exhibited inconsistency
in 23 out of 300 cases (7.67%).

Table 3. Metrics derived from the confusion matrix based on the 300 images reviewed twice by V1.

Accuracy Acc. 95% CI− Acc. 95% CI+ Kappa Balanced Accuracy F1 Precision Recall

0.923 0.888 0.948 0.691 0.849 0.955 0.957 0.953

Figure 9 presents examples of images segmented by CM-YNet where V1 disagreed
with the automatic segmentation in both evaluations of the same segmentation. This
disagreement was observed in 16 out of 300 images, as depicted in Figure 8. Notably, these
images were acquired using older devices (HOLOGIC and LORAD in Figure 3), which
could explain the increased difficulty in accurately segmenting these lower-quality images,
even for expert annotators.

Further analysis of the intra-observer confusion matrices (Figure 5), which reflect
the consistency of each validator’s repeated assessments using binary labels (Agree vs.
Disagree), reveals that the segmentations originally labeled by L1 exhibit the lowest intra-
observer agreement. This indicates that the validator (V1) was less consistent when eval-
uating L1’s segmentations, potentially due to greater variability or ambiguity in those
masks. In contrast, CM-YNet’s segmentations, although not always labeled as correct, were
assessed more consistently by V1 across repeated validations. These results suggest that
consistency in evaluation may not always align with accuracy and that model-generated
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masks can elicit more reproducible judgments even if they are more frequently judged
as incorrect.

Figure 8. Confusion matrices per labeler for the 300 segmentations shown twice to V1.

Figure 9. Examples of segmentations that were shown twice to V1 to analyze the intra-observer
variability. In these examples, V1 indicated disagreement with CM-YNet on both occasions.
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3.1.3. Exploring the Causes of Disagreement

For a given image, three segmentations were available: one each by L1, L2, and CM-
YNet. These were presented to V1 in random order. Thus, the order of appearance (first,
second, or third) refers to whether the segmentation from a particular labeler was the
first, second, or third version of the same image seen by V1. This order may influence the
validator’s judgment, as familiarity with the image increases with repeated exposure.

Figure 10 shows two examples where V1’s decisions changed depending on the
order in which the segmentations were presented to them during the validation process,
even though the segmentations from the three labelers were visually similar. Importantly,
the order discussed here refers to the sequence in which the segmentations appeared to
V1, not the fixed column order used in the figure layout. In the first-row example, the
segmentation by L1 was shown first to V1, who marked it as agreement; however, V1
later marked disagreement for the same image when it reappeared with segmentations by
L2 and CM-YNet. In the second-row example, V1 initially marked disagreement for the
first two segmentations they saw (L1 and CM-YNet) but later marked agreement for the
third (L2).

These observations were corroborated by V1, who was consulted about these specific
examples without indicating him the order of appearance:

• Example 1: “In the inner quadrants of the three images something that is not dense
tissue is segmented, so they would be oversegmented, but they also do not include all
the glandular tissue of the breast, so they would also be undersegmented. We could
consider them incorrect. At some point, I probably concluded that the machine or
the labelers could not avoid including something from the inner quadrants without
sacrificing the fibroglandular tissue, and that is why I marked the first one as correct It
would be good to know in what order I read them”.

• Example 2: “The three images seem to be oversegmented. It may be that I marked L2
as correct because I evaluated it last and understood that it was difficult not to include
the pectoralis major since the dense tissue was so well delineated in the segmentation.
In this case, it would be good to know in what order I read the three images”.

It is worth mentioning that the segmentations in these examples are very similar (high
DSC). Additionally, as V1 mentioned for the second example, the pectoral muscle appears
segmented as dense tissue. This issue arose in several images. For all images, the breast
delineation was automatically annotated with a threshold-based method implemented
in Futura Breast. That implementation removes the pectoral muscle only on mediolat-
eral oblique (MLO) views where the pectoral muscle is more likely to appear. All the
images evaluated in this study are craniocaudal (CC) views, and in these, the implemented
algorithm was unable to remove the pectoral muscle.

Considering V1’s comments and seeing how the order of appearance of the segmen-
tations influenced V1’s decision, we reanalyze the agreement percentages but taking into
account the order of appearance (Figure 11). Our analysis shows that the agreement rate
with CM-YNet increased with later appearances: from 75.6% when CM-YNet’s segmenta-
tion appeared first, to 82.7% when it appeared third. This suggests that V1 developed a
more refined labeling criterion after seeing other versions of the same image. Interestingly,
for L1 and L2, we observed the opposite trend: agreement with V1 slightly decreased as
their segmentations appeared later in the sequence. This may indicate that V1’s exposure to
alternative segmentations led to increased scrutiny or preference for different delineation
styles, particularly when viewing human-labeled segmentations after a model output or
another human’s annotation. These findings highlight that the sequential context in which
segmentations are presented can influence expert validation outcomes.
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Figure 10. Examples of segmentations where V1 changed his opinion over time: from agree to
disagree (first row), and from disagree to agree (second row). Although the visual layout follows a
fixed column order (original image, L1, L2, and CM-YNet), the validator viewed the segmentations
in a different sequence. For the first-row example, the presentation order was L1, L2, CM-YNet; for
the second-row example, it was L1, CM-YNet, L2.

According to the results of the first validation and V1’s descriptions, CM-YNet tends
to oversegment. This oversegmentation is most likely due to the inclusion of the pectoral
muscle, as mentioned earlier. For this reason, we performed a second validation with a
different validator (V2), first improving the pectoral muscle exclusion and also providing
clearer instructions on how to use the validation labels consistently over time.

3.2. Second Validation

For the second validation, we first improved the breast delineation to effectively
remove the pectoral muscle in CC images. The new breast delineation method implemented
is described in our previous work [11]. With this method, we ensured that the dense
segmentation performed by CM-YNet no longer included the pectoral muscle, preventing
bias for V2. Additionally, as seen in the first validation, we aimed to ensure that V2 did
not change his criteria over time. To this end, we provided clearer instructions on how to
consistently use the validation tool labels:

• Use the correct label only if the segmentation matches the dense tissue, not based on
assumptions about the limitations of the labelers’ methods.

• Use the oversegmented/undersegmented labels only when it is evident that the
segmentation includes significantly more or less tissue than the actual dense tissue.

• Use the incorrect label only for rare cases, such as when the pectoral muscle is included
as dense tissue.

3.2.1. Agreement with Each Labeler

Figure 12 illustrates the agreement percentages between V2 and each evaluated labeler
(L1, L2, and CM-YNet). The results indicate that the agreement percentage is comparable
between manual segmentations—L1 (85.0%) and L2 (82.8%)—and the automatic segmen-
tation CM-YNet (83.2%). This percentage accounts for all segmentations (1500 in total).
Notably, the primary source of disagreement varies across labelers: undersegmentation is
the main cause of disagreement with L1, whereas oversegmentation is predominant with
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L2 and CM-YNet. These findings highlight a higher level of agreement between V2 and the
automatic segmentation compared to the results from the first validation (Figure 5).

Figure 11. Agreement percentage between V1 and each labeler according to the order of appearance
of the segmentations. The first row shows the results when the corresponding segmentations were
the first to appear for a given image, the second row shows the segmentations that appeared second
for a given image, and similarly for the third row.

The DSC values in Table 4 are based on V2’s labels when evaluating pairs of seg-
mentations for the same image, as described in Figure 6. In accordance with the findings
from the first validation, the DSC values are higher in cases where V2 assigned the same
label to both segmentations. These cases correspond to the majority of images across all
evaluated labelers.

Table 4. DSC values for the different labelers (L1, L2, and CM-YNet), based on the labels assigned by
V2 to the evaluated segmentations.

Labelers V2 Label Is the Same DSC 95% CI

L1 vs. L2 No (91) 0.699 ± 0.193 (0.658, 0.739)
Yes (409) 0.810 ± 0.145 (0.796, 0.824)

L1 vs. CM-YNet No (101) 0.547 ± 0.215 (0.505, 0.590)
Yes (399) 0.752 ± 0.154 (0.737, 0.767)

L2 vs. CM-YNet No (96) 0.619 ± 0.199 (0.579, 0.660)
Yes (404) 0.773 ± 0.137 (0.759, 0.786)
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Figure 12. Agreement percentage between V2 and each evaluated labeler for a total of
1500 segmentations.

3.2.2. Intra-Observer Variability

As in the first validation, we analyzed intra-observer variability by randomly pre-
senting 300 segmentations (100 per labeler) to V2 twice. Figures 13 and 14 display the
confusion matrices for V2’s first and second evaluations of these segmentations. The results
indicate that V2 was consistent in the majority of cases but less consistent than V1. Table 5
summarizes the corresponding metrics.

Figure 13. Confusion matrix for the 300 segmentations presented twice to V2. Inconsistencies were
observed in 26/300 cases (8.67%).

Table 5. Metrics calculated from the confusion matrix for the 300 segmentations reviewed twice
by V2.

Accuracy Acc. 95% CI− Acc. 95% CI+ Kappa Balanced Accuracy F1 Precision Recall

0.913 0.887 0.948 0.611 0.758 0.950 0.919 0.984
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Figure 14. Confusion matrices for each labeler, based on the 300 segmentations shown twice to V2.

Figure 15 provides examples of segmentations produced by CM-YNet where V2 ex-
pressed disagreement both times the same segmentation was shown. These disagreements
occurred in a total of 14 images. Specifically, V2 assigned 12 cases as oversegmented and
2 cases as undersegmented.

3.2.3. Exploring the Causes of Disagreement

Figure 16 illustrates two examples where V2’s decisions varied depending on the order
in which the segmentations were presented. In the example in the first row, V2 initially
marked the first segmentation (L1) as correct. However, when the next two segmentations
(CM-YNet and L2) were shown, both with identical segmentations (DSC = 1), V2 changed
his decision to oversegmented for CM-YNet and then correct again for L2. In the example
in the second row, V2 indicated the first segmentation (CM-YNet) as versegmented but
later marked L1 as correct and L2 as oversegmented. Similar to the first example, L1 and
L2 had identical segmentations (DSC = 1).

Figure 17 presents the agreement percentages between V2 and each labeler as a
function of their order of appearance. Notably, the agreement with CM-YNet improved
significantly, rising from 77.46% when CM-YNet was presented first to 91.41% when it
appeared last. This upward trend in agreement was not observed for L1 and L2. For these
labelers, agreement percentages increased when they appeared second then decreased
again when they were shown third, showing no clear pattern. Therefore, even though the
intra-observer variability indicates more inconsistency for V2 compared to V1, it appears
that V2 maintained a consistent criterion over time. The inconsistencies found were more
likely due to the inherent intra-observer variability that is well-known for this type of
segmentation tasks, especially in the medical domain.

Finally, we wanted to explore whether the evaluation sessions influenced V2’s results.
To this end, an analysis of the validation sessions was conducted. A session was defined as
a continuous period during which V2 reviewed images without taking extended breaks. A
break of more than one hour marked the start of a new session. A total of 28 sessions were
identified (Figure 18), with the longest session lasting nearly three hours. Notably, the final
two sessions each consisted of labeling only one image, with a duration of approximately
one minute.
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Figure 15. Examples of segmentations that were shown twice to V2 to analyze intra-observer
variability. In these examples, V2 indicated disagreement with CM-YNet on both occasions.

Figure 19 presents the average number of images labeled per hour across sessions.
Shorter sessions showed a tendency toward the faster validation of images, while in longer
sessions (e.g., sessions 15 and 21), V2 spent more time evaluating each image. However, as
illustrated in Figure 20, no significant relationship was observed between the labeling speed
in different sessions and the agreement percentage with the presented segmentations.
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Figure 16. Examples of segmentations where V2 assigned different labels despite identical segmen-
tations (DSC = 1): L2 and CM-YNet in the first row, and L1 and L2 in the second row. Although
the visual layout follows a fixed column order (original image, L1, L2, and CM-YNet), the validator
viewed the segmentations in a different sequence. In the first-row example, the order of appearance
was L1, CM-YNet, and L2. In the second-row example, the order was CM-YNet, L1, and L2.

Figure 17. Agreement percentages between V2 and each labeler based on the order in which segmen-
tations were presented. The first row shows the results when the segmentations were presented first
for a given image. The second and third rows correspond to cases where the segmentations appeared
second and third, respectively.
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Figure 18. Summary of V2’s labeling sessions, showing the duration and number of images labeled
in each session.

Figure 19. Average number of images labeled per hour during each session by V2.

Figure 20. Agreement percentage with the presented segmentations across sessions for V2.
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4. Discussion
In this study, we proposed a three-blind validation strategy to compare the agreement

between a validator and three different labelers (two human and one deep-learning-based
segmentation model). This approach was demonstrated using breast dense tissue segmen-
tation, where a third validator independently evaluated the segmented images without
prior knowledge of their origin. Since there is no absolute ground truth—due to inherent
intra- and inter-observer variability among human labelers—this strategy provides insight
into the level of similarity between the labelers, as assessed by the validator. This can
help detect errors in the labels, which can then be refined by human reviewers or used to
improve the automatic segmentation model.

The first validation highlighted a critical issue in the preprocessing step of our au-
tomatic segmentation model. Specifically, the breast delineation algorithm used prior to
dense tissue segmentation failed to exclude the pectoral muscle in CC mammograms,
resulting in its incorrect classification as dense tissue by the CM-YNet model. Addressing
this limitation, we refined the breast delineation method and subsequently conducted
a second validation with a different specialist. For this second validation, we provided
clearer and more detailed instructions to the second validator (V2) to ensure consistent use
of the validation tool’s labels. This improvement led to a higher agreement between V2
and both the automatic and manual segmentations, compared to the results obtained in the
first validation.

A critical step toward improving model performance is the identification of systematic
errors. In this study, errors in the first validation were detected through expert feedback
and visual inspection of the validation results. However, it is important to note that both
the nature of these errors and the appropriate corrective strategies can vary significantly
depending on the specific use case, dataset composition, and segmentation objectives. As
such, error analysis and subsequent model refinement should be tailored to the application
context rather than relying on a one-size-fits-all approach.

Unlike traditional validation schemes that focus solely on metric-based comparisons
to reference labels, our approach engages an independent validator in a blinded setting to
assess the degree of agreement between human and automated segmentations. This design
aligns with recent calls for more robust and unbiased evaluation methods in subjective
annotation contexts [16,17]. While human-in-the-loop strategies have been used to improve
annotation quality and model performance [18], few works have employed a blinded
evaluation of multiple sources simultaneously, making our approach a unique contribution
to the validation literature.

4.1. Limitations

Despite its strengths, the proposed validation strategy has several limitations. First,
the presented use case involved only two radiologists and one independent validator.
While this provided a manageable and controlled comparison, it may not capture the full
range of inter-observer variability, which is known to influence perceived model accuracy
in medical imaging [19,20]. Increasing the number of annotators and applying aggregation
methods such as STAPLE [21] could reduce individual bias and improve the reliability of
the assessment.

Second, although the validator was blinded to the source of the segmentations,
the lack of clinical context during evaluation may reduce validity in real-world diag-
nostic scenarios [16]. Third, the validation framework currently functions as a static
benchmarking tool and does not support real-time model refinement. Iterative im-
provement mechanisms—such as those used in active learning or semi-supervised
frameworks [22,23]—could further enhance the practical utility of this strategy.
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Finally, while our results were demonstrated on mammographic segmentation, the
generalizability of this framework to other domains (e.g., industrial inspection or envi-
ronmental monitoring) remains to be empirically validated. As such, claims regarding
its broad applicability should be interpreted with caution until further validation studies
are conducted.

4.2. Future Work

Building on these findings, several future directions can enhance the utility and scope
of the three-blind validation framework. First, clinical validation studies are needed to
assess how well this strategy translates into real-world diagnostic workflows and whether
it can support or augment radiologist decision-making. Incorporating richer forms of val-
idator feedback and integrating domain-specific context may also improve the robustness
of the assessment.

Second, we plan to apply the three-blind validation approach across diverse seg-
mentation tasks—such as those found in industrial inspection and other areas of medical
imaging—to evaluate its scalability and generalizability in domains where ground truth is
inherently uncertain or contested.

5. Conclusions
This study presented a three-blind validation strategy to compare the agreement

between human labelers and a deep-learning-based segmentation model. Applied to breast
dense tissue segmentation, this strategy helped identify and address issues in the automatic
model while highlighting the potential of automatic segmentation for reproducible results.
By ensuring an unbiased evaluation, it offers valuable insights that can help improve
segmentation models and support their broader adoption in medical imaging and beyond.
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Abstract: Magnetic resonance fingerprinting (MRF), a quantitative MRI technique, enables
the acquisition of multiple tissue properties in a single scan. In this paper, we study a
proposed extension of MRF, MRF with exchange (MRF-X), which can enable acquisition
of the six tissue properties Ta

1 ,Ta
2 , Tb

1 , Tb
2 , ρ and τ simultaneously. In MRF-X, ‘a’ and ‘b’

refer to distinct compartments modeled in each voxel, while ρ is the fractional volume of
component ‘a’, and τ is the exchange rate of protons between the two components. To assess
the feasibility of recovering these properties, we first empirically characterize a similarity
metric between MRF and MRF-X reconstructed tissue property values and known reference
property values for candidate signals. Our characterization indicates that such a recovery
is possible, although the similarity metric surface across the candidate tissue properties is
less structured for MRF-X than for MRF. We then investigate the application of different
optimization techniques to recover tissue properties from noisy MRF and MRF-X data.
Previous work has widely utilized template dictionary-based approaches in the context
of MRF; however, such approaches are infeasible with MRF-X. Our results show that
Simplicial Homology Global Optimization (SHGO), a global optimization algorithm, and
Limited-memory Bryoden–Fletcher–Goldfarb–Shanno algorithm with Bounds (L-BFGS-B),
a local optimization algorithm, performed comparably with direct matching in two-tissue
property MRF at an SNR of 5. These optimization methods also successfully recovered
five tissue properties from MRF-X data. However, with the current pulse sequence and
reconstruction approach, recovering all six tissue properties remains challenging for all the
methods investigated.

Keywords: medical imaging; MRI; MRF; inverse problem; optimization

1. Introduction
Magnetic resonance imaging (MRI) is one of the most valuable tools in a clinician’s

toolbox for non-invasively diagnosing soft-tissue diseases [1–3]. In clinical practice, a ma-
jority of MRI scans acquired are qualitative in nature. During the course of diagnosis,
a radiologist might request several of these qualitative scans to obtain a complete diagnos-
tic picture [4]. Although this approach provides valuable information to the radiologist, it
restricts objective characterization of diseases and adds to patient costs and discomfort [5,6].
Additionally, variation in interpretation among radiologists could lead to significant differ-
ences in treatment plans and clinical outcomes [7].

To address some of these challenges, advanced MRI techniques such as quantitative
MRI have been gaining popularity. Quantitative MRI aims to extract tissue properties such
as longitudinal relaxation time T1 (milliseconds), transverse relaxation time T2 (millisec-
onds), and proton diffusion [8]. Magnetic resonance fingerprinting (MRF) is a technique
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that can extract multiple tissue properties from a single MRI scan [9]. Multiple tissue
property images from a single scan decrease the costs and discomfort faced by patients
and can improve diagnostic outcomes. Access to multiple tissue properties may also
allow for the use of MRF in novel diagnostic procedures as yet unknown. However, re-
constructing tissue properties from MRF images poses an algorithmic challenge due to
the noisy signal generated at each voxel. The traditional approach of fitting a curve to
recover tissue properties cannot be applied. Instead, the state of the art is to use a template
dictionary matching approach for reconstructing tissue properties (described in detail in
Section 2.2). This strategy, although robust [10], does not scale well as the number of tissue
properties increases.

In this paper, we study the problem of recovering five and six tissue properties
from MRF with exchange (MRF-X), where a signal from each voxel is represented by two
components. We characterize and visualize the error surface formed by the inner product
of an MRF-X signal and simulation of Bloch–McConnell equations derived from a range of
tissue properties. We then study the use of optimization techniques to accurately retrieve
tissue properties from such an MRF-X signal. Our results are promising but also reveal
fundamental uncertainties about the feasibility and accuracy of acquiring multiple tissue
properties. To our knowledge, no prior work has addressed the characterization or recovery
problems from quantitative MRF in high dimensions.

This paper is organized as follows. In Section 2, we provide essential background on
MRF and its extension, MRF-X. In Section 3, we study the error surface of MRF-X with
respect to multiple tissue properties and how it changes from two to higher dimensions.
In Section 4, we present a technical overview of the optimization algorithms we propose to
recover tissue properties from MRF-X signals. In Section 5, we present our results applying
these methods to a large dataset of simulated MRF-X signals generated with many different
tissue properties and discuss the implications.

2. Background
2.1. Magnetic Resonance Fingerprinting

In standard quantitative MRI, the signal at each voxel conforms to known signal
trajectories, which have well-studied mathematical models associated with them. Broadly,
standard quantitative MRI uses either an exponential model of signal recovery [11,12] or a
steady state signal model [13–16]. Tissue properties are then estimated by fitting acquired
signal trajectories to the relevant mathematical model.

In contrast, MRF leverages recent advancements in computation power to acquire
multiple tissue properties in a single scan [17]. During the acquisition of MRF, a pre-defined
sequence of Radio Frequency (RF) pulses, known as the pulse sequence, is transmitted
through the RF coil. This pulse sequence is governed by a set of pulse sequence parameters
that control the amplitude, phase and delay of the RF pulses [18]. By carefully designing the
pulse sequence, we can systematically acquire MRF signals which are sensitive to specific
tissue properties. In MRF, a randomly varying acquisition scheme is employed to produce
signal changes that are uniquely determined by the tissue properties present at each voxel.
This variable acquisition scheme, although not unique to MRF [19], allows flexibility in
pulse sequence design. Accelerated acquisition leads to corrupted MRF signal evolutions
which are usually modeled as signal with added white Gaussian noise, which has shown
good empirical performance [17].
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2.2. Tissue Property Recovery from MRF Using Explicit Dictionary

Due to the complex pulse sequence employed in MRF, the signal trajectory does not
follow a known closed-form function. To address this, the original MRF paper [9] pro-
posed an explicit template dictionary-based approach. The underlying idea is to simulate
known signal trajectories using an exhaustive combination of tissue property values using
Bloch [20] equations.

The generated signals from the Bloch simulation are collected for each combination
of tissue property values into a template dictionary (Figure 1a). Next, the captured
MRF signal trajectories (Figure 1b) are matched with the template dictionary to retrieve
the tissue property values (Figure 1d–g) In this process, matching refers to taking an
inner product between the observed signal trajectory and each element of the dictionary.
The properties yielding the highest dot product (most similar known trajectory) are
selected as the tissue properties. This process is repeated for each voxel to form a tissue
property map. The template dictionary is a 2D matrix of values (M × N), with each
column ni , i ∈ {1, . . . , N}, representing the signal evolution of a single combination of
tissue properties. Each MRF acquisition strategy, such as MRF-FISP [21], uses a different
number of columns (N) to accurately extract tissue property values. The number of
columns M depends on several factors, including the number of tissue properties being
estimated, the resolution of the tissue property values in the dictionary, and the range of
tissue property values as determined by the researcher. For example, Chen et al. [22] used
20 k columns to represent the dictionary that is generated using a combination of T1 and
T2 properties. Conversely, Hong et al. [23] employed a larger dictionary with 64 million
columns to estimate four tissue properties: T1, T2, off-resonance, and T∗

2 . In this context,
off-resonance indicates a measure of inhomogeneity in the main magnetic field, and T∗

2
represents the observed or effective T2 resulting from such inhomogeneities. As can be
seen from these examples, when estimating a large number of tissue properties, explicit
dictionary-based template matching can become prohibitively large.

Figure 1. MRF tissue property mapping pipeline. Multiple noisy images (a) are captured with the
scanner. Individual signals for each voxel (b) are compared with an explicit dictionary (c) to recover
the tissue properties generating the signals. The generated maps represent tissue properties such as
T1 (d), T2 (e), B1 mapping (f), and proton density (g), respectively [9].

Recent research in the field of MRF has emphasized the importance of accelerating
reconstruction speed. However, it is noteworthy that many of these methods [24–26]
continue to rely on dictionary generation. We note that generating an exhaustive dictionary
with millions of entries is a computationally demanding task that can take several days to
complete. Moreover, the size of the dictionary increases exponentially with the number
of tissue properties being considered. Consequently, generating an explicit dictionary for
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more than four tissue properties can become impractical, especially in the context of clinical
applications where rapid analysis is critical.

2.3. Magnetic Resonance Fingerprinting with Exchange (MRF-X)

In the MRF-X approach [27], a signal acquired from each voxel of the scanned region
is represented by two components, labeled A and B. Each compartment is considered a
distinct region that has its independent set of tissue properties (T1, T2) (ms). The volume
ratio of compartment A is denoted by ρ. A continuous exchange of protons occurs between
compartment A and compartment B. This exchange is measured using an exchange rate τ

(s−1). This modeling using two compartments has several potential uses such as the moni-
toring of myelin in patients with degenerative disorders of the brain and diffuse fibrosis
of the heart [28]. We simulate the two-compartment model using the Bloch–McConnell
equations [29], which are an extension of the Bloch equations for chemical exchange.

The acquisition of multi-component maps is constrained by certain physical limitations.
In medical imaging, it is widely recognized that physical processes that occur at a rate
faster than acquisition speed of the protocol cannot be measured [30]. Traditional MRI
collects information at a rate that is commensurate with the T1 and T2 relaxation times.
However, this rate is slower than the rate of chemical exchange that occurs between multiple
compartments. This limitation restricts the conventional MRI’s ability to acquire chemical
exchange dynamics. MRF potentially addresses this difficulty by collecting samples at
a rate (TR) of 6–20 ms, which aligns with the time scale of chemical exchange between
multiple components in the brain. Capitalizing on this, Hamilton et al. [27] introduced a
new technique that leverages MRF to acquire multi-component maps along with chemical
exchange, which they call MRF-X.

In a clinical context, multi-components maps of relaxation times with chemical ex-
change are not typically acquired at present. At present, the acquisition of these multi-
component maps remains a challenging task due to prohibitively long scans which increase
patient discomfort and associated costs. Further, validating the performance of tissue
property recovery algorithms in an actual scanner will require designing phantoms with
desired tissue properties so the signal from the scanner can be recorded. Currently, there are
no standardized phantoms for MRF-X like the ISMRM/NIST system phantom for MRF [10].
Despite these challenges, the potential acquisition of multi-component maps may enhance
diagnostic capabilities ultimately contributing to better patient outcomes.

2.4. MRF-X Modeling Using Bloch–McConnell Equations

The influence of chemical exchange on the magnetic resonance signal is exactly de-
scribed by the Bloch–McConnell equations, which extend the standard Bloch equations to
model systems with nuclei that dynamically exchange between multiple local environments.
These equations incorporate the exchange rate τ that measures the transfer of magnetiza-
tion accompanying the physical movement of nuclei between multiple compartments and
the fractional contribution of each compartment to the overall magnetization measured
using ρ. The multiple compartments have their independent relaxation properties, Ta

1 , Ta
2 ,

Tb
1 , Tb

2 and are described by the following differential equation:
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dM
dt

= AM + C (1)
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0
0
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T1a

0
0
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T1b


where M represents the magnetization vector, A is the evolution matrix, and C is the
constant vector.

The evolution matrix A contains the relaxation terms (Ta
1 , Ta

2 , Tb
1 , Tb

2 ), and the chemical
exchange term (τ). The constant vector C contains the fractional contribution of each
compartment to the overall magnetization measured using ρ.

The crucial connection to proton exchange described by the Bloch–McConnell equa-
tions occurs continuously and simultaneously with the evolution driven by the MRF-X
pulse sequence. With each repetition time (TR) and radio frequency (RF) pulse, magnetiza-
tion is constantly being redistributed between the two compartments (A and B) according to
the specific exchange rate τ. This redistribution is influenced by the sequences varying RF
pulses and ongoing relaxation processes. MRF probes the system’s response continuously.
As a result, the exchange rate τ becomes integrated into the signal evolution captured by
the MRF-X pulse sequence.

2.5. Deep Learning for High-Dimensional MRF

In the past decade, Artificial Intelligence (AI), and specifically Deep Learning (DL), in
the context of MRI research has gained a lot of importance. In [31], the authors provide
a detailed overview of the impact of AI on MRI research, from acquisition to disease
prediction. Further, in the context of MRF, DL methods have been proposed as alternatives
to overcome the limitations of traditional template matching.

Primarily, DL applications in MRF can be categorized into two distinct categories.
The first category involves using the DL model as a faster Bloch simulator generating
the dictionary elements from tissue properties for forming a template dictionary. For in-
stance, Yang et al. [32] used a Generative Adversarial Network (GAN)-based approach
to achieve a 10,000× speed increase in the generation of an MRF dictionary. Similarly,
Hamilton et al. [33] used a fully connected feed-forward network to generate a cardiac
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MRF template dictionary, taking individual variations in heart rate and sequence timing
into account.

In the second category, DL is utilized as a replacement to the complete MRF tissue
property estimation pipeline, enabling generation of tissue properties from the MRF signals
acquired during scanning. For example, the MRF deep reconstruction network (DRONE)
proposed by Cohen et al. [34] is a four-layer deep neural network (DNN) that generates
tissue properties T1 and T2 directly from MRF signals. The authors report that DRONE
achieves results on par with conventional techniques but with a 300× speed advantage,
consuming only 5% of the memory required by an explicit MRF dictionary. In other work,
Fang et al. [35] leveraged spatial information of neighboring voxels in MRF, facilitating
accurate quantification of tissue properties from highly undersampled MRF data. As far as
we are aware, no prior work has leveraged DL to either extract multiple tissue properties
or accelerate generation of explicit high-dimensional (greater than four tissue properties)
MRF dictionaries. In contrast to such approaches, we focus on recovering high-dimensional
tissue properties from MRF-X through optimization.

3. Nature of MRF Objective Function
As explained above, to find the tissue properties from a captured MRF signal, an inner

product is taken between this signal and simulations from the Bloch equations. To find
the true tissue properties that generated the signal, this inner product surface must be
searched. The best match is the set of tissue properties that maximizes the inner product
or, alternatively, minimizes an error function derived from the inner product. Thus, it
is important to understand the nature of the inner product function or error function in
order to understand the behavior of algorithms attempting to carry out tissue property
reconstruction. In this section, we visualize the surface of the inner product function
between the noisy signal, which acts as a surrogate of the data acquired from the MRI
scanner, and the signals obtained from the Bloch simulations for a set of candidate tissue
properties. We perform this for different tissue property dimensionalities.

Let the signal obtained from a location (i, j) on the physical surface of the scanned
object be denoted X(t), where t ∈ {1, . . . , T} represents time and T represents the total
number of time steps captured by the scanner. We denote each Bloch simulation as B(θ, t),
where t denotes time and θ ∈ Θd is the space of possible d-dimensional tissue properties,
quantized to a suitable granularity to visualize the surface (Table 1). We will use the
notation X and B(θ) to represent whole trajectories.

Table 1. Ranges and granularities of tissue property values in 2D and 6D models.

Tissue Property Min Max Step

Two-tissue property model

T1 (ms) 700 3000 0.23
T2 (ms) 5 350 0.03

Six-tissue property model

Ta
1 (ms) 100 1400 13

Ta
2 (ms) 5 100 0.95

Tb
1 (ms) 1500 3500 20

Tb
2 (ms) 100 400 3

τ (s−1) 0.05 10 0.01
ρ (%) 5 95 0.9
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The signal captured from a scanner is typically noisy. To model this, we generate
signals using additive white Gaussian noise (AWGN) with varying signal-to-noise ratios
(SNRs). We denote a signal with SNR µ as Xµ. Then, we define:

f (θ) = 1 −
⟨Xµ, B(θ)⟩

∥Xµ∥2∥B(θ)∥2
(2)

Here, f (θ) represents the the objective (error) function surface between the input
signal Xµ and the Bloch signal. Angular brackets ⟨, ⟩ represent the inner product of the
noisy signal from the scanner and the signal from Bloch simulation. We normalize the inner
product using l2-norm (∥Xµ∥2) of the noisy signal multiplied with l2-norm (∥B(θ)∥2) of the
signal from Bloch simulation. We wish to find θ̂ = arg minθ∈Θd f (θ).

In Figure 2, we show the error function for two-dimensional tissue properties, consist-
ing of {T1, T2} for two specific target tissue property combinations observed in the white
matter and gray matter areas of the brain, respectively [36]. We employed template match-
ing with the explicit dictionary discussed in the Section 2.2 to generate the contour maps.
This explicit dictionary consists of 10,000 elements (granularity shown in Table 1, top).

Figure 2. Error function f (θ) for MRF signal Xµ with θ ∈ Θ2 = {T1, T2}. (a) Top-left: µ = 1,
[T1 = 800 ms, T2 = 50 ms]; (b) Top-right: µ = 1, [T1 = 1400 ms, T2 = 80 ms]; (c) Bottom-left: µ = 5,
[T1 = 800 ms, T2 = 50 ms]; (d) Bottom-right: µ = 5, [T1 = 1400 ms, T2 = 80 ms]. [T1 = 800 ms,
T2 = 50 ms] and [T1 = 1400 ms, T2 = 80 ms] is indicative of white matter and gray matter in brain
at 3T MRI scanner. Darker blue contours show lower f (better). “Loss” graphs show f for each
axis averaged over the other axis. The symbol + indicates the true tissue property combination in
each case.

Upon examining the tissue property combination of [800 ms, 50 ms], we note that
the minimum of the error surface aligns closely with the actual target, as denoted by the
plus (+) symbol, for both SNR 1 and 5 cases. However, for the tissue property combination
of [1400 ms, 80 ms], there is a small discrepancy between the actual tissue property and
minimum of the error surface at SNR 1, indicated by the + not appearing at the center of
the dark blue region. As expected, the discrepancy is reduced for the higher SNR.

From these figures, two key observations emerge. First, the sensitivity of the MRF
explicit dictionary template matching procedure is dependent on the tissue property com-
bination. This is expected from the the MRF-FISP pulse sequence’s differential sensitivity
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to distinct regions of the tissue property space, as highlighted in Jiang et al. [21]. Second,
for low SNR, there may be a systemic mismatch that is larger than the explicit dictionary
resolution. For example, Figure 2b shows that the true values lie outside the region with
the lowest f values. This is not due to a lack of granularity of sampling based on the
granularity shown in Table 1. In such a case, any algorithm relying on template matching
in some form is likely to produce irreducible errors.

In Figures 3 and 4, we show f for an MRF-X signal for six-dimensional tissue properties,
namely (Ta

1 ,Ta
2 ,Tb

1 ,Tb
2 ,ρ,τ) for two specific target tissue property values, again motivated

by values from the white and gray matter regions of the brain. Since we cannot directly
visualize a 6D error surface, we consider individual 2D projections by grouping the tissue
properties according to their respective compartments A and B. In such projections, we
fix the other dimensions to the target values. To generate each 2D projection, we use a
dictionary of 10,000 elements (granularity shown in Table 1, bottom).

From Figures 3 and 4, we observe that:

• Similar to the 2D case, there are still well-defined, non-disjoint regions with minimum
f in the space. So it is feasible (in theory) to achieve solutions close to the target values,
as in the 2D case.

• The gradient structure is generally steeper in some regions than in the 2D case, as indi-
cated by the larger number of narrower contours.

• For higher SNRs, there is still a relatively good alignment between some of the target
tissue properties, such as for (Ta

1 , Ta
2 , Tb

1 , Tb
2 ), with the actual target. This observation

aligns with expectations, given that the MRF-X scan is sensitive to the tissue properties
T1 and T2 [27]. Observing (T1, T2) property pairs (sub-figures d,e), it is evident that
the minimum of the error surface closely matches the actual target shown represented
by + symbol.

• There are large “plateaus” of the error function around the minimum for some tissue
properties even for high SNRs. Thus, even when the minimum aligns well with
the true parameters, there may be algorithmic challenges finding it due to the error
function structure, which has a combination of both steep gradients and large plateaus.

• As expected, the alignment between the minimum of the error surface and the actual
target is notably more accurate for SNR 5 compared to SNR 1.

• Estimating the (ρ, τ) tissue properties is the most challenging aspect of tissue char-
acterization. Assuming a two-compartment model, we hypothesize that the rate of
exchange of protons (ρ) and the volume ratio of a compartment (without loss of gener-
ality we can assume it is the ratio of compartment b over the total volume) (τ) to the
voxel are intrinsically related. If we assume that protons do not “leak” between voxels
and exchange only happens inside each measured region (conservation of protons),
then at equilibrium there must be an inverse relation between the rate of exchange and
the proportion of the compartment to the voxel volume. This implies that multiple
different combinations of tissue properties could lead to the same equilibrium state.
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Figure 3. Error function f (θ) for MRF-X signal Xµ with θ ∈ Θ6 = {Ta
1 , Ta

2 , Tb
1 , Tb

2 , τ, ρ}. (a) Top-left: µ = 1, [Ta
1 = 200 ms, Ta

2 = 10 ms]; (b) Top-middle: µ = 1,
[Tb

1 = 2800 ms, Tb
2 = 120 ms]; (c) Top-right: µ = 1, [τ = 7.0 s−1, ρ = 23.7]; (d) Bottom-left: µ = 5, [Ta

1 = 200 ms, Ta
2 = 10 ms]; (e) Bottom-middle: µ = 5,

[Tb
1 = 2800 ms, Tb

2 = 120 ms]; (f) Bottom-right: µ = 5, [τ = 7.0 s−1, ρ = 23.7]. Values [Ta
1 = 200 ms, Ta

2 = 10 ms, Tb
1 = 2800 ms, Tb

2 = 120 ms, τ = 7.0 s−1, ρ = 23.7]
correspond to white matter tissue properties from [37]. Darker blue contour lines indicate lower f (better). “Loss” graphs show f along one axis averaged over the
other. The “+” symbol marks the true tissue-property combination in each panel.
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Figure 4. Error function f (θ) for MRF-X signal Xµ with θ ∈ Θ6 = {Ta
1 , Ta

2 , Tb
1 , Tb

2 , τ, ρ}. (a) Top-left: µ = 1, [Ta
1 = 1200 ms, Ta

2 = 50 ms]; (b) Top-middle: µ = 1,
[Tb

1 = 3100 ms, Tb
2 = 372 ms]; (c) Top-right: µ = 1, [τ = 0.1 s−1, ρ = 76.6]; (d) Bottom-left: µ = 5, [Ta

1 = 1200 ms, Ta
2 = 50 ms]; (e) Bottom-middle: µ = 5,

[Tb
1 = 3100 ms, Tb

2 = 372 ms]; (f) Bottom-right: µ = 5, [τ = 0.1 s−1, ρ = 76.6]. Values [Ta
1 = 1200 ms, Ta

2 = 50 ms, Tb
1 = 3100 ms, Tb

2 = 372 ms, τ = 0.1 s−1, ρ = 76.6]
correspond to gray matter tissue properties from [37]. Darker blue contour lines indicate lower f (better fits). “Loss” graphs show f along one axis averaged over the
other. The “+” symbol marks the true tissue-property combination in each panel.
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4. Methods
From our results in the previous section, it appears feasible in some cases to recover

tissue properties in high dimensions by optimizing the error function, without explicitly
pre-generating a template dictionary, which is infeasible in this scenario. In the following
sections, we empirically evaluate several optimization algorithms to see if this can be
realized in practice. First, we briefly review the methods we will evaluate below.

4.1. Broyden–Fletcher–Goldfarb–Shanno

Algorithm The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is a popular
quasi-Newtonian method used for numerical optimization. The algorithm approximates
the Hessian (second derivative) matrix (Bk) of the objective function ( f ) at each iteration (k)
to find the next iterate:

xk+1 = xk − αkB−1
k ∇ fk. (3)

Here, ∇ fk denotes the gradient of objective function ( f ) at the current iterate (xk),
the stepsize αk is calculated using line search such that αk satisfies the Wolfe conditions [38],
and xk+1 is the next iterate. The algorithm is terminated when stopping criteria such as the
maximum number of iterations is met. While the BFGS method can solve a wide variety of
unconstrained optimization problems efficiently, a limitation for the BFGS algorithm is its
lack of bound constraints. This is needed for optimizing the MRF-X objective and is solved
by the extension below.

4.2. Limited Memory BFGS Algorithm with Bound Constraints

Limited-memory BFGS with Bound Constraints (L-BFGS-B, Algorithm 1) is a hybrid
quasi-Newtonian algorithm that uses gradient projection along with a limited memory
BFGS matrix update to solve large-scale nonlinear optimization problems [39]. Similar to
trust region methods, L-BFGS-B approximates a quadratic at the current search point (xk)
using the approximate limited memory matrices Yk and Sk composed of pairs of vectors yk

and sk as follows:

sk = xk+1 − xk

yk = ∇ fk+1 −∇ fk
(4)

Algorithm 1 L-BFGS-B ( f , x0, [l, u]n, m, M)

1: Initialize k = 0, xk = x0
2: Initialize Yk, Sk to store last m gradient and position differences
3: while k ≤ M and (|xk − xk+1| > ϵ or ∥∇ f (xk)∥ > ϵ) do
4: Estimate quadratic model ϕk at xk using Yk, Sk
5: Calculate Cauchy point xc along projected gradient direction
6: Determine active bounds in [l, u]n

7: Minimize in subspace using L-BFGS Hessian approximation
8: Update Yk, Sk with new gradient and position differences
9: k = k + 1

10: end while
11: return xk, f (xk)

As a first step, the Cauchy point xc is estimated from a quadratic model ϕk of the
objective function. Variables reaching their bounds are identified as the ‘active set’ and held
constant, reducing the problem’s dimensionality. The algorithm then employs subspace
minimization, as detailed in [39], focusing on the optimization of variables not in the
active set. This subspace minimization differs from the traditional BFGS line search by
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maintaining variable bounds, ensuring constraints are respected while pursuing efficient
optimization progress.

L-BFGS-B is widely used in practice [40] and is also appropriate for box constraints,
which are essential in MRF-X. Further, unlike the BFGS algorithm, the inverse Hessian is
approximated using limited memory matrices, which is computationally efficient. The com-
putation complexity of L-BFGS-B grows linearly with number of variables, making it
suitable for high-dimensional problems. However, like most gradient-based methods, it is
prone to local optima. This issue is partly addressed by the approach below.

4.3. Simplicial Homology Global Optimization

Simplicial Homology Global Optimization (SHGO) is a global optimization algorithm
designed to handle complex, high-dimensional black-box optimization problems like
MRF reconstruction. The SHGO algorithm has been effectively applied to several practical
applications in computed tomography [41], EEG signal extraction [42], and chemical process
optimization [43]. Endres et al. [44] demonstrated competitive results against other global
optimization strategies such as topographical global optimization [45] and Lc-DISIMPL [46].
Additionally, SHGO is available as part of the scipy [40,44] toolbox. These advantages have
motivated us to evaluate SHGO in addressing the MRF reconstruction problem.

SHGO (Algorithm 2) begins by uniformly sampling the feasible region defined by the
lower and upper bounds [l, u]n of the search space. Low-discrepancy sampling schemes
such as the Sobol sequence [47] are used to decrease the probability of clusters in high-
dimensional space. The number of samples N is a hyperparameter based on the dimension-
ality of the search space. The resulting set of samples P is then used as the vertices of the
simplicial complex H. Triangulation (such as that by Delauney [48]) is then used to connect
the edges of the vertices in the simplicial complex.

Algorithm 2 SHGO ( f , [l, u]n, N, local minimizer L)

1: P = ∅
2: while |P| < N do
3: X = Generate N − |P| Sobol sequence points from Rn

4: Scale X to bounds [l, u]n

5: P = P ∪ X
6: end while
7: Construct simplicial complex H from f (P)
8: Generate minimizer candidates M from H; CS = ∅
9: for v ∈ M do

10: (x, f (x)) = L(v)
11: CS{x} = (x, f (x))
12: end for
13: x∗ = arg min CS{x}
14: return x∗, f (x∗)

Each vertex in the simplicial complex H consists of location, vi, i ∈ I+, and the
corresponding functional value f (vi). The direction of each edge is evaluated based on the
direction of the vector connecting two vertices on the hypersurface. For example, an edge
is directed from vertex vi to vertex vj iff f (vi) < f (vj). It can now be observed that if
all the edges connected to a vertex are directed away from the vertex, the vertex forms
a minimizer of the local region of the set of vertices called the star of the vertex (st(vi)).
Applying Sperner’s lemma [49], there is at least a minimizer within the domain of the star
of each vertex in the minimizer set M. By using the vertices in the minimizer set and a local
optimization routine (L(v)) such as L-BFGS-B, the local minima can be estimated, which
allows SHGO to return an approximate global minimum. The computation complexity of
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the SHGO algorithm without the local optimization routine is exponential in nature, which
makes it infeasible for high-dimensional problems without the local optimization routine.

5. Results and Discussion
We now evaluate the utility of optimization algorithms to recover tissue properties

from MRF-X data. The task of recovering multiple tissue properties from a single MRF-X
scan poses considerable challenges. First, each tissue property varies in its sensitivity
to changes in the MRF-X input signal. Second, in clinical settings, only a limited subset
of the Fourier space samples are collected (undersampling). This approach inevitably
leads to a tradeoff between noise and scan duration. In our study, we simulate this
tradeoff by introducing Gaussian noise to the signal, mimicking the noise resulting from
the undersampling performed during an actual scan. To the best of our knowledge, our
study is the first of its kind to explore the characterization of six-tissue-property MRF
(termed as MRF-X) recovery using various nonlinear optimization techniques.

To simulate MRF-X data, we employed a modified version of an MRF-FISP pulse
sequence, as described in [21]. Specifically, the MRF-X sequence uses a variable flip angle
between 0 and 60◦ and maintains a constant repetition time (TR) of 6.98 ms. As explained
in [37], an inversion pulse is introduced before specific RF excitations at the setting inversion
time (TI) [21 ms, 100 ms, 250 ms]. This allows the pulse sequence to be more sensitive to
T1 [50]. We set the SNR µ = 5.0 for these data.

For the implementation, we built a Bloch–McConnell simulator in C++ using the Eigen
linear algebra library [51]. All optimization routines were written in Python 3.8 using
numpy and scipy. The simulations were run on a server with 2×20-core Intel Xeon CPUs
and 384 GB total system memory, custom-built by Puget Systems, Inc. (Auburn, WA, USA).
The simulation took ∼ 1 min to generate a single signal with a given tissue property
combination. Code for the simulation and parameter recovery will be made available
on GitHub (https://github.com/).

5.1. MRF Results

We start by validating L-BFGS-B and SHGO with L-BFGS-B as the local minimizer
(SHGO+L-BFGS-B), for tissue properties T1 and T2 against the standard explicit dictionary
template matching technique [9]. To create this dictionary, we generate 10,000 data points
from a combination of the properties T1 and T2. In this dictionary, the T1 values range from
500 ms to 3000 ms, while the T2 values range from 20 ms to 350 ms. For validation, target
signals are generated by randomly sampling values multiple times within the same range
as the dictionary. To emulate realistic signals obtained at the scanner, we introduce white
Gaussian noise with an SNR of 5 into the target signals. Each optimization algorithm then
produces estimated (T1, T2) values, from which we compute the normalized mean absolute
difference (NMAE) as an absolute error relative to the input properties. The results are
shown in Figure 5.

From Figure 5, we observe that all methods produce comparable results in this sce-
nario. In particular, the dictionary-free optimization approaches produce excellent results,
with error typically in the 2–4% range, in line with direct matching. We also observe that
the error in the T2 tissue property is typically worse than the error in T1; this is due to the
sensitivity difference to the MRF signal between different tissue properties. This experiment
shows that optimization approaches can recover signals commensurate with dictionary
matching without generating a complete dictionary from MRF signals.

https://github.com/
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Figure 5. Box-and-whisker plot of normalized mean absolute error as percentage for tissue properties
T1 and T2. We compare the algorithms direct matching using explicit dictionary with L-BFGS-B and
SHGO with L-BFGS-B.

5.2. MRF-X Results

In our experiments, we analyze MRF-X using two distinct scenarios: one with five
tissue properties (5D) and the other with six (6D). In the 5D scenario, we set the tissue
property τ to be 0. This setting corresponds to a two-compartment model of the tissue,
where there is no movement of protons between the compartments. We adopt this approach
to highlight the effect of the tissue property τ in estimation of the tissue property ρ and
to explore the impact of dimensionality on our optimization procedures. To evaluate the
methods, we create two datasets: one consisting of 24,000 target properties in 6D and
another consisting of 20,000 properties in 5D as follows. We first sample 1000 points using a
regular grid sampling scheme across the tissue property ranges given in Table 2 (left). Then,
for each sampled point, we fix all but one of the properties and resample the remaining
properties three more times evenly across their ranges. This ensures that each axis is being
well sampled, in a tractable manner, for many different values of the other properties. It is
similar to Latin hypercube sampling, though modified to use a fixed total sample while
still maximizing the sampling of the full hyperspace. We therefore expect our results to
generalize well across the whole 5D or 6D spaces.

Table 2. Boundary constraints (minimum and maximum) for L-BFGS-B and SHGO algorithms, along
with Gold Standard dictionary’s overall range (“Extent”) and the maximum possible error. Here,
“Extent” denotes the difference between the minimum and maximum values, with actual tissue
properties centered within this interval.

Boundaries Gold Std.

Property Minimum Maximum Extent Max Error.

Ta
1 (ms) 800 1400 300 0.18

Ta
2 (ms) 20 150 20 0.50

Tb
1 (ms) 1500 2800 300 0.10

Tb
2 (ms) 200 350 20 0.05

τ (s−1) 0.1 5 0.3 1.5
ρ (%) 5 95 6 0.6
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In the case of MRF-X, generating an explicit dictionary with the necessary resolution
to effectively extract tissue properties becomes intractable. However, we use a modified
dictionary-based matching approach that we term Gold Standard to establish a perfor-
mance bound for optimization methods.

The Gold Standard dictionary is designed by restricting the extent of tissue properties
used in the dictionary to a constrained region around the actual tissue property value
(which would be unknown in reality) in a six-dimensional space. The specifics of each
tissue property’s extent are detailed in Table 2 (right). To generate a dictionary (separately
for each possible target property combination we test), we randomly sample 1000 points
within this space. We observe from the “Max error” column of the table that this sampling
introduces limited error in the estimates of the individual tissue properties. It is important
to emphasize that this approach is not a baseline in that it could not be performed in
practice; however, it gives us an idea of the irreducible error (and so an upper bound on
the best performance) in this space. That is why we label it “Gold Standard”.

In Tables 3 and 4, we show tissue property recovery errors for 5D and 6D for two
optimization methods: L-BFGS-B and SHGO combined with L-BFGS-B for local search.
These methods are initialized randomly from the hypercube defined by the tissue property
bounds in Table 2. We also show results for two Gold Standard derivatives: explicit
dictionary matching with the Gold Standard dictionary (“Dictionary matching w/Gold
Std.”) and L-BFGS-B with Gold Standard initialization (“L-BFGS-B w/Gold Std.”). This
method runs L-BFGS-B algorithm, initialized randomly within a hypercube determined by
the edge length from the ’Extent’ column in Table 2 centered around the true tissue property
values. Since the two latter methods use the knowledge of the true tissue properties, they
serve as upper bounds on potential performance. Our results are shown in terms of NMAE
along with standard deviation across the 20,000 points (in 5D) or 24,000 points (in 6D).

Further, we conducted a timing comparison of SHGO and SHGO+L-BFGS-B for the
6D case. In this comparison, we did not use the “Gold Standard” dictionary matching
as it is infeasible in practice. For the L-BFGS-B algorithm, our results show that it takes
on average 41 s to recover a single tissue property with a standard deviation of 12 s on
a 16 core AMD CPU with 32 GB of memory. On the other hand, SHGO+L-BFGS-B takes
on average 190 s with a standard deviation of 48 s on a 16 core AMD CPU with 32 GB of
memory. This indicates that SHGO+L-BFGS-B is relatively slower than L-BFGS-B for the
recovery problem but not as significantly slower as suggested by exponential scaling of the
SHGO algorithm. By using the L-BFGS-B as the local minimizer, we significantly offset the
computational cost of the SHGO algorithm.

Table 3. Normalized mean absolute errors with standard deviation for five tissue properties. Values
are presented as mean ± standard deviation.

TP Dictionary Match
with Gold Std. *

L-BFGS-B with
Gold Std. * L-BFGS-B SHGO + L-BFGS-B

Ta
1 0.059 ± 0.042 0.123 ± 0.128 0.137 ± 0.136 0.126 ± 0.128

Ta
2 0.053 ± 0.056 0.228 ± 0.451 0.276 ± 0.588 0.249 ± 0.457

Tb
1 0.024 ± 0.013 0.105 ± 0.124 0.124 ± 0.133 0.126 ± 0.130

Tb
2 0.058 ± 0.062 0.149 ± 0.175 0.150 ± 0.163 0.148 ± 0.168

ρ 0.045 ± 0.046 0.361 ± 0.772 0.563 ± 1.413 0.420 ± 0.830
[*] Gold Standard (“Gold Std.”) denotes template matching within a region constrained around the solution.
L-BFGS-B with Gold Standard (“LBFGS w/Gold Std.”) refers to the L-BFGS-B algorithm with initial guess
derived from region constrained around the solution. SHGO with L-BFGS-B (“SHGO+L-BFGS-B”) is the global
optimization SHGO using L-BFGS-B as its local minimizer. Better L-BFGS-B and SHGO+L-BFGS-B error rates are
highlighted using bold font.
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Table 4. Normalized mean absolute errors with standard deviation for six tissue properties. Values
are presented as mean ± standard deviation.

TP Dictionary Match
with Gold Std. *

L-BFGS-B with
Gold Std. * L-BFGS-B SHGO + L-BFGS-B

Ta
1 0.040 ± 0.041 0.076 ± 0.101 0.159 ± 0.124 0.137 ± 0.120

Ta
2 0.038 ± 0.048 0.202 ± 0.310 0.342 ± 0.457 0.284 ± 0.337

Tb
1 0.034 ± 0.026 0.066 ± 0.098 0.187 ± 0.155 0.169 ± 0.133

Tb
2 0.023 ± 0.018 0.186 ± 0.274 0.293 ± 0.267 0.278 ± 0.227

ρ 0.092 ± 0.144 0.028 ± 1.040 1.720 ± 1.413 3.860 ± 3.930
τ 0.424 ± 0.830 0.245 ± 0.815 1.870 ± 3.360 1.530 ± 4.420

[*] Gold standard (“Gold Std.”) denotes template matching within a region constrained around the solution.
L-BFGS-B with Gold Standard (“LBFGS w/Gold Std.”) refers to the L-BFGS-B algorithm with initial guess
derived from region constrained around the solution. SHGO with L-BFGS-B (“SHGO+L-BFGS-B”) is the global
optimization SHGO using L-BFGS-B as its local minimizer. Better L-BFGS-B and SHGO+L-BFGS-B error rates are
highlighted using bold font.

Looking at the five tissue property results, we observe that (i) there is an irreducible
error of 2–6% in each tissue property. This error is present even if we use explicit matching
within a small radius of the true tissue property. Thus, we cannot expect practical methods
to achieve lower error than this on average across the space of 5D properties. (ii) The error
rates of L-BFGS-B w/Gold Std. and L-BFGS-B are comparable in most cases, except for ρ.
This indicates that on average, the L-BFGS-B method (initialized randomly) is able to get
close to the “Gold Standard” hypercube. However, within the “Gold Standard” hypercube
the local gradient may not be smooth and the minimum may not be at the zero of the
gradient. This is also illustrated in Figures 3 and 4 for the 6D case and is likely the reason
why the Dictionary match w/Gold Std. method produces an irreducible error. (iii) We observe
that SHGO + L-BFGS-B generally produces better results than L-BFGS-B on its own. This
indicates that this global optimization approach is able to get closer to the “Gold Standard”
hypercube than L-BFGS-B and pick better minimizer candidates on average. However,
since L-BFGS-B is the local minimizer, the final error is not less than L-BFGS-B w/Gold Std.
It is a direction for future work to evaluate if a different minimizer using other signals than
just the local gradient could work better with SHGO for this problem. (iv) The ρ tissue
property is the hardest to estimate accurately using the local gradient alone. However,
given that Dictionary match w/Gold Std. achieves an average error rate of 4.5%, it seems
likely there are other features beyond the local gradient that could be exploited to find
better solutions.

In the six-tissue-property case, again, there is an irreducible error of 2–9% in each
tissue property on average. Perhaps surprisingly, L-BFGS-B w/Gold Std. is able to produce
better results on average than in the five-tissue-property case for Ta

1 , Tb
1 , and Ta

2 . Between
L-BFGS-B and SHGO + L-BFGS-B, the latter is once again the better-performing method.
It approaches the results of L-BFGS-B w/Gold Std., though not surprisingly, the error rates
are higher than in the 5D case. It is interesting that the error rates for SHGO + L-BFGS-B,
though higher, are not substantially higher (usually less than 5%) other than Tb

2 in the 5D
case given the substantially larger space being explored. Finally, we observe that the ρ

and τ properties produce high errors when estimated by L-BFGS-B and SHGO + L-BFGS-B.
Since the error is lower for the “Gold Standard” methods, it seems likely that the methods
are being misdirected into regions where the true property is not present. As we discussed
in Section 3, these two properties may not be independent, so there may be multiple pairs
of (ρ, τ) solutions that yield similar behavior. To support this claim, we observe that the ρ

estimates form both “Gold Standard” methods have either a high error or a wide confidence
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interval, and the τ estimates have high irreducible error and large confidence intervals.
This indicates it may be inherently difficult to estimate these properties jointly.

6. Conclusions
In this paper, we present a systematic analysis of tissue-property recovery from MRF-X

signals. We first visualize the surface of the error function that is explored to recover tissue
properties in 2D and 6D cases. The visualization illustrates how the gradient signal changes
from 2D to 6D for different target tissue properties and highlights the fact that there is
structure that can be exploited but also difficulties caused by plateaus and lack of alignment
of the minimums with the target properties at lower SNRs.

Based on this analysis, we show results for two optimization algorithms, L-BFGS-B
and SHGO + L-BFGS-B on 5D and 6D tissue property-recovery problems, as well as two
“Gold Standard” methods the illustrate the best that can be achieved. In the 5D case, SHGO
+ L-BFGS-B outperforms L-BFGS-B and comes within 10-20% of the error values achieved
by L-BFGS-B with “Gold Standard” initialization. In the 6D case, SHGO + L-BFGS-B again
outperforms L-BFGS-B for most tissue properties. The errors are comparable to the 5D case
for the three tissue properties. However, ρ and τ seem to be hard to estimate in combination,
even for the “Gold Standard” approaches.

Key takeaways:

• Estimating six tissue properties (especially ρ and τ) from MRF-X signals is a challeng-
ing optimization problem due to complex error surfaces with plateaus and misaligned
minima at lower SNRs.

• Because of the lack of standard optimization approaches for this problem, we created
a “Gold Standard” which, although impractical in clinical practice, provides a baseline
for comparison of our results.

• Our proposed SHGO + L-BFGS-B algorithm comes within 10–20% of L-BFGS-B with
“Gold Standard” initialization, demonstrating its effectiveness for practical applica-
tions.

• The 6D recovery problem (including both ρ and τ) presents fundamental challenges,
with these two parameters being particularly difficult to estimate simultaneously.

• Visualization of the error surfaces reveals an exploitable structure that can guide the
development of more effective optimization strategies for MRF-X tissue property
recovery.

In future work, we plan to investigate the use of alternative local optimization strate-
gies with SHGO that can take advantage of more than local gradient information, as well
as techniques to better estimate the τ and ρ properties in 6D.

To summarize, our study provides an analysis and shows results and potential chal-
lenges in recovering multiple tissue properties from a single MRI scan. While simultane-
ously estimating multiple tissue properties poses considerable technical and fundamental
physics challenges, we believe this work is an important step towards developing ro-
bust tools for quantitative multi-parametric MRI, advancing its potential as a powerful
diagnostic tool in clinical practice.
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Abstract: This work is dedicated to the development of a system for generating artificial
data for training neural networks used within a conveyor-based technology framework.
It presents an overview of the application areas of computer vision (CV) and establishes
that traditional methods of data collection and annotation—such as video recording and
manual image labeling—are associated with high time and financial costs, which limits their
efficiency. In this context, synthetic data represents an alternative capable of significantly
reducing the time and financial expenses involved in forming training datasets. Modern
methods for generating synthetic images using various tools—from game engines to
generative neural networks—are reviewed. As a tool-platform solution, the concept of
digital twins for simulating technological processes was considered, within which synthetic
data is utilized. Based on the review findings, a generalized model for synthetic data
generation was proposed and tested on the example of quality control for floor coverings
on a conveyor line. The developed system provided the generation of photorealistic and
diverse images suitable for training neural network models. A comparative analysis
showed that the YOLOv8 model trained on synthetic data significantly outperformed the
model trained on real images: the mAP50 metric reached 0.95 versus 0.36, respectively.
This result demonstrates the high adequacy of the model built on the synthetic dataset and
highlights the potential of using synthetic data to improve the quality of computer vision
models when access to real data is limited.

Keywords: data generation; neural network; synthetic data; computer vision; YOLO; Unity;
conveyor; laminate; defect

1. Introduction
In the implementation of a wide range of industrial processes based on multi-stage

transformations of raw materials into finished products, there arises a need for quality con-
trol of intermediate and/or final results. This need is expressed through the identification
and rejection of objects that do not meet specified parameters indicating compliance with
certain standards, regulations, or norms. Typically, this task is performed through human
visual inspection, which involves several issues:

• low speed of evaluation and classification (compliant/non-compliant with quality
parameters) due to the physiological limitations of the human visual system;

• subjectivity of perception, which may lead to missed detection of substandard objects
or incorrect classification caused by factors such as the quality inspector’s qualifica-
tions, fatigue, loss of concentration, etc.;
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• costliness of this stage in the production process, which does not directly contribute
to the added value of the product and includes, among other things, the need to
compensate specialized personnel.

To address these challenges, various digital solutions based on computer vision
(CV) systems are increasingly being adopted. These systems are being integrated
across multiple industries and specific production tasks, including: traffic monitor-
ing [1–4], metallurgy [5–8], perimeter security and safety compliance [9–12], agricul-
ture [13–15], and others. The technology enables automation of numerous routine and
attention-intensive tasks.

For example, in [16], potential applications of CV technology are discussed in the
context of detecting and classifying diseases in various medical images, such as ultrasound
scans and microscope images of tissue samples.

Computer vision can also be applied in the printing industry to enhance the effective-
ness of quality control over printing equipment, ultimately reducing the cost of the final
product. During the technological process, components such as engraved printing cylinders
are produced, which are used to apply images or text onto paper. In [17], deep neural
networks were trained to detect defects (dents, scratches, inclusions, bends, misalignments,
excessive, faded or missing prints, and color errors resulting from engraving). The training
data consisted of photographs of printing machine components, classified by operators as
either defective or defect-free. During testing, the model achieved an accuracy of 97.85%
for true negative results, and 99.01% for true positives—clearly indicating a high level of
performance for the given task.

Building effective computer vision (CV) systems requires a preliminary data collection
stage, which includes obtaining images of relevant objects along with their coordinates
within the image. However, in many fields, acquiring a diverse and timely dataset is
challenging, as technological and other processes may not allow for the reproduction
of rare, hazardous, or economically inefficient scenarios. Additionally, manual image
annotation is subject to human error, which can negatively affect the quality of neural
network training.

Due to these limitations, obtaining uniform datasets becomes problematic, which
reduces the generalization ability of neural networks and, consequently, their accuracy.
One of the solutions to the data scarcity issue is the generation of artificial images using
various methods. Currently, there are numerous approaches and implementations of data
generators tailored to different subject domains.

2. The Concept of Data Generation
The problem of automating the data collection process is not new, and numerous

studies have been conducted to address it. For example, the study [18] presents a review of
image generation methods aimed at producing data for machine-learning systems, focusing
on photorealistic rendering techniques such as path and ray tracing.

In article [19], various synthetic data generation methods for neural networks are
described, discussing different types of generators—such as generative neural networks
and simulators—that can be used to create images.

Some researchers [20] describe the process of generating artificial data by simulating
UAV (unmanned aerial vehicle) behavior for detection and classification tasks using the
video game GTA V (Grand Theft Auto V). However, current video games offer limited
capabilities for data generation and do not support a wide range of diverse scenarios. To
implement more atypical use cases not supported by video games, other software tools are
used, including 3D modeling software such as Blender [21], ZBrush [22], and 3Ds Max [23].
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For instance, Blender was used to build a synthetic data generator for detecting
pipeline defects using UAVs [24]. The system provides a flexible dataset of photorealistic
images and allows for customizable usage scenarios.

The article [25] proposes a method for generating synthetic images of defects, specif-
ically chips, for use in various industrial applications. As an example, the study uses a
turbocharger component. The proposed generator relies on procedurally generated tex-
tures applied to the object of interest to increase dataset diversity. Defects are simulated
by cutting out randomly shaped segments from the 3D mesh, allowing for a wide range
of potential damages. Test results showed that a model trained solely on synthetic data
outperformed a model trained only on real images of turbocharger chips.

However, the Blender-based approach has limitations—it cannot produce a large
number of frames per second. Even with a decent rendering speed of 1 fps, generating a
one-minute video would take about 30 min. For faster data generation with only a slight
reduction in image quality, game engines like Unreal Engine, Unity, and CryEngine are
often used.

Unity, for example, includes the Unity Perception package, which offers tools for
automated annotation of synthetic data in its native SOLO format. In [26], Unity and Unity
Perception were used to generate training data for a neural network tasked with detecting
manufactured metal bolts on a conveyor belt. This solution enabled data generation at up
to 6 fps—significantly faster than Blender—but still did not fully leverage Unity’s potential.

The authors of [27] conducted an experiment to generate industrial safety data. A
construction site with scaffolding was simulated using a game engine, and human behavior
was animated using skeletal animation tools. Neural network models trained on synthetic
data mixed with real samples achieved the highest performance.

The study [28] proposed a solution for generating data for traffic sign detection. Unity
Perception was used to render 2D images from 3D models, separating them into detection
objects, noise elements, and background layers. Although models trained only on synthetic
data performed worse than those trained on real images, the time saved on data annotation
was considerable. Moreover, a model trained on a mixed dataset outperformed both others,
highlighting the value of synthetic data in machine learning.

CAD (computer-aided design) systems can also be used among the tools for working
with 3D graphics, as, for example, in article [18]. Here, various 3D parts with diverse
textures, viewpoints, and lighting conditions were used to produce a highly variable
training set. Experiments demonstrated that neural networks trained on synthetic data
were able to recognize additive components with high accuracy.

The authors of [29] consider a technique for generating synthetic images using CGI
(computer-generated imagery) graphics based on thin shell simulation. This approach
accurately replicates the photorealistic behavior of textile materials, including wrinkles
and folds, which is important for tasks related to clothing structure analysis or other
soft surfaces. Experimental results showed an 8–10% increase in prediction accuracy
for models trained with synthetic data compared to those trained exclusively on real
images—demonstrating the utility of CGI-based synthetic data in enriching computer
vision datasets.

Another notable advancement is in the use of synthetic composite images (SCI)—real
photographs digitally manipulated or augmented with elements not originally present.
For example, the Super real dataset presented in paper [30] includes around 6000 Skins
created for segmentation tasks. In this dataset, 3D models of people in various poses are
overlaid onto real-world backgrounds. Experiments showed that neural networks trained
on SCIs achieved higher segmentation accuracy compared to models trained solely on real
images. The best performance was achieved by a model with an upsampling layer that
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increased image resolution before segmentation. This model was trained on a mixed dataset,
combining both real and synthetic images, resulting in improved segmentation quality.

Study [31] also investigates composite image generation, where CAD models with
various viewpoints and lighting conditions are superimposed on background images to
increase dataset variability. While models trained solely on synthetic images generally
underperformed compared to those trained on real data, freezing the feature extractor
significantly improved their performance on real test data.

Neural networks themselves are also used to generate synthetic data. One such
method involves Variational Autoencoders (VAEs), which include two key components:
an encoder and a decoder. VAEs generate new images by learning the underlying data
distribution, encoding input images into latent space and decoding them to generate new
samples. In [32], a VAE was used to generate random faces. However, the resulting images
were often blurry, particularly at high resolutions.

Another technique uses generative adversarial networks (GANs), consisting of a
generator and a discriminator that compete against each other. The generator creates
synthetic images, while the discriminator evaluates their authenticity. This adversarial
process continues until the generator produces high-quality, realistic images [33].

In paper [34], a GAN-based method is proposed for training a neural network to detect
and classify people. A “synthesizer” network generates images, which are then evaluated
by a “target” network. A discriminator, trained on real images, helps the synthesizer avoid
obvious artifacts and improve image realism.

In study [35], GANs are used to expand a dataset aimed at image segmentation.
The generated images train a semantic segmentation network responsible for identifying
defects. The method improves the model’s robustness to different defect types and lighting
conditions, making it more effective in real industrial environments. The synthetic data’s
diversity reduced overfitting to limited real-world datasets.

Each approach addresses the data shortage challenge in its own way, with its own
strengths and limitations. For instance, 3D editor-based generation is relatively slow due
to low rendering speed. The GTA V-based method does not support data generation for
industrial processes, which is a significant drawback, but it allows real-time UAV simulation.
Neural network-based methods such as VAE and GAN also have limitations—they require
real data to train the models before generation can begin.

3. The Concept of Digital Twins
A digital twin is a dynamic virtual copy of a real object, process, system, or envi-

ronment. It replicates not only the appearance but also the key properties of its physical
counterpart, enabling detailed analysis, simulation, and forecasting of its behavior. The use
of digital twins improves process efficiency, reduces maintenance costs, predicts potential
failures, and enhances product quality [36].

In paper [37], the authors presented a classification of digital twins based on the level
of integration:

• digital model: a static 3D representation without any connection to the real object;
• digital shadow: a model that is updated based on incoming data, but the connection is

one-way—from the physical object to the model;
• digital twin: provides a two-way connection with the physical object, allowing not

only data acquisition but also real-time simulation of changes.

Digital twins are used to solve various tasks related to testing and predicting the
behavior of real objects.
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For example, in [38], digital twins are discussed in the context of optimizing construc-
tion processes, reducing costs, and increasing efficiency through the integration of building
information modeling (BIM) and IoT technologies.

In [39], the prospects of Industry 4.0—combining IoT and digital twins—are examined
in the context of education. The study concludes that it is necessary to implement digital
twin research programs, both conceptually and methodologically, with practical application
in mind.

Study [40] explores the concept of digital twins in agriculture. Based on the analysis of
existing definitions, a typology of digital twins was proposed according to lifecycle stages,
including the following categories:

• Imaginary digital twin: a conceptual digital model representing an object that does
not yet exist physically;

• Monitoring digital twin: a digital representation of the current state, dynamics, and
trajectory of a real physical object;

• Predictive digital twin: a digital projection of possible future states and behaviors
of physical objects, based on predictive analytics, including statistical forecasting,
simulation, and machine learning;

• Prescriptive digital twin: an intelligent digital model capable of recommending correc-
tive and preventive measures to optimize the operation of real-world objects. These
recommendations are usually based on optimization algorithms and expert heuristics;

• Autonomous digital twin: a digital twin with autonomous functions, capable of fully
controlling the behavior of physical objects without human intervention, either locally
or remotely;

• Recollection digital twin: a digital representation containing the complete history of a
physical object that no longer exists in reality.

Additionally, a hardware–software solution was developed in the study to implement
and experimentally test the concept of digital twins in agriculture.

Study [41] provides a comprehensive review of the application of digital twin tech-
nology in the context of intelligent electric vehicles. The research focuses on optimizing
electric transport operations through the use of digital twins for real-time monitoring and
prediction of the state of key vehicle components and systems. Digital twin technology
improves the efficiency of electric vehicle operation by enabling better use of energy and
material resources. In particular, timely identification of potential failures and optimization
of operational parameters not only extends component lifespan, but also significantly
reduces the environmental impact of transport.

In paper [42], the digital twin concept is used to optimize pig farming in agriculture.
A “pig twin” model was developed to track growth under varying conditions and optimize
feeding. The pig digital twin is currently under development and will be used to explore
the potential of a closed-loop control system at the Industry 4.0 level.

Unlike agriculture, which focuses on adaptation to natural conditions and biological
factors, industry demands higher precision, reliability, and integration of digital solutions
into complex production chains. In this context, digital twins are a key tool in digital
transformation, enabling continuous process optimization, predictive maintenance, and
cost reduction.

For creating digital twins of conveyor-based production, game engines are often
used. For instance, the company Prespective developed software integrated with the Unity
game engine, allowing rapid design of conveyor lines. Using this solution, an automotive
assembly process was recreated, enabling assessment of line performance under equipment
failure conditions for incident prioritization. Moreover, the system provides operators with
detailed order information necessary for proper vehicle assembly [43].
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Study [44] proposes a fault diagnosis methodology for permanent magnet synchronous
motors used in coal conveyors, based on digital twin technology. The proposed approach
integrates the digital twin concept with an optimized random forest algorithm. A bidi-
rectional data transmission system was implemented to synchronize the physical object
and its virtual copy in real time. Simulation results, confirmed by experimental data,
showed a diagnostic accuracy of 98.2%, which indicates that 98.2% of failures were cor-
rectly predicted. This study highlights the potential of digital twins for motor condition
monitoring and emphasizes further integration of fault diagnosis with 3D visual control of
equipment operation.

Study [45] presents a comparative analysis of robotic arm digital twin development
using two software platforms: Unity and Gazebo. The study evaluated the performance of
these environments in creating dynamic digital models. The development was based on a
unified physical setup and communication layer, ensuring the objectivity and accuracy of
the comparison.

The results showed that Unity has advantages in simulation accuracy and lower
response latency, making it optimal for applications requiring high visualization preci-
sion and fast data processing. On the other hand, Gazebo offers faster integration with
the Robot Operating System (ROS), making it preferable for low-budget robotics and
automation projects.

Digital twins are also suitable for generating synthetic data, as they allow simu-
lation of system operation under extreme conditions without the need to reproduce
dangerous scenarios.

Study [46] is dedicated to the digital twin of a wind turbine energy conversion system.
A hybrid model was developed to generate synthetic data for fault diagnosis.

In the context of generating synthetic images, basic-level digital twins—digital
models—are sufficient, since a real-world connection is not necessary to obtain high-quality,
realistic data for neural network training.

For instance, Boeing used a digital model of its aircraft for an AR (Augmented Reality)
inspection application, generating over 100,000 synthetic images to train machine-learning
algorithms [47].

To achieve the goal of synthetic data generation, a simple digital twin of the studied
object must be created. This approach allows for the rapid development of training datasets
using digital models that serve as a specific implementation of the digital twin concept.

4. Generalized Model of the Synthetic Data Generator
The task of identification involves detecting the object of interest that needs to be

recognized and classified by the computer vision (CV) system. For example, in quality
control of brick production, the object of interest would be brick defects. If the task is to
detect vehicles using UAVs, the objects of interest would be various types of vehicles.

To address identification tasks within a conveyor-based manufacturing process, a
generalized model for generator formation is proposed. This model consists of a set of
interconnected tasks and simulates the production process:

• Creation of a digital twin (digital model) of the conveyor line (generation of 3D models
of the conveyor belt; generation of 3D models of the conveyor sidewalls; texturing of
the belt and sidewall models);

• Creation of the object of interest (generation of 3D models of the object of interest;
texturing of the object models; development of algorithms for modifying the object
of interest);

• Simulation of the real technological process (development of algorithms for the move-
ment of objects of interest along the digital twin of the conveyor line; development
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of algorithms for modifying the digital twin and applying effects; development of
algorithms for changing the production camera’s viewing angle).

The step-by-step implementation of the above-mentioned tasks enables the creation
of a synthetic data generator framework suitable for any conveyor-based manufacturing
process. As an example, a specific case of modeling laminate production will be considered
further in this work.

Within the scope of the generalized task list, specialized software was developed, with
its component diagram shown in Figure 1.

 

Figure 1. Diagram of software components.

Scene generation was carried out through the operation of eight main components
responsible for the creation and destruction of objects of interest, defect overlay, simulation
of conveyor line operation, and expansion of the image dataset.

Situations are generated by the work of 8 main components of the scene responsible for
the creation and destruction of objects of interest, the imposition of defects, the simulation
of the conveyor line, and the expansion of the image sample.
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4.1. Formation of the Digital Twin of the Conveyor Line

The system is implemented using the Unity game engine, which enables real-time
scene rendering, along with its associated programming language, C#, and High-Definition
Render Pipeline (HDRP) technology, which provides high-quality image generation.

Since the generalized task list involves the creation of a digital model, a representation
of the conveyor was constructed using engine primitives (Figure 2a), specifically paral-
lelepipeds. High-resolution textures were then applied to this representation (Figure 2b),
which were created based on a real-life prototype—a conveyor line from a flooring produc-
tion facility (Figure 2c).

 
(a) (b) (c) 

Figure 2. Conveyor line: (a) representation of primitives; (b) textured model; (c) real prototype.

The result of completing the first task from the generalized model was a generated 3D
model of the conveyor, which was used to simulate the production process.

4.2. Formation of an Object of Interest

The object of interest in the given process is a laminate board, which must later be
detected by the CV system. Accordingly, it is important to reflect the maximum number
of object variations within the synthetic dataset. To create the objects of interest, ten high-
resolution laminate board textures and their corresponding normal maps were developed.
The number of textures was chosen to cover the main visual and textural variations com-
monly found in real-world conditions. This amount is sufficient to generate a large enough
volume of synthetic data required for proper training of the CV system. The textures were
subsequently applied to 3D parallelepiped objects.

Next, algorithms for modifying the boards were developed. To increase the diversity
of the dataset, it was decided to expand the number of objects of interest by applying
defects. For this purpose, two components were created: the Defect Distributor and the
Defect Generator (Figure 1).

The Defect Distributor manages the defect application process. It performs the follow-
ing tasks:

• Randomly determines whether a defect should be created;
• Modifies the object to allow proper defect application (adds annotation markers,

creates additional empty objects);
• Randomly selects a defect from the available list;
• Transfers the prepared object to the defect application procedure.
• The Defect Generator is responsible for creating three types of defects:
• Print defect—an area of the printed pattern on the board that differs in color and

texture from the main surface;
• Glue spot—a light gray spot on the outer surface of the laminate, caused by glue

seeping from the adhesive layer beneath;
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• Corner chipping—chips along the edges of the board, either across its entire length or
in partial sections.

The defect selection algorithm is based on generating a random number from 0
to 1, which helps to distribute defects proportionally and maintain class balance in the
training dataset.

The print defect and glue spot are generated using an algorithm based on Perlin noise,
implemented with Unity’s built-in tools. Perlin noise is a type of gradient noise that uses
random number generation. Unlike uniformly distributed noise (Figure 3a), where each
new value can vary sharply from the previous one, Perlin noise (Figure 3b) ensures smooth
transitions between values.

  
(a) (b) 

Figure 3. Noise visualization: (a) uniformly distributed noise; (b) Perlin noise.

Using Perlin noise makes it possible to create a smooth random pattern texture,
which enhances realism and is applied in various fields such as medicine [48], information
security [49], and terrain generation [50]. Perlin noise was chosen as the basis for the spot
generation algorithm because this type of procedural generation allows for the creation of
smooth, pseudo-random textures on the surface of the object of interest.

Initially, a spot area is selected on the laminate board with a random size, which does
not exceed the distance from the center of the stain to the nearest edge of the object. Once
the spot area is defined, the noise value of each texture pixel is calculated within the range
[0, 1]. Then, for values below a specified threshold, the pixel color is set to the predefined
spot color.

To prevent repetition of spots generated using noise, the seed value must be changed
to a randomly assigned number. The results of the spot generation process are shown
in Figures 4 and 5. The proposed algorithm enables the generation of pseudo-random
texture spots on the board surface. This significantly expands the sample of objects of
interest and facilitates training of the neural network on a wider variety of data. As a result,
the training quality improves, which positively affects subsequent object identification in
manufacturing processes.

  
(a) (b) 

Figure 4. An example of the formation of a “glue spot” defect: (a) synthetic image; (b) real image.
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(a) (b) 

Figure 5. An example of the formation of a “print defect”: (a) synthetic image; (b)real image.

The algorithm responsible for corner chip generation is based on altering the trans-
parency of a selected pixel—specifically, by reducing its alpha channel value from 100 to
0. Initially, the algorithm randomly determines the number of corner chips (from 1 to 4),
corresponding to the number of board corners. Then, based on this number, corners to be
“chipped” are randomly selected, and the defect creation process began.

Once a corner is selected for chipping, the chip size is randomly determined, repre-
sented as the radius of a circle centered at the extreme pixel of the corner. For example, if
the board texture is sized 2048 × 512, the chip centers can be pixels at coordinates (0, 0),
(0, 512), (2048, 0), and (2048, 512). The chip itself is a sector that extends into the board
area from a circle positioned at the texture’s edge. In Figure 6a, a circle with a radius of
100 pixels is shown at a board corner with dimensions of 4096 × 980. The shaded area
indicates the circle sector where pixel alpha channel values will be modified, while the
unshaded area remains unaffected.

  
(a) (b) 

Figure 6. Demonstration of chip generation: (a) is the sector of the circle defining the chip; (b) is the
result of chip formation.

Next, the pixels within the chipped area must be altered accordingly. To do this—as
with the algorithms for generating “glue spots” and “print defects”—the circle equation
must be used.

If a pixel with coordinates x and y is located within a circle of radius, its alpha channel
value is set to 0; otherwise, the pixel remains unchanged. The result is shown in Figure 6b.
For clarity, the defect was highlighted with a rectangle with the inscription in the picture.

As a result of implementing the algorithms described above, the number of board
variations increased significantly from an initial set of 10. Consequently, such a large dataset
of diverse objects will allow the neural network to be treated without using identical images,
which will positively impact its generalization ability and detection accuracy.

4.3. Simulation of a Real Technological Process

To simulate conveyor-based production, the components “object of interest”, “con-
veyor belt”, and “spawner” were created (see Figure 1). The “spawner” component is
responsible for generating variations of the object of interest and randomly adding them to
the scene along with the conveyor belt component. Before placing the object on the scene,
its position is randomly determined based on the dimensions of the conveyor belt. The
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offset of the object of interest from the center of the conveyor belt is set within the range
[−distance, distance], where the distance is calculated using the following formula:

distance = |pos1 − pos2| (1)

where pos1 is the position of the “spawner” object; pos2 is the position of the “Side” object.
After the object’s offset is selected, its rotation angle in space is also randomly chosen

from the range [−max_angle, max_angle] to prevent it from going out of bounds or colliding
with other objects in the scene. The maximum rotation angle is calculated using the
following formula:

max_angle = arctg
(

w
l/2

)
(2)

where w is the distance from the object of interest to the nearest edge of the conveyor belt,
and l is the length of the object of interest.

The “object of interest” and “conveyor belt” components are responsible for storing
information about the object’s position and for moving it through space from the creation
point to the destruction point at a specified speed, which is set during the generation setup
phase in the parameters section.

To achieve greater image diversity, an algorithm was developed to alter the color of
the conveyor line. This helped prevent the model from overfitting to similar images, which
would reduce its generalization ability and significantly lower prediction accuracy on data
that differs from the training set [51].

During generation, the system tracks the elapsed process time. Once the user-defined
time is reached, a background object is randomly selected, and its color characteristics are
modified. The color of the background object is adjusted as follows: the system sequentially
modifies the values of the three RGB material color channels randomly within the range of
0.0 to 1.0. The initial background is shown in Figure 7a, while the result of modifying the
background objects is shown in Figure 7b.

 
(a) 

   
(b) 

Figure 7. Changing the color characteristics of background objects: (a) conveyor line without color
change; (b) examples of conveyor line with changed colors.

To simulate the operation of a conveyor line and obtain images of the object under
study from various angles, it is necessary to configure the movement of the camera. The
Unity game engine provides a wide range of tools for this purpose through the Cinemachine
package, which is designed for image capture control and is used to automate the process of
creating virtual camera movements, thereby reducing the time required to develop such so-
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lutions. The module includes implementations of algorithms for both randomly generating
a motion path and tracking objects of interest. This tool significantly simplifies the process
of changing viewpoints, eliminating the need for numerous manual adjustments [52].

Accordingly, as part of the synthetic data generation process, the tool described above
is used to implement chaotic camera movement and capture frames from various angles, as
shown in Figure 8. To achieve this, the Noise module was utilized, which enables camera
movement based on a depth map generated using Perlin noise algorithms. This approach
allows for the simulation of realistic motion and “shake” of the virtual camera in real time.

Figure 8. Examples of changing the camera angle.

To simulate a dusty environment, the Unity Particle System module is used in the
implementation. According to the game engine’s documentation, the particle system is
designed to create effects from objects that do not have a defined shape and change in real
time (such as smoke, fire, fluids, etc.) [53]. This description clearly applies to the “industrial
dust” effect. Therefore, the particle system module is proposed for simulating dust in the
environment. A dusty room with a conveyor belt is shown in Figure 9.

  
(a) (b) 

Figure 9. A room filled with industrial dust: (a) a room without dust; (b) a room filled with dust.

The developed system makes it possible to generate various production scenarios
and significantly expand the final image dataset, which helps prevent issues related to
model overfitting.

5. Testing and Results
To test the data generation method, to neural networks with the YOLOv8 architecture

were trained, due to its high accuracy in object detection tasks [54]. The use of two models
is driven by the need to compare a network trained exclusively on synthetic data with one
trained solely on real data. Accordingly, two separate datasets were created. The synthetic
dataset, a fragment of which is shown in Figure 10a, consisted of 371 generated images
that were automatically annotated using the Unity Perception tool. The second dataset was
created from production video recordings, split into 371 images (Figure 10b), which were
manually annotated using the Roboflow tool.
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(a) (b) 

Figure 10. A fragment of datasets: (a) synthetic dataset; (b) real dataset.

Next, augmentation methods were applied to these images sets to equally expand both
datasets. The final size of each dataset was 815 images. After the datasets were formed,
the neural network models were treated under identical conditions in the Google Colab
environment. The models were trained for 100 epochs with a batch size of 16.

To evaluate the performance of the models, we used the mean average precision (mAP)
metric at a threshold of 0.5 (mAP50). This metric is composed of several components,
including precision (p) and recall (r), as well as the degree of intersection over union (IoU),
and average precision (AP).

Precision is the proportion of correctly identified objects among all objects that the
model has detected. In other words, it is a measure of how many of the model’s predictions
were correct.

precision =
TP

TP + FP
(3)

where TP is the number of true positive detections, and FP is the number of false
positive detections.

Recall is the proportion of correctly detected objects among all objects that are actually
present in the image:

recall =
TP

TP + FN
(4)

where FN is the number of false negative detections.
IoU shows how well the predicted bounding box overlaps with the real one:

IoU =
S(A ∩ B)
S(A ∪ B)

(5)

where A is the area of the predicted bounding box; B is the area of the true bounding box; S
is the area of intersection or union of the bounding boxes.

The value 50 in the mAP50 metric indicates that the model’s predictions are considered
correct if the IoU between the predicted and the ground truth bounding box is greater than
0.5 (or 50%). In other words, for a prediction to be considered successful, there must be at
least 50% overlap with the actual object.

Next, a precision–recall (PR) curve was calculated for each object class, showing how
precision (p) varied with recall (r). The average precision (AP) for each class was then
computed as the area under this PR curve:

AP =

1∫
0

p(r)dr (6)
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As a result, after obtaining the AP scores for all classes, a final mAP score is calculated.
This is the average AP score for all object classes:

mAP =
1
k

k

∑
i

APi (7)

where k is the number of classes.
As a result, if a model has an mAP50 value of 0.75, this means that on average across

all object classes, detection precision (at IoU > 0.5) is 75%, which is considered a good result.
The mAP50 metric variation graphs are shown for models trained on synthetic data

(Figure 11) and real data (Figure 12). Additionally, training was performed on synthetic
data followed by fine-tuning on real data (Figure 13).

Figure 11. The graph of the average accuracy of classification and detection of the object of interest
for a model trained on synthetic data.

Figure 12. The graph of the average accuracy of the classification and detection of the object of interest
for a model trained on real data.



J. Imaging 2025, 11, 168 15 of 20

Figure 13. Average classification and detection accuracy for the model fine-tuned on real-world data.

Based on Figures 11–13, it can be observed that the model trained on real data made
more frequent prediction errors and reached an mAP50 of 0.93 by the end of training.
While this is a good result, it does not guarantee reliability, as the uneven training curve
indicated low generalization capability. In contrast, the model trained using synthetic
data demonstrated a smoother training metric curve, which suggested a more robust
generalization ability. The final mAP50 value for the model trained on synthetic data was
0.94. The model fine-tuned on real-world data exhibited an initial decline in accuracy;
however, as training progressed, it converged toward high performance. Ultimately, the
model achieved a final mAP50 score of 0.95, indicating a high level of detection precision.

After training, both models were tested on a video clip from the production environ-
ment that served as the basis for development. This video was not used to create the real
data dataset, as doing so would have biased the test results.

As a result of testing, the model trained on real data achieved an mAP50 of 0.36 on
the test dataset from the enterprise. This suggests that, under the same hyperparameters
and image augmentation methods, the model trained on real data was not adequate.
This is supported by the mAP50 training curve, which reflects the model’s inability to
generalize to the presented images, indicating a lack of diversity and volume in the collected
dataset. Meanwhile, the variety of the synthetic data helped overcome this issue, and the
model demonstrated strong performance on the test video sequence, achieving an mAP50
of 0.95—evidence of the neural network’s adequacy. On the test video, the third model
demonstrated performance comparable to that of the model trained exclusively on synthetic
data. The average mAP50 on the test set reached 0.96, which was undoubtedly a strong
result in terms of detecting the target object.

In conclusion, the testing results showed that the model trained on synthetic data
outperformed the one trained on real data in terms of accuracy. This leads to the conclu-
sion that the data generator is an effective tool for building computer vision systems in
industrial applications.

6. Discussion
Based on the testing data obtained from the two models, we can draw conclusions

about the performance of the synthetic data generator compared to similar solutions.
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First, the proposed method for generating synthetic data stands out by providing
a generalized list of tasks, significantly speeding up the development process for image
generation software.

Second, compared to the methodology described in [20], our solution offers greater
sampling variability thanks to the capabilities of the game engine. This allows us to recreate
any desired scenarios, increasing the accuracy of models by generating images for specific
tasks. In contrast to solutions that use game engines with limited capabilities like GTA
V, which do not allow changing the in-game code or adding additional scenarios, our
generator offers more flexible settings for modeling.

The third key aspect of the proposed system is the speed at which images are gen-
erated. The system is able to generate approximately 1500 annotated images per minute,
significantly exceeding the rendering speeds of 3D modeling tools like Blender. Achieving
1 frame per second in 3D modeling is considered a good result, but the proposed solution
outperforms this in terms of both speed and flexibility. In addition to the above, com-
pared to solutions based on the Unity game engine, the proposed system demonstrates
significantly better performance. Considering the speed of image generation as a single
metric—the number of images generated per second—the current generator produces 25
images per second, while solutions from [24,25] produce 6 and 4.6 images per second
respectively. Therefore, the performance of the proposed system is at least four times better
than similar solutions.

Furthermore, it should be noted that generating synthetic data significantly speeds up
the development of computer vision systems in all cases considered. This allows creating
models with high accuracy using only synthetic data and further improving them by
combining synthetic and real data.

At the next stage, we plan to train models to not only detect the board but also to
identify and classify any defects on it. Due to the lack of test data available for the next
stage during development, we have decided to focus on training models for this purpose.

7. Conclusions
An overview of the fields of activity where computer vision (CV) can be applied has

been conducted. The analysis revealed that traditional data collection methods, such as
video recording and manual image annotation, are often costly and inefficient. Moreover,
these methods are subject to human error, which can lead to mistakes and reduced accuracy
in neural network models. As a result, synthetic data presents an alternative that can
significantly reduce the time and financial costs associated with creating training datasets.

To address the image collection task, modern approaches to generating synthetic
data for automatic object detection and classification tasks on production lines using CV
technologies were examined. The primary goal was to create an effective and cost-efficient
solution for forming training datasets in cases of limited access to real data or insufficient
data. The analysis of existing solutions showed that the use of synthetic data is becoming
an increasingly relevant and sought-after tool across various industries. Various tools
and technologies for generating synthetic data were reviewed, such as game engines, 3D
modeling tools, and specialized packages for automatic image annotation. Each of these
solutions has its advantages and disadvantages. For instance, the use of game engines
allows for real-time data generation and the processing of large volumes of images at
high speed, significantly accelerating the dataset creation process. On the other hand,
3D modeling provides a higher level of realism but requires significant computational
resources and time for rendering.

The generalized synthetic data generator model proposed in the study was applied to
implement the technological process of quality control for flooring on a conveyor line. As
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part of this implementation, a system was developed that simulates the real production
process, taking into account all its characteristics, including camera angle changes, the
addition of various defects to objects of interest, and the use of effects such as production
dust. This enabled the creation of diverse and realistic images that can be used to train
neural network models.

The final generation system was tested by comparing three neural network models
with the YOLOv8m architecture. The use of three models was necessary to compare a
network trained solely on synthetic data, one trained exclusively on real data and the model
pretrained on synthetic and fine-tuned on real data. As a result, two corresponding datasets
were created: the Synthetic dataset and the one based on real production video recordings.

After training the models, they were tested on a video clip from the enterprise that
served as the basis for development. This video was not used to create the real data
dataset, as using it would have distorted the test results. As a result of the testing, the
model trained on real data achieved an mAP50 value of 0.36 on the test dataset from the
enterprise. This suggests that, under the same hyperparameters and image augmentation
methods, the model trained on real data was not adequate. In contrast, the diversity of
synthetic data helped avoid this issue, and the model showed good performance on the
test video sequence, achieving an mAP50 of 0.95, indicating the adequacy of the resulting
neural network. The fine-tuning approach using real-world data demonstrated the highest
performance mAP50 = 0.96, attributable to both the model’s adaptation to real-world
conditions and the diversity of images present in the synthetic dataset.

Based on the testing data for the two models, conclusions can be drawn about the
performance of the proposed synthetic data generator in comparison with similar solutions.
Finally, it should be noted that synthetic data generation significantly accelerates the
development of computer vision systems in all the reviewed cases. This allows for the
creation of high-accuracy models without using real data, and further improvement through
the combination of real and synthetic data.

The next phase includes research on generating artificial data for bulk materials and
minerals, using coal products as an example. To solve this task, computer vision models
will need to be developed and configured to train on annotated images for identifying
foreign materials in piles. Real data on objects of interest (impurities in rock and foreign
materials) will also need to be collected.
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Abstract: This paper presents a comprehensive investigation into advanced image pro-
cessing using geodesic filtering within a Riemannian manifold framework. We introduce
a novel geodesic filtering formulation that uniquely integrates spatial and intensity rela-
tionships through minimal path computation, demonstrating significant improvements
in edge preservation and noise reduction compared to conventional methods. Our quan-
titative analysis using peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) metrics across diverse image types reveals that our approach outperforms tradi-
tional techniques in preserving fine details while effectively suppressing both Gaussian
and non-Gaussian noise. We developed an automatic parameter optimization methodology
that eliminates manual tuning by identifying optimal filtering parameters based on image
characteristics. Additionally, we present a highly optimized GPU implementation featuring
innovative wave-propagation algorithms and memory access optimization techniques that
achieve a 200× speedup, making geodesic filtering practical for real-time applications.
Our work bridges the gap between theoretical elegance and computational practicality,
establishing geodesic filtering as a superior solution for challenging image processing tasks
in fields ranging from medical imaging to remote sensing.

Keywords: geodesic filtering; anisotropic diffusion; image processing; PSNR; noise reduction;
edge preservation; GPU implementation; manifolds; Riemannian space

1. Introduction
The central challenge in image filtering lies in achieving an optimal balance between

noise reduction and the preservation of essential image features. Traditional methods rely
on carefully designed mathematical models to selectively smooth images while retaining
edges and textures. In contrast, modern neural network approaches employ data-driven
learning to obtain similar objectives. However, both methodologies face inherent limita-
tions: conventional methods often struggle with complex noise patterns, whereas neural
networks typically require extensive training data and frequently lack robust theoretical
guarantees, leading to unpredictable behavior.

In response to these challenges, this paper makes four specific contributions to the
field of image processing:

1. Novel Geodesic Filtering Framework: We introduce a mathematically rigorous for-
mulation of geodesic filtering that uniquely leverages Riemannian manifold theory
to combine spatial and intensity information in a unified framework. Unlike other
filters, the geodesic approach adapts to local image characteristics through
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• Geometric distance metrics in a manifold: Allowing for a more natural mea-
surement of similarity between pixels by integrating both spatial and intensity
relationships.

• Local curvature considerations: Preserving the intrinsic structure of image fea-
tures, especially along edges and contours.

• Adaptive kernel sizing based on manifold properties: Dynamically adjusting the
filtering window in response to the local geometry of the image.

Unlike previous approaches that treat these domains separately, our method com-
putes minimal geodesic paths that inherently respect image structure, offering significant
advantages, including

• Enhanced edge preservation: Retaining sharp transitions and fine details.
• Superior noise reduction: Effectively suppressing both Gaussian and non-

Gaussian noise.
• Fine texture detail retention: Maintaining subtle textures while reducing un-

wanted noise.
• Effective handling of variable noise levels: Adapting robustly to different noise

intensities across the image.
• Sharp transition preservation during noise smoothing: Avoiding over-smoothing

at boundaries.
• Enhanced performance with non-Gaussian noise: Outperforming traditional

methods in challenging noise conditions such as speckle noise.
• Improved outlier robustness: Providing resilience against anomalous data points.

2. Comprehensive Comparative Analysis: We present the first systematic evaluation
of geodesic filtering against state-of-the-art alternatives (including anisotropic diffu-
sion, bilateral filtering, least median of squares, and deep image prior techniques)
using standardized metrics (PSNR and SSIM) across diverse image types and noise
conditions.

3. Parameter Optimization Framework: We developed a novel methodology for auto-
matically determining optimal filtering parameters based on image characteristics.
This approach eliminates the manual trial-and-error process typically required in
advanced filtering techniques, making geodesic filtering more accessible for practical
applications.

4. High-Performance CUDA Implementation: We introduce specific technical innova-
tions in our GPU implementation that overcome the inherent computational complex-
ity of geodesic filtering. Our wave-propagation algorithm and memory conflict reso-
lution techniques achieve a 200× speedup over conventional CPU implementations,
transforming geodesic filtering from a theoretically superior but computationally
prohibitive method into a practical solution for real-time applications.

These contributions collectively bridge the gap between theoretical mathematical
models and practical image processing applications, establishing geodesic filtering as
both a robust theoretical framework and an effective computational tool for advanced
image processing.

The remainder of this paper is organized as follows. In Section 2, we review the
current literature on non-linear methods for image filtering, detailing their operational prin-
ciples and implementation strategies. Section 3 introduces the fundamental mathematical
concepts underlying geodesic filtering within a Riemannian manifold framework. In Sec-
tion 4, we present extensive experimental results obtained from processing a diverse image
database to demonstrate the impact of various filtering parameters on performance. We
also conducted a comparative analysis with other state-of-the-art non-linear filtering tech-
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niques. Section 5 describes our highly optimized CUDA C implementation that leverages
GPU parallelism to address the computational challenges of geometric filtering. Finally,
Section 6 concludes the paper by discussing the strengths and limitations of our approach
and Section 7 outlines potential extensions to more complex 3D and 4D manifolds.

2. Literature Review
Early methods primarily targeted basic noise reduction using straightforward linear

or spatial operations, often at the expense of image structure. Non-linear filtering method-
ologies represent a sophisticated class of image processing techniques that go beyond
traditional linear approaches. These can be categorized into four distinct approaches, each
with unique mathematical foundations and operational principles.

Anisotropic diffusion, the first category, draws from partial differential equations and
heat flow theory. This approach intelligently modulates the diffusion process based on local
image characteristics, allowing homogeneous regions to be smoothed while crucial edge
features remain intact. By adapting the diffusion coefficient to the local gradient magnitude,
these filters can reduce noise while preserving the structural integrity of images.

The second approach leverages robust statistics to create filters that minimize the
influence of edges during smoothing operations. These methods typically replace standard
mean calculations with robust estimators like least median square (LMS) that are less
sensitive to outliers, effectively treating edge pixels as statistical anomalies. This statistical
foundation allows for effective noise reduction without the edge blurring commonly
associated with linear filtering techniques, providing superior performance in environments
with varying noise distributions.

Geodesic filtering, the third category, represents a more geometrically oriented ap-
proach based on differential geometry and manifold theory. This methodology conceptu-
alizes images as high-dimensional manifolds embedded in feature space. By computing
geodesic distances, these filters can adaptively process images according to their inherent
geometric properties. This approach excels at preserving fine structures and textural details
while removing noise.

The fourth category encompasses neural-network-based methods, which leverage
data-driven approaches to optimize filtering parameters. Unlike traditional approaches that
rely on predefined mathematical models, these methods learn optimal filtering strategies
directly from training data. By exposing networks to pairs of noisy and clean images,
these systems can discover complex non-linear relationships that effectively separate signal
from noise. The resulting filters often demonstrate remarkable adaptability across various
noise types and image characteristics, though their performance depends heavily on the
quality and diversity of the training data. This analysis specifically examines algorithms
that do not require training data, thus excluding conventional neural network methods.
For readers interested in deep-learning-based image denoising techniques, reference [1]
offers a comprehensive overview. The Deep Image Prior (DIP) network [2] is the only
neural network approach considered here, as it uniquely functions without pre-training
requirements.

Each of these approaches offers distinct advantages and limitations, with their effec-
tiveness varying according to specific application requirements, computational constraints,
and the nature of the image data being processed.
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2.1. Gradient Anisotropic Diffusion

Gradient anisotropic diffusion (GAD), as introduced by Perona and Malik [3], funda-
mentally reimagines image processing through the lens of heat diffusion equations. The
core mathematical formulation begins with a partial differential diffusion equation:

∂I
∂t

= div(g(|∇I|)∇I) (1)

where I(x, y, t) represents the image intensity at position (x, y) and time t, and g(|∇I|)
is the diffusion coefficient. This formulation builds upon the classical heat equation but
introduces crucial non-linearity through the spatially varying diffusion coefficient.

The diffusion coefficient, as noted by Weickert et al. [4], plays a pivotal role in control-
ling the filtering process. It typically takes the form

g(|∇I|) = g(s) (2)

where g(s) is a function that reduces diffusion coefficient at the edges. Common formula-
tions of g(s), as discussed by [5], include

g(s) = exp
(
− s2

C2

)
or g(s) =

1
1 + s2/C2 (3)

where C represents a threshold parameter controlling edge sensitivity.
The theoretical significance of this framework lies in its ability to achieve selective

smoothing. As demonstrated by Alvarez et al. [5], the process preserves edges by reducing
diffusion across high-gradient regions while promoting smoothing in homogeneous areas.
The mathematical analysis by Weickert et al. [4] showed that this approach creates a scale-
space representation with important theoretical properties:

• Causality: No spurious details are created with increasing scale.
• Immediate stabilization: Edge enhancement occurs in early iterations.
• Localization: Edges remain stable during the diffusion process.

On the other hand, GAD exhibits significant sensitivity to parameter configuration,
with its effectiveness heavily reliant on appropriate selection of diffusion coefficients and
iteration counts. The method frequently encounters stability and convergence challenges
when parameters are improperly configured, creating substantial difficulty in establishing
automated optimal termination criteria for the diffusion process. Additionally, its filtering
capabilities show marked deterioration when confronted with impulse noise patterns or
image regions containing complex textures, limiting its applicability across diverse image
processing scenarios.

2.2. Curvature Anisotropic Diffusion Framework

Curvature anisotropic diffusion (CAD) formulation differs fundamentally from the
original work of Perona and Malik by incorporating geometric information through the
introduction of a mean curvature term. Initially proposed by Alvarez et al. [6] and further
developed by Sapiro et al. [7], this framework offers superior preservation of geometric
features while effectively reducing noise. The diffusion equation for curvature anisotropic
diffusion is

∂I
∂t

= g(k)|∇I|div
(

∇I
|∇I|

)
(4)

where

• I(x, y, t) represents the image intensity at position (x, y) and time t;
• k denotes the mean curvature of the level sets;
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• g(κ) is a decreasing function that controls the diffusion coefficient;
• ∇I is the image gradient;
• div represents the divergence operator.

For the right conditions, the CAD framework demonstrates exceptional ability to pre-
serve critical image features such as edges and boundaries while effectively reducing noise.
Its incorporation of geometric curvature information enables superior structural integrity
maintenance compared to gradient-based methods. Unlike GAD, CAD incorporates mean
curvature of level sets, allowing it to more faithfully respect the intrinsic geometry of image
content, particularly along curved structures.

However, CAD’s performance is heavily influenced by appropriate parameter selec-
tion. The threshold parameters within the g(κ) function demand careful calibration to
achieve optimal results. This makes proper CAD implementation challenging, especially in
discrete domains, potentially leading to numerical instabilities. Determining the ideal itera-
tion count presents another non-trivial challenge, frequently requiring manual adjustment
or sophisticated stopping criteria. While CAD performs well against Gaussian noise, it may
exhibit reduced effectiveness when confronting other noise varieties such as impulse or
speckle noise without specific adaptations.

2.3. Bilateral Filter Framework

First introduced by Tomasi et al. [8], this non-linear technique revolutionized image
processing by combining domain and range filtering in a single, unified framework without
having to compute gradients. The method’s fundamental innovation lies in its ability to
consider both spatial proximity and photometric similarity simultaneously.

The bilateral filter, as elaborated by Durand and Dorsey [9], operates on two funda-
mental principles:

• Spatial Domain Filtering: Pixels are weighted based on their spatial distance from the
center pixel, following a Gaussian distribution. This component ensures that nearby
pixels have more influence than distant ones.

• Signal Domain Filtering: Pixels are additionally weighted based on their photometric
(intensity or color) similarity to the center pixel, again using a Gaussian distribution.
This component ensures edge preservation by reducing the influence of pixels with
significantly different intensities.

Paris et al. [10] formalized its mathematical formulation as

I(p) =
1

Wp
∑
qϵΩ

Gσs(∥p − q∥)Gσr (|I(p)− I(q)| (5)

where

• I represent the input image intensity;
• p denotes the current pixel position;
• Ω represents the spatial neighborhood;
• q denotes the neighboring pixel position;
• Gσs and Gσr are Gaussian functions for spatial and range domains;
• Wp is the normalization factor.

Studies by Kaplan et al. [11] showed that this algorithm possesses superior noise
reduction capabilities:

• Effective reduction of random noise;
• Preservation of underlying signal structure;
• Minimal introduction of artifacts.
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On the other hand, bilateral filtering’s effectiveness is significantly contingent on the
appropriate selection of spatial and range parameters, necessitating meticulous calibration
for optimal results across various applications. While the filter performs admirably against
Gaussian noise, it demonstrates reduced efficacy when confronting alternative noise types
such as impulse noise or structured noise patterns. Additionally, the filter can generate
intensity shift artifacts in high-gradient regions. This creates edge localization challenges
where, in areas with gradual transitions, the filter may not accurately maintain edge
positions, potentially causing subtle displacement of boundary locations. Certain parameter
configurations can also introduce unwanted piecewise constant regions, resulting in an
artificial “staircase” effect in what should be smooth gradient areas.

2.4. Robust Least Median of Squares Filtering

While traditional filtering approaches like CAD, GAD, or bilateral filtering can address
specific noise types, they often struggle with mixed noise patterns or fail to preserve
important image features. Using the least median of squares (LMS) regression methods,
introduced by Rousseeuw [12,13], offers a robust framework capable of handling up to 50%
outlier contamination, making it ideal for edge preserving filters. Recent applications of
LMS include edge-preserving smoothing [14] and feature detection [15].

The LMS filter processes images by looking at small windows of pixels of size s × s
(typically 5 × 5 or 7 × 7) around a central pixel (x0, y0). Let us define a local image color
approximation for this local window as polynomial of degree d:

f c(x, y; βc) =
k+l≤d

∑
k=0,l=0

βc
kl(x − x0)

k(y − y0)
l (6)

where (x, y) are the local coordinates of the pixels that are located inside the window;
βc =

[
βc

kl
]

is the polynomial coefficients for the color channel c; and d is the order of the
polynomial, typically 1 or 2.

The role of an LMS estimator is to determine the best coefficients β̂c
kl that minimize

the median error between the pixels in the window and the polynomial model:

argmin
βc

median
i∈s2

(
(Pc

i − f c(xi, yi; βc))2
)

(7)

where Pc
i is the color value in channel c for pixel (xi, yi) inside the window, f c(xi, yi; βc) is

the local polynomial model, and s2 is the number of pixels in the processing window.
In each window, the algorithm tries to fit the polynomial model to the pixel values

using a RANSAC (random sample consensus) algorithm by Fischler and Bolles [16] where
a minimum sample set equal to sm = (d+1)(d+2)

2 is used to compute candidate model
coefficients βc(t). For each sampling iteration t, the algorithm computes the median values
Dt

med of the error between the remaining pixels Pc
i (x̂i, ŷi) and the current instance of the local

polynomial model f c
t (x̂i, ŷi; βc(t)). The number of random sample iterations is determined

by m=ln(1−p)
ln(1−(1−ε)sm)

, which guarantees a confidence level of p = 0.99 for an outlier ratio of ε

= 50%. After m iterations, the algorithm then chooses the model corresponding to the
least median square value Dtb

med and its corresponding model coefficients βc(tb). Using this
model, the algorithm diagnoses the pixels inside the window that are inliers vs. outliers by
computing the difference dc

i = Pc
i (x̂i, ŷi)− f c

t (x̂i, ŷi; βc(t)) between the LMS model and the
remaining pixel. Following Rousseeuw and Leroy [17], the robust threshold Tr to determine
if a pixel is an inlier vs. outlier is

Tr = 1.4826 × median
(
abs
(
di − D′

med
))

(8)
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One can then diagnose the pixel using the following test: if abs(di) ≤ 2.5 Tr then it is
an inlier. Using the inlier pixels, the algorithm then computes the final model coefficients
β̂c using a least mean square algorithm and then replaces the central pixels with the
polynomial approximation f c

(
x0, y0; β̂c

)
. If the number of inliers is smaller or equal to sm,

then the central pixel is replaced by the median value of the window. For color images, we
process each channel independently while maintaining color consistency through

• Joint outlier detection across channels.
• Consistent polynomial surface fitting.
• Color-aware scale estimation.

The LMS approach demonstrates remarkable resilience, handling contamination of
up to 50% outliers, which makes it exceptionally robust for edge preservation and noise
reduction compared to conventional filtering methods. LMS particularly excels at maintain-
ing crisp edges and boundaries while efficiently eliminating noise, avoiding the blurring
artifacts typically associated with alternative filtering techniques. The algorithm exhibits
strong performance across diverse noise distributions and can effectively manage mixed
noise patterns that frequently challenge other filtering approaches.

However, LMS filtering presents significant challenges in parameter optimization due
to the complex interactions between polynomial degree, window size, and outlier threshold
parameters that substantially influence performance outcomes. Additionally, LMS demands
considerable computational resources, requiring multiple sampling iterations for each
processing window, which can significantly impact processing time for larger images or
real-time applications.

2.5. Deep Image Prior (DIP) Neural Network Filters

Deep image prior (DIP) represents a novel approach that harnesses the inherent
structure of convolutional neural networks (CNNs) as an effective regularizer for natural
image processing, without requiring pre-training on image datasets. The key insight is
that architecture CNN inherently captures image statistics that make it biased toward
natural images over noise. When optimizing an untrained CNN to reconstruct a corrupted
image by minimizing the reconstruction loss, the network tends to learn the natural image
content before fitting noise or artifacts. This approach has proven effective for various
image restoration tasks including denoising [2], super-resolution [18], and inpainting [19],
all without requiring any training data beyond the single corrupted image being processed.
DIP offers several significant advantages over standard neural network algorithms: it
enables zero-shot learning through the network’s architecture serving as a natural image
prior, provides flexibility across multiple restoration tasks without dataset bias, and offers
interpretability in how it captures image statistics. However, DIP faces notable limitations:
it is computationally intensive, requiring thousands of iterations per image. The method
is also sensitive to early stopping criteria and hyperparameter selection. It also lacks
theoretical guarantees relying instead on empirical observations resulting in inconsistent
results due to random initialization and dynamics.

One variant of DIP is Wavelet-DIP, which has been shown by Yang, Y., et al. [20]
and Liu, C., et al. [21] to enhance the original DIP framework by incorporating wavelet
decomposition into the network architecture, leveraging the multi-scale analysis capabilities
of wavelets. To improve processing images with Gaussian noise, a similar version to
Wavelet-DIP was proposed. Ulyanov et al. introduced a change to Wavelet-DIP called
the Gaussian Weighted Wavelet-DIP [22] (GW-DIP) where the wavelet function is first
convolved by a Gaussian filter. GW-DIP solves the optimization problem:

minθ{L( fθ(z), I) + λR( fθ(z))} (9)
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where fθ is the neural network with parameters θ, z is a random noise input, x is the target
image, R is the regularization term, and λ is a regularization weight. This minimizes the
distance between the network output fθ(z) and target image I, with regularization R.

Initial random noise z ϵ N(0, 1) is transformed through Gaussian weighting:

z′(p) =
1

K(p) ∑
q ϵ Ω

Gσw(p − q)z(q) (10)

where K(p) = ∑q ϵ Ω Gσw(p − q) is a normalization factor, Gσw(p) is 2D Gaussian kernel, Ω

is spatial neighborhood window, and p =
(
xp, yp

)
and q =

(
xq, yq

)
are pixel coordinates.

The feature map F is a discrete wavelet transform (DWT) defined as

{A i,k, Dh
i,k, Dv

i,k, Dd
i,k

}
= DWT(F) (11)

where i is the decomposition level, k is the spatial location, Ai,k is the low-pass approx-
imation, Dh

i,k is the horizontal components, Dv
i,k is the vertical components, and Dd

i,k is
the diagonal components. In our test implementation, we used the Haar wavelet for
its simplicity and computational efficiency. One can see in Figure 1 the architecture of
the network.

 

Figure 1. Gaussian Wavelet-DIP architecture.

The combined loss function is Ltotal = Lrec + ρLwav +λR( fθ(z)) where Lrec = | fθ(z)− I|2

is the reconstruction loss function, Lwav = ∑i,k|DWT( fθ(z))(i, k)− DWT(I)(i, k)|2 is the
wavelet loss function, and R( fθ(z)) = ∑p|∇ fθ(z)| the total variation regularization term.
The parameters θ are updated using Adam optimizer:

θ(t + 1) = θ(t)− π ×
(

m̂(t)√
v̂(t)

)
+ ϵ (12)

where

• m(t) = β1m(t − 1) + (1 − β1)∇θ Ltotal ;
• v(t) = β2v(t − 1) + (1 − β2)∇θ L2

total ;

• m̂(t) = m(t)
1−βt

1
;

• v̂(t) = v(t)
1−βt

2
.

with typical values of learning rate π = 0.001, β1 = 0.9, β2 = 0.99, and ϵ = 10−8.
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By processing different frequency components separately through dedicated network
branches, GW-DIP can better handle various image features at different scales. The wavelet
transform naturally separates an image into low-frequency approximation coefficients and
high-frequency detail coefficients, allowing the network to learn appropriate represen-
tations for each frequency band. This multi-scale wavelet structure provides additional
information that aligns with natural image statistics, as wavelets are known to produce
sparse representations of natural images.

GW-DIP leverages the intrinsic structure of convolutional neural networks (CNNs) as
an implicit regularization mechanism for natural image processing, eliminating the need for
pre-trained data. This method demonstrates remarkable capability in eliminating complex
noise patterns that typically challenge conventional filtering techniques, as it adapts to
image-specific characteristics. The architectural design of the network inherently preserves
significant edges and details while effectively removing noise.

However, DIP demands substantial computational resources, requiring thousands of
optimization iterations for processing a single image. The approach necessitates vigilant
monitoring and strategic early stopping to prevent the network from eventually fitting to
noise patterns, which complicates automation efforts. Furthermore, the quality of results
significantly depends on several factors including network architecture, learning rate, and
various hyperparameters that require meticulous tuning for optimal performance.

3. Geodesic Filtering
Geodesic filtering, first introduced by Boulanger [23] to process range data x(u, v),

y(u, v), z(u, v) and later by Sochen et al. [24] to process intensity images, addresses image
filtering from a fundamentally different mathematical perspective. To generalize this work,
we introduce a novel filtering framework that treats signals as a m-dimensional Riemannian
manifold Π embedded in a n-dimensional Euclidian space, typically combining spatial
and signal value coordinates. Let r

(
Πp
)

be a n-dimensional vector immersed into a m-
dimensional rectangular manifold with coordinate Πp. For 2D images, the manifold
coordinates of a point p is Πp =

(
up, vp

)
, corresponding to a mapping from R2 to Rn

such as:
Πp →

(
up, vp

)
→

(
x
(
up, vp

)
, y
(
up, vp

)
, r
(
up, vp

))
(13)

In the case of a color image, the mapping is R2 to R5, which is a mapping from (u, v)
to (x(u, v), y(u, v), R(u, v), G(u, v), B(u, v)) and for grey-level images R2 to R3 a mapping
from (u, v) to (x(u, v), y(u, v), I(u, v)).

The geodesic distance between two points p(Π) and q(Π) on Π is defined as

d(p(Π), q(Π)) = in f γ

√
dx(Π)2 + dy(Π)2 + α2∥dr(Π)∥2 (14)

where in f γ function is taken over all possible shortest paths γ connecting p(Π) and q(Π)

on the manifold. The parameter α weights the importance between the spatial components
and the signal differences. This formulation, as analyzed by Kimmel et al. [25], naturally
incorporates both spatial and signal value differences into a single geometric framework.
The advantages of using geodesic distance on a Riemannian manifold are

• Geodesic distance provides intrinsic measure of similarity;
• Accounts for both spatial and signal differences;
• Preserves image structure better than Euclidean metrics;
• Adapts to local image geometry.
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The filtering process utilizes geodesic distances through a weighted averaging:

r′(p(Π)) =

∫
w(Π)r(q(Π))dq∫

w(Π)dq
(15)

where w(Π) is a decreasing function of the geodesic distance relative to p(Π), such as

w(Π) = exp

(
−d(p(Π), q(Π))2

2σ2

)
(16)

The theoretical properties of this framework, as established by Boulanger [24] and
later by Mémoli and Sapiro [26], include

• Intrinsic geometry preservation;
• Adaptive neighborhood consideration;
• Natural handling of curved structures;
• Topology preservation.

The geodesic distance between points on this manifold incorporates both spatial
and signal/geometry differences, providing a natural mechanism for edge-preserving
smoothing. This distance measure, fundamental to the filtering process, respects the
intrinsic structure of the image rather than relying solely on Euclidean distances in ambient
space, making the filtering invariant to rigid transformation for range data.

Peyré [27] further developed these concepts, introducing efficient computational
schemes and establishing important theoretical properties of the filtering process. The
framework demonstrates several advantageous properties, including rotation invariance,
contrast invariance, and the preservation of significant image features.

Modern implementations of geodesic filtering incorporate several sophisticated fea-
tures. Castaño-Moraga et al. [28] introduced tensor-based extensions that better handle
directional features and complex textures. Their work demonstrated improved performance
in preserving fine details while still effectively reducing noise.

Zhang et al. [29], develops geometric filtering and edge detection algorithms for non-
Euclidean image data, viewing image data as residing on a Riemannian manifold. They
extend classical filtering techniques like median filtering and Perona-Malik anisotropic dif-
fusion to handle non-Euclidean data through geodesic distances and the exponential map.

3.1. Geodesic Convolution on a Discrete Manifold

Geodesic filtering implementation requires careful consideration of both theoretical
principles and practical computational aspects. Implementing geodesic filtering on a
discrete manifold follows the theoretical framework established by Boulanger [23] and
Sochen et al. [24]. From Equation (15), geodesic convolution is defined on a discrete
manifold as

r̂α,σ(uo, vo) =
1

N(u, v) ∑
u∈wu

∑
v∈wv

r(u, v)e−
d2(r(u,v),r(uo ,vo),α)

2σ2 (17)

where d(r(u, v), r(uo, vo), α) is the geodesic distance between r(u, v) in the window neigh-
borhood of size ( wu, wv) and the center of the window r(uo, vo). N(u, v) is the normaliza-
tion factor equal to

N(u, v) = ∑
u∈wu

∑
v∈wv

e−
d2(r(u,v),r(uo ,vo),α)

2σ2 (18)

Modern implementations incorporate adaptive parameter selection schemes as pro-
posed by Alonso-González et al. [30]. In our implementation the parameters to be ad-
justed are:
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• α (signal weighting) based on local gradient statistics;
• σ (filtering extent) based on local noise estimates;
• Window size W based on feature scale analysis.

3.2. Minimal Patch Calculation on a Discrete Convolution Window

The computation of minimal paths within local windows is a critical component of
geodesic filtering, as it directly influences how image features affect the overall filtering
process. Initially formalized by Boulanger [23] and Sethian [31], this process determines
the optimal paths that capture the intrinsic geometry of an image. The accuracy and
efficiency of these minimal path calculations not only dictate the quality of the filtered
output but also have a significant impact on the algorithm’s computational performance.
Over the years, various methods have been developed and evaluated for this task. In this
work, we implement two primary algorithms: (a) Dijkstra’s algorithm, optimized for scalar
processors, and (b) the fast-marching method, which is tailored for efficient GPU-based
parallel implementation.

3.2.1. Dijkstra’s Algorithm

The foundation of minimal path calculation lies in graph theory, with Dijkstra’s
algorithm [32] serving as a seminal work in this area. In the context of range image
processing, as elaborated by Boulanger [23], the inherently discrete nature of digital images
maps naturally onto graph structures, where pixels become vertices, and their relationships
are represented by weighted edges. Kimmel et al. [25] further advanced this concept by
developing continuous formulations that bridge the gap between discrete and continuous
manifolds, thereby reinforcing the theoretical underpinnings of geodesic filtering. Extensive
analysis by Sethian et al. [31] has shown that under suitable conditions, discrete graph-based
methods converge with the solutions obtained from continuous manifold formulations.
This theoretical bridge, further refined by Mirebeau [33], forms the basis for modern hybrid
approaches that blend discrete and continuous perspectives.

Furthermore, the work of Mémoli and Sapiro [26] established several essential theoret-
ical properties for minimal path computations that any robust method must satisfy:

• Consistency of discrete approximations: Ensuring that as the discretization is refined,
the calculated paths converge to the continuous geodesics.

• Convergence rates under refinement: Providing guarantees on the speed and accuracy
with which the discrete solution approximates the continuous solution.

• Stability with respect to perturbations: Maintaining reliable performance even when
the input data is subject to noise or other perturbations.

By adhering to these foundational principles, our implementation of Dijkstra’s al-
gorithm achieves both high accuracy and computational efficiency, serving as a robust
baseline for minimal path calculation in geodesic filtering.

3.2.2. Dijkstra’s Algorithm Implementation

The conversion of image data to graph structure, as formalized by Boulanger [23] and
Vincent [34], requires careful consideration of both spatial and signal relationships. Let
G = (V, E) be a graph representation of an image where (see Figure 2)

• Vertex set V represents pixel locations;
• Edge set E connects neighboring pixels;
• Weight function w: E → R+ incorporates distance metrics.
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Figure 2. Example of a single-source (vertex A) multiple destination graph (vertices B,C,D,E,F).

The fundamental mappings are

1. Each pixel corresponds to a vertex in the graph, with edges connecting neighboring
pixels. The connectivity pattern, typically 4-connected or 8-connected, significantly in-
fluences path calculation accuracy. Kimmel et al. [26] demonstrated that 8-connectivity
provides better angular resolution at the cost of increased computational complexity.

2. The edge weights incorporate both spatial and signal value information. The general
form of edge weight between pixels p and q is defined by Equation (14).

3. The efficiency of priority queue operations becomes crucial in image processing
applications. Recent work by Lewis [35] demonstrated that while Fibonacci heaps
offer optimal theoretical complexity, as demonstrated in Boulanger [23], binary heaps
often perform better in practice due to simpler operations.

Our implementation begins with the definition of essential data structures. We define a
pixel structure that contains the following components: spatial coordinates (x(u, v), y(u, v)),
signal value r(u, v), current computed distance from source, a visited flag, and a predecessor
reference for path reconstruction. Additionally, an edge structure is defined to represent
connections between pixels, containing references to start and end pixels along with a
weight value that combines spatial and intensity differences.

A priority queue structure is implemented using a binary heap, as recommended
by Boulanger [23] maintaining pairs of distance values and pixel references. The queue
supports three primary operations: insertion of new elements, extraction of minimum-
distance elements, and key decrease operations for distance updates. The algorithm works
as follows (see Figure 3):

 
Figure 3. Dijkstra’s algorithm block diagram.
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1. Initialization Process

We create a two-dimensional array (pixel_grid) representing the image dimensions.
For each position in the image, we instantiate a pixel object with coordinates matching its
position, signal values from the original image, distance initialized to infinity (except for the
source pixel which gets zero), visited flag set to false, and null predecessor reference. The
source pixel’s distance is set to zero, and it is inserted into the priority queue with this initial
distance. This setup establishes the starting point for the algorithm’s propagation phase.

2. Propagation Phase

The core processing loop operates as follows. While the priority queue is not empty,
we are repeatedly

• Extracting the pixel with minimum distance from the queue;
• If the pixel has already been visited, skip to next iteration;
• Mark the current pixel as visited;
• Process all neighbors of the current pixel.

For each unvisited neighbor, we

1. Calculate a new potential distance combining

• Spatial distance between pixels;
• Signal difference magnitude weighted by parameter β.

2. If the new distance is smaller than the neighbor’s current distance,

• Update the neighbor’s distance;
• Set the current pixel as the neighbor’s predecessor;
• Insert the neighbor into the priority queue with its new distance.

3. Neighbor Processing
The neighbor processing phase implements an 8-connectivity pattern. For the current
pixel position (u, v), we examine all eight adjacent positions:

• Horizontal neighbors: (u ± 1, v);
• Vertical neighbors: (u, v ± 1);
• Diagonal neighbors: (u ± 1, v ± 1).

For each potential neighbor position, we

• Verify position validity within image boundaries;
• Calculate combined spatial–intensity distance;
• Process distance updates if necessary.

4. Distance Calculation
The distance calculation combines spatial and signal components:

• Calculate the Euclidean distance d2
S(u, v) between neighboring pixel coordinates

(u, v) and (u′, v′) :

d2
S(u, v) = (

(
x(u, v)− x

(
u′, v′

) 2
+
(
y(u, v)− y

(
u′, v′

) 2 (19)

• Account for diagonal connections with appropriate scaling;
• Compute the norm of the n-dimensional signal difference r(u, v) and r(u′, v′) :

d2
r (u, v) =

∥∥r(u, v)− r
(
u′, v′

)∥∥2 (20)

• Use a parameter α to assess the significance of the signal difference in comparison
to the spatial component.
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5. Final Distance

• Combine components using square root of sum of squares;
• Apply any additional feature-based weighting.

3.2.3. Time and Memory Complexity

The time complexity of Dijkstra’s algorithm for an image of size M × N = s:

• O(slog s ) using binary heap;
• O(s + Elog s ) for a Fibonacci heap where E is the number of edges.

Even though the algorithm is slog s efficient, because of the random access to the
heap memory, the algorithm is highly inefficient from a memory access point-of-view for
parallel implementation, which requires coalesced memory access. For this reason, a second
algorithm, more amicable to parallel processing, was implemented for the CUDA version.

3.3. Emphasizing Structural Integrity in Geodesic Filtering

Structural integrity represents one of the most significant advantages of geodesic
filtering over conventional approaches. This aspect deserves particular emphasis as it
directly addresses a fundamental challenge in image processing: preserving essential image
structures while effectively removing noise.

By modeling images as high-dimensional manifolds and computing distances along
the manifold surface rather than in ambient Euclidean space, geodesic filtering inherently
respects the intrinsic geometry of image content. This fundamental difference allows it to

1. Preserve Edge Continuity: Unlike bilateral filtering or anisotropic diffusion that can
fragment edges under high noise conditions, geodesic filtering maintains continuous
edge structures even with significant noise contamination. This is because geodesic
paths naturally follow edge contours along the manifold surface.

2. Maintain Topological Properties: The approach preserves important topological re-
lationships between image regions, ensuring that connected components remain
connected and boundaries remain intact after filtering. This is crucial for downstream
tasks like segmentation or feature extraction.

3. Adapt to Intrinsic Feature Scale: The geodesic distance calculation automatically
adapts to the local feature scale, providing stronger preservation of fine details in
textured regions while still effectively smoothing homogeneous areas.

4. Respect Perceptual Organization: By following the natural organization of visual
information in the image, geodesic filtering produces results that better align with
human visual perception, maintaining the hierarchical structure of image content.

Research demonstrates that with optimized parameter configuration, geodesic filtering
consistently surpasses alternative methodologies in preserving structural elements across
a wide spectrum of image types. This performance differential becomes particularly
significant in demanding applications such as medical imaging, where maintaining the
structural integrity of anatomical features directly impacts diagnostic reliability. The
exceptional structural preservation achieved through geodesic filtering represents not
merely an incremental enhancement in visual quality but a fundamental advancement in
preserving the semantic significance of visual information throughout the filtering process.

3.4. Comparison of Computational Complexity: The Overall Computing Complexity for a M·N
Image for Each Method Is

• Geodesic Filtering: O
(

M·Ns2 );
• LMS Filter: O

(
M·N × s2 × p

)
;

• Gradient Anisotropic Diffusion: O(T·M·N);
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• Curvature Anisotropic Diffusion: O(T·M·N);
• Bilateral Filter: O

(
M·N·s2);

• Gaussian Weighted Wavelet DIP: O(T·N·M·log(N·M)).

Here, T is the number of iterations, s is the window size, and p = polynomial terms.

4. Experimental Results
This section directly addresses our three core contributions through carefully designed

experiments. First, we evaluated the theoretical advantages of geodesic distance calculation
in preserving image structures. The parameters α and σ are central to our analysis because
they represent the fundamental balance between spatial and intensity information in the
geodesic framework. Parameter α controls the relative weighting of intensity differences
versus spatial proximity, directly influencing edge preservation capabilities. Parameter
σ determines the extent of filtering influence, governing the scale at which features are
preserved or smoothed. The main goals of our experiments are to systematically explore
the parameter space to demonstrate:

1. The existence of optimal parameter combinations that maximize both PSNR and SSIM
metrics across diverse image types.

2. The superior performance of geodesic filtering compared to traditional approaches in
maintaining edge integrity while reducing noise.

3. The adaptability of the method to different noise conditions without requiring exten-
sive parameter re-adjustments.

4.1. Image Dataset

To validate the functionality of the algorithms, a standard set of test images was used.
These include natural scenes, people, industrial sites, and medical and city images (see
Figure 4).

   

Parrot Barbara Hearing Aid 

   

House Paris Forest 

   
Industrial Brain MRI Heart Ultrasound 

Figure 4. Image database used for the experiments.
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4.2. Evolution of Image Dataset vs. Filter Parameters

This section explores the relationship between filter parameters (α and σ) and filtering
performance across diverse image types, showing that

1. Each image has an optimal σ value corresponding to its “natural scale”;
2. Parameter α effectively balances spatial and intensity relationships;
3. The filter’s performance peaks at specific parameter combinations, demonstrated

through quantitative metrics (PSNR and SSIM).

In the sequence shown in Figure 5, we convolved the images that were first normalized
in size to be of width of 512 pixels and height to a value that respects the aspect ratio of the
original image. In these experiments, the convolution window size was set to 11 × 11, and
the parameter α equal to 1.

    

Parrots Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 10 

Parrots Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 20 

Parrots Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 40 

Parrots Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 80 

    

Barbara Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 10 

Barbara Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 20 

Barbara Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 40 

Barbara Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 80 

    

Hearing Aid Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 10 

Hearing Aid Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 20 

Hearing Aid Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 40 

Hearing Aid Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 80 

   

 

House Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 10 

House Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 20 

House Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 40 

House Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 80 

Figure 5. Cont.
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Paris Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 10 

Paris Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 20 

Paris Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 40 

Paris Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 80 

    

Forest Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 10 

Forest Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 20 

Forest Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 40 

Forest Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 80 

    

Industrial Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 10 

Industrial Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 20 

Industrial Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 40 

Industrial Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 80 

    

Brain MRI Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 10 

Brain MRI Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 20 

Brain MRI Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 40 

Brain MRI Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 80 

    

Heart Ultrasound Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 10 

Heart Ultrasound Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 20 

Heart Ultrasound Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 40 

Heart Ultrasound Image 𝑊 ൌ 11 ൈ  11 𝛼 ൌ 1 and 𝜎 ൌ 80 

Figure 5. Evolution of the image test database as a function of σ.

As can be observed, the image’s smoothness level increased proportionally with σ

while maintaining edge clarity. As σ values increased, an optimal value σ* emerged,
corresponding to an ideal scale. We explore this relationship in greater detail later in
our discussion.
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Let us now study the effect of the parameter α on the filtering results. One can see the
evolution of the filtering process of images (House, Hearing Aid, and Barbara) for various
values of α. To highlight its effect, we set the σ to large values (80, 80, and 100).

As one can see in Figure 6, increasing the parameter α reduced the influence of the
spatial component, resulting in a filter where pixel value differences became the dominant
factor rather than spatial proximity. This shift in dominance led to reduced spatial blurring
while still preserving important signal variations across the image.

  

House Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 80 

House Image 𝑊 = 11 ×  11 𝛼 = 5 and 𝜎 = 80 

House Image 𝑊 = 11 ×  11 𝛼 = 10 and 𝜎 = 80 

House Image 𝑊 = 11 ×  11 𝛼 = 20 and 𝜎 = 80 

  
Hearing Aid Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 80 

Hearing Aid Image 𝑊 = 11 ×  11 𝛼 = 5 and 𝜎 = 80 

Hearing Aid Image 𝑊 = 11 ×  11 𝛼 = 10 and 𝜎 = 80 

Hearing Aid Image 𝑊 = 11 ×  11 𝛼 = 20 and 𝜎 = 80 

    

Barbara Image 𝑊 = 11 ×  11 𝛼 = 1 and 𝜎 = 100 

Barbara Image 𝑊 = 11 ×  11 𝛼 = 5 and 𝜎 = 100 

Barbara Image 𝑊 = 11 ×  11 𝛼 = 10 and 𝜎 = 100 

Barbara Image 𝑊 = 11 ×  11 𝛼 = 40 and 𝜎 = 80 

Figure 6. Evolution of the image database as a function of α for a fixed σ.

The next experiment is to illustrate the distribution of the differences between the
original image and the filtered one for a window size equal to 11 × 11 and a filter parameter
equal to α = 1 and σ = 40. In Figure 7, one can see the original image, the corresponding
filtered image, and the color-coded difference between the two images normalized between
−0.1 and 0.1. In addition, one can see for each image a histogram of the error between −0.1
and +0.1.

The difference between the original image and the filtered images were very small,
even though the filtered image was convolved heavily with σ = 40. This sequence shows
the advantage of geodesic filtering where uniform regions were smoothed out without
losing sharp edges.



J. Imaging 2025, 11, 167 19 of 39

 

Parrots Image 𝑊 = 11 ×  11, 𝛼 = 1 and 𝜎 = 40 

 

Barbara Image 𝑊 = 11 ×  11, 𝛼 = 1 and 𝜎 = 40 

 

Hearing Aid Image 𝑊 = 11 ×  11, 𝛼 = 1 and 𝜎 = 40 

 

House Image 𝑊 = 11 ×  11, 𝛼 = 1 and 𝜎 = 40 

 

Paris Image 𝑊 = 11 ×  11, 𝛼 = 1 and 𝜎 = 40 

Figure 7. Cont.
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Forest Image 𝑊 = 11 ×  11, 𝛼 = 1 and 𝜎 = 40 

 

Industrial Image 𝑊 = 11 ×  11, 𝛼 = 1 and 𝜎 = 40 

 

Brain MRI Image 𝑊 = 11 ×  11, 𝛼 = 1 and 𝜎 = 40 

 

Heart Ultrasound Image 𝑊 = 11 ×  11, 𝛼 = 1 and 𝜎 = 40 

Figure 7. Difference between the original images and the filtered images.

When an image is processed with geodesic filtering, the parameter σ controls the
extent of the filtering effect. The “natural scale” represents the specific σ value that achieves
the best balance between noise reduction and preservation of significant image features.
This concept builds on scale-space theory, which states that images contain features at
multiple scales. The natural scale has several key characteristics:

1. Peak Performance Point: As demonstrated in the paper, when plotting PSNR or SSIM
values against increasing σ values, there is typically a clear peak before performance
declines. This peak identifies the natural scale for that image.

2. Content Dependency: Each image has its own unique natural scale based on its
content complexity. Images with fine textures typically have lower optimal σ values,
while images with larger homogeneous regions have higher optimal σ values.
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3. Feature Preservation Threshold: The natural scale represents the threshold at which
the filtering process maximally preserves meaningful edges and structures while still
effectively suppressing noise.

4. Adaptive Processing: Rather than applying a fixed σ value across all images, the
concept of natural scale suggests that filtering should adapt to each image’s inherent
structure.

5. Noise-Robust Analysis: When evaluating images with added noise, the natural scale
remains relatively stable, showing that it is tied to the underlying image structure
rather than noise characteristics.

We begin by establishing baseline performance with controlled noise conditions,
then progressively introduce more challenging scenarios to demonstrate the robustness
of geodesic filtering. To demonstrate this unique property of geodesic filter, let us study
how the image evolves with σ for images that are corrupted by a Gaussian noise with an
amplitude between [0, 35] and an average of 0. Following the foundational work of Zhang
et al. [29], we performed a peak signal-to-noise ratio (PSNR) analysis for each image as a
function σ. PSNR is defined as

PSNR = 10 ∗ log10

(
MAX2

i
MSE

)
(21)

where MAXi is the maximum possible pixel value and MSE is the mean squared error.
In addition, for each σ, we also compute the structural similarity index measure

(SSIM) as it provides a deeper insight into structural preservation. SSIM incorporates three
components:

• Luminance comparison;
• Contrast comparison;
• Structural correlation is an important criterion to measure edge preservation.
• SSIM is defined as

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (22)

where

• µx is the pixel sample mean of x;
• µy is the pixel sample mean of y;
• σ2

x is the variance of x;
• σ2

y is the variance of y;

• c1 = (k1V), c2 = (k2V);
• V the dynamic range of the pixel-values (typically 255);
• k1 = 0.01 and k2 = 0.03 by default.

Figure 8 shows the original image with Gaussian noise, the filtered version for σmax

corresponding to the maximum of the PSNR, and finally the evolution of the PSNR and
SSIM as a function of σ. One can see, for each image, the PSNR and SSIM evolve as a
function of σ monotonically toward a maximum and then reduce due to over blurring. The
σmax value corresponds to the maximum PSNR and is called the natural scale of the image.
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Noisy Parrots Image 

PSNR: 20.07 dB 

SSIM: 0.2930 

Filtered Parrots Image  

with Optimal Sigma 𝑠 = 17, 𝛼 = 1 and 𝜎௫ = 90 

PSNR: 28.09 dB 

SSIM: 0.7923 

PSNR and SSIM vs. Sigma Curves 

 

  

Noisy Barbara Image 

PSNR: 20.09 dB 

SSIM: 0.5358 

Filtered Barbara Image  

with Optimal Sigma 𝑠 = 17, 𝛼 = 1 and 𝜎௫ = 70 

PSNR: 23.99 dB 

SSIM: 0.7308 

PSNR and SSIM vs. Sigma Curves 

 

  

Noisy Hearing Aid Image 

PSNR: 20.81 dB 

SSIM: 0.3871 

Filtered Hearing Aid Image  

with Optimal Sigma 𝑠 = 17, 𝛼 = 1 and 𝜎௫ = 70 

PSNR: 25.37 dB 

SSIM: 0.7728 

PSNR and SSIM vs. Sigma Curves 

  

 

Figure 8. Cont.
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Noisy House Image 

PSNR: 20.17 dB 

SSIM: 0.6194 

Filtered House Image with Opti-

mal Sigma 𝑠 = 17, 𝛼 = 1 and 𝜎௫ = 60 

PSNR: 22.40 dB 

SSIM: 0.7423 

PSNR and SSIM vs. Sigma Curves 

  

 

Noisy Paris Image 

PSNR: 20.31 dB 

SSIM: 0.4850 

Filtered Paris Image  

with Optimal Sigma 𝑠 = 17,𝛼 = 1 and 𝜎௫ = 70 

PSNR: 23.59 dB 

SSIM: 0.7099 

PSNR and SSIM vs. Sigma Curves 

 

  

Noisy Forest Image 

PSNR: 20.29 dB 

SSIM: 0.4737 

Filtered Forest Image  

with Optimal Sigma 𝑠 = 17, 𝛼 = 1 and 𝜎௫ = 70 

PSNR: 24.32 dB 

SSIM: 0.6542 

PSNR and SSIM vs. Sigma Curves 

 

  

Noisy Industrial Image 

PSNR: 20.17 dB 

SSIM: 0.7266 

Filtered Industrial Image with 

Optimal Sigma 𝑠 = 17, 𝛼 = 1 and 𝜎௫ = 60 

PSNR: 21.70 dB 

SSIM: 0.8838 

PSNR and SSIM vs. Sigma Curves 

Figure 8. Cont.
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oisy Brain MRI Image 

PSNR: 21.12 dB 

SSIM: 0.3316 

Filtered Brain MRI Image with 

Optimal Sigma 𝑠 = 17, 𝛼 = 1 and 𝜎௫ = 60 

PSNR: 23.95 dB 

SSIM: 0.4912 

PSNR and SSIM vs. Sigma Curves 

 

 

Noisy Heart Ultrasound Image 

PSNR: 21.24 dB 

SSIM: 0.2745 

Filtered Heart Ultrasound Image  

with Optimal Sigma 𝑠 = 17, 𝛼 = 1 and 𝜎௫ = 80 

PSNR: 24.82 dB 

SSIM: 0.4387 

PSNR and SSIM vs. Sigma Curves 

Figure 8. Evolution of the PSNR and SSIM as a function of σ for a noisy version of the dataset images.
Left: The noisy image. Center: The image filtered with the optimum value σmax. Right: The evolution
of the PSNR and SSIM vs. σ.

The experimental results reveal that while the natural scale parameter varied across
different images (with test cases showing a range from σ = 60 to σ = 90), it can be systemati-
cally identified through careful analysis of PSNR and SSIM metrics. This discovery provides
researchers with a methodical framework for parameter optimization that eliminates the
traditional trial-and-error approach commonly required in advanced filtering techniques.

4.3. Comparing Geodesic Filter to Other Algorithms

Previous studies comparing the performance of geodesic filtering and anisotropic
diffusion methods have demonstrated the advantages and limitations of each approach. For
instance, studies have shown that anisotropic diffusion methods, such as the Perona–Malik
technique, are effective at preserving edges but struggle with highly textured or noisy
images. While anisotropic diffusion methods have been widely adopted for their edge-
preserving capabilities, geodesic filtering offers significant advantages in terms of noise
reduction and spatial relationship preservation. A comparative study by Weickert [36]
for grey-level images and by Boulanger [23] for range images underscore the potential
of geodesic filtering as a superior technique for advanced image processing applications.
Other studies by Gousseau et al. [37] compared various anisotropic diffusion methods
and highlighted the potential of geodesic filtering in overcoming some of the inherent



J. Imaging 2025, 11, 167 25 of 39

limitations of these techniques. Their findings suggest that geodesic filtering can provide
better results in terms of both quantitative metrics, such as PSNR and SSIM by Gousseau
et al. [37].

This section presents a comprehensive comparative analysis of our geodesic filtering
approach against the state-of-the-art methods. The key to this comparison is based on
PSNR and SSIM difference metrics. The noisy images shown in Figure 8 were processed
using various implementations of the filtering algorithms described in Section 2. To be fair
in our comparison, as with the geodesic filter, we tuned the parameters to produce the best
PSNR value possible. The results of this comparison are collected in Figures 9 and 10.

Each algorithm was carefully tuned to achieve optimal performance using the same test
image database with standardized noise conditions. For each filter, the tuning parameters
are as follows:

• Least Median Filter: window size s and tile size st;
• Gradient Anisotropic Diffusion: conductance C and number of iterations #I;
• Curvature Anisotropic Diffusion: the mean curvature of the level sets k and number

of iterations #I;
• Bilateral Filter: s kernel size, σd spatial distance weight, and σc color distance weight;
• Gaussian Weighted Wavelet DIP Neural Network: σw Gaussian variance, ϵ minimum

tile loss, st tile size, and so tile overlap size.

LMS  GAD CAD 

   𝑠 = 9 𝑠௧ = 64 

PSNR: 27.56 dB 

SSIM: 0.7115 

𝐶 = 15 #𝐼 = 1000 
PSNR: 23.60 dB 

SSIM: 0.4458 

𝑘 = 30 #𝐼 = 10 
PSNR: 28.07 dB 

SSIM: 0.6933 

   𝑠 = 7 𝑠௧ = 64 

PSNR: 23.59 dB 

SSIM: 0.6602 

𝐶 = 12 #𝐼 = 2000 
PSNR: 21.18 dB 

SSIM: 0.5447 

𝑘 = 20 #𝐼 = 10 
PSNR: 24.43 dB 

SSIM: 0.7057 

Figure 9. Cont.
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   𝑠 = 7 𝑠௧ = 64 

PSNR: 26.36 dB 

SSIM: 0.7223 

𝐶 = 12 #𝐼 = 1000 
PSNR: 22.67 dB 

SSIM: 0.5523 

𝑘 = 20 #𝐼 = 10 
PSNR: 26.05 dB 

SSIM: 0.7649 

   𝑠 = 7 𝑠௧ = 64 

PSNR: 21.86 dB 

SSIM: 0.6493 

𝐶 = 12 #𝐼 = 1000 
PSNR: 20.88 dB 

SSIM: 0.6473 

𝑘 = 5 #𝐼 = 10 
PSNR: 22.62 dB 

SSIM: 0.6995 

   𝑠 = 7 𝑠௧ = 64 

PSNR: 22.13 dB 

SSIM: 0.5842 

𝐶 = 13 #𝐼 = 500 
PSNR: 21.97 dB 

SSIM: 0.5242 

𝑘 = 5 #𝐼 = 10 
PSNR: 22.73 dB 

SSIM: 0.5940 

   𝑠 = 7 𝑠௧ = 64 

PSNR: 24.53 dB 

SSIM: 0.6148 

𝐶 = 13 #𝐼 = 1000 
PSNR: 21.94 dB 

SSIM: 0.4713 

𝑘 = 5 #𝐼 = 10 
PSNR: 24.68 dB 

SSIM: 0.6322 

Figure 9. Cont.
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   𝑠 = 7 𝑠௧ = 64 

PSNR: 21.72 dB 

SSIM: 0.7929 

𝐶 = 13 #𝐼 = 1000 
PSNR: 20.64 dB 

SSIM: 0.7050 

𝑘 = 5 #𝐼 = 10 
PSNR: 22.41 dB 

SSIM: 0.8101 

 

 

  𝑠 = 7 𝑠௧ = 64 

PSNR: 25.66 dB 

SSIM: 0.4914 

𝐶 = 10 #𝐼 = 1000 
PSNR: 22.36 dB 

SSIM: 0.3463 

𝑘 = 10 #𝐼 = 10 
PSNR: 24.92 dB 

SSIM: 0.4859 

   𝑠 = 7 𝑠௧ = 64 

PSNR: 26.22 dB 

SSIM: 0.4395 

𝐶 = 10 #𝐼 = 1000 
PSNR: 22.60 dB 

SSIM: 0.2916 

𝑘 = 10 #𝐼 = 10 
PSNR: 25.37 dB 

SSIM: 0.4322 

 

Figure 9. Optimal filtering results for LMS, gradient anisotropic diffusion, and curvature anisotropic
algorithms.
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Figure 10. Optimal filtering results for bilateral and GW-DIP algorithms.

In summary, the quantitative evaluation presented in Tables 1 and 2 confirms that
geodesic filtering provides dual performance advantages: achieving noise reduction metrics
(PSNR) comparable to state-of-the-art alternatives while significantly outperforming them
in structural preservation (SSIM). This superiority in preserving image structure is evident
across the entire image dataset, with particularly notable advantages in regions containing
intricate textures and fine details that traditional methods frequently over-smooth or distort.

The results clearly demonstrate that while other filtering approaches may achieve
similar noise reduction performance, they do so at the cost of structural integrity. Geodesic
filtering, in contrast, maintains the delicate balance between noise suppression and feature
preservation, making it particularly valuable for applications where preserving the semantic
content of images is paramount.

Furthermore, geodesic filtering shows remarkable resilience when processing non-
standard noise distributions, including speckle patterns and mixed noise profiles that
typically challenge conventional filters. This versatility extends its practical utility across
diverse application domains from medical imaging to remote sensing.
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Table 1. Comparison of the PSNR for each filtering algorithm.

Image Noisy
Image Geodesic LMS GAD CAD Bilaterial DIP

Parrot 20.07 dB 28.09 dB 27.56 dB 23.60 dB 28.07 dB 27.91 dB 24.61 dB

Barbara 20.09 dB 23.99 dB 23.59 dB 21.18 dB 24.43 dB 24.51 dB 20.38 dB

Hearing
Aid 20.81 dB 25.37 dB 26.36 dB 22.67 dB 26.05 dB 26.11 dB 20.90 dB

House 20.17 dB 22.40 dB 21.86 dB 20.88 dB 22.62 dB 22.82 dB 20.59 dB

Paris 20.31 dB 23.59 dB 22.13 dB 21.97 dB 22.73 dB 23.22 dB 19.31 dB

Forest 20.29 dB 24.32 dB 24.53 dB 21.94 dB 24.68 dB 25.28 dB 22.18 dB

Industrial 20.17 dB 21.70 dB 21.72 dB 20.64 dB 22.41 dB 22.70 dB 19.72 dB

Brain MRI 21.12 dB 23.95 dB 25.66 dB 22.36 dB 24.92 dB 25.36 dB 20.21 dB

Ultrasound 21.24 dB 24.82 dB 26.22 dB 22.60 dB 25.37 dB 25.81 dB 19.95 dB

Average
PSNR 20.47 dB 24.25 dB 24.40 dB 21.98 dB 24.59 dB 24.85 dB 20.87 dB

Table 2. Comparison of the SSIM for each filtering algorithm.

Image Noisy
Image Geodesic LMS GAD CAD Bilaterial DIP

Parrot 0.2930 0.7923 0.7115 0.4458 0.6933 0.6694 0.5286

Barbara 0.5358 0.7308 0.6602 0.5447 0.7057 0.7055 0.6235

Hearing
Aid 0.3871 0.7728 0.7223 0.5523 0.7649 0.7539 0.7098

House 0.6194 0.7423 0.6493 0.6473 0.6995 0.7116 0.7117

Paris 0.4850 0.7099 0.5842 0.5242 0.5940 0.6382 0.5195

Forest 0.4737 0.6542 0.6148 0.4713 0.6322 0.6679 0.6121

Industrial 0.7266 0.8838 0.7929 0.7050 0.8101 0.8264 0.7295

Brain MRI 0.3316 0.4912 0.4914 0.3463 0.4859 0.4895 0.3672

Ultrasound 0.2745 0.4387 0.4395 0.2916 0.4322 0.4386 0.3082

Average
SSIM 0.4585 0.6907 0.6296 0.5032 0.6464 0.6556 0.5678

5. Geodesic Filtering Computational Complexity and GPU Implementation
The computational complexity of geodesic filtering represents one of its most sig-

nificant challenges, which necessitates the GPU implementation described in the paper.
This aspect deserves thorough examination as it directly impacts the algorithm’s practical
applicability. The computational bottleneck occurs specifically during the minimal path
calculation (geodesic distance) between pixels. For each central pixel, the algorithm must
compute the shortest path to every other pixel in the window, considering both spatial
proximity and intensity differences. This requires solving multiple single-source shortest
path problems, which have a complexity of O (M·Ns2) per window when using Dijkstra’s
algorithm with a binary heap.

Like the algorithms described in Asad et al. [38] and Áfra et al. [39], our GPU implemen-
tation addresses many computational challenges through several innovative approaches:
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1. Parallelization Strategy: By processing multiple image tiles simultaneously, the GPU
implementation exploits the inherent parallelism in the algorithm. Each thread pro-
cesses a single pixel, allowing thousands of pixels to be processed concurrently.

2. Memory Optimization: The paper describes sophisticated memory access patterns
and bank conflict resolution techniques that significantly improve throughput on
GPU architectures.

3. Wave Propagation Algorithm: The fast-marching method (FMM) implemented on
GPU provides a more memory-access-friendly alternative to Dijkstra’s algorithm,
eliminating the need for priority queues which cause memory bank conflicts.

4. Coalesced Memory Access: By arranging data in memory to enable coalesced access
patterns, the implementation achieves near-optimal memory bandwidth utilization.

5.1. Memory Optimization

1. Image Tiling: A large image is divided into 16 × 16 tiles for processing, where each
tile is handled by one thread block. A 7 × 7 convolution window requires an overlap
of three pixels on each side (7/2⌋ = 3), resulting in an effective area processed by each
tile to be 10 × 10 pixels (16-3-3).

2. Memory Layout: The input image is stored as RGB values (three channels) in global
memory, where each pixel requires three float values. The image data are aligned for
faster coalesced memory access from the threads. For each block, the threads read the
data from global memory into the shared memory. Since each tile is 16 × 16, each
block will read a tile of size 22 × 22 pixels (16 + 3 + 3 for each dimension) of three
floats. This also includes halo regions. In addition, additional space is used in shared
memory for distance computations.

5.1.1. Block Execution Flow

1. Tile Loading Phase: Each 16 × 16 thread block loads the tile data (16 × 16), the halo
region (three pixels each side), using coalesced reading from global memory.

2. Convolution Processing: Each thread is responsible for one pixel in 16 × 16 tiles, and
threads near edges handle the halo region. First, a distance array is initialized. Each
output pixel requires 7 × 7 window computation. The center pixel of each window is
determined by thread ID. For a thread in the block,

3. The convolution window is centered at the current thread position;
4. Each thread processes the 7 × 7 window around center, which include
5. Computing geodesic distances within the window using the wave propagation

algorithm;
6. Calculating the weight of the spatial and signal contributions using a Gaussian function;
7. Normalize the weights between zero and one;
8. Multiply the signal with the weights and the pixel by the weighted sum.

5.1.2. Memory Access Optimization

The main optimization strategy is based on better use of memory access. First is a
coalesced loading strategy where each thread loads one RGB pixel set 128-byte aligned
access and where sequential thread IDs are mapped to sequential memory. For example,
data are stored in global memory as [R0] [G0] [B0] [R1] [G1] [B1] . . . [R15] [G15] [B15]. Each
thread in a half-warp read the data as follows:

• T0 → P0, P16, P32 (loads three pixels);
• T1 → P1, P17, P33;
• T2 → P2, P18, P34;
• . . .;
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• T15 → P15, P31, P47.

The second data load consists of

• Loading halo region corresponding to an additional three pixels on each side;
• Maintain a coalesced pattern where possible;
• Handle boundary conditions near the edge of the image.

All the data for a tile of (22 × 22) are then stored into much faster shared memory as
follows:

Halo[Main Tile] [Halo];
• 3 + 16 + 3 = 22 columns;
• 3 + 16 + 3 = 22 rows.

It is stored as follows:

• [H H H|M M M M M M M M M M M M M M M M|H H H];
• [H H H|M M M M M M M M M M M M M M M M|H H H];
• [H H H|M M M M M M M M M M M M M M M M|H H H].

The main objective is to minimize memory bank conflict between threads in a block.
Bank conflicts can cause 32× slowdown, as each conflict serializes access and also affects
warp execution efficiency. First, we must ensure that each thread accesses different banks
bank (Txy) ̸= bank (Tx’y’) for any threads in the same warp. In our implementation, we
used a column padding strategy where we added an extra column to the array to shift row
starting addresses to ensure bank separation. Our implementation uses channel padding
where we add an extra column to each channel:

• float r_channel [22,23];
• float g_channel [22,23];
• float b_channel [22,23].

This simplified bank mapping allows independent channel access that reduces conflict
probability and better memory coalescing. This simple strategy eliminated bank conflicts to
improve parallel memory operations of the full warp utilization. There is no serialization
allowing for concurrent bank access and improved throughput.

5.2. Fast-Marching Method Algorithm (FMM)

The fast-marching method (FMM) represents a watershed advancement in geodesic
distance computation, pioneered by Sethian’s [31] foundational work and subsequently
refined for parallel architectures. At its core, FMM employs wavefront propagation—
systematically expanding distance information outward from source points while maintain-
ing strict causality principles essential for computational accuracy. This approach begins
with a meticulous initialization phase that establishes the computational infrastructure
through carefully configured distance maps and status markers for each vertex within
the processing window. This preparatory stage, whose importance Peyré’s [27] research
emphasized, creates the necessary foundation for subsequent processing steps. The al-
gorithm’s defining characteristic lies in its disciplined processing sequence: examining
points in strict order of increasing distance to ensure each vertex’s final distance value is
definitively established before dependent calculations proceed. The causality-preserving
ordering mechanism, whose mathematical properties Kimmel and Sethian [25] extensively
analyzed, provide crucial guarantees regarding the precision of computed geodesic dis-
tances. This ordered processing framework enables FMM to efficiently resolve the Eikonal
equation governing geodesic distance propagation, making it particularly amenable to
GPU implementation through its structured memory access patterns and predictable data
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dependencies—characteristics that dramatically contrast with Dijkstra’s algorithm’s re-
liance on priority queues.

The FMM algorithm consists of several key components:

1. Wave Structure: For our example, four concentric waves need to be processed by a
thread. Each wave represents the front of pixels at similar geodesic distances that
expand outward from a source point. Each wave elements are stored in shared
memory contains position, distance, and color information.

2. Distance Update Mechanism: For each pixel in the current wave, the algorithm
examines all 8-connected neighbors and then computes the geodesic distance combing
spatial and color distances using Equation (14). The algorithm then updates the
distance if a shorter path is found. All updates use atomic operators to avoid race
conflicts between threads.

3. Wave Evolution: Initially, the wave inside a convolution window starts at the source
point and then propagates outward. The wave size adapts based on local image
properties. The process continues until all pixels in the window are reached. Each
thread in a block examines its 8-connected neighbors and then computes a new
distance if a shorter is found. Then, the neighbor is marked for inclusion in the next
wave if necessary. See Figure 11 for an illustration of this process.

Figure 11. Wave front calculation for a 7 × 7 window.

The FMM computational complexity O(S) is less efficient than the Dijkstra algorithm.
On the other hand, the memory access is more efficient for parallel implementation as it is
not random.

5.3. Speed Comparison Between Python and CUDA Implementations

This GPU implementation-based wave propagation is more efficient and more adapted
to GPU processing than the CPU implantation using Dijkstra’s algorithm. For Dijkstra’s
algorithm for 7 × 7 windows:

• Nodes (N) = 49 (7 × 7);
• Time Complexity: O(N log2 N);
• For each pixel: 49 × log2 (49) operations to compute the geodesic distance;
• More calculation is also needed to maintain the priority queue.

For the wave propagation algorithm,

• We need to compute four waves (center, first ring, second ring, outer);
• Operations per wave: O(N);
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• Fixed number of steps, regardless of window content.

For a single 7 × 7 window, the Dijkstra algorithm requires

• Operations: ~280 (49 × log2 (49);
• Forty-nine sequential steps;
• Random memory access due to the priority queue;
• Extra storage for the priority queue.

For the same window size, the wave propagation algorithm requires

• Operations: ~196 (49 × 4 waves);
• Structured memory access;
• Extra storage for the wave buffers.

5.4. Execution Speed Comparison

A comparison between a CPU implementation written in Python 3.8 and a GPU
implementation written using CUDA Toolkit version CUDA 12.9 was performed. We used
a powerful CPUs to compare with two GPUs running in the Google Colab environment.
The CPU is the AMD Threadripper 7980X with the following specifications:

• Cores: 64;
• Threads: 128;
• Base Clock: 3.2 GHz;
• Boost Clock: 5.1 GHz;
• Memory Bandwidth: ~200 GB/s;
• L3 Cache: 384 MB.

The two GPUs used for the comparison were

1. the NVIDIA A100 GPU: CUDA Cores: 6912;
2. Memory: 80 GB HBM2e;
3. Memory Bandwidth: 2039 GB/s;
4. Base Clock: 1410 MHz.

and the

1. NVIDIA T4 GPU:
2. CUDA Cores: 2560;
3. Memory: 16 GB GDDR6;
4. Memory Bandwidth: 320 GB/s;
5. Base Clock: 585 MHz.

Performance metrics for 1024 × 1024 color image for the Python Dijkstra implementa-
tion running on the CPU:

• Pure Python: ~45,000 ms;
• NumPy/SciPy: ~12,000 ms;
• Numba JIT [*]: ~3000 ms;
• Numba Parallel [*]: ~800 ms.

For the CUDA C Wave Propagation version running on a NVIDIA A100 GPU:

• Processing: ~3 ms;
• Memory Transfer: ~1 ms;
• Total: ~4 ms;
• Speedup vs. Numba: ~200×.

For a NVIDIA T4 GPU:

• Processing: ~15 ms;
• Memory Transfer: ~3 ms;
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• Total: ~18 ms;
• Speedup vs. Numba: ~44×.

The implementation achieves significant performance improvements through wave-
specific optimizations, dynamic bank conflict resolution, and adaptive memory access
patterns. Experimental results demonstrate a speedup of 200 times for the NVIDIA A100
GPU and 44 times for the NVIDIA T4 GPU compared to a multithread execution on the
CPU using Numba Parallel.

5.5. Scalability Between Algorithms

Scalability is also good as illustrated by the following statistics. For the Python Dijkstra
Processing using Numba Parallel, implementation execution time vs. image size are

• 512 × 512: ~200 ms;
• 1024 × 1024: ~800 ms;
• 2048 × 2048: ~3200 ms;
• Scale factor: ~4×.

For CUDA Wave Propagation (on a A100 NVIDIA GPU):

• 512 × 512: ~1 ms;
• 1024 × 1024: ~4 ms;
• 2048 × 2048: ~16 ms;
• Scale factor: ~4×.

CUDA Wave Propagation (on a T4 NVIDIA GPU):

• 512 × 512: ~4.5 ms;
• 1024 × 1024: ~18 ms;
• 2048 × 2048: ~72 ms;
• Scale factor: ~4×.

5.6. Accuracy Between CPU and GPU Versions

The CPU (Python Dijkstra) implementation uses 64-bit double precision by default
and is our gold standard reference to compute geodesic distances. For the GPU Wave
Propagation implementation, each CUDA core has a single precision accuracy meaning
that the final distance relative error to the gold standard will be ~10−6. So, for our test
images the average error are:

• CPU Dijkstra: 0.0 (reference);
• GPU Wave (A100): 3.1 × 10−6;
• GPU Wave (T4): 3.2 × 10−6.

6. Conclusions
This paper has presented a comprehensive analysis of geodesic filtering within the

Riemannian framework for image processing, offering both a rigorous theoretical foun-
dation and extensive experimental validation. Our investigation demonstrates that by
modeling images as high-dimensional manifolds and computing minimal geodesic paths,
this approach achieves remarkable improvements in noise reduction and edge preserva-
tion. Geodesic filtering delivers noise reduction on par with state-of-the-art alternatives
measured using PSNR while significantly outperforming them in structural preservation
measured by SSIM. The robust differential geometry underpinning geodesic filtering en-
ables it to adeptly handle complex image structures, including challenging scenarios with
varying noise characteristics and intricate edge patterns.

The experimental data clearly validate that GPU acceleration is essential for practical
geodesic filtering, with NVIDIA A100 hardware delivering a 200× performance boost over
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optimized CPU implementations. This dramatic acceleration transforms geodesic filtering
from a mere theoretical concept into a viable processing technique for real-world appli-
cations. By reducing computational barriers, the GPU implementation enables geodesic
filtering to be effectively applied to large-scale datasets and time-sensitive processing
requirements across medical imaging, remote sensing, and video processing domains.

Furthermore, our analysis reveals that the geometric approach to image filtering
offers fundamental advantages beyond performance metrics alone. By respecting the
intrinsic geometry of image content, geodesic filtering preserves semantic information
that is often lost in traditional filtering approaches. The preservation of fine structural
details, particularly along complex curved boundaries and in textured regions, maintains
the diagnostic or analytical value of processed images—a critical consideration in domains
where visual information directly informs decision-making processes. The adaptive nature
of geodesic distances, which automatically adjust to local image characteristics, provides a
self-regulating mechanism that reduces the need for parameters tuning across diverse image
types. This adaptability proves especially valuable when processing heterogeneous datasets
with varying noise profiles and structural complexities. Our experiments with clinical
medical images, satellite imagery, and natural photographs demonstrate this versatility,
with consistent performance advantages observed across these diverse domains.

Additionally, the theoretical framework established in this paper opens new avenues
for further research, including potential extensions to temporal filtering for video sequences,
integration with deep learning architectures as a geometrically informed processing layer,
and application to higher-dimensional volumetric data common in modern medical imag-
ing. The mathematical formalism of Riemannian geometry provides a robust foundation
for these future developments, suggesting that geodesic filtering represents not just an
incremental improvement but a fundamentally different paradigm for approaching image
processing challenges.

7. Future Research Directions
Looking forward, several promising avenues exist to further enhance and expand the

capabilities of geodesic filtering. A primary focus will be on reducing its computational com-
plexity while maintaining its inherent advantages. Advances in parallel computing—such
as multi-GPU architectures and emerging hardware accelerators—paired with algorithmic
improvements inspired by anisotropic fast marching methods, may deliver the necessary
efficiency gains.

Another exciting direction involves extending the geodesic filtering framework to
higher-dimensional data. While our current work concentrates on two-dimensional images,
early studies indicate that the approach can be naturally generalized to 3D volumetric
datasets—such as CT or MRI scans—by mapping from R3 to R4 (e.g., u, v, w to x, y, z, I).
Similarly, the method could be adapted for video processing by extending the mapping to
higher dimensions (e.g., R3 to R6 for video sequences, encompassing spatial and temporal
dimensions along with color information) and even 4D time-varying datasets (e.g., dynamic
CT or ultrasound data).

These extensions will not only widen the applicability of geodesic filtering but also
create new research opportunities in the analysis and visualization of complex, high-
dimensional data. Many of these extensions of the geodesic filtering approach have been
successfully tested in our laboratory and will be published in the near future.
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Abstract: The increased workload in pathology laboratories today means automated tools
such as artificial intelligence models can be useful, helping pathologists with their tasks. In
this paper, we propose a segmentation model (DRU-Net) that can provide a delineation
of human non-small cell lung carcinomas and an augmentation method that can improve
classification results. The proposed model is a fused combination of truncated pre-trained
DenseNet201 and ResNet101V2 as a patch-wise classifier, followed by a lightweight U-Net
as a refinement model. Two datasets (Norwegian Lung Cancer Biobank and Haukeland
University Lung Cancer cohort) were used to develop the model. The DRU-Net model
achieved an average of 0.91 Dice similarity coefficient. The proposed spatial augmentation
method (multi-lens distortion) improved the Dice similarity coefficient from 0.88 to 0.91.
Our findings show that selecting image patches that specifically include regions of interest
leads to better results for the patch-wise classifier compared to other sampling methods.
A qualitative analysis by pathology experts showed that the DRU-Net model was generally
successful in tumor detection. Results in the test set showed some areas of false-positive
and false-negative segmentation in the periphery, particularly in tumors with inflammatory
and reactive changes. In summary, the presented DRU-Net model demonstrated the best
performance on the segmentation task, and the proposed augmentation technique proved
to improve the results.

Keywords: lung carcinoma; digital pathology; tumor segmentation; deep learning;
data augmentation
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1. Introduction
Early diagnosis of lung cancer is crucial for patient survival [1]. Although physical

examinations and medical imaging are included in the diagnostic work-up, tissue samples
are needed to establish a cancer diagnosis. The histopathological diagnosis, including the
analysis of tumor biomarkers, influences therapeutic decisions and should, therefore, be
assessed as early and accurately as possible [2,3].

Digitizing tissue slides allows evaluation via computer screens, which can improve
efficiency over traditional microscopy [4]. It also supports AI-driven tissue classification,
segmentation, potentially increasing the speed of image interpretation, and refining clinical
decision-making [5–8]. Correct segmentation of the tumor is a necessary step towards
computer-assisted tumor analysis and lung cancer diagnosis [9–14].

When working with whole slide images (WSIs), the application of AI models is
complicated due to the large size of the images. Down-sampling the WSIs to a manageable
size would compromise resolution and potentially result in the loss of critical diagnostic
details. A common approach in digital pathology is, therefore, to divide the images into
several small squares, called patches. This is a more effective approach, but the use of
patch-based analysis alone can lead to a loss of broader spatial relationships. Alternatively,
the image can be down-sampled, or a hybrid strategy that combines both methods can be
used to optimize the analytical balance between detailed resolution and global context.

Some of the best-performing AI methods in the analysis of WSIs are deep neural
networks [14,15]. The state-of-the-art in image segmentation tasks is the use of complex
neural network architectures such as vision transformers and InternImage [16,17]. However,
these methods require a relatively large amount of data [18]. Transfer learning techniques
may also be used to train or fine-tune pre-trained models on new data [19]. Patch-wise
classification (PWC) or segmentation approaches may outperform direct segmentation of
the tumor in a down-sampled image without dividing it into patches [20].

Several models have been proposed for tumor segmentation in WSIs [11,21–29].
Zhao et al. proposed a novel hybrid deep learning framework for colorectal cancer that
uses a U-Net architecture. This model features innovative residual ghost blocks, which
include switchable normalization and bottleneck transformers for extracting features [11].

The MAMC-Net model introduced a multi-resolution attention module that utilizes
pyramid inputs for broader feature information and detail capture [21]. An attention mech-
anism refines features for segmentation, while a multi-scale convolution module integrates
semantic and high-resolution details. Finally, a connected conditional random field ensures
accurate segmentation by addressing discontinuities [21]. The authors showcased the
superior performance of their model on breast cancer metastases and gastric cancer [21].

DHU-Net combines Swin Transformer and ConvNeXt within a dual-branch hierarchi-
cal U-shaped architecture [22,30,31]. This method effectively fuses global and local features
by processing WSI patches through parallel encoders, utilizing global-local fusion modules
and skip connections for detailed feature integration [22]. The Cross-scale Expand Layer
aids in resolution recovery across different scales. The network was evaluated on datasets
covering different tumor features and cancer types, and achieved higher segmentation
results than other tested methods [22].

Krikid et al. showed that deep-learning applications in microscopic image segmen-
tation have evolved from predominantly cell- and nucleus-centric tasks—often on small,
homogeneous datasets—to encompass more complex, tissue-level analyses, reflecting
a shift toward multi-scale, clinically relevant segmentation across diverse microscopy-
modality types [32]; Greeley et al. introduced pyramid tiling for efficient gigapixel histol-
ogy analysis [33]; promptable models like SAM and MedSAM enable zero-shot, universal
segmentation across modalities [34,35].
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Pedersen et al. introduced H2G-Net, a cascaded convolutional neural network (CNN)
architecture for segmenting breast cancer regions from gigapixel histopathological im-
ages [23]. It employs a patch-wise detection stage and a convolutional autoencoder for
refinement, demonstrating significant improvements in tumor segmentation. The approach
outperformed single-resolution methods, achieving a Dice similarity coefficient (DSC) of
(0.933 ± 0.069) [23]. Its efficiency is underscored by fast processing times and the ability to
train deep neural networks without having to store patches on disk.

One of the most significant challenges in using WSIs for tumor segmentation is still
the scarcity of labeled data. The marking of tumor tissue in WSIs by pathology experts is
time-consuming and may be a bottleneck in research. Alternative computational strategies,
such as unsupervised or semi-supervised learning methods should, therefore, be explored.
Clustering allows the segmentation of tumor regions with little or no need for predefined
labels, and can be a useful tool in this context [24,25].

Yan et al. presented a self-supervised learning method using contrastive learning to
process WSIs for tissue clustering [26]. This approach generates discriminative embed-
dings for initial clustering, refined by a silhouette-based scheme, and extracts features
using a multi-scale encoder [26]. It achieved high accuracy in identifying tissues with-
out annotations. Their results show an area under the curve (AUC) of 0.99 and accuracy
of approximately 0.93 for distinguishing benign from malignant polyps in a cohort of
20 patients [26].

Few-shot learning is also a promising method for handling limited labeled data [27,28].
By design, few-shot learning algorithms can learn from a very limited number of labeled
examples. This can be particularly relevant for the classification of small patches, where
a small set of labeled examples can guide the learning process. Few-shot learning tech-
niques can generalize from these examples to classify new, unseen patches, facilitating the
identification and segmentation of tumor regions [27,28]. Titoriya et al. explored few-shot
learning to enhance dataset generalization and manageability by utilizing prototypical
networks and model agnostic meta-learning across four datasets [29]. The design achieved
85% accuracy in a 2-way 2-shot 2-query mode [29].

In this paper, we propose a new CNN-based model which is a combination of
DenseNet [36], ResNet [37], and U-Net architecture (DRU-Net) for segmenting non-small
cell lung carcinomas (NSCLCs). It is an end-to-end approach consisting of a dual head for
feature extraction and patch classification, followed by a U-Net for refining the segmen-
tation result. The proposed model is tested on a novel in-house dataset of 97 annotated
NSCLC WSIs. To increase model performance, we adopted a many-shot learning approach
during training and added a multi-lens distortion augmentation technique to both patches
and down-sampled WSIs.

2. Materials and Methods
2.1. Cohorts

In this study, two different collections of NSCLCs were used: the Norwegian lung can-
cer biobank (NLCB) cohort and Haukeland University lung cancer (HULC) cohort [38,39].
The NLCB cohort includes histopathological, cytological, biomarker, and clinical follow-
up data from patients with suspected lung cancer diagnosed in Central Norway after
2006 [40]. Both diagnostic tumor biopsies and sections from surgical lung cancer speci-
mens are available. The distribution of histological subtypes in each dataset is listed in
Table 1 [41,42].

The HULC cohort comprises 438 surgically treated NSCLC patients diagnosed at
Haukeland University Hospital, Bergen, Norway from 1993 to 2010. In this study,
97 NSCLC cases from the HULC cohort were included. From both cohorts, 4 µm tis-
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sue sections were made, deparaffinized, rehydrated in ethanol, and immersed in tap water.
Hematoxylin staining was applied and sections were rinsed in water and then in ethanol.
Sections were then stained with alcoholic eosin. Post-staining, slides were dehydrated in
ethanol, placed in TissueClear, air-dried, and scanned using Olympus VS120-S5 scanner
(Olympus Soft Imaging Solutions GmbH, Munster, Germany) at ×40 magnification [43].
WSIs were quality-controlled by a pathologist to ensure that only high-quality scans were
included in the study. They were reviewed for sectioning, staining, and scanning artifacts.

Table 1. Histological subtypes of non-small cell lung carcinoma cases in the NLCB and the HULC
cohorts. Counts are shown with corresponding percentages. AC: Adenocarcinoma, SCC: Squamous
Cell Carcinoma, NSCC: Non-small Cell Carcinomas, WSIs: Whole Slide Images.

Histological Subtype NLCB (n,%) HULC—Train (n, %) HULC—Test (n, %)

AC 16 (38.1%) 38 (49.4%) 7 (35.0%)
SCC 15 (35.7%) 32 (41.6%) 10 (50.0%)
Other NSCC 11 (26.2%) 7 (9.1%) 3 (15.0%)

Total number of WSIs 42 77 20

To conduct a broader study of the proposed augmentation’s effect, we utilized the
following open datasets in addition to HULC: MNIST, Fashion-MNIST, CIFAR-10, and
CIFAR-100 [44–46].

2.2. Ethical Aspects

All methods were carried out in accordance with relevant guidelines and regulations,
and the experimental protocols were approved by the Regional Committee for Medical
and Health Sciences Research Ethics (REK) Norway (2013/529, 2016/1156, and 257624).
Informed consent was obtained from all subjects and/or their legal guardian(s) for NLCB
in accordance with REK 2016/1156. For subjects in the HULC cohort, exemption from
consent was ethically approved by REK (2013/529).

2.3. Annotations and Dataset Preparation

We used two annotation approaches on WSIs: whole tumor annotation (WTA) and
partial selective annotation (PSA). In the WTA approach, pathologists marked the tumor
outline in 97 WSIs from the HULC cohort. Of these WSIs, 51 were used for training, 26 were
used for validation, and 20 were used for testing. WSIs with tissue microarray (TMA)
holes (n = 3) were manually assigned to the test set to prevent potential biased training;
the remaining WSIs were randomly separated into the training, validation, and the rest of
the test sets.

To reduce the time spent by pathologists in making the WTAs, initial annotations were
first made in 72 cases using two different AI-based segmentation models, (i) the H2G-Net
model developed for breast cancer segmentation (n = 25) and (ii) a customized early-stage
clustering model based on the corrected annotations from the H2G-Net model (n = 47) [23].
Pathologists then manually refined the tumor region annotations using the QuPath software
(version 0.3.2) [47]. The remaining 25 cases were manually annotated without any prior
AI-based segmentation models. A third pathologist reviewed the annotations, and in
case of discrepancy, consensus was reached after discussion. The final annotations were
exported as binary masks, serving as ground truth.

In the PSA approach, pathologists marked small regions of interest in 42 WSIs from the
NLCB cohort. These WSIs were used for training and validation of the patch-wise classifier
model. Marked areas included parts of the invasive tumor, normal alveolar tissue, stromal
tissue, immune cells, and areas of necrosis. Other non-tumor tissues marked included



J. Imaging 2025, 11, 166 5 of 23

respiratory epithelium, reactive alveolar tissue, cartilage, blood vessels, glands, lymph
nodes, and macrophages. The purpose of marking these regions was to reduce the time
required for manually annotating whole tumor regions, and to guide a particular selective
generation of patches intended for use in the patch-wise model’s training.

2.4. Proposed Method

The pipeline of the proposed model (DRU-Net) has two distinct stages, a PWC stage
and a refinement stage. The PWC model was trained on the NLCB cohort using a many-
shot learning method, and the refinement U-Net was trained on a set of down-sampled
WSIs from the HULC cohort. In the PWC stage, the model assigns probabilities to each
patch of the WSIs (excluding the glass), indicating whether the patch contains tumor tissue
or non-tumor tissue. The classifier outputs a preliminary assessment of each patch’s nature,
based on local features within the patch. The patches are then stitched together to produce
a heatmap matching the original size of the down-sampled WSIs.

2.4.1. Patch-Wise Classifier

The PWC was constructed by fusing truncated backbones of two architectures,
DenseNet201 [36] and ResNet101V2 [37], pre-trained on ImageNet [48]. We conducted a
preliminary search on a dataset subset to determine the most effective truncation points
for both DenseNet and ResNet backbones. This empirical exploration guided our layer
selection based on performance. These networks are used for parallel processing of the
input and feature generation (we refer to this PWC model as DR-Fused). In our proposed
architecture, both DenseNet201 and ResNet101V2 receive the same input, which is the
image patch. Each network processes this input concurrently, and after feature extraction,
the outputs from both DenseNet201 and ResNet101V2 pass through their respective global
average pooling layers. This step compresses the feature representation to help prevent
overfitting. The compressed features from both networks are then concatenated and fed
through the classifier head (Figure 1).

Figure 1. Illustration of the proposed DRU-Net model. The patched image is fed into the classifier part.
The output of the classifier is combined with a down-sampled WSI as an input for the refinement head.
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2.4.2. Refinement Network

The heatmap is generated from applying the PWC across the WSIs. The resultant
heatmap is then resized and concatenated with a down-sampled version of the WSI
(1120× 1120 pixels). The fused inputs are then fed to a refinement network, similar to
H2G-Net [23]. Using a refinement network allows for adjusting the initial patch-wise
predictions based on global WSI-level information.

The proposed refinement network is a simple, lightweight U-Net architecture,
specifically tailored to process two image inputs (Figure 1). In this model, the two
inputs (down-sampled RGB WSI and the heatmap) are concatenated into a 4-channel
image and then processed through multiple convolutional layers with ReLU activation
functions, batch normalization, spatial dropout, skip connections, max pooling, and up-
sampling layers (with nearest-neighbor interpolation). The network ends with a softmax
activation function.

2.4.3. Data Augmentation

To improve model robustness, data augmentation is commonly performed. Data aug-
mentation generates artificial copies of the training data through a predefined algorithm.
This allows the training data to better cover the expected data variation. Data augmentation
was integrated into the training data generation process, with the following methods ap-
plied randomly: vertical and horizontal flipping, rotations (multiples of 90◦), multiplicative
contrast adjustment, hue and brightness variations, and the proposed multi-lens distortion
augmentation. During the many-shot learning using PSA, we extracted patches by crop-
ping a random 224× 224-pixel section from each image. Each image appeared only once
per epoch, where an epoch is defined as one iteration of all the training data.

2.4.4. Multi-Lens Distortion Augmentation

A novel data augmentation method, multi-lens distortion, was developed to simulate
several local random lens distortions. This technique aims to allow the model to recognize
the important features of the images under a wider range of cell/tissue shapes.

The algorithm uses a predefined number of lenses. For each lens, a random position
within the image is selected. Then, a random distortion radius and strength value are
used to apply the barrel and/or pincushion distortion effect at the selected positions
(Algorithm 1). An example of this augmentation is shown in Figure 2. The optimal
radius range and lens count were established empirically through an iterative series of
experiments, with each configuration assessed qualitatively to identify the most com-
pelling results. From a histopathology point of view, too strong augmentations produce
morphologically invalid images, which degrade performance. Thus, it is necessary to
specifically tune these parameters for the targeted applications, especially in healthcare.

Figure 2. Sample effect of the novel augmentation on a patch with overlaid grids to illustrate the
effect. (a) Original image showing epithelial cells. (b) Augmented image with parameters set too
high, cell size variation and deformation are visible. (c) Augmented image with a medium setting of
the parameters.
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Algorithm 1 Multi-Lens Distortion (implementation-level pseudocode)

Require: img ∈ RH×W×C, N ▷ number of lenses, (rmin, rmax), (smin, smax)
Ensure: out ∈ RH×W×C

1: out← img ▷ deep copy
2: (yidx, xidx)← meshgrid(0:H−1, 0:W−1)
3: for i← 1 to N do
4: cx ← randInt(0, W−1)
5: cy← randInt(0, H−1)
6: R← randInt(rmin, rmax)
7: S← randFloat(smin, smax)
8: for all (y, x) in {0:H−1} × {0:W−1} do
9: dx ← x− cx ; dy← y− cy

10: r ←
√

dx2 + dy2

11: if r < R then
12: r̂ ← r/R ▷ normalised distance
13: s f ← 1− r̂ ▷ scaling factor
14: scale← 1− S · s f
15: xnew ← cx + dx · scale
16: ynew ← cy + dy · scale
17: xnew ← clamp(xnew, 0, W−1)
18: ynew ← clamp(ynew, 0, H−1)
19: out[y, x]← img[ynew, xnew]
20: end if
21: end for
22: end for
23: return out

2.4.5. Model Training

The PWC network was fine-tuned to adapt to the specific task by freezing the initial
layers. The following training parameters were included: optimizer: Adamax with a
learning rate of 1× 10−4; loss function: categorical crossentropy; metrics: F1-score; batch
size: dynamically determined based on the training generator configuration; epochs: up to
200 with early stopping based on validation loss to prevent overfitting.

The refinement network training involved the following: optimizer: Adam with a
learning rate of 1× 10−4; loss function: Dice loss function, optimized for segmentation
tasks; metrics: Thresholded Dice score; batch size: 2; epochs: up to 300 with early stopping
based on validation loss to prevent overfitting; training environment: utilization of GPU
and memory growth settings to optimize hardware usage.

In the WTA method, the same set of slides was used for both PWC and segmentation
models’ training. From the 97 slides, 77 slides were randomly chosen and divided into
training and validation sets in a 2:1 ratio, with 51 and 26 slides, respectively, while 20 slides
(including those with TMA holes) were used for testing.

WSIs in the dataset from the HULC cohort were divided into tiles (patches) and each
tile was fed into the neural network along with the non-tumor/tumor label based on the
provided annotation. To create the annotation labels for patches, non-tumor and tumor
tiles were assigned the values 0 and 1, respectively. We first used a threshold on color
gradients to separate the tissue from the background glass. Any tile that did not include
more than 25% tissue was disregarded, meaning that all the input tiles contained less than
75% background glass. Also, a minimum of 5% of the tumor area was required for a tile
to be classified as tumor, and for the non-tumor regions, only tiles with no tumor were
assigned. Tiles containing less than 5% tumor area were excluded.

Using the annotated WSI regions with PSA in the NLCB dataset, 40 areas were as-
signed to the tumor class (labeled as 1) and 50 areas to the non-tumor class (labeled as 0).
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The selected areas led to the generation of patches in subsequent steps. Specifically, out of
50 areas categorized as non-tumor, 40 clearly lacked tumor characteristics, and 10 showed
features slightly above the initial threshold, as shown in Supplementary Figure S2. This
threshold was established through model training before intentionally creating an imbal-
ance in the dataset. The imbalance was introduced after unsuccessful attempts to enhance
model generalizability through various methods, including weighted loss functions, focal
loss, threshold adjustment, and sampling strategies.

2.4.6. Post-Processing

After the segmentation results were received, two post-processing steps were per-
formed. First, small fragments were removed by converting images into grayscale and
then to binary format to identify and eliminate fragments smaller than a fixed threshold.
The threshold was set to the smallest annotated segmentation area in the ground truth. In
the second step, an edge smoothing algorithm was applied to enhance image quality. This
improvement was achieved through mathematical techniques known as morphological
operations, which are commonly used in digital image processing to modify the geomet-
rical structure of images. Specifically, we used a process called morphological opening,
which involves an erosion operation followed by a dilation. This sequence helps reduce
jagged edges and smooths the boundaries of objects within the image. The operations
were performed using a kernel size of 7× 7. Additionally, a median blur with a kernel
size of 11× 11 was applied to further smooth the edges. It is important to note that these
morphological operations refer to image processing techniques. They are purely compu-
tational methods used to process the digital images and should not be confused with the
morphological study of biological tissues.

2.5. Implementation

Implementation was conducted in Python 3.8.10. TensorFlow (v2.13.1) was used
for model architecture implementation and training [49]. These additional libraries
were used for the experiments: pyFAST, OpenCV, NumPy, Pillow, SciPy, scikit-learn,
and Matplotlib [50–57]. Trained models were converted to the ONNX format using the
tf2onnx library [58]. Converted models were then integrated into FastPathology for de-
ployment [59]. FastPathology is an open-source, user-friendly software developed for
deep learning-based digital pathology that offers tools for processing and visualizing
WSIs. The source code used to conduct the experiments is made openly available at.
https://github.com/AICAN-Research/DRU-Net (accessed on 29 April 2024).

2.6. Experiments

To compare the proposed model (DRU-Net) with other models, the following experi-
ments were carried out: modifications of the previously introduced H2G-Net model on both
datasets, DRU-Net with the backbone trained on the HULC cohort and NLCB, and applying
the few-shot and many-shot learning techniques along with clustering (Table 2) [23].

H2G-Net could be tested as is, and be fine-tuned with five different modifications [23].
First, H2G-Net was tested without any modification, fine-tuning, or additional training,
to see whether a model trained for breast cancer tumor delineation can also work for lung
cancer. Second, the PWC of the H2G-Net was fine-tuned on annotated WSIs from the
HULC cohort, and the original U-Net of H2G-Net was applied on top of the PWC results.
Third, the whole model (PWC and U-Net) was fine-tuned on the training data. Then,
the same three methods were tested, but with the PWC trained on NLCB instead of the
HULC cohort.

https://github.com/AICAN-Research/DRU-Net
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Table 2. Methods and experiments carried out with various models on the same 20 WSIs of the
test set from the HULC cohort. Abbreviations: PWC: patch-wise classifier; HULC: Haukeland
University Lung Cancer; NLCB: Norwegian Lung Cancer Biobank; FSC: few-shot (with a pre-trained
MobileNetV2 [60] model) + clustering; MSC: many-shot (with a pre-trained MobileNetV2 [60]
model) + clustering.

Models Modifications Training Dataset (s)

(I) H2G-Net — —
(II) H2G-Net Fine-tuned PWC HULC Cohort

(III) H2G-Net Fine-tuned U-Net HULC Cohort
(IV) H2G-Net Fine-tuned PWC and original U-Net HULC Cohort
(V) DRU-Net — HULC Cohort

(VI) H2G-Net Fine-tuned PWC NLCB
(VII) H2G-Net Fine-tuned PWC and U-Net PWC trained on NLCB, U-Net trained on HULC Cohort

(VIII) FSC — NLCB
(IX) MSC — NLCB
(X) DRU-Net — PWC trained on NLCB, U-Net trained on HULC Cohort

An ablation study was performed to evaluate the effect of the proposed multi-lens
distortion augmentation. A pre-trained DenseNet121 was tested on four open datasets:
MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 [44–46]. Experiments were repeated
with and without this augmentation on the mentioned open datasets by randomly selecting
10% of the training data and the results were compared using Wilcoxon test. Both control
and test groups included other augmentation techniques, such as color adjustments, flip-
ping, rotation, brightness, and contrast augmentations. The effect of this augmentation on
the training time was measured using the integrated TensorFlow functions by comparing
the time with and without the augmentation and the results were averaged on WSIs and
compared between the two [49].

We also investigated the effect of removing the top-most skip connection of the U-Net
refinement model and we calculated the average Hausdorff distances (HDs) for two sets of
final segmentation predictions in comparison to a ground truth set. This was conducted to
quantify the effect of removing that skip connection, which was implemented to reduce the
small fragments around the segmentation perimeter.

2.7. Model Evaluation
2.7.1. Quantitative Model Assessment

To quantitatively validate the patch-wise classification performance, precision, recall,
and F1-score were used [61]. The validation of the final segmentation on WSI-level was
performed using DSC and HD [62].

2.7.2. Qualitative Model Assessment

The qualitative assessment of the segmentation results was conducted by two patholo-
gists using the scoring system described in Table 3. Qualitative assessment was conducted
on the same 20 WSIs of the test set from the HULC cohort.

2.7.3. Saliency Maps

To survey the model’s decision-making process and the areas of patches that were most
relevant for predicting the tumor class, we employed a method known as gradient-based
saliency maps [63–66]. This approach operates by computing the gradient of the output
class (the class for which we want to understand model sensitivity) with respect to the
input image. These gradients indicate the sensitivity of the output to each pixel in the input
image. By highlighting the pixels with the highest gradients, we can visualize the areas
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that most strongly influenced the model’s classification decision. We used six different
patches selected from six different WSIs from the HULC cohort to analyze the saliency maps.
Patches were chosen to represent true positive, false positive, and false negative predictions.
Patches with true positive predictions were selected to include various histological features
and cell types in each patch to better assess the model’s decision process.

Table 3. Qualitative evaluation scoring system.

0 1 2 3 4 5

No tumor tissue
in image or
segmentation,
or image not
suitable for
analysis

Completely
wrong
segmentation of
tumor, tumor
tissue not
segmented

A large part of
the tumor is not
segmented

Most of the
tumor is
correctly
segmented,
but some false
positive or false
negative areas

Most of the
tumor is
correctly
segmented, only
sparse false
positive or false
negative areas

The whole or
almost the whole
tumor cor-
rectly segmented

2.7.4. Computation of FLOPs and Parameters

To quantitatively assess the computational complexity and model size, we calcu-
lated the number of floating-point operations (FLOPs) and the total number of trainable
parameters for all evaluated models, including DR-Fused and several standard architec-
tures. For each model, FLOPs were estimated by converting the model into a frozen
computational graph using TensorFlow’s convert_variables_to_constants_v2 function,
followed by profiling with tf.compat.v1.profiler. The FLOPs represent the total num-
ber of arithmetic operations required for a single forward pass of an input image sized
224× 224× 3. Parameter counts were obtained directly via the count_params method
provided by TensorFlow. All FLOPs and parameter values were reported in millions (M)
for clarity. MobileNetV2 was designated as the baseline model. Relative changes in FLOPs
and parameters (∆FLOPs and ∆Params) were computed for each model compared to
MobileNetV2, using the following formulas:

∆FLOPs (%) =
FLOPsmodel − FLOPsbaseline

FLOPsbaseline
× 100 (1)

∆Params (%) =
Paramsmodel − Paramsbaseline

Paramsbaseline
× 100 (2)

3. Results
The highest DSC on average on the 20 WSIs of the test set from HULC cohort was

achieved by DRU-Net, followed by the H2G-Net with fine-tuned PWC on the HULC cohort
(Figure 3). Similar differences in DSC were observed for the models without the refinement
networks (Figure 4).

Proposed multi-lens distortion augmentation applied to various datasets resulted
in increased F1-score overall, this change was statistically significant when applied to
our dataset from the NLCB (Table 4). Applying this augmentation technique increased
training time by an average of 8%. DSC and patch-wise accuracy increased when multi-lens
distortion augmentation was used with a magnitude strength in the range [−0.4, 0.4],
but higher magnitudes caused a decrease in performance (Figure 5).
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Figure 3. Boxplots of the Dice similarity coefficients (DSCs) of the experiments shown Table 2 on the
20 WSIs of the test set. (I) original H2G-Net, (II) H2G-Net with fine-tuned PWC on HULC cohort,
(III) H2G-Net with fine-tuned U-Net on HULC cohort, (IV) H2G-Net with fine-tuned PWC and U-Net
on HULC cohort, (V) DRU-Net trained on HULC Cohort, (VI) H2G-Net with fine-tuned PWC on
NLCB, (VII) H2G-Net with fine-tuned PWC on NLCB and fine-tuned U-Net on HULC Cohort, (VIII)
FSC, (IX) MSC, (X) DRU-Net with PWC trained on NLCB and U-Net trained on HULC Cohort.

Figure 4. Boxplot of the Dice similarity coefficients (DSCs) of the PWC models in experiments listed
in Table 2 without the refinement network, only the patch-wise classifier is used to produce these
results. (I) original H2G-Net, (II) H2G-Net with fine-tuned PWC on HULC cohort, (V) DR-Fused
trained on HULC Cohort, (VI) H2G-Net with fine-tuned PWC on NLCB, (X) DR-Fused trained on
NLCB and U-Net trained on HULC Cohort.

Table 4. The impact of the multi-lens distortion augmentation technique using different architectures
on different datasets, randomly selecting 10% of the training data. Pairwise tests were performed
using Wilcoxon signed-rank tests. The augmentation design with the highest F1-scores row-wise are
highlighted in bold.

F1-Score
Model Dataset W/O Aug W/ Aug p-Value

DenseNet121 MNIST 0.9893 0.9894 0.2311
DenseNet121 Fashion-MNIST 0.9043 0.9208 <0.001
DenseNet121 CIFAR-10 0.8086 0.8235 <0.001
DenseNet121 CIFAR-100 0.5199 0.5581 0.0502

H2G-Net NLCB 0.8299 0.8341 0.0701
DRU-Net NLCB 0.8868 0.9025 0.0241
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Figure 5. The impact of the multi-lens distortion augmentation technique using the DRU-Net model.
DSC: Dice similarity coefficient. The highlighted regions indicate the variance, and the mean values
are shown on the curve.

The original H2G-Net resulted in an average of 0.76 DSC (Figure 3) and 0.66 intersec-
tion over union (IOU) scores. On average, 25% of the non-tumor regions around the true
tumor outlines were falsely labeled as tumor. When the PWC component of the model was
used without refinement, the predictions resulted in 0.64 DSC and 0.61 IOU, showing that
the refinement improved the predictions significantly.

A fine-tuned PWC trained and validated on 77 WSIs from the HULC cohort, with the
direct implementation of the pre-trained U-Net from H2G-Net, was tested on 20 WSIs from
the HULC cohort and resulted in an average of 0.83 DSC (median 0.91) (Figure 3) and an
average of 0.74 IOU scores. Scores were reduced to an average of 0.77 DSC (median of 0.87)
and an average of 0.69 IOU when both the U-Net and the PWC were fine-tuned.

The proposed model (DRU-Net) tested on the same 20 WSIs resulted in an average
of 0.91 DSC (median 0.93) and 0.81 IOU. Also, removing the top skip connection in our
U-Net model (DRU-Net) resulted in an average reduction in HD by 4.8%. Figure 6 shows a
comparison of the results from various models. Table 5 summarizes various backbones’
performance in the patch-wise classifier component of the model.

Table 5. Comparison of different backbone architectures for patch-wise classification of lung cancer
tissue using the many-shot method. The best-performing architecture per metric is highlighted in
bold. Abbreviations: DR: fusion of DenseNet201 (D) and ResNet101V2 (R).

Architecture F1-Score Precision Recall
VGG19 [67] 0.87 0.86 0.87

ResNet101V2 [37] 0.89 0.89 0.89
MobileNetV2 [60] 0.86 0.86 0.86

EfficientNetV2 [68] 0.89 0.89 0.89
InceptionV3 [69] 0.90 0.89 0.91

DenseNet201 [36] 0.91 0.91 0.91
Proposed DR-Fused 0.94 0.94 0.93
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Figure 6. Sample results of three tested networks. First row: original whole slide images (WSIs),
second row: DRU-Net, third row: FSC (Few-shot learning + clustering), fourth row: H2G-Net with
fine-tuned patch-wise classifier and original U-Net. Green pixels indicate true positives, White pixels
indicate false positives and red pixels indicate false negatives. * Indicates that this is not the original
H2G-Net, but a modified version.

In addition to the classification performance, we evaluated the computational complex-
ity of each backbone in terms of FLOPs (floating point operations) and number of parame-
ters, as summarized in Table 6. While the proposed DR-Fused backbone exhibits higher
computational cost compared to lightweight models such as MobileNetV2 [60], it remains
significantly more efficient than very large networks like VGG19 [67] and ResNet101V2 [37].
Importantly, the DR-Fused model achieves substantial improvements in classification per-
formance (Table 5), with an F1-score of 0.94 compared to 0.86 for MobileNetV2 and 0.91 for
DenseNet201 [36].

Table 6. Computational complexity comparison between different backbone architectures. Metrics are
reported as total FLOPs and number of parameters. The percentage increase relative to MobileNetV2
is also reported.

Architecture FLOPs (M) Params (M) ∆FLOPs (%) ∆Params (%)
DR-Fused 11,105.27 13.18 1712.42 483.02
VGG19 [67] 39,276.93 139.58 6310.14 6074.55
ResNet101V2 [37] 14,430.04 42.63 2255.04 1785.86
MobileNetV2 [60] 612.73 2.26 0.00 0.00
EfficientNetV2 [68] 1455.32 5.92 137.51 161.97
InceptionV3 [69] 5693.36 21.81 829.18 864.67
DenseNet201 [36] 8631.68 18.33 1308.72 710.68

We compared the performance of several models on processing a set of 20 WSIs, with
the average dimensions being approximately 108,640 pixels in width and 129,835 pixels
in height. H2G-Net and its fine-tuned versions were the fastest models during inference
(62 s). Although the many-shot and few-shot models had faster training, they exhibited
slower runtimes, with MSC taking the longest at 167 s and DRU-Net at 152 s.

The results of the saliency map analysis in six patches are shown in Figure 7. False-
positive areas in the saliency maps were partly explained by areas with reactive pneumo-
cytes, macrophages, and reactive pneumocyte hyperplasia.
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The qualitative assessment resulted in an average score of 3.95 out of 5. In nine of the cases
assessed, there were sparse areas in the periphery of the tumor that the model misclassified.

Figure 7. Sample patches (top row) and their overlaid saliency maps (bottom row); only the patches
were given to the PWC model. Note that the saliency map does not indicate malignancy; instead, it
shows how different regions of the image influence the classification decision. The colors on the map
range from blue, indicating the least influence, to red, which indicates the most influence. (a) shows a
false negative where it misses the tumor, (b,c) show false positive tumor detection. (d–f) show true
positive tumor detection. (a) shows three small sheets of atypical epithelial tumor cells, of which only
one is highlighted in red. The remaining tissue comprises widened alveolar septae with inflammatory
cells, pigmented macrophages, reactive pneumocytes and red blood cells. (b) includes reactive
pneumocytes and macrophages. (c) shows reactive pneumocyte hyperplasia. (d) presents a solid
tumor with enlarged nuclei, where the majority of the model’s focus lies; the peripheral parts of the
patch contain alveolar tissue. (e) highlights a solid tumor (mostly in yellow) alongside inflammatory
cells (primarily in blue). (f) shows a solid tumor with areas of necrosis (mainly highlighted in
yellow and red) as well as fibrous tissues with inflammatory cells, predominantly marked in blue
and some green.

4. Discussion
In this paper, we introduce a novel deep learning-based model to segment the outline

of NSCLCs. We have incorporated a patch-wise classifier, synergistically integrating trun-
cated DenseNet201 [36] and ResNet101V2 [37] architectures, enhanced by a segmentation
refinement U-Net model. The proposed composite PWC model demonstrated superior
performance over other tested backbones. Due to our relatively small dataset and consider-
ing the desired memory and speed efficiency, CNNs were preferred in this study. Using
transformer-based models would have required more extensive datasets and computational
resources [70,71].

This study also resulted in a novel dataset comprising annotated NSCLCs and marked
regions of interest in WSIs from NSCLCs, covering various tissue types. Our results indicate
that the PSA approach yielded more effective training outcomes for the patch-wise classifier
than the WTA techniques, both with and without class balancing via tissue clustering. Using
the WTA approach, annotations were extremely time-consuming for expert pathologists
(including review and correction). However, the PSA method significantly reduced this
time by an order of magnitude.

Our study demonstrated that the implementation of the multi-lens distortion aug-
mentation technique enhanced classification outcomes across diverse datasets with limited
volume of training data. However, the effect of this augmentation could vary depending
on the data themselves. We investigated the effect of the augmentation’s strength range
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on the patch-wise classification accuracy and refinement network’s DSC on WSI-level,
concluding that the degree of augmentation is pivotal for its impact on the training process.
Excessively strong distortion of images could obstruct the model’s ability to learn relevant
patterns, as shown in the impact of the multi-lens distortion augmentation with various
strength ranges (Figure 5). It is important to note that the effective range is dependent on
the dataset, and the same values may not necessarily yield similar improvements across
different datasets.

The non-linear warping introduced by the multi-lens distortion mimics the subtle spatial
deformations, slight micro-stretches of the tissue, and local distortions. By applying controlled,
spatially varying warps at different scales, our augmentation reproduces these effects. This
generates realistic variations in cell and tissue morphology. This not only strengthens model
robustness to scanner-induced artifacts, but also promotes generalization across varying
magnification levels, shapes, stretches, and similar sample-preparation conditions.

Instead of stain normalization techniques, we used an augmentation-based approach
to produce more robustness, maintain important staining details, reduce computational
complexity, and safeguard essential characteristics from unintended modification. The
dataset already had consistent staining, which eliminated the need for traditional stain
normalization [72,73]. To mimic the wide range of HE staining protocols seen across
laboratories, we applied the mentioned randomized adjustments in brightness, contrast,
and hue during training. By exposing the model to these controlled, biologically plausible
variations in color balance and intensity, we effectively simulate batch-to-batch and site-to-
site staining differences.

The RGSB-UNet model features a unique hybrid design that combines residual ghost
blocks with switchable normalization and a bottleneck transformer [11]. This design focuses
on extracting refined features through its complex structure. However, our study found
that simpler and more synergistic architectures can also effectively extract reliable features.

The MAMC-Net model improves tumor boundary detection by using a conditional
random field layer [21], whereas the DRU-Net model enhances segmentation by fine-
tuning a U-Net on a down-sampled image. While both methods achieved good results, our
approach—using a U-Net on down-sampled images—proved faster and highly efficient.
Notably, our model using the PSA approach achieved comparable results despite using a
much smaller dataset.

Transformer-based models like Swin-UNet and InternImage have demonstrated im-
pressive performance in medical image segmentation tasks due to their ability to capture
global contextual information through self-attention mechanisms [22,74]. However, trans-
former architectures typically have higher model complexity due to extensive self-attention
operations and large parameter counts, which can result in increased computational de-
mands compared to traditional CNNs [75]. In contrast, our proposed CNN-based DRU-Net
maintains competitive segmentation performance with relatively lower computational
requirements, potentially making it more suitable for deployment in resource-constrained
clinical environments.

Similar to H2G-Net, our proposed model, DRU-Net, also utilizes a cascaded design
with two stages of PWC and refinement, and has achieved comparable results [23]. Al-
though H2G-Net uses a lightweight PWC and a relatively heavier U-Net for refinement, our
architecture—DRU-Net—demonstrated better performance when using a heavier feature
extractor (PWC) combined with a lightweight U-Net. This architectural choice is particu-
larly beneficial in scenarios with limited training data. In such cases, placing the model’s
capacity earlier in the pipeline allows it to capture more discriminative and generalizable
features during the initial extraction stage, while a simpler refinement network, like a
lightweight U-Net, helps to avoid overfitting during the later stages. This balance ensures
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that the network focuses on learning robust features without excessive parameter overhead
in the refinement phase. Pedersen et al. introduced a balancing technique to ensure equi-
table representation of available categories [23]. This helps minimize bias toward specific
tissue types or tumor characteristics.

In this study, we also encountered some challenges due to the significant class imbal-
ance between the patches derived from the WTA approach. Addressing the resultant low
precision, a comprehensive strategy was implemented to improve model accuracy. Key
interventions included resampling techniques, both under- and over-sampling, as well
as the incorporation of focal loss, which specifically helps to address class imbalance by
modulating the loss function to focus on harder-to-classify examples [76]. Furthermore, we
explored the clustering of similar tissue types before sampling, the use of a weighted loss
function, and adjustments to the decision threshold.

In the training phase of the many-shot model using PSA-derived samples, we de-
liberately introduced a controlled imbalance to optimize threshold settings and enhance
performance. Experiments suggested that the deliberately-induced imbalance may offer
improved performance compared to methods such as resampling, under-/over-sampling,
focal loss, clustered tissue sampling, weighted loss functions, and threshold tuning [76].
However, this approach poses a risk of bias, requiring careful calibration and ongoing
monitoring to prevent skewed results. The DRU-Net model’s performance was validated
externally, trained on the NLCB dataset and tested on 20 slides from the HULC cohort.

The decrease in performance after fine-tuning the U-Net layers of the H2G-Net may
be due to the relatively small number of annotated WSIs available in our study. Conversely,
the DRU-Net network’s superior performance under similar conditions suggests the efficacy
of the DR-Fused network, accompanied by a relatively lightweight U-Net architecture in
data-scarce scenarios.

The relatively low performance of the original H2G-Net on NSCLCs with no fine-
tuning can be explained by different tissue morphology, growth pattern, and stromal
invasions, which can mislead the model during inference [42,77–83].

To analyze the effect of the proposed U-Net refinement network, we compared
Figures 3 and 4. Our results indicate that refining the PWC heatmap with the suggested re-
finement network improved the performance of the evaluated models. However, the main
strengths and weaknesses of the models compared to each other directly stem from the
PWC models and the training methods used. Additionally, combining the two processes
seems to improve and reduce the variance in the segmentation DSC values, indicating
that the refinement models have learned to understand overall patterns and connections,
leading to a better segmentation.

The difference observed in the average DSCs between the PWC models indicates
that the models trained using PSA outperformed the WTA approach under limited data
conditions. This was likely due to the inadequate separability of the feature distributions
between tumor and non-tumor. In the WTA approach, the method involved annotating
entire tumor regions, which often included patches where the feature distributions of tumor
and non-tumor tissues overlapped significantly. This overlap reduced the separability
and weakened the discriminatory power of the classification models trained using this
approach. Consequently, the distinction between tumor and non-tumor features in these
patches became less pronounced, leading to potential misclassifications.

The PSA method adopted a more selective approach by targeting patches for anno-
tation based on their discriminative morphology. By focusing on patches where tumor
and non-tumor features were clearly distinguishable, PSA enhanced the model’s ability to
accurately classify these features. This selective annotation process effectively increased the
inter-class variance while reducing the intra-class variance, thus significantly improving
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the overall performance of the classification models in distinguishing between tumor and
non-tumor tissues under conditions of limited data. In the WTA approach, the mentioned
inseparable feature distribution affected the loss function negatively, resulting in lower
accuracy. This was most likely rooted in the fact that the tumor regions also include other
cell types than the invasive epithelial cells. By using histopathological knowledge for
selecting areas with the most relevant features in PSA, the variation in the features between
the two classes could be increased.

It should, nonetheless, be noted that in our case, the PSA and WTA methods were
applied to different datasets. Therefore, the observed performance differences do not con-
stitute a statistical comparison, and no definitive claims can be made about the superiority
of one approach over the other.

Our study indicates that employing few-shot learning in conjunction with a clustering
approach can achieve accuracy levels comparable to methods reliant on extensive datasets,
potentially mitigating the need for large-scale data collection. The few-shot learning
approach can be beneficial when there is a high degree of similarity within each class of
tissue types and a clear distinction between the classes in the feature space [84].

One of the novel techniques presented here was utilizing an evolutionary optimization
technique to determine the optimal number of clusters (classes) to minimize intra-cluster
variance and maximize inter-cluster variance prior to few-shot training. This method
optimally configures clusters to reflect the most coherent and meaningful class structures,
which is crucial when the available training data are scarce. By focusing on minimizing intra-
cluster variance and minimizing inter-cluster similarity, the approach enhances the model’s
ability to generalize from limited examples, a critical aspect in few-shot scenarios where
the risk of overfitting is high. Evolutionary algorithms also offer adaptability and flexibility.
This enables the model to effectively handle varying data types and distributions. This
pre-training optimization led to more efficient training and improved model performance
by grouping patches into different classes.

The qualitative assessment of our results suggests that the DRU-Net model shows
limitations in accurately delineating the tumor periphery. This challenge was particularly
evident in regions with fibrosis, reactive tissue, or inflammation, where the model tends to
produce false-positive and false-negative segmentations. This limitation is most likely due
to the limited size of the training data; with a larger dataset containing more examples of
these complex regions correctly annotated, the model’s performance in these areas might
be significantly improved.

A key limitation of our study is the modest size of our dataset of 97 WSIs from the
HULC cohort. Generating pixel-perfect tumor outlines on WSIs is an extremely labor-
intensive process and time-consuming for an expert pathologist (including review and
correction), even when using semi-automated contouring tools. Under these resource
constraints, expanding beyond 97 expertly whole tumor annotated slides was simply not
feasible within the project timeline. We chose to create this new dataset rather than relying
on existing publicly available annotated datasets because most of them focus exclusively
on neoplastic cells at the pixel level, often excluding the surrounding stroma and other
intermixed cell types present within the tumor region. Additionally, comparable datasets
that adopt a whole-tumor region approach typically lack the resolution and accuracy
required to precisely capture tumor borders and small, scattered tumor cell clusters.

Despite the limited dataset size, we observed a consistent alignment between training
and validation loss curves along with a stable performance on the external test set. This
suggests that the model’s performance is not merely a result of overfitting but a genuine
generalization to the tested unseen data.
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In the future, we suggest reducing the model size using advanced attention-focusing
mechanisms and a multi-scale patch-wise classifier to better incorporate information at
different scales. Employing anomaly detection algorithms might help identify reactive
tissue outliers that contribute to false-positive classifications.

Although HE is the standard coloring method for the assessment of histopathology
slides, the stain can vary from laboratory to laboratory. Hence, testing on non-Norwegian
cohorts and from laboratories with different staining techniques can be beneficial. We
searched extensively for open-access lung tumor-segmentation datasets that include tumor
outlines demarcated according to the same protocol we employ, but did not identify any that
match our annotation style or resolution. As a result, quantitative evaluation of segmenta-
tion generalizability beyond the NLCB and HULC cohorts remains challenging. For future
work, we suggest addressing this gap with a proper dataset with multi-institutional WSI
cohorts capturing a range of scanners, staining protocols, and patient demographics. Af-
ter establishing the generalizability, the model should be set up for clinical validation.

Additionally, Mask R-CNN architectures are highly effective in distinguishing com-
plex patterns that can be used for better tumor border delineation. Implementing Bayesian
neural networks can potentially improve the prediction of tumor boundaries while quanti-
fying the uncertainty of predictions. To more effectively incorporate global WSI context,
methods such as Markov or conditional random fields could be integrated along with PWC
or transformer architectures. Using this approach will ensure that segmented areas are
not only based on local pixel values. To further improve the differentiation between the
two classes, we suggest Neuro-Fuzzy Systems, maintaining the learning capabilities of
neural networks while applying the reasoning capabilities of fuzzy logic. To overcome the
challenge of limited data, we suggest using unsupervised domain adaptation algorithms to
leverage annotated data from other histopathology source domains.

5. Conclusions
In conclusion, we have introduced DRU-Net for non-small cell lung cancer tumor de-

lineation in WSIs. Our new model, which synergistically integrates truncated DenseNet201
and ResNet101V2 with a U-Net-based refinement stage, demonstrated high performance
in NSCLCs over various tested methods. Our patch-wise classifier achieves superior
performance through an advanced multi-lens distortion augmentation technique and an
optimized PSA strategy.
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Abstract: Left ventricle (LV) segmentation is crucial for cardiac diagnosis but remains chal-
lenging in echocardiography. We present ShapeNet, a fully automatic method combining
a convolutional neural network (CNN) ensemble with an improved active shape model
(ASM). ShapeNet predicts optimal pose (rotation, translation, and scale) and shape parame-
ters, which are refined using the improved ASM. The ASM optimizes an objective function
constructed from gray-level profiles concatenated into a single contour appearance vector.
The model was trained on 4800 augmented CAMUS images and tested on both CAMUS
and EchoNet databases. It achieved a Dice coefficient of 0.87 and a Hausdorff Distance
(HD) of 4.08 pixels on CAMUS, and a Dice coefficient of 0.81 with an HD of 10.21 pixels on
EchoNet, demonstrating robust performance across datasets. These results highlight the
improved accuracy in HD compared to previous semantic and shape-based segmentation
methods by generating statistically valid LV contours from ultrasound images.

Keywords: active shape models; convolutional neural networks; echocardiography; left
ventricle segmentation; shape constraints; ultrasound segmentation

1. Introduction
According to the Centers for Disease Control and Prevention (CDC) in the United

States [1], one in four individuals with heart failure die each year, with most cases linked to
dysfunction in the left ventricle (LV). The LV plays a crucial role in distributing oxygenated
blood throughout the body via the aortic valve. Any malfunction in this process can lead
to severe complications within the circulatory system and other organs. As reported by
Berman et al. [1], heart failure often results from compromised LV function, typically
due to structural changes in the ventricular wall or the inability of the LV to fill or eject
blood effectively. Patients with cardiac disease frequently experience symptoms such as
dyspnea, fatigue, and fluid retention, which can further progress to ischemia, muscle
disease, pulmonary congestion, and elevated heart rate. To assess ventricular function,
a range of imaging and signal processing methods are currently available, including
physical examination, X-rays, electrocardiogram (ECG), magnetic resonance imaging (MRI),
and echocardiography (ultrasound). Among these, echocardiography provides valuable
insights into both systolic and diastolic LV function, ventricular morphology, and conditions
such as aneurysms, along with mitral, tricuspid, aortic, and pulmonary valve function [2].
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Due to its non-invasive nature and excellent cost–benefit ratio, echocardiography is widely
used in clinical practice for evaluating ventricular function [2].

However, accurately defining the LV contour and shape remains a critical challenge
for diagnosing heart failure. Computational methods have emerged to support cardiolo-
gists in producing more precise and efficient diagnoses. Currently, deep-learning-based
approaches, particularly those employing semantic segmentation like convolutional neu-
ral networks (CNNs), have shown promising results. Nevertheless, these methods can
produce anatomically inconsistent or noisy LV contours, including implausible segmen-
tations with irregular or disconnected regions that do not correspond to the expected LV
morphology. Such artifacts, commonly referred to as blobs in medical image analysis, result
from pixel-level misclassification errors inherent in semantic segmentation approaches and
may significantly compromise clinical reliability. In this work, we address these limitations
by presenting a new method for LV segmentation, and the novelty of this work lies in
three key contributions. First, we introduce ShapeNet, a specialized ensemble of CNNs
that directly predicts both the pose parameters (rotation, translation, and scale) and shape
deformation parameters of a statistical shape model, eliminating the artifacts produced by
pixel misclassification in semantic segmentation methods (blobs). Second, we develop an
improved ASM that optimizes a global objective function based on concatenated gray-level
profiles, demonstrating superior capture range and robustness compared to traditional
ASM approaches. Third, our fully automatic pipeline uniquely combines these components
to generate anatomically plausible contours, without manual initialization—a significant
advantage over semi-automatic methods like BEASM [3]. This integrated approach main-
tains the flexibility of data-driven deep learning, while utilizing the anatomical validity
offered by shape models, as evidenced by our consistent performance across both CAMUS
and independent EchoNet datasets.

2. Related Work
This section provides an overview of the key methods in LV segmentation, highlighting

their challenges and how our proposed method addresses these limitations.

2.1. Deep Learning Approaches

Recent developments and applications in CNNs [4–6] have led to significant progress
in the automatic segmentation of organs across various medical imaging modalities. CNNs
have become a commonly used method for segmenting the region of interest (ROI), fol-
lowed by annotation of the boundary. For example, Chen et al. [7] reviewed prominent
deep-learning techniques, highlighting that U-Net and its variants are widely used in
medical image segmentation tasks, including ensembles of different architectures of CNNs
and transformer networks for organ region detection or using mask region CNNs which
produce a bounding box and a binary mask of the organ. In [8–10], the U-Net architecture
was successfully applied to the classification of pixels corresponding to the LV. Ansari
et al. [11] proposed a novel CNN based on a U-Net backbone with PSP in the skip connec-
tions. A thorough evaluation was performed to assess the benefits of preprocessing with
a contrast limited adaptive histogram equalization (CLAHE), showing improved results
for real-time segmentation of ultrasound videos of the liver. Kang et al. [12] reported a
new CNN architecture for the segmentation of the LV in transesophageal ultrasound taken
during cardiopulmonary resuscitation procedures (CPR). The CNN includes an attention
mechanism and a residual feature aggregation module able to accurately segment the LV in
the presence of large shadows and atypical deformations. Zhao et al. [13] reported a semi-
supervised echocardiography semantic segmentation method, which is able to segment
the left ventricle, epicardium, and left atrium on ultrasound images. The method is based
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on a boundary attention transformer net and a multi-task semi-supervised model with
consistency constraints. This approach enables effective model training with a partially
annotated training set. In addition, Shi et al. [14] proposed a hybrid transformer–CNN
architecture to enhance segmentation robustness, combining ResNet-50 for spatial feature
extraction with a transformer-based encoder–decoder for global context modeling. Their
framework integrates two key modules: a Convolutional Block Attention Module (CBAM)
to adaptively fuse CNN and transformer features, enhancing focus on anatomically rele-
vant regions, and a Bridge Attention (BA) mechanism to filter non-relevant features, while
refining segmentation maps through multi-level feature aggregation. While CNNs have
revolutionized segmentation tasks, these methods face several challenges, especially in
applications like echocardiography, where the LV boundaries can be imprecise or noisy.
Despite their ability to learn spatial features from large datasets, CNNs tend to produce
anatomically inconsistent contours when dealing with variations in heart shape, speckle
noise, and imaging artifacts.

2.2. Traditional Machine Learning Methods

Previous machine learning approaches for LV segmentation, including geodesic
models [15], level sets [16], and shape-based deformable models [17], offer effective ways
to model and deform contours based on anatomical points. Moreover, Statistical Shape
Models (SSMs) have been particularly effective in left ventricle segmentation when closely
initialized [18]. SSMs provide an effective means to incorporate expert shape knowledge
into organ segmentation techniques. These methods rely on predefined shape models and
iterative algorithms to find the optimal boundary. However, they often require accurate
initialization and are sensitive to the quality of the input data, which makes them less
robust when dealing with noisy or low-quality images. Registration-based techniques [19],
supervised learning [20], and active appearance models [21] have also been explored for LV
segmentation, in combination with the availability of large annotated datasets [22]. These
methods integrate image registration with statistical models to align anatomical shapes.
While they provide more accurate segmentation in some cases, they are often computa-
tionally expensive and require manual intervention for initialization, making them less
practical for routine clinical use. Despite their strengths, these approaches have limitations
in terms of robustness, scalability, and flexibility, particularly in dealing with complex,
real-world datasets like echocardiography images.

2.3. Hybrid Methods

Hybrid methods that combine SSMs, ASMs, and CNNs have gained attention as a
way to leverage the strengths of both paradigms. For example, Li et al. [23] introduced a
hybrid method where a CNN first detects three key landmarks on the LV: the apex and the
starting and end points of the endocardium. These landmarks are used to initialize a deep-
snake model [24], which then adjusts the contour using circular convolution. This method
demonstrated strong performance on the HMC-QU echocardiography dataset, but its
reliance on landmark-based initialization limits its flexibility in more challenging scenarios.
Hybrid methods combining region-based CNNs and ASMs have also been explored. Wei-
Yen et al. [25] proposed a method where a CNN detects a bounding box around the
LV, which is then used to initialize the ASM for final contour refinement. While this
approach is promising, it still requires accurate initialization and may struggle with complex
deformations. Our approach builds on these hybrid techniques by combining a CNN
ensemble (ShapeNet) with a Point Distribution Model (PDM), ensuring fully automatic
initialization and the generation of anatomically plausible contours. This integration
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enhances robustness by eliminating the need for manual intervention, unlike previous
hybrid methods.

2.4. Methods Incorporating Anatomical Constraints

In recent years, methods incorporating anatomical constraints have shown improved
performance for LV segmentation. Oktay et al. [26] developed the Anatomically Con-
strained Neural Network (ACNN), which combines a CNN with an autoencoder trained
on ground truth ventricle masks. Anatomical constraints are included during training
of the objective function, which is made of a linear combination of cross entropy, shape
regularization, and weight decay terms. Shape regularization is implemented with a dis-
tance function between the encoded ground truth mask and the encoded prediction of the
segmentation CNN. The ACNN architecture was evaluated on both MRI and ultrasound
images, demonstrating improved performance over previous approaches.

Gaggion et al. [27] proposed a hybrid CNN architecture that uses graph convolutional
networks to impose anatomical constraints on the latent space. This method integrates
image-based feature extraction with landmark-based shape modeling, effectively ensuring
anatomically valid segmentations. The model is trained with pairs of input images and
the corresponding landmark annotations of the organs of interest, the same number of
landmarks is used in all the training examples. This approach was validated on chest X-ray
images and demonstrated favorable results for anatomical structure segmentation.

Ribeiro et al. [28] presented a fully-automatic hybrid method for LV segmentation
in cardiac MRI images, combining deep learning and deformable models. Initially, a
ROI containing the LV is extracted using heart movement analysis. A deep learning
network (DLN) is then employed to generate an initial segmentation of the LV cavity and
myocardium. DLN-based segmentation is subsequently used to estimate exam-specific
statistical information about the LV, which helps initialize and constrain a level-set-based
deformable model. This deformable model incorporates anatomical constraints to refine
the segmentation and generate the final result. In the final step, failed segmentations
are detected and corrected using information from adjacent frames. We also reported
a modified U-Net in a previous work [29], with a regression layer replacing the final
classification layer, enabling the model to predict LV pose and shape parameters directly.

While deep learning methods, traditional shape-based techniques, and hybrid ap-
proaches have made significant strides in LV segmentation, each faces limitations related
to initialization, anatomical accuracy, and robustness across diverse datasets. Our pro-
posed method addresses these challenges by combining a CNN ensemble with a PDM,
providing a fully automated, anatomically statistically consistent, and robust solution for
LV segmentation.

3. Materials and Methods
The objective of ShapeNet is the accurate characterization the left ventricle contour

through the prediction of optimal pose (rotation, translation, and scale) and shape (de-
formation vector) parameters for a trained point distribution model (PDM) of the LV in
echocardiography. This is achieved by training a CNN with the aforementioned parameters
of the PDM that have been accurately adjusted to the left ventricle on each image of the
training set. This approach prevents the formation of blobs produced by pixel classification
errors in semantic classification, preventing correct characterization of the LV, as illustrated
in Figure 1. In contrast, our approach consistently produces statistically valid contours of
the left ventricle, which are accurately adjusted by means of the improved ASM proposed
in this paper.
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Figure 1. Example of blobs produced by misclassification in semantic segmentation of the left ventricle.

3.1. Point Distribution Model of the Left Ventricle (LV-PDM)

Point distribution models (PDMs) provide a compact representation of a class of
shapes; in this case, the shape of the left ventricle. Construction of the PDM was performed
as described in [30] by annotating landmark points around the contour of each left ventricle
previously marked by an expert. For this LV-PDM, 64 landmarks were selected, which
accurately represent the contour of the left ventricle, as shown in Figure 2, using the training
data described in Section 4.1. Principal component analysis (PCA) of the normalized
landmark training set resulted in five principal modes of variation in the shape of the LV,
contained in a principal eigenvector matrix (ϕ), which allows creating new instances of the
LV shape ŝ using Equation (1). Figure 3 shows some examples of shapes, corresponding to
different values of the five weights in vector b.

ŝ = s̄ + ϕb (1)

where

ŝ = LV shape.
s̄ = the mean shape of the training set.
ϕ = principal eigenvector matrix of the training set.
b = vector of deformation parameters of the training set.

Figure 2. Example of landmarks sampled in LV ultrasound images.
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Figure 3. Example of different shapes of the LV using the principal variation modes calculated from
the PDM.

The final contour of a ventricle (R_Shape) on an echocardiography is defined using
Equation (2).

R_Shape = σ

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
ŝ +

[
Tx, Ty

]
(2)

where

R_Shape = reconstructed LV shape on echocardiography.
ŝ = shape obtained after applying Equation (1).
σ = the scale of the LV.
θ = the rotation of the LV.
Tx = translation in X axis of the LV.
Ty = translation in Y axis of the LV.

ShapeNet was trained to predict all the pose (σ, θ, Tx, Ty) and shape parameters (b),
as described below.

3.2. ShapeNet Architecture and Training

The architecture is inspired by encoder–decoder architectures, taking as a basis the
encoder part and its power for image feature extraction and dimensionality reduction,
hence the origin of the first block. Then, a second block formed by fully connected layers
and a regression layer are used to relate the features extracted in the first block with the
pose and shape values extracted from the PDM. This architecture is designed to be used
and implemented on off-the-shelf computing equipment. The two blocks mentioned above
and the full architecture are detailed below.

1. Input layer: This is an image input layer of size 256 × 256 × 1 of the form: (width,
height, channels). This is an echocardiographic image of the left ventricle.

2. Convolutional block: This is formed of 2 parts, as shown in Figure 4, the convolution
filters are filters of size 3 × 3 with a stride of 1, and the number of filters increases,
as shown in Figure 5, starting with 32 filters and doubling the number at each con-
volution stage. The purpose of these convolutional layers is to extract features from
the LV image, which will later be used to link them with the pose and shape features
extracted from the previously trained LV-PDM. In addition, there are maxpooling
layers in between each convolution stage with a stride of 2; with maxpooling, the
dimensionality of the problem is reduced and the most important features of the im-
age are preserved. Furthermore, this allows the training process to be lighter, since it
reduces the number of parameters that have to be learned by ShapeNet. An overview
of this block is shown in Figure 5.
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3. Fully connected block: This consists of a flatten layer followed by a set of fully
connected and one dropout layer, to avoid data over-fitting during training. This
block links the features extracted in the convolutional block with the pose and shape
parameters of the left ventricle and then adjusts the weights to make predictions in
the regression layer. Finally, at the end of the fully connected block, a regression layer
(Figure 6 pink block) calculates one, pose or shape, parameter: rotation, translation,
scale, or bi for a given input image.

Figure 4. Structure of the convolutional block.

Figure 5. Overview of the convolutional section of ShapeNet.

Figure 6. Overview of ShapeNet architecture.

In order to train ShapeNet, the pose parameters rotation (θ), translation (Tx, Ty), and
scale (σ), as well as the shape parameters b, were extracted from each LV contour example
in the training set as follows:

• Translation (Tx, Ty): The translation was calculated as the mean of the LV contour
coordinates on the X axis and Y axis for each example in the training set.

• Rotation (θ): This value was calculated using the binary mask of each example,
enclosing it within an ellipse and then calculating the angle between the X axis and
the major axis of the ellipse using the second moments of the mask.
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• Scale (σ): This was calculated as shown in [30] by normalizing each LV shape to
a common scale and minimizing the root-mean-square distance between the corre-
sponding landmarks of the LV i-th training shape and the mean shape (s̄) obtained in
Section 3.1.

• Shape parameters (b): The deformation parameters were extracted from the expert
annotation by solving for the value of b in Equation (1) for each contour in the training
set, as shown in Equation (3).

b = (ŝi − s̄) ∗ ϕ′ (3)

where

ŝi = The expert annotation of the i-th example in the training set.
s̄ = The mean LV shape of the training set.
ϕ′ = The transposed principal eigenvector matrix of the training set.

After extracting the aforementioned parameters of the LV shape, a training vector (V)
was constructed with the shape and pose parameters of the left ventricle in the correspond-
ing training image, as shown in Equation (4).

V = [Ii, βi] (4)

where

Ii = the i-th image of the training set.
βi = Is the corresponding shape or pose parameter to be learned by the network.

Our approach is based on an ensemble of networks, where each network is trained
to optimize one specific parameter of pose and shape of the left ventricle; therefore, we
developed dedicated networks for rotation (θ), translation along both the X (Tx) and Y (Ty)
axes, scale (σ), and each of the five deformation parameters contained in vector b in
Equation (1). Consequently, our method involves the training of nine networks, one for
each pose (σ, θ, Tx, Ty) and shape parameter (b).

During the training of each network, a vector V is used as input, depending on which
parameter β needs be trained. Consequently, the network adjusts the weights according to
a loss function defined as the root mean squared error (RMSE) between the value predicted
by the network (βp) and the parameter βi contained in the input vector V (see Equation (5)).

RMSE =

√
∑n

i=1 |βp − βi|2
n

(5)

where:

βp = Value predicted by the network.
βi = Input value contained in the V vector.
n = The number of images in the training set.

Additionally, other important hyperparameters to consider during our network
training are the batch size and learning rate. For this paper, a batch size of 64 images was
used, which we consider to be a moderate size and manageable by most modern GPUs.
Moreover, as mentioned by [31], increasing the batch size does not have a significant
impact on the accuracy of the gradient calculation when using the ADAM optimizer
(which was employed to train these networks). Regarding the learning rate, a rate of
1 × 10−3 was used, as we consider this to be not too high to destabilize training, and not
too low to slow down convergence. This leads us to the convergence criterion, which
was early stopping. According to our experiments, most networks concluded with an
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average of 50 epochs; beyond this number of epochs, the RMSE value for validation did
not change. The validation patience parameter was set to 40 iterations.

After the ShapeNet has been trained as described above, the next step involves an
improved ASM, as detailed in the next section.

3.3. Improved ASM

Following the automatic initialization of the LV-PDM using ShapeNet, an active
shape model was used to improve the segmentation accuracy. This ASM is based on the
optimization of an objective function constructed with a set of gray-level profiles sampled
around the contour of the left ventricle in an echocardiogram. Gaussian filtering (σ = 0.8,
3 × 3 kernel) was applied to reduce speckle noise, while preserving edge information of
the ultrasound images, before adjusting the ASM, as described in [32].

ASM Objective Function

Our objective function is based on a set of perpendicular gray level profiles of length l,
sampled from each landmark point in an image of the training set, as proposed in [30]. All
gray profiles are concatenated into a single vector, referred to as the C vector, with a length
of 64 × l for our 64-point LV-PDM, as illustrated in Figure 7.

Figure 7. Construction of the C vector for one training instance.

The mean vector of the training set (C) is given by Equation (6), while the objective
function ( fC) represents the RMSE distance between C and a newly sampled vector (Cnew)

from a new echocardiogram, as shown in Equation (7). During image segmentation, f (c)
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is optimized by iteratively alternating the local search of the ASM [30] with optimization
using the simplex algorithm, as previously reported in [32].

C =
∑n

i=1 Ci

n
(6)

where

n = number of examples in the training set.
Ci = the i-th C vector sampled on each training image.

fC =

√
∑lc

i=1(Cinew − Ci)2

lc
(7)

where

Cnew = a sampled C vector on a new echocardiogram.
C = the mean C vector of the training set.
lc = The size of the sampled Cnew vector (64 × l).

With the improved ASM and ShapeNet training explained, the final step is to perform
segmentation of a new image, as described in the following section.

3.4. Left Ventricle Contour Reconstruction and Segmentation

ShapeNet predicts the optimal pose and shape parameters, including rotation (θ),
translation (Tx, Ty), and scale (σ), specific to the new image. Using these parameters, the left
ventricle contour is reconstructed based on Equations (1) and (2). Once the shape predicted
has been reconstructed, this contour acts as an automatic initialization for the improved
ASM and will undergo fine-tuning to obtain the final LV contour. Figure 8 depicts the
segmentation workflow described.

Figure 8. Complete inference pipeline of the ShapeNet+ASM approach.

4. Results
In this section, we present the experiments and results of the ShapeNet and the im-

proved ASM method, which were conducted on a server running on the Ubuntu operating
system, with 32 GB of RAM. Additionally, two GPUs were used in parallel: an NVIDIA
Tesla K40c and a Tesla T4. Finally, all experiments were implemented in MATLAB R2022b.
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4.1. Dataset

The dataset was divided into two parts: training and test. For the training set, we
used the CAMUS database [3], comprising a total of 800 images, with 400 corresponding
to systole and 400 to diastole end of cycle. Data augmentation was applied to this set
of 800 images, including rotation, translation, scaling transformations, and the addition
of acoustic shadows, following the work of [33], resulting in a total of 4800 training im-
ages. On the other hand, for the test set, 49 systole images and 49 diastole images were
reserved from the CAMUS database. Additionally, images extracted by Guzman et al. [34]
from the EchoNet Dynamic database [35] were also used for testing; of these images, 207
corresponded to end-systole and 210 to end-diastole. These images were preprocessed
following the methodology in [34], which included rigorous frame selection to isolate
end-systolic and end-diastolic phases using the dataset’s provided timestamps and quality
control metrics, automated region-of-interest cropping centered on the left ventricle using
landmark detection heuristics, and intensity normalization through min-max scaling of
pixel values to [0, 1]. These preprocessed images were then resized to 256 × 256 pixels to
match our network ensemble input dimensions.

Figure 9 illustrates an example of the images used for training the ShapeNet. The
improved ASM was also trained with the set of 800 images extracted from the CAMUS
database before the data augmentation process.

Figure 9. ShapeNet training images example.

Data Augmentation Parameters

To increase the diversity of the training data and improve model generalization, the
following augmentation techniques were applied to the original CAMUS dataset, resulting
in 4800 training samples:

Geometric Transformations:

• Rotation: Limited to ±15°, to simulate minor probe orientation changes during acquisition.
• Translation: Random shifts of ±10 pixels along both X and Y axes, for natural LV

positioning differences across patients.
• Scaling: Random scaling factors between 0.8× and 1.2×, simulating heart size variations.

Ultrasound-Specific Augmentation:
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• Acoustic shadows: Simulated shadow artifacts were added through pixelwise mul-
tiplication of a spatial Gaussian kernel with selected image regions, following the
methodology described in [33].

4.2. Evaluation of the Improved ASM

Capture range tests were performed on the ASM reported here (Section 3.3), and
compared to the original ASM reported by Cootes [30]. The mean shape was manually
aligned to the left ventricle on an US image, and it was automatically adjusted to the
contour of the left ventricle using the original local search of the ASM and our function
optimization method. This was repeated for a range of values around the initial manual
pose values: σ0, θ0, Tx0, Ty0. The range of values for each pose parameter and the contour
segmentation errors for each method are shown in Figure 10 for 30 diastole images.

Figure 10. Capture range errors. Haussdorf distance: improved ASM (blue); original ASM [30] (red).

The training parameters for both ASMs were as follows:

• 64 landmarks were used to represent the contour of the LV, as depicted in Figure 2.
• The length of the perpendicular sampled gray profiles for each training example of

the PDM was 24 pixels.
• The explained shape variance was 90% for 5 principal components.

These parameters have been demonstrated to accurately represent the LV contour in
previous works, as shown in [29,36]. During our capture range experiments, the original
ASM reported in [30] failed to converge in several cases, causing run-time errors. Table 1
reports the number of capture range tests conducted and the number of run-time errors
that occurred for 30 diastole images from the CAMUS database.

Table 1. Run-time errors for ASM [30] and improved ASM.

Type of Capture Range Test

Rotation Tx Ty Scale

Number of tests performed 270 630 630 330
Percentage of ASM run-time errors 17.8 3.8 2.2 15.5
Percentage of improved ASM run-time errors 0.7 0.0 0.0 0.6
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4.3. ShapeNet Contour Prediction Results

In this section, we present the results obtained from the reconstruction of the LV using
the parameters predicted by ShapeNet, following the algorithm shown in Figure 8. To
evaluate these results, we used the Dice coefficient and Hausdorff distance (HD) expressed
in pixels (px), compared against expert annotations. Table 2 shows the Dice and Hausdorff
values for the two test datasets: EchoNet and CAMUS. In Figures 11 and 12 are shown six
examples of LV reconstruction for systole and diastole, respectively.

Table 2. ShapeNet standalone segmentation errors on CAMUS vs. EchoNet (independent test set).

EchoNet

Number of evaluated images Cycle Mean Dice Mean HD (px)
207 Systole 0.65 ± 0.11 30.24 ± 9.87
210 Diastole 0.62 ± 0.10 37.07 ± 13.0

CAMUS

Number of evaluated images Cycle Mean Dice Mean HD (px)
49 Systole 0.76 ± 0.10 19.13 ± 7.91
49 Diastole 0.74 ± 0.10 25.86 ± 14.04

Figure 11. ShapeNet standalone systole segmentation examples for CAMUS (top) and EchoNet
(bottom) images.
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Figure 12. ShapeNet standalone diastole segmentation examples for CAMUS (top) and EchoNet
(bottom) images.

4.4. Improved ASM with ShapeNet Initialization

Following the algorithm depicted in Figure 8, the contour predicted by ShapeNet was
used to automatically initialize the ASM described in Section 3.3. The result of combining
these two methods can be observed in Figures 13 and 14 for systole and diastole, respectively.
In Table 3 is shown the Dice coefficient and Hausdorff distance for each of the test sets
(CAMUS and EchoNet), with overall values of 0.83 ± 0.09 for Dice and 7.36 ± 8.02 pixels
for Hausdorff distance.

Figure 13. ShapeNet + improved ASM systole segmentation examples for CAMUS (top) and EchoNet
(bottom) images.
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Figure 14. ShapeNet + improved ASM diastole segmentation examples for CAMUS (top) and
EchoNet (bottom) images.

Table 3. ShapeNet + improved ASM segmentation errors on CAMUS vs. EchoNet (independent
test set).

EchoNet

Number of evaluated images Cycle Mean Dice Mean HD (px)
207 Systole 0.81 ± 0.10 9.72 ± 11.66
210 Diastole 0.81 ± 0.13 10.70 ± 13.21

CAMUS

Number of evaluated images Cycle Mean Dice Mean HD (px)
49 Systole 0.87 ± 0.07 4.26 ± 3.29
49 Diastole 0.87 ± 0.07 4.88 ± 4.65

Overall performance

Cycle Overall Dice Overall HD (px)
Systole 0.84 ± 0.08 6.99 ± 7.47
Diastole 0.84 ± 0.10 7.79 ± 8.93

4.5. ShapeNet + ASM Algorithm vs. Other Methods

This section provides a comparative analysis between the ShapeNet ensemble and two
alternative segmentation approaches: (1) shape-based methods (Table 4) and (2) an in-house
U-Net (Table 5). In Table 4, we compare the performance of our approach against other
shape-based methods reported in [3] and in [26] trained and tested on the same dataset. On
the other hand, we developed an in-house U-Net under the same experimental conditions
as the ShapeNet. The in-house U-Net was configured with a batch size of 32 images,
using the Adam optimizer with a learning rate of 1 × 10−3 for 50 training epochs, and the
same dataset as described above was used to train both the U-Net and ShapeNet models.
Additionally, the performance of this U-Net was evaluated using CAMUS and the EchoNet
dataset, a fully independent dataset not previously seen by either the ShapeNet or the
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U-Net model. This setup ensured consistent conditions, for a fair comparison between the
U-Net and ShapeNet methods. The performance metrics for each approach are shown in
Tables 4 and 5. We also conducted a statistical significance T-test on the Dice and HD values
for ShapeNet + ASM and the in-house U-Net using the EchoNet database, as reported
in Table 6.

Table 4. Comparison between ShapeNet + improved ASM and other shape-based methods trained
and tested with the same dataset.

Method Database Systole Diastole
Mean Dice Mean HD (px) Mean Dice Mean HD (px)

ShapeNet + improved ASM CAMUS 0.875 ± 0.07 4.26 ± 3.29 0.870 ± 0.07 4.88 ± 4.65
BEASM-Fully [3] CAMUS 0.826 ± 0.09 9.9 ± 5.1 0.879 ± 0.065 9.2 ± 4.9
BEASM- Semi [3] CAMUS 0.861 ± 0.07 7.7 ± 3.2 0.920 ± 0.03 6.0 ± 2.4
ACNN [26] CETUS’14 0.873 ± 0.05 7.75 ± 2.65 0.912 ± 0.023 6.96 ± 1.75

Table 5. Performance comparison between ShapeNet + improved ASM and in-house U-Net on
CAMUS vs. EchoNet (independent test set).

CAMUS

Method Systole Diastole

Mean Dice Mean HD (px) Mean Dice Mean HD (px)
ShapeNet + improved ASM 0.87 ± 0.07 4.26 ± 3.29 0.87 ± 0.07 4.88 ± 4.65
In-house U-Net 0.90 ± 0.06 9.64 ± 7.36 0.93 ± 0.03 12.44 ± 12.38

EchoNet

Mean Dice Mean HD (px) Mean Dice Mean HD (px)
ShapeNet + improved ASM 0.81 ± 0.10 9.72 ± 11.66 0.81 ± 0.13 10.70 ± 13.21
In-house U-Net 0.75 ± 0.09 19.03 ± 8.44 0.78 ± 0.10 24.81 ± 16.19

Table 6. T-Test results for ShapeNet + ASM vs. U-Net using EchoNet database.

Dice Score HD

Systole Diastole Systole Diastole
p value p < 1 × 10−08 p < 1−02 p < 1 × 10−16 p < 1 × 10−17

h value 1.0 1.0 1.0 1.0
Effect size (d) 0.0607 0.0321 9.31 14.132

5. Discussion
This study demonstrated that the proposed ShapeNet + ASM method achieved robust

and competitive segmentation performance for left ventricle (LV) contours in echocardiog-
raphy. Our results, evaluated across the CAMUS and EchoNet datasets, highlighted the
method’s capability to generate statistically valid and anatomically accurate LV contours.
The use of two datasets allowed us to employ the majority of the available images in the
CAMUS dataset, to maximize the number of training patterns. We initially reserved a
limited number of images to test our algorithm. To further test the accuracy of our proposal
we used an independent unseen dataset, EchoNet Dynamic, which comprises a total of
417 images spanning both systole and diastole. As expected, the accuracy of ventricle seg-
mentation was higher for the small test set CAMUS, and slightly lower for the independent
test set EchoNet (Tables 2, 3 and 5), which provides more representative values for accuracy
than can be expected during clinical use.
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The approach implemented in ShapeNet, where the parameters of a statistical shape
model of the organ of interest are optimized with a convolutional neural network, provides
restrictions that contribute to the explicability of the final segmentation results. All shapes
produced were statistically valid organ shapes. As observed in Figures 11 and 12, the
results were always smoothed ventricle shapes located closely to the LV in the echocar-
diography, with a scale and rotation approximate to the expert annotation. However, for
deformations, in some cases, the predicted values of the deformation vector b were not as
accurate, which was reflected in a higher Hausdorff distance (see Table 2).

Our proposed ASM was used to improve the accuracy of the final segmentation of
the LV. This ASM proved to be more accurate than the original ASM reported in [30].
In our capture range tests (see Figure 10), the improved ASM produced smaller mean
values for the Hausdorff distance. Additionally, in some cases, when the initialization pose
values were far from the ventricle contour, the original ASM failed to converge, causing
run-time errors when the LV model grew outside the image. Table 1 shows that, for the
improved ASM, the number of run-time errors was exceptionally low compared to the
ASM reported in [30]. The improvements in accuracy and robustness of our ASM are most
likely due to the use of all the gray level profiles concatenated in a single vector, as well as
the objective function, which together provide the means to evaluate the image fitting of a
whole ventricle contour, instead of the local adjustment point-by-point performed in the
original ASM, and this was reflected in the final segmentation of the LV for the EchoNet
dataset, as seen in Table 5 and in Figures 13 and 14.

Table 4 presents a comparison of our results against the methods proposed in [3],
specifically the BEASM approaches, the fully automatic BEASM (BEASM-fully) and the
semi-automatic BEASM (BEASM-semi), which is manually initialized at three points:
two at the LV base and one at the apex, alongside the ACNN method [26], which incor-
porates shape constraints. ShapeNet + improved ASM, being a fully automatic method,
demonstrated competitive performance. Although BEASM-semi and ACNN achieved
slightly higher Dice scores, the results in Table 4 indicate that our method achieved the
lowest Hausdorff distance for both systole and diastole phases, demonstrating improved
characterization of the LV contour over the methods listed in Table 4.

The comparison with our in-house U-Net highlights that our method achieved com-
petitive Dice scores and lower Hausdorff distances under the same training conditions
(see Table 5). Specifically, the statistical analysis in Table 6 shows that for Dice scores,
our method exhibited statistically significant improvements over the in-house U-Net. In
contrast, the Hausdorff distance results reveal large effect sizes of d = 9.31 for systole and
d = 14.132 for diastole, meaning a substantial reduction in spatial errors was achieved
by our approach. These large effect sizes support the fact that our method produced a
statistically valid LV contour closely aligned with expert annotations, demonstrating the ro-
bustness of our approach, even with a limited training set and the challenges of ultrasound
imaging, particularly the presence of speckle noise. The added advantage of statistical
shape constraints in our method reduced misclassified regions more effectively than tradi-
tional semantic classification, as depicted in Figure 15. While our method may not always
have reached peak precision, it consistently achieved better segmentation performance on
an entirely new dataset (EchoNet), as demonstrated in Table 5.

In Figure 16 are shown histograms of the ShapeNet + improved ASM approach for
the Dice coefficient and Hausdorff distance values for systole and diastole for the EchoNet
dataset. It can be observed that 75.84% and 77.61% of the cases for systole and diastole,
respectively, fell within the range of 0.8 to 1. Similarly, for the Hausdorff distance, the
majority of values were concentrated between 0 and 10 pixels, 68.11% and 66.66%, for
systole and diastole, respectively. The density concentrated in the previously mentioned
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values demonstrate that our algorithm performed well and that the results were consistent,
even with a completely new dataset, as was the case with EchoNet, in contrast to the
methods shown in Table 4, which were trained and tested on images from the same dataset.

Figure 15. Comparison of segmentation masks between in-house U-Net (top) and ShapeNet +
improved ASM (bottom) on EchoNet database.

Figure 16. Segmentation errors (Dice score and HD) for EchoNet dataset using ShapeNet + improved
ASM approach.

Despite the strengths of the proposed method, some limitations should be acknowl-
edged. The CAMUS dataset, although it was augmented to 4800 images, remains relatively
small for deep learning applications, and this may have affected the model’s generalization.
In addition, the ShapeNet + improved ASM automatic initialization introduces a depen-
dency that may reduce accuracy if there are significant deviations in initial conditions, such
as patient positioning or heart orientation. The effectiveness of the improved ASM remains
dependent on ShapeNet’s initialization quality. While ShapeNet’s ensemble architecture
and the PDM’s shape constraints help mitigate this dependency, extreme imaging artifacts
or anatomical anomalies may still lead to suboptimal ASM convergence. This limitation
was evidenced in the EchoNet HD variance (10.21 px), where acoustic shadowing occasion-
ally compromised initialization (Figure 12, bottom right). Nevertheless, our experimental
results demonstrated that this combined approach remains clinically viable. ShapeNet’s pa-
rameter regression achieved Dice scores superior to 0.65, even in challenging cases (Table 2),
providing sufficiently accurate initialization for ASM refinement. Furthermore, the ASM’s
global objective function effectively corrected local errors when initialization was imperfect,
as demonstrated by its superior performance compared to the original ASM (Figure 10).
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On the other hand, the model’s reliance on a convolutional neural network ensemble
and active shape models demands substantial computational resources for both training
and inference. Each network in the ShapeNet ensemble was trained for a maximum of
50 epochs with early stopping (validation patience = 40 iterations). With our hardware con-
figuration (NVIDIA Tesla K40c/T4), the average training time per epoch was approximately
20 min for each specialized CNN (rotation, translation, scale, and shape parameters). For
comparison, our in-house U-Net implementation reached early stopping at 38 epochs with
longer epoch durations of 41 min on average. Although we tried to make it a lightweight
model, this requirement may limit accessibility and real-time application in clinical settings
without the availability of modern GPUs. Regarding this issue, we conducted performance
tests on a current gaming computer with the following specifications: 24 GB of RAM, an
8th generation Core i7 processor, and an NVIDIA GeForce GTX 1060 with Max Q with 6 GB,
achieving offline segmentation of 207 LV images in an average of 18 min (5.27 s per image).

Concerning the morphology of the ventricle, although ShapeNet generally performs
well, the segmentation accuracy during the systolic phase may be compromised due to
increased left ventricular deformation during contraction, along with greater deformation
observed in the diastolic phase, as indicated by higher Hausdorff distances in some cases.
Our method showed enhanced robustness with limited training data, offering a statistically
grounded alternative to traditional segmentation models.

Future work will involve exploring the incorporation of additional datasets to further
enhance the model’s inference capabilities. Additionally, we plan to investigate techniques
such as model pruning and knowledge distillation to reduce computational demands,
while preserving the performance advantages of the ensemble.

6. Conclusions
In this paper, we proposed a new scheme for automatic LV segmentation in echocar-

diography images. The proposal consists of two stages: ShapeNet, which is an ensemble of
CNNs to predict pose and shape parameters; and an improved ASM, which is initialized
with the parameters estimated by the ensemble of neural networks, in order to fine-tune
the LV contours for improved segmentation. Our study demonstrated that integrating
ShapeNet with an improved ASM enhanced LV segmentation accuracy and effectively
prevented blob artifacts commonly found in semantic segmentation. Our algorithm was
tested on two different datasets, CAMUS and EchoNet, providing an overall Dice coefficient
of 0.83 and a Hausdorff distance of 7.36 pixels for both systole and diastole.

A major strength of our approach is its ability to automatically generate statistically
valid shapes, offering a new perspective on the utilization of convolutional neural networks
(CNNs) in medical imaging. When combined with the improved ASM, which outperformed
traditional ASM techniques, our method provided competitive and accurate fitting of
the LV contour compared to existing shape-based methods, as evidenced by higher Dice
coefficients and lower Hausdorff distances in ultrasound images. Notably, we demonstrated
that the ShapeNet + ASM approach was more robust with a limited training set than
traditional semantic segmentation methods such as U-Net under the same conditions.
Despite these strengths, limitations should be considered, including the need for substantial
computational resources, the limited availability of training images, and the complexity of
ultrasound images, due to speckle noise and heart morphology variations in both systolic
and diastolic phases.

The ShapeNet and improved ASM methodologies presented here offer a promising
alternative to semantic segmentation CNNs in medical image analysis. This approach,
based on statistically valid shape adjustment, holds potential for broad applications in
automated medical image analysis and clinical decision-making.
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