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Among medical imaging modalities, magnetic resonance imaging (MRI) stands out for its excellent soft-tissue contrast, 
anatomical detail, and high sensitivity for disease detection. However, as proven by the continuous and vast effort to 
develop new MRI techniques, limitations and open challenges remain. The primary source of contrast in MRI images 
are the various relaxation parameters associated with the nuclear magnetic resonance (NMR) phenomena upon which 
MRI is based. Although it is possible to quantify these relaxation parameters (qMRI) they are rarely used in the clinic, 
and radiological interpretation of images is primarily based upon images that are relaxation time weighted. The clinical 
adoption of qMRI is mainly limited by the long acquisition times required to quantify each relaxation parameter as well 
as questions around their accuracy and reliability. More specifically, the main limitations of qMRI methods have been 
the difficulty in dealing with the high inter-parameter correlations and a high sensitivity to MRI system imperfections.
 Recently, new methods for rapid qMRI have been proposed. The multi-parametric models at the heart of 
these techniques have the main advantage of accounting for the correlations between the parameters of interest as well 
as system imperfections. This holistic view on the MR signal makes it possible to regress many individual parameters at 
once, potentially with a higher accuracy. Novel, accurate techniques promise a fast estimation of relevant MRI quantities, 
including but not limited to longitudinal (T1) and transverse (T2) relaxation times. Among these emerging methods, 
MR Fingerprinting (MRF), synthetic MR (syMRI or MAGIC), and T1‒T2 Shuffling are making their way into the 
clinical world at a very fast pace. However, the main underlying assumptions and algorithms used are sometimes different 
from those found in the conventional MRI literature, and can be elusive at times. In this book, we take the opportunity 
to study and describe the main assumptions, theoretical background, and methods that are the basis of these emerging 
techniques.
 Quantitative transient state imaging provides an incredible, transformative opportunity for MRI. There is 
huge potential to further extend the physics, in conjunction with the underlying physiology, toward a better theoretical 
description of the underlying models, their application, and evaluation to improve the assessment of disease and 
treatment efficacy. 
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Lectures in Biomedical Engineering will be comprised of 75- to 150-page publications on advanced 
and state-of-the-art topics that span the field of biomedical engineering, from the atom and mol-
ecule to large diagnostic equipment. Each lecture covers, for that topic, the fundamental principles 
in a unified manner, develops underlying concepts needed for sequential material, and progresses 
to more advanced topics. Computer software and multimedia, when appropriate and available, are 
included for simulation, computation, visualization and design. The authors selected to write the 
lectures are leading experts on the subject who have extensive background in theory, application 
and design.

The series is designed to meet the demands of the 21st century technology and the rapid 
advancements in the all-encompassing field of biomedical engineering that includes biochemical 
processes, biomaterials, biomechanics, bioinstrumentation, physiological modeling, biosignal pro-
cessing, bioinformatics, biocomplexity, medical and molecular imaging, rehabilitation engineering, 
biomimetic nano-electrokinetics, biosensors, biotechnology, clinical engineering, biomedical de-
vices, drug discovery and delivery systems, tissue engineering, proteomics, functional genomics, and 
molecular and cellular engineering.
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ABSTRACT
Among medical imaging modalities, magnetic resonance imaging (MRI) stands out for its excellent 
soft-tissue contrast, anatomical detail, and high sensitivity for disease detection. However, as proven 
by the continuous and vast effort to develop new MRI techniques, limitations and open challenges 
remain. The primary source of contrast in MRI images are the various relaxation parameters associ-
ated with the nuclear magnetic resonance (NMR) phenomena upon which MRI is based. Although 
it is possible to quantify these relaxation parameters (qMRI) they are rarely used in the clinic, 
and radiological interpretation of images is primarily based upon images that are relaxation time 
weighted. The clinical adoption of qMRI is mainly limited by the long acquisition times required to 
quantify each relaxation parameter as well as questions around their accuracy and reliability. More 
specifically, the main limitations of qMRI methods have been the difficulty in dealing with the high 
inter-parameter correlations and a high sensitivity to MRI system imperfections.

Recently, new methods for rapid qMRI have been proposed. The multi-parametric models at 
the heart of these techniques have the main advantage of accounting for the correlations between 
the parameters of interest as well as system imperfections. This holistic view on the MR signal 
makes it possible to regress many individual parameters at once, potentially with a higher accuracy. 
Novel, accurate techniques promise a fast estimation of relevant MRI quantities, including but not 
limited to longitudinal (T1) and transverse (T2) relaxation times. Among these emerging methods, 
MR Fingerprinting (MRF), synthetic MR (syMRI or MAGIC), and T1‒T2 Shuffling are making 
their way into the clinical world at a very fast pace. However, the main underlying assumptions 
and algorithms used are sometimes different from those found in the conventional MRI literature, 
and can be elusive at times. In this book, we take the opportunity to study and describe the main 
assumptions, theoretical background, and methods that are the basis of these emerging techniques.

Quantitative transient state imaging provides an incredible, transformative opportunity for 
MRI. There is huge potential to further extend the physics, in conjunction with the underlying 
physiology, toward a better theoretical description of the underlying models, their application, and 
evaluation to improve the assessment of disease and treatment efficacy.

KEYWORDS
spatial encoding, contrast encoding, spatial decoding, contrast decoding
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CHAPTER 1

Introduction
In this chapter we introduce the basic principles of nuclear magnetic resonance (MR), including 
nuclear spin and polarization in a static magnetic field. The Bloch equation is then introduced to 
describe the response of the macroscopic magnetization to a radiofrequency (RF) pulse and its 
subsequent relaxation. We then provide a brief overview of the hardware associated with a magnetic 
resonance imaging system (MRI).

1.1 NUCLEAR MAGNETIC RESONANCE
The phenomenon of nuclear magnetic resonance (NMR) was first demonstrated independently 
and virtually simultaneously by Bloch [1-1] working at Stanford University and Purcell, Torrey, 
and Pound [1-2] working at Harvard University. The impact of their work was immediate, and the 
applications of NMR have steadily widened from physics and chemistry to biology and medicine. 
Bloch and Purcell were subsequently jointly awarded the 1952 Nobel Prize for physics “for their 
development of new methods for nuclear magnetic precision measurements and discoveries in connection 
therewith.”

1.2 BASIC CONCEPTS
It has been known since the 1920s that certain atomic nuclei, which are made up of protons and 
neutrons (nucleons), possess an intrinsic angular momentum (J) or spin—like a gyroscope spin-
ning on its axis. In most atomic nuclei, nucleons of the same type rotate in opposite directions and 
are paired together so that their total angular momentum or net spin is zero. The magnitude and 
direction of this angular momentum is characterized by a nuclear spin quantum number, I, to zero, 
half-integer and integer values. Those nuclei for which I = 0 do not possess spin angular momentum 
and therefore do not exhibit magnetic resonance phenomena. The nuclei of 12C and 16O fall into 
this category. Nuclei for which I = ½ include 1H, 19F, 13C, 31P, and 15N, while 2H and 14N have I 
= 1. The angular momentum is quantized as follows:  

     J = ! I I+1( )⎡⎣ ⎤⎦
1
2 , (1.1)

where ℏ is Planck’s constant divided by 2π. The component of J in the z direction is given by Jz 
= ℏmI where mI is the magnetic quantum number and has values of –I ≤ mI ≤ I, for a total of 2I + 
1 values. Therefore, for I = ½ there are two possible orientations with mI = ½ or –½ (Figure 1.1). 
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Since the nucleus is electrically charged, one result of this spin is that the charge rotates as well and 
an electric current flows about the axis of rotation. This current generates a magnetic field and each 
nucleus of this type has a magnetic moment or dipole (μ) associated with it and can be considered 
to act as a tiny bar magnet. Fortunately, the single proton nucleus of hydrogen, the most abundant 
element in the body, possesses this property and is consequently the major nucleus of interest in 
MRI. Other nuclei in the body also exhibit this property but their lower abundance and sensitivity 
to the experiment make their investigation more difficult. The magnetic moment is given by  

     μ = γJ, (1.2)

where γ is the gyromagnetic ratio, a fundamental constant of the nucleus. 
 

Figure 1.1: The two orientations of the nuclear spin angular momentum J for a nucleus with I = ½.

Therefore, in the presence of a static magnetic field, the magnetic moments precess with two 
possible orientations either parallel or anti-parallel to the static magnetic field. The energy differ-
ence between the two states in the presence of a static magnetic field B is 

     ϵ = μ ∙ B = γℏmI B. (1.3)

Selection rules only allow transitions between mI = -I, -I + 1, …, +I so for protons

            Δϵ = (½ – – ½)γℏB = γℏB. (1.4)

From De Broglie’s wave equation, the frequency associated with this energy is
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     ∆ϵ = ℏω. (1.5)

Therefore,

     ℏω = γℏB. (1.6)

Using the subscript zero to indicate the Larmor frequency (ω0) and the applied external field (B0) 
we have

     ω0 = γB0. (1.7)

In any sample of material containing many atoms, the magnetic dipoles will be randomly 
orientated. When placed in a magnetic field, the dipoles align with the field. For hydrogen nuclei, 
there are two possible orientations: parallel to the field or in the opposite direction (anti-parallel). 
Those parallel to the field are in the low energy state and have a small population excess (about 
ten per two million at 1.5 T) compared to the high energy state (Figure 1.2). For any nuclei in the 
sample, the magnetic moments of individual nuclei will produce an overall net effect, and it is the 
behavior of this net effect—the bulk magnetization vector M—that is generally considered rather 
than the behavior of the individual nuclei. Therefore, in the absence of a static magnetic field, M will 
be zero, while in the presence of a field, M will have a finite value, pointing in the direction of the 
field. For convenience this direction is labeled the z-axis. At thermal equilibrium, the distribution 
of nuclei in the two energy states is given by the Boltzmann distribution 

    
Nup

Ndown

= e
− Δε

κ BT
⎛

⎝
⎜

⎞

⎠
⎟

, (1.8)

where Δϵ = energy difference (J), κB = Boltzmann constant 1.38 × 10-23, and T = absolute tempera-
ture (K). Therefore, at 23°C (296.15K) and 1.5 T (ω0 = 63.86 × 106 Hz) we have

   Nup

Ndown

= e
− 4.23x10−26

1.38x10−23 x 	296.15

⎛

⎝
⎜

⎞

⎠
⎟

=1.000010345 . (1.9)

Therefore, for every 1,000,000 in the lower energy state there are approximately 1,000,010 
in the upper state. i.e., an excess of 10 per two million (5 ppm) at 1.5 T. A nucleus with spin also 
resembles a gyroscope in other ways. If tilted from the vertical, a gyroscope will rotate about the 
vertical axis with a constant angle of tilt. This rotation about the axis is known as precession. In 
NMR, the individual nuclei that make up M make an angle of 54.7° with the z-axis (Figure 1.1). 
The nuclei therefore precess about z-axis with a characteristic frequency, known as the Larmor fre-
quency. The Larmor frequency is the product of the gyromagnetic constant of the nucleus and the 
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static magnetic field strength. For protons the gyromagnetic ratio is 42.57 MHzT-1, and therefore 
the Larmor frequency at 1.5 T is approximately 64 MHz.

 

Figure 1.2: Orientation of nuclei before (a) and after (b) being placed in a static magnetic field B0.

1.3 RADIOFREQUENCY NUTATION
In order to detect M in the presence of a strong static magnetic field, M needs to be reoriented per-
pendicular to the static field, i.e., tipped into the transverse (x-y plane). This tipping can be achieved 
by applying an alternating magnetic field B1, at the Larmor frequency, orthogonally, e.g., in the 
x-direction, to the direction of the static magnetic field B0 (z-direction). These pulses are referred 
to as RF pulses. The B1 field is usually created within a resonant RF transmit “coil” or “antenna,” 
i.e., a tuned LC circuit, that surrounds the object of interest. An electrical current, alternating at 
the Larmor frequency, is applied to the coil creating a uniform alternating magnetic field within 
the coil. This resonance condition, i.e., the frequency of B1 matching the natural Larmor frequency, 
results in M spiraling down from being aligned along the z-direction into the transverse plane (Fig-
ure 1.3a). We often consider a frame of reference rotating at the Larmor frequency, in which case 
we would “see” M simply being nutated about the axis along which B1 is applied (Figure 1.3b). The 
amplitude of an RF pulse (B1), of duration τ, necessary to cause a rotation of α radians is given by: 

     B1 =
2πα
γτ

. (1.10)

When an RF pulse is used to initially tip the net magnetization away from B0 it is usually 
termed an excitation pulse. However, RF pulses may also be used to invert or refocus magnetization. 
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The RF transmitter coil is generally large in comparison to the sample in order to create a relatively 
uniform magnetic field, i.e., excitation flip angle. 

 

Figure 1.3: (a) The net magnetization M (red arrow) is shown as being nutated by 90° by the applica-
tion of an alternating magnetic field (B1) (yellow). Note that M spirals down into the transverse plane 
due to the application B1 rotating at ωrot. In a frame rotating at ωrot the B1 field appears static and M 
will simply appear as a rotation about the axis that B1 is applied.

After being excited, a system of spins will return to thermal equilibrium. In 1946, Felix Bloch 
modeled the magnetization signal in NMR with two decay constants, which he labeled T1 and T2 
[1-1].

1.4 T1 RELAXATION
T1 relaxation describes the recovery of the longitudinal magnetization (Mz ) back to thermal equi-
librium following a perturbation by a RF pulse. Hence, T1 relaxation is also known as longitudinal 
relaxation. Furthermore, since T1 relaxation involves the loss of the energy that was put into the 
spin system by the RF pulse it is also referred to as spin-lattice relaxation, where the “lattice” in this 
context consists of surrounding macromolecules. This loss of energy is stimulated by the fluctuating 
magnetic fields associated with dipole-dipole interactions of neighbouring magnetic moments. T1 
relaxation can only occur when these magnetic field fluctuations occur at the Larmor frequency 
(ω0) so T1 relaxation is very dependent upon the molecular tumbling rate of these dipoles. For ex-
ample, the protons in water tumble at a wide range of frequencies and there will only be a relatively 
small number tumbling at ω0 at any instant of time, therefore the T1 relaxation time of pure water 
is quite long. Conversely, the tumbling rate of protons within fat, a much larger molecule, is much 
slower and therefore more protons tumble nearer ω0 and hence the T1 relaxation is more efficient 
and hence fat has a relatively shorter T1 relaxation time. Similarly, water molecules that reversibly 

1.4 T1 RELAXATION
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bind to macromolecules tumble more slowly and hence T1 relaxation is very inefficient and T1 re-
laxation times become longer. The T1 relaxation time can therefore inform us about the molecular 
environment of the hydrogen nuclei. The use of exogenous paramagnetic contrast agents, such as 
chelates of gadolinium, can also be used to improve image contrast. Gadolinium has seven unpaired 
electrons in its outer shell giving rise to a very large electron magnetic moment. This magnetic 
moment causes a substantial shortening of the T1 relaxation time of any water molecules that come 
into the vicinity of the gadolinium ions.

1.5 T2 RELAXATION
T2 relaxation describes the decay of the transverse magnetization (Mxy) following an RF excitation. 
Hence, T2 relaxation is also known as transverse relaxation. T2 relaxation does not involve any loss 
of energy but a loss of phase coherence between the individual spins so that the detectable signal 
decays with time. Therefore, T2 relaxation is also sometimes referred to as spin-spin relaxation. 
As described above, molecular tumbling results in a randomly varying background field that is 
responsible for T1 relaxation. Therefore, T1 relaxation will also diminish the transverse magnetiza-
tion; hence a component of the T2 transverse decay can be attributed to T1 relaxation processes. In 
addition, there is a secular contribution to T2. Here the static, or DC, component of the background 
field starts to dominate and the T2 relaxation time decreases as the molecular tumbling slows, in 
distinction to T1 which starts to increase as the tumbling rate slows.

1.6 T2* RELAXATION
Once M has been nutated into the transverse plane the individual spins comprising M will dephase 
with a time constant called T2*   that includes components due to intrinsic spin-spin interactions (T2) 
as well as magnetic susceptibility sources and non-uniformities in the static magnetic field (T2

′ ). The 
T2*  relaxation rate ( 1 ) can be expressed as the sum of these two relaxation rates

    1
T2
* =

1
T2

+ 1
T2
' =

1
T2

+γ ⋅ΔBi  , (1.11)

where ΔBi represents static magnetic field nonuniformities from all sources. We will discuss T2*  in 
more detail later but to simplify the continuing discussion we will only consider pure T2 relaxation. 
As discussed in Section 1.6, the transverse decay and longitudinal recovery of magnetization are 
generally considered as first-order processes with characteristic time constants of T2 and T1 respec-
tively. The typical changes in transverse and longitudinal magnetization due to T2 and T1 relaxation 
are shown in Figure 1.4. Note that in biological tissues T2 relaxation is approximately an order of 
magnitude shorter that T1 relaxation.

T2*
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Figure 1.4: T1 and T2 relaxation of the longitudinal and transverse magnetization, respectively. The T1 
relaxation time is the time for the magnetization to recover to 69.3% of the equilibrium (M0) value, 
while T2 is the time for the transverse magnetization to decay to 30.7% of M0.

1.7 BLOCH EQUATION
Bloch derived a differential equation that describes the changes in magnetization during excitation 
and recovery. The derivation of the Bloch equation is as follows:

The angular momentum (p) is changed in time (t) by a torque (Τ) 

     Τ = 
dp

. (1.12)

In the case of a nuclear spin, the spin angular momentum is

     p = ℏmI. (1.13)

The torque is expressed via the interaction of the spins’ magnetic moment and the external field B

     Τ = μ × B. (1.14)

Therefore,

     
!mI

dt
= µB μ × B. (1.15)

Since μ = γp = γℏmI,

     µ
dt

= γµB 𝛾μ × B. (1.16)

dt

1.7 THE BLOCH EQUATION

mId

d μ
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Summing over all spins,

     dM
dt

= γMB × B. (1.17)

Expanding the vector cross-product

     
dMx

dt
= γ MyBz −MzBy( ) , (1.18)

     
dMy

dt
= γ MzBx −MxBz( ) , (1.19)

     
dMz

dt
= γ MxBy −MyBx( ) . (1.20)

We assume that Bz = B0, i.e., the static magnetic field and Bx and By are the components of 
a circularly polarized oscillating magnetic field B1(t), expressed by

      Bx = B1 cos ωt( ) , (1.21)

     By = −B1 sin ωt( ) , (1.22)

     Bz = B0 . (1.23)

These equations may then be combined to give:

    dMx

dt
= γ MyB0 +MzB1 sin ωt( )( ) , (1.24)

    
dMy

dt
= γ MzB1 cos ωt( )−MxB0( ) , (1.25)

     
dMz

dt
= γ −MxB1 sin ωt( )−MYB1 cos ωt( )( ) . (1.26)

These equations are not yet complete since they do not account for relaxation. Bloch [1-1] 
assumed that spin-lattice and spin-spin relaxation could be treated as a first-order process with 
characteristic time constants for the decay of T1 and T2, respectively. Mx and My decay back to their 
equilibrium value of zero, while Mz returns to its equilibrium value of M0. The final Bloch equation  
separated into three componenets is given by

    dMx

dt
= γ MyB0 +MzB1 sin ωt( )( )−Mx

T2
, (1.27)
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dMy

dt
= γ MzB1 cos ωt( )−MxB0( )−My

T2
, (1.28)

   dMz

dt
= γ −MxB1 sin ωt( )−MYB1 cos ωt( )( )−Mz −M0

T1
.  (1.29)

  
As discussed in Sections 1.4 and 1.5, T1 and T2 are often called the longitudinal and trans-

verse relaxation times, respectively, since they are the time constants for decay of the components of 
magnetization along and perpendicular to B0. The Bloch equations can be solved by straightforward 
but laborious procedures under various limiting conditions. A simple case to consider is if we nutate 
or tip the spins through 90° using a short duration radio-frequency pulse so that there is negligible 
relaxation during the pulse. In this case the equations simplify to

    dMx

dt
=ωMy −

Mx

T2

 ,  (1.30)

    
dMy

dt
= −ωMx −

My

T2

 ,  (1.31)

    
dMz

dt
= −

Mz −M0

T1
.  (1.32)

  
The solutions to these differential equations are

    Mx t( )=M0 sin ωt( )e−
t
T2 , (1.33)

    My t( )=M0 cos ωt( )e−
t
T2 , (1.34)

    Mz t( )=M0 1−e
− t
T1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (1.35)

The longitudinal magnetization Mz (t) returns exponentially to its equilibrium value M0, 
while the transverse magnetization Mx (t) and My (t) behaves as an exponentially damped sinusoidal 
oscillation decaying to its equilibrium value Mxy = 0. In complex notation, 

           Mxy =Mx + iMy
, (1.36)

          Mxy t( )=M0e
iωte

− t
T2 . (1.37)

1.7 THE BLOCH EQUATION



10 1. INTRODUCTION

1.8 SIGNAL DETECTION
The precessing transverse magnetization induces a small alternating voltage in a receiver coil in 
accordance with Faraday’s Law of electromagnetic induction. The magnitude of the transverse 
magnetization will decrease with a time constant given by T2* , as discussed previously, resulting in a 
decaying signal known as a free induction decay (FID). This FID signal is then amplified, digitized, 
and processed to extract the required frequency, phase, and amplitude information for the desired 
application. The receiver coil may be the same coil as used for RF transmission or it may be a sep-
arate array of coils, that more closely fits the sample.

In this section, we cover topics that are relevant to each of the specific hardware components, 
such the static superconducting magnets, the magnetic field gradients and parameters that limit 
them, radiofrequency coils and signal-to-noise. 

1.8.1 MRI HARDWARE

Superconducting Coil

Superconducting Windings
for Active-Shielding

Magnet Cryostat

Gradient Coils

RF Body Coil

Figure 1.5: A schematic diagram showing a cross-section through a superconducting MRI system. B0 
is created by a current flowing through a set of superconducting coil windings. The fringe field of the 
magnet is partially mitigated by a second set of superconducting coil windings with current flowing in 
the opposite direction. Both sets of coils are inside a liquid helium-filled cryostat. Concentric cylinders 
carrying the three main gradient coil sets are mounted inside the cryostat. The main “body” RF coil of 
birdcage design is mounted inside the gradient coils, closest to the subject being imaged.

An MRI system comprises four main components. The first is an appropriate magnet to generate 
the strong static magnetic field (B0), which is required to induce the nuclear polarization. The 
second is a RF system that generates the required alternating magnetic field (B1), at the Larmor 
frequency, and detects the weak MR signal being returned from the patient. The third component 
is the gradient system that generates the required linear magnetic field variations that are superim-
posed upon B0 and are used to spatially encode the MR signal. The gradient and whole-body RF 
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coils are typically concentrically positioned inside the bore of the magnet. Figure 1.5 shows a sche-
matic cross section through a superconducting MRI system. Finally, the fourth component consists 
of several computers that are used to provide the user interface, generate the digital representations 
of the RF and gradient pulses, and perform the mathematical operations, e.g., Fourier transforma-
tion, required to reconstruct an image from the digitized signals returned from the patient.

1.8.2 SUPERCONDUCTING MAGNETS

The requirements for the static field are that it should be reasonably strong, stable, and uniform. 
Magnetic field strength or, more accurately, “magnetic flux density,” is measured in the SI-derived 
unit of tesla (symbol T). While it is certainly true that bigger is not necessarily better, there is an 
approximate linear increase in signal-to-noise ratio (SNR) with increasing field strength. Over 
the last 30 years of MRI development, various technologies and designs have been used to create 
magnets of an appropriate configuration that a human body can be placed inside. These designs 
have various trade-offs in terms of field strength as well as stability, uniformity, and patient accep-
tance. It was not until the development of superconducting magnet technology that higher field 
strengths could be achieved. Typical clinical superconducting MRI systems are available at 1.5 T 
and 3.0 T, having Larmor frequencies of 64 and 128 MHz, respectively. Most vendors have also 
developed 7.0 T whole body systems for research purposes, with even higher field strengths, e.g., 
11.7 T being custom-developed. Superconducting magnets generate their magnetic field by circu-
lating an electric current through solenoidal coils of niobium-titanium (NbTi) filaments embedded 
in a copper matrix. At temperatures below approximately 10 K NbTi becomes superconducting, 
which means it has zero electric resistance and current will circulate indefinitely without an exter-
nal power supply. Practically, a superconducting MRI magnet comprises a steel cryostat with the 
superconducting coils immersed in liquid helium at 4.2 K (-269°C or -452°F). While iron-cored 
or permanent magnet designs can have a C- or H-shape and may therefore appear more patient 
friendly, superconducting MRI system cryostats are most commonly shaped like a cylindrical tube 
with the patient placed inside the central bore. In addition to the patient, the gradient and RF body 
coil are also positioned inside the bore, although hidden from the patient behind the system covers. 
Although the diameter of the cryostat bore is approximately 100 cm, once these additional coils 
are installed the patient accessible bore is reduced to approximately 60 cm. However, in response 
to demands for improved patient acceptance as well as an increasingly bariatric population, man-
ufacturers have introduced systems to allow 70 cm or greater patient apertures as well as reducing 
overall magnet lengths. 

While a strong, but not necessarily very uniform, B0 is required to achieve a good nuclear 
polarization, an extremely high uniformity is required to perform spatial localization. The uni-
formity of B0 is usually defined as the variation of the field within a spherical volume of a given 
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diameter which, for a 1.5 T magnet would typically be less than 1 part per million (ppm) over a 40 
cm diameter spherical volume. Further improvements can be achieved over smaller volumes by a 
process known as “shimming,” which is often automatically performed by the system for each body 
part imaged. In addition, the field must be temporally very stable, with a typical superconducting 
magnet having a stability of better than 0.1 ppm/h.

While the signal-to-noise ratio increases with field strength, often allowing higher spatial 
resolution, higher magnetic fields, e.g., 3 T and above, also bring additional challenges. These 
include: a lengthening in T1 relaxation times resulting in poorer T1-weighted image contrast; in-
creased magnetic susceptibility effects that can cause regional signal loss and localized geometric 
nonlinearity; increased artifacts associated with involuntary motion, physiological flow, and varia-
tion in the uniformity of RF excitation. 

Magnets also have an associated fringe-field that needs to be considered when siting the 
system. Most superconducting magnets are now actively shielded which means they have a separate 
set of superconducting coils inside the cryostat, but positioned outside the main magnet coils, in 
which the current flows in the opposite direction, reducing the magnitude and effect of the external 
magnetic field on the surrounding environment. However, due to siting space limitations, occasion-
ally additional passive magnetic shielding in the scan room wall(s) may be required. 

The MR system must be situated within a six-sided RF-shielded examination room with 
conductive metal lining, usually made of copper or aluminium through which external RF electro-
magnetic interference will not pass.

1.8.3 MAGNETIC FIELD GRADIENTS

Magnetic field gradients are used for altering the Larmor frequency over the sample, which allows 
spatial localization, as discussed in more detail in Chapter 2. Linear magnetic field gradients are 
created by additional coils of wire which are positioned inside the magnet bore, adjacent to the 
liquid helium cryostat in a cylindrical superconducting system. These coils are designed to provide 
gradients in the three orthogonal physical directions x, y, and z. The effective fulcrum point of each 
of the three gradients is at the center of the magnet bore, known as the isocenter. Gradient pulses 
require time for the gradient field to ramp up to the desired amplitude and then ramp down again, 
hence a very common gradient pulse design is a trapezoid. Gradient performance is defined by the 
maximum achievable amplitude of the gradient in mTm-1; typically in the range 30–50 mTm-1 and 
the time taken to ramp up and down the waveform, known as the rise-time, typically in the range 
200–100 μs. Higher gradient amplitudes allow the system to achieve thinner slices or smaller fields-
of-view, while shorter rise-times allow faster encoding. Depending upon the desired imaging plane 
the required logical gradient pulses: slice-selection, phase, and frequency encoding, are played out 
on the appropriate physical x, y, and z gradients, with a mixed combination for oblique imaging.
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Gradient switching is accountable for the characteristic knocking noise heard during MRI. 
As the coils lie within strong static magnetic fields and currents in the coils are pulsed, the coil 
windings experience a Lorentz force which causes mechanical vibrations, albeit of very small am-
plitude, of the gradient coils resulting in acoustic noise. The gradient switching also induces currents 
in the magnet cryostat, known as eddy currents. These currents decay with time but also cause 
their own magnetic fields, which can cause image artifacts. Gradient coils are themselves actively 
shielded by a second set of outer coils to minimize the induction of unwanted eddy currents in the 
cryostat and other conducting structures. 

Gradient coils require high currents and voltages in order to produce field variations over the 
size of the human body. Hence, amplifiers are needed to convert the digital waveforms into gradi-
ent pulses. Most of this power is dissipated as heat and the gradient coils and often the amplifiers 
require water-cooling, and the maximum allowed peak power is limited by equipment and patient 
safety requirements. The maximum duty cycle (DC) is another limitation used to prevent excessive 
heating of the gradient coils and amplifiers from damaging the hardware, which is usually defined 
as the root-mean-square of the gradient patterns over a time period:

    DC = t1

t2∫ G t( )2dt
Gmax
2 t2 −t1( ) ⋅100%.

 (1.38)

1.8.4 RADIOFREQUENCY (RF) COILS

The RF transmitter creates shaped pulses with specific amplitude and phase, centered at the Larmor 
frequency, which can be used to tip the net magnetization. The RF pulse waveform is amplified 
and applied to the transmitter coil. The transmitted RF magnetic field is often referred to as B1

+ . 
Most commonly this is a large diameter coil, known as the body coil, which is located just inside 
the gradient coil assembly. While the MR signal received back from the patient can be detected 
by the body coil, its large size means that the received SNR would be relatively poor. In order to 
maximize SNR, the receiver coil is often positioned closely to the anatomy of interest, hence the 
large number of anatomically optimized receiver coils available (e.g., head, spine, shoulder, knee, 
etc). In recent years, most receiver coils have been constructed from arrays of smaller coil elements. 
The idea is that smaller coils have a better SNR but a limited field-of view (FOV). Careful combi-
nation of multiple coils in a matrix configuration gains the advantage of small coil SNR but with a 
larger FOV. The complex, i.e., the real and imaginary, signals from each individual coil element are 
amplified, digitized and then reconstructed. To minimize noise induced in the receiver chain, de-
tected signal digitization occurs near the RF receiver coil(s). Although the signal is centered on the 
Larmor frequency, the MRI encoding process only involves a small range of frequencies typically in 
the range ±16 kHz to ±250 kHz, known as the receiver bandwidth. Part of the receiver processing 
is to extract this small readout bandwidth before passing the digitized signals from each coil to the 

1.8 SIGNAL DETECTION
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reconstruction hardware. Typically, the individual images from each coil are combined using a root 
sum-of-squares algorithm [1-3]. However, individual coils also have different spatial sensitivity 
profiles. The receive coil profiles are often referred to as B1

-  . This differential sensitivity can then be 
utilized in various methods employed to accelerate the MR acquisition. This is discussed in more 
detail in Chapter 4.

1.8.5 SIGNAL-TO-NOISE (SNR)

There is a limited SNR that limits the achievable resolutions within reasonable imaging times. SNR 
is defined as the ratio of the signal to the standard deviation of the noise:

     SNR =
Ssignal
σ noise

. (1.39)

The signal is directly proportional to the total number of polarized spins, or net magnetiza-
tion:

     Ssignal ∝M0 . (1.40)

Random thermal fluctuations in the sample and electronics are a major source of noise in 
MRI [1-3, 1-4]. Electronic noise is dominated by Brownian motion of electrons, causing Johnson 
noise described by

     σ noise
2 = 4kRTΔ f , (1.41)

where k is Boltzmann’s constant, T is the temperature in Kelvins, R is the resistance of the sample 
or electronics, and Δf is the receiver bandwidth. 

Combining these, SNR is therefore proportional to the total magnetization, and inversely by 
the square-root of temperature and receiver bandwidth:

     SNR∝
M0 	

4kRTΔ f 	
. (1.42)

Assuming a cubic sample, increasing the size of the sample dimensions increases the net 
magnetization that is measured, which results in a directly proportional increase in the overall 
signal:

    SNR∝
M0

4kRTΔ f
NacqΔxΔ yΔz. (1.43)

When repeated acquisitions have independent noise distributions, the signal increases with 
the number of acquisitions. The noise also increases, although in quadrature, which becomes the 
square-root of the number of repeated acquisitions: 

ΔxΔyΔz
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    SNR∝
M0

4kRTΔ f
√Nacq . (1.44)

It is useful to describe SNR efficiency, which is SNR multiplied by the square root of the total 
acquisition time:

    
 
SNR = 1

Tacq

Ssignal
σ noise

. (1.45)

With temporal acquisitions, a standard SNR calculation is a challenge because there are many 
different types of contrast weightings possible, as discussed in Chapter 3. Temporal SNR (tSNR) is 
one method to describe changes in time, which is used within functional MRI communities [1-5]. 
When comparing similar acquisition schemes with a single variation, we can compare tSNR, which 
is defined as:

    tSNR =
Ssignal 	
σ noise

. (1.46)

SNR is important to recognise as one fundamental limitation in MRI, as it limits the ability 
to encode signals quickly while still obtaining sufficient, useful information regarding the patient.

1.9 CONCLUSION
In this chapter, we have described the basic principles of a nuclear magnetic resonance and the 
experimental setup. In the following chapter, we will investigate the use of gradient fields to encode 
spatial locations within a sample in order to obtain magnetic resonance images.
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CHAPTER 2

Spatial Encoding
In Chapter 1, we discussed the fundamentals of NMR. In this chapter, we discuss how to obtain 
data for the formation of images with spatial encoding performed using magnetic field gradients. 

2.1 INTRODUCTION
Magnetic resonance imaging requires the spatial localization of the NMR signal. Both data acqui-
sition and reconstruction are intimately tied together through the spatial encoding method. A pulse 
sequence is a combination of RF and gradient pulses. Generally, the amplitudes and timings be-
tween RF pulses will dictate the image contrast whereas the gradients will primarily be responsible 
for spatially encoding the signals. This is a simplification since gradients can also dephase/rephase 
transverse magnetization and hence influence image contrast. This will be discussed in Chapter 3, 
while here we focus on the various ways in which the signal can be spatially encoded.

Since the frequencies of NMR signals depend on the local magnetic field, both Lauterbur 
[2-1] and Mansfield and Grannell [2-2] proposed the use of a linear magnetic field gradient to 
localize the signal. Indeed, this relationship between spatial position and frequency led Lauterbur to 
use the term “zeugmatography” [2-3] from the Greek ζεῦγμα “that which is used for joining.” Lauter-
bur obtained two-dimensional (2D) images by rotating the gradient relative to the object of interest 
thereby obtaining a series of projections, Fourier transforming each and then reconstructing the 
image by back-projection. Although this method produced a 2D image there was no spatial local-
ization in the third direction. This required the development of selective excitation of a slice through 
a sample and was first proposed by Lauterbur et al. [2-4] and Mansfield et al. [2-5]. Although the 
method of back-projection is still in use (see Section 2.3.5) the standard method of acquiring 2D 
images is based upon slice-selective 2D Fourier imaging, first proposed by Kumar et al. [2-6] and 
subsequently refined by Edelstein et al. [2-7] into the “spin-warp” method. 

2.2  CARTESIAN ENCODING
The basic mathematical theory behind 2D Fourier imaging is derived below. Consider a magnetic 
field gradient, along the x-direction. Note that although the gradient is along x, the magnetic field 
lies along the same direction (z) as the static magnetic field B0, i.e.,

     
∂Bz
∂x

=Gx . (2.1)
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When this gradient is superimposed on the static magnetic field B0, the magnetic field at a 
location x given by B(x), can be expressed by

     B x( )= B0 +Gxx . (2.2)

The spins at position x will resonate at a frequency given by

     ω x( )= γ B0 +Gxx⎡⎣ ⎤⎦ , (2.3)

or in a reference frame rotating at frequency ω0, the precessional frequency at location x becomes

     ω x( )= γGxx . (2.4)

Let the spin density at location x be ρ(x), in which case the signal for spins between location 
x to x + δx can be written in complex form as

    dS x( )= ρ x( )e− iω x( )tdx = ρ x( )e− iγGxxtdx , (2.5)

or for the entire object from x to x + δx

     S x( )=
x

x+δ x

∫ ρ x( )e− iγGxxtdx . (2.6)

These equations show that S(x) is the Fourier Transform of ρ(x). In the general case of a 
continuous distribution of spin density, the signal with 2D orthogonal encoding becomes

    S x , y( )= ∬ρ x , y( )e− iγGxxte− iγGy ytdxdy . (2.7)

The spin density, ρ(x), incorporates all effects within the spin density, such as T1 and T2 
relaxation.

By applying the gradients over a period of time, a spatially dependent phase shift can be 
created, which is used to encode the spins in different locations of the sample.

     Δφ x( )= γ
t1

t2∫ Gx t( )⋅x 	dt . (2.8)

This phase shift can be applied either immediately before or during an acquisition. As a 
convention, it is helpful to consider this phase shift in a domain called k-space.

█∫∫
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2.2.1 k-SPACE: SPATIAL FREQUENCY DOMAIN

The signal equation in (2.7) is often written to draw a more direct relationship with the Fourier 
transformation, which transforms between spatial locations, x and y, and spatial frequency param-
eters, kx and ky:

   S x , y( )= ∬ρ x , y( )e− ikxxe− iky ydxdy.  (2.9)

The spatial frequencies kx and ky are thus defined as follows:

    kx = γ ∫Gx t( )dt , (2.10)

    ky = γ ∫Gy t( )dt . (2.11)

The definition of kx and ky can often vary by a factor of 2π, where some definitions use γ ̄ 
instead of γ in Equations (2.9) and (2.10), although Equation (2.7) would remain the same. The 
definition above is used to keep derivations more compact.

In the simplest case of gradients with constant amplitude these equations simplify to

    kx = γGxt , (2.12)

    ky = γGyt . (2.13)

Thus, the spatial frequencies are proportional to the gradient strength and duration to which 
the spins are subjected. The units of k-space are radians cm-1, therefore an alternative term to spatial 
frequency would be spatial phase gradient, since kx and ky represent the phase advance or retarda-
tion that the spins experience per cm of object in the x and y directions. We can now re-write the 
2D spatial encoded signal as 

   S kx ,ky( )= ∬ρ x , y( )e− ikxxe− iky ydxdy.  (2.14)

This is defined for both Cartesian and non-Cartesian encoding methods.
Many pulse sequences acquire data with regular k(t) sampling such that it encodes with a 

grid-like or Cartesian sampling pattern. Cartesian encoding enables predictable gradient waveforms 
that can use the very efficient reconstruction method of the Discrete Fourier Transform (DFT; see 
Chapter 4). Figure 2.1 shows a Cartesian k-space acquisition scheme, and several non-Cartesian 
acquisition trajectories.

 

2.2 CARTESIAN ENCODING

█∫∫

█

█

∫

∫

█∫∫
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(a) (b)

(c) (d)

Figure 2.1: Different k-space trajectories: (a) Cartesian; (b) Cartesian/radial hybrid, e.g., PROPEL-
LER (GE) or BLADE (Siemens) or VANE (Philips); (c) spiral with two constant angular velocity 
interleafs (red and blue); and (d) projection reconstruction (radial) showing eight equally spaced acqui-
sitions.

All the spins within a sample can be excited with a “non-selective” excitation, which usually 
involves a rectangular (or “hard”) RF pulse. However, to reduce the amount of encoding needed, a 
single 2D slice or three-dimensional (3D) slab is usually excited before encoding the sample in the 
spatial frequency domain. RF pulses are usually combined with gradient pulses in order to select a 
slice of the sample (Figure 2.2). While applying a gradient along an axis, the excitation RF pulse 
is usually modulated with the Fourier transform of the desired slice profile. The amplitude of the 
gradient and the bandwidth of the pulse determines the thickness of the excited slice,

     Δz =
ΔωRF

γG
. (2.15)
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Figure 2.2: A slice selection gradient and SINC RF pulse are shown, which causes a rectangular spa-
tial region, Δz, to be excited.

2.2.2 SPIN WARP IMAGING

Spin warp imaging is a fundamental MRI technique to understand for Cartesian encoding. The 
basic principle of a gradient echo-based slice-selective spin warp imaging sequence is shown in Fig-
ure 2.3. For a gradient echo (GRE), spatially dependent phase shifts are created by the application 
of a gradient in each spatially-encoded direction. In order to acquire both positive and negative 
k-space, the frequency (nominally “x”) encoded direction is dephased, and then rephased when 
sampling a single line of k-space. The time between the excitation RF pulse and the signal rephasing 
is called the “echo time” or “TE.” The process of acquiring a single line of k-space is repeated over 
distinctive lines in the phase (nominally “y”) encoded direction to obtain the entire region before 
image reconstruction. The time between subsequent slice/slab selective RF pulses is referred to as 
the “repetition time” or TR.

In order to obtain an image under full Cartesian sampling, the FOV is proportional to the 
interval between k-space points. The Nyquist–Shannon theorem states that a band-limited signal 
with bandwidth, B, can be completely reconstructed from its samples if they are sampled at a rate no 
greater than 1/2B, hence defining the achievable image resolution for a fully-sampled experiment 
of discrete points. Because sampling of k-space is discrete, the number of samples is dictated by the 
desired number of pixels while satisfying the Nyquist theorem (see Chapter 4). For the frequency 
encoding (FE) direction, the amplitude of the frequency encoded gradient is given by

      GFE =
1

γ FOVFEΔt
, (2.16)

where FOVFE is the field of view in the frequency encoding direction and Δt is the total sampling 
time. Since only one phase encoding is performed per TR, in order to fully cover k-space the phase 

2.2 CARTESIAN ENCODING
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encoding gradient needs to be performed NPE times, where NPE is the total number of phase en-
coding steps. For each phase encoding step the area of the gradient needs to be incremented. The 
maximum amplitude of a phase encoding gradient pulse of duration τ is given by

     GPE =
1

γ FOVPEτ
, (2.17)

where FOVPE is the field of view in the phase encoding direction. The step amplitude of each phase 
encoding gradient is given by

    GPE ,n = n
GPE ,max
NPE

 for −
NPE

2
≤n≤

NPE

2
. (2.18)
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Figure 2.3: Gradient echo slice selective spin warp imaging sequence and associated k-space trajectory. 
The initial excitation pulse in the presence of the Gz slice select gradient (1) nutates the spins into the 
transverse plane (time point A). The negative polarity slice select rephasing gradient (2) compensates for 
the phase shift across the slice induced by (1). The Gy phase encoding gradient (3) and the Gx frequency 
encoding prephasing gradient (4) moves the spins the appropriate distance in kx and ky (time point B). 
In this case the maximum negative phase encoding gradient has been applied. The gradient echo signal 
is formed in the presence of the Gx frequency encoding gradient (5) during time points B to C. The 
gradient echo is sampled during the frequency encoding gradient (5). A second excitation pulse repeats 
this cycle at the repetition time (“TR”) to obtain additional k-space lines each with a different amplitude 
phase encoding gradient.

It is also possible to acquire true 3D images by applying a second phase encoding gradient in 
the slice select (nominally “z”) direction. Like the in-plane phase encoding process, this gradient is 
applied as a number of steps equal to the desired number of partitions (or slices) within the volume 



23

(NSS). This creates a 3D k-space and the images are reconstructed using a 3D Fourier transform. For 
example, if we excite a slab of tissue 64-mm thick and apply 32 phase encodings then, following 
Fourier transformation, we would obtain 32 slices with an effective slice thickness of 2 mm. Since 
we are exciting a large slab of tissue the SNR is improved by √NSS relative to a 2D acquisition of 
the same effective slice thickness. However, the acquisition time would be proportional to NPE ∙ NSS 
∙ TR. 3D imaging is primarily used with pulse sequences that have short TRs, e.g., gradient echoes 
due to the large number of phase encoding steps. 

Within a single 2D slice the simplest k-space encoding method, described above, is to encode 
a single line, or echo, in the frequency encoding direction in each TR period and to step the phase 
encode gradient between TRs to move between lines. The spin-warp method is relatively slow but 
is the basis of acquiring most clinical MR images. Other methods exist that can fill k-space faster, 
but they invariably require trade-offs in terms of image quality. 

Gz

RF

Gy

Gx

2D Cartesian EPI

(b)(a)

 

Figure 2.4: A 2D Cartesian EPI pulse sequence (left) and k-space (right). After the initial excitation, 
the frequency encoding gradient is swept back and forth to cover k-space, while a “blipped” phase en-
coding gradient increments the k-space after each line is swept through. The red arrow and box indi-
cate the beginning location of the full k-space acquisition, while the green/orange arrows indicate the 
direction that k-space is traversed.

Echo-planar imaging (EPI), for example, is a fast imaging method that applies gradients 
“blips” on the phase-encode axis and reversals of the frequency encoding gradient to acquire all the 
k-space lines of an image following a single excitation (Figure 2.4). However, EPI images demon-
strate spatial distortions due to spins that are off-resonance from the nominal Larmor frequency, 
due for example, to B0 non-uniformity. The EPI sequence begins very similarly to a gradient-echo 
spin warp sequence, with conventional slice selection and phase encoding gradient steps. However, 
unlike spin-warp imaging, k-space is swept back and forth to cover a larger region within a single 
TR, which can include any number of k-space lines. The number of k-space lines that are acquired 
per TR is referred to as the “echo train length (ETL)”, “EPI factor”, or “shot factor”. The fraction of 

2.2 CARTESIAN ENCODING
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k-space acquired is referred to as “shots” or “segments.” Thus, for a full k-space with 256 lines, where 
128 lines are acquired per TR, the EPI factor is 128, and the number of shots is 2. EPI has much 
faster acquisition times than a standard GRE; however, due to its longer readout, EPI is subject to 
artifacts caused by non-uniform fields at the boundaries of tissues, particularly where air and tissue 
have large magnetic susceptibility differences. 

2.3 NON-CARTESIAN ENCODING
Non-Cartesian acquisitions have several advantages over traditional Cartesian approaches, partic-
ularly for:

• improved resilience against motion,

• ultra-short/zero echo time imaging (useful for experiments with extremely short T2 
relaxation time, such as bone, lungs, or other nuclei such as sodium), and

• incoherent sampling for compressed sensing (see Chapter 4).

Non-Cartesian methods can also avoid artifacts due to signal aliasing from structures larger 
than the FOV due to their oversampling of the center of k-space, since the FOV increases with the 
inverse of the k-space density. Acquiring k-space from the center out is also more robust against 
motion, especially in 3D acquisitions. Since non-Cartesian encodings do not follow the concept of 
phase/frequency encoding, artifacts tend to be more uniformly and incoherently distributed rather 
than the coherent artifacts seen along the phase encode direction in spin-warp imaging.

The prominent disadvantage of non-Cartesian acquisitions is that they require more com-
plex system implementations for both acquisition and reconstruction. Intuition developed from 
Cartesian imaging is often lost, although metrics such as sampling efficiency provide an immediate 
translation. Some formalisms also differ, e.g., the TE can be defined as either the point when sam-
pling first occurs or the time when the center of k-space is sampled, such as multi-echo experiments 
within a single TR.

Within a non-Cartesian 2D encoding there are several k-space trajectories that have been 
explored including radial [2-1], [2-8–2-10], spiral [2-11–2-13], concentric rings [2-14], Lissajou 
[2-15], and leaf-like petals [2-16, 2-17], with many others described in the literature. Here we will 
focus on the more established methods of radial and spiral trajectories, shown in Figure 2.5, to 
provide an understanding for developing more advanced techniques.
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Figure 2.5: A 2D gradient spoiled gradient recalled echo sequence showing (a) radial and (b) spiral 
acquisitions with a pulse sequence schematic. The TE is defined as the time between the middle of the 
excitation pulse and the beginning of acquisition at the center of k-space. The k-space trajectory is re-
wound so that the time integral of the x and y gradients are zero at the end of the sequence. Gradient 
spoiling often follows rewinding in order to reduce any remaining transverse magnetization before the 
next excitation.

2.3.1 2D RADIAL ENCODING

In his seminal 1973 paper, Lauterbur rotated an object about an axis relative to the gradient field 
from which data was then used to create the first projection reconstruction (PR) image. PR and 
radial encoding are two highly related non-Cartesian techniques. PR obtains its name from sim-
ilarities with CT reconstruction. PR prephases the gradients before acquiring both negative and 
positive k-space values, while radial traditionally means originating from the center of k-space (Fig-
ure 2.6). Therefore, PR acquires half the number of k-space lines as radial sampling but acquires the 
same number of data points. The choice between the two is dictated by imaging needs: PR acquires 
more points per excitation, while radial has less T2*   signal decay. Zero echo time (ZTE) imaging 
uses a 3-D radial center-out acquisition, ramping the gradient during excitation, thus starting 
slightly off-center when the acquisition begins. 

Radial sampling has advantages over many other methods: it samples the center of k-space 
before significant T2*   decay, for example allowing it to capture signal from cortical bone and demon-
strating reduced susceptibility induced signal dephasing which is important for lung imaging; it 
can also be used in a multiple echo mode for quantitative T2*   mapping. PR has been widely used 
for motion reduction [2-8], dynamic measurements, and image undersampling [2-1] (see Chapter 
4; also see [2-9, 2-10]).

2.3 NON-CARTESIAN ENCODING
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Figure 2.6: Projection reconstruction (PR, left) and radial (right) sampling are shown here with equi-
distributed spokes. PR starts sampling on the other side of the center of k-space, while radial conven-
tionally starts sampling at the center of k-space. A simple, uniform sampling pattern evenly divides the 
possible angles, 180˚ or 360˚, by the total number of spokes and increments the acquired spoke linearly 
(imaging spoke 1 first, followed by spoke 2, 3, etc.)

The gradient requirements for radial sampling are very generally low, which means the acous-
tic noise and peripheral nerve stimulation is low. The gradients are simply rotated by an increment 
of θ to create the individual spokes 

     kx ,i t( )= tkmax sinθi 	, (2.19)

     ky ,i t( )= tkmax cosθi . (2.20)

A simple approach for the ordering of θ is to divide 2π by the number of k-space readouts 
or spokes (= N), and then increment each spoke by that factor. This results in even distribution of 
spokes. The ith (i = 1…N) spoke is then acquired at the following angle:

     θi =2π
i
N

. (2.21)

Alternative rotation strategies such as the golden angle have also been explored (see below). 
Consideration must be given to the ramping of the gradient, which effects k-space estimations, 
especially if different bandwidths, slew rates, or gyromagnetic ratios are considered.

2.3.2 RADIAL FIELD OF VIEW

The Nyquist limit states that the sampling frequency must be twice the frequency being sampled. 
In Cartesian coordinates, the frequency encoding, or image resolution, must therefore be twice that 
of the maximum k-space value:
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Image	resolution*2=2Δx = 1
kmax

. (2.22)

The resolution can be estimated from the maximum gradient and the time for each radial 
spoke:

    Δx = FOV
N

= 1
2
⋅ γ
2π

⋅Gmax ⋅Tsampling .  (2.23)

This Cartesian assumption works well as a rule-of-thumb. 
Both the FOV and resolution are anisotropic, with radial and angular components (Figure 

2.7). The area contained within the FOV is the area between four adjacent k-space points:

    ΔS = 	Δkr ⋅ krΔkθ( )= 1
FOV

⋅ 1
FOV

. (2.24)

The additional kr on the angular component accounts for the change in density as more 
distant k-space points are acquired. 

∆kr

kr∆kθ

 

Figure 2.7: A radial k-space trajectory consists of volumetric elements that create the Nyquist field-of-
view. The k-space area changes with the density of the radial lines, Δkr, and the angular distance be-
tween adjacent radial lines, kr Δkθ, which increases as the distance from the center increases. It is worth 
noting that radial sampling creates FOVs that have a spatial frequency dependency. In other words, the 
FOVs are non-uniform, being larger for low-frequency spatial changes due to their increased k-space 
density, and high-frequency image components such as image edges requiring more samples to avoid 
image aliasing. The Nyquist FOV is calculated based on the highest frequency that we wish to image, 
and so we base all FOV calculations on the k-space area at the k-space extremities. 

A simplification is made in that the spacing between each radial k-space component, Δkr, is 
usually much higher than the radial FOV. This has a drawback where continuous sampling creates 
a large amount of stored data, which may be important for increasing resolutions and coil channels. 
Under this assumption, the FOV constraints are determined largely by the angular component of 
k-space:

2.3 NON-CARTESIAN ENCODING
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krΔkθ =

1
FOV

	 . (2.25)

It is worth noting that this shows that low-frequency portions of the image do not alias due 
to the high central sampling densities. Low-frequency components will often alias due to image 
reconstruction constraints. The FOV is still limited to avoid aliasing of high-frequency features, 
such as boundaries between tissues, which can cause speckling artifact. The difference between two 
points at the edge of k-space creates the angular FOV:

       kmax(1−Δkr )Δkθ =
1
FOV

	 .  (2.26)

Under a similar assumption that Δkr approaches zero with maximum sampling, the FOV 
becomes:

     FOV ≤ 1
kmaxΔkθ

		. (2.27)

The number of spokes can be used to determine the FOV limits, because Δkθ =
2π
N

 for 
equidistant radial sampling:

     FOV ≤ N
2πkmax

		. (2.28)

Thus, to fulfill the Nyquist limit and avoid aliasing with radial encoding, the rule of thumb 
is that the number of radial lines should be equivalent to the number of Cartesian lines multiplied 
by π/2. 

With the assumption of equidistribution and a fixed FOV, SNR increases with the square 
of the number of k-space lines, but decreases with the square of the reconstructed image matrix:

    SNR∝ 1
R
= Nspokes /√Nimage−size . (2.29)

2.3.3 EFFICIENCY OF 2D RADIAL k-SPACE ACQUISITIONS 

Radial sampling is less efficient than Cartesian sampling because it requires more excitations/lines 
to achieve the Nyquist limit. 

The area of a circular region is πr2 that we have normalized so that the maximum r = 1. The 
number of samples required to encode this with 2D PR is πN. 2D radial sampling requires encoding 
each point twice as frequently as 2D PR, which is 2πN. The density of each radial point decreases 
with increasing r, as shown in the FOV and resolution estimations. We can calculate the density 
required to cover the area:
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A∫ D=N

0

2π

∫ 0

1

∫
1
r
⋅rdrdθ = 	2πN , (2.30)

and the integrated density: 

    
A∫
1
D
=N

0

2π

∫ 0

1

∫ r ⋅rdrdθ = 	2πN /3 . (2.31)

The efficiency of a radial sequence compared to a 2D Cartesian sequence is therefore:

    η2D ,Radial =
πN( ) 	

2πN( )⋅ 2πN3
⎛
⎝⎜

⎞
⎠⎟
	

= 3
2

. (2.32)

2.3.4 2D SPIRALS

Spiral encoding can be considered as a type of EPI encoding, as it is possible to sample the entire 
k-space from a single excitation as is done in single-shot EPI. The disadvantage of single-shot meth-
ods is that they are prone to both susceptibility and other off-resonance artifacts that become promi-
nent with long readouts, such as the signal from fat. Therefore spirals, like EPI, are often acquired in 
multiple shots or interleaves. The number of shots dictating by how much each interleaf trajectory is 
rotated. The basic spiral trajectory is based upon the mathematics of an Archimedean spiral.

 
a = 0.5

a = 1.5

Figure 2.8: A 2D Archimedean spiral can have uniform sampling when a = 1 (black, middle spiral) in 
Equations (2.31) and (2.32). Non-uniform sampling can be created by varying the value of α. This is 
useful for reaching the edges of k-space more quickly (a>1), for when tissue susceptibility mismatch 
occurs, or for sampling the central portions of k-space more densely (a<1).

Archimedes, a Greek mathematician and physicist who lived around 250 B.C., introduced 
many concepts regarding areas and volumes, deriving approximations of π, and anticipating calculus 

2.3 NON-CARTESIAN ENCODING
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with the introduction of infinitesimals and the area under a parabola. The equations for an Archi-
medean spiral k-space trajectory are 

     kx = kmaxθ
a sinθ , (2.33)

     ky = kmaxθ
a cosθ . (2.34)

f a ≠ 1, then the spiral is considered to have a variable density. With a>1, the spiral samples the cen-
ter of k-space more densely and reaches the outer limits much more slowly (Figure 2.8). Conversely, 
with a<1, the spiral has a reduced central sampling density and higher outer density. A reduced 
central density is useful where T2*  decay causes image blurring from susceptibility differences.

For a uniform density single-shot 2D spiral:

     kx =
N
FOV

θ sinθ , (2.35)

     ky =
N
FOV

θ cosθ 	 . (2.36)

For the general solution differentiating the Archimedean spiral and converting to gradient 
units (where kmax = N/FOV = Δx), we obtain the following gradient fields:

    Gx =
2π
γ
kmax !θ aθ a−1 sinθ 	+θ acosθ⎡⎣ ⎤⎦ , (2.37)

    Gy =
2π
γ
kmax !θ aθ a−1 cosθ −θ asinθ⎡⎣ ⎤⎦ . (2.38)

These gradient values are limited by the maximum gradient strength of the MR system. 
Differentiating a second time and combining x and y into a complex coordinate system to simplify 
derivation, we obtain the slew rate:

    S = 2π
γ
kmaxe

iθ !!θ−θ !θ 2⎛

⎝⎜
⎞

⎠⎟
+ i 2 !θ 2 +θ !!θ

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (2.39)

This slew rate must remain below the maximum slew rate limit of the gradient sub-system. 
Further variations of the spiral include: TWIRL [2-11], which incorporates a radial readout 

followed by an Archimedean spiral; WHIRL [2-12], which uses a non-Archimedean spiral; and a 
spiral in, spiral out encoding for two acquisitions with a delayed TE [2-13].

2.3.5 GOLDEN ANGLE ENCODING

Rotating a k-space spoke or interleaf by the golden angle ensures a uniform, but non-repeating 
distribution of sampling points. Continuously acquiring data with a golden angle rotation incre-

[(            )     (               )]S
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ment will allow the reconstruction of either multiple, temporally resolved, low-resolution images 
or multiple interleafs can be combined into a single higher-resolution image. Typically, the golden 
angle rotation is applied to a radial sequence, although it is easily applied to any other 2D rotation 
using the rotation matrices defined later in this chapter (Figure 2.9).

Golden Angle
Radial Spiral

1 1

137°

4

3 3

5

2 2

Figure 2.9: Examples of the golden angle for rotating a radial spokes (left) and interleaved spiral 
spokes (right). In each case, the sampled pattern would sample k-space along spoke 1, followed by 
sampling along spoke 2, then spoke 3, etc. Golden angle rotations is one method to reduce coherence 
between adjacent spokes/interleaves. 

The golden angle produces incoherent signals and can be considered as a random trajectory, 
which is important for compressed sensing (see Chapter 4). This pseudorandom rotation has an 
advantage over random rotations in that less book-keeping is required. A fully random pattern 
requires the user to track the entire random pattern used, instead of the integer multiplied by the 
golden angle.

From the perspective of k-space sampling efficiency, a golden angle radial trajectory will al-
ways be less efficient than evenly distributed angles for a given number of spokes. The advantage of 
the golden angles is that its efficiency is more evenly distributed for an arbitrary number of k-space 
points. For practical imaging of real samples, golden angle rotations also reduce the phase bias from 
any periodic phase contributions, e.g., motion.

The golden ratio (G.R.) is the ratio of two sequential elements of the Fibonacci sequence 
[2-18], i.e., [1, 1, 3, 5, 8, 13, 21,…] at infinite limit. The Fibonacci sequence, Fb, can be generally 
represented as 

    Fb n+1( )= Fb n( )+Fb n−1( ) , (2.40)

2.3 NON-CARTESIAN ENCODING
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with initial conditions that Fb(1) = Fb(2) = 1. The Fibonacci series converges with increasing n, 
even though n increases to infinity. G.R. is defined here as the large number ratio of two sequential 
elements: G.R. = Fb(n + 1)/Fb(n). By dividing Fb(n), this becomes

   G.R.=
Fb n+1( )
Fb n( ) =1+

Fb n−1( )
Fb n( ) 	 =

Fb n−1( )+ 	Fb n( )
Fb n( ) 	. (2.41)

At the large number limit, Fb(n – 1)/Fb(n) = Fb(n)/Fb(n + 1):

   G.R.=
Fb n+1( )
Fb n( ) =

Fb n−1( )+ 	Fb n( )
Fb n( ) =

Fb n( )+ 	Fb n+1( )
Fb n+1( ) .	  (2.42)

The solution to this is

   Golden	Ratio= 1+ 	 5
2

=1.618034  (to 6 d.p.) (2.43)

This number has two important features related to its modulus (which is the fractional element 
after the decimal point, i.e., 0.618034): the modulus is periodic and covers all possible values be-
tween 0 and 1 when n approaches infinity. These features enable any number of n to cover all range 
of values within k-space, with increasing coverage for increasing n. 

The Golden Angle is given by 

   φGolden =2π 	mod	
1+ 5
2

⎛

⎝
⎜

⎞

⎠
⎟ 	 = 	2π ⋅0.618034 , (2.44)

which simplifies to 

    φGolden =137.51°.  (2.45)

2.4 NON-CARTESIAN 3D ENCODING
3D encoding has several advantages over its 2D counterparts: first, if using non-selective exci-
tations, the pulse length required to excite a 3D slab is shorter than that for a 2D slice which 
enables shorter TEs; second, a 3D acquisition results in a rectangular slice profile, whereas the slice 
profile in a 2D acquisition is non-rectangular; third, 3D encoding can obtain thinner slices than 
2D, by removing bandwidth limitations in slice excitation; finally, 3D encoding enables higher SNR 
than 2D encoding, because all k-space readouts contribute to the SNR. 

However, the advantages of 3D encoding come with limitations: first, it requires more time 
to acquire than 2D encoding to eliminate image aliasing in the second slice-encoding direction; 
secondly, ththis second-phase encoding, while bringing an extra degree of freedom, increases the 
difficulty of optimization problems; and thirdly, the second-phase encoding requires additional 
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computational power for advanced reconstructions. Simple tricks can enable fast processing, such as 
reducing the reconstruction matrix and combining any temporal points using a temporal subspace 
reconstruction (see Chapter 4).  

2.4.1 3D RADIAL ENCODING

Expanding from 2D radial encoding, a 3D radial sequence has the pattern:

     Gx =G0 sinθ cosφ , (2.46)

     Gy =G0 cosθ cosφ 	, (2.47)

      Gz =G0 sinφ , (2.48)

where ϕ and θ vary at the beginning of each spoke. 
With uniform sampling, the efficiency of a 3D radial sequence can be calculated similarly, 

using a density of 1/r2 and spherical volume integral:

    η3D ,Radial =
4πN /3( ) 	

4πN( )⋅ 4πN5
⎛
⎝⎜

⎞
⎠⎟
	

= 5
3

. (2.49)

Therefore, we can multiply the lines required by our standard 3D Cartesian matrix by 5
3  to 

obtain the number of spokes that fulfill the Nyquist limit.
In order to fully sample a 3D sphere, several orderings of trajectory interleaves, or (θ,ϕ) 

combinations can be used. For instance, uniform sampling [2-19] can be employed, moving slowly 
from the top to the bottom of the sphere. For N spokes, the ith spoke will have spherical angles θ 
and ϕ for the calculation of Gx and Gy in Equations 2.46 and 2.47. The values of Gz, θ(i) and ϕ(i) 
is then calculated from:

    Gz i( )= − i−1N −1
,												1≤ i ≤N , (2.50)

     φ i( )= arccos Gz i( )( ) , (2.51)

    θ i( )= θ i−1( )+ 3.6

N 1−Gz
2( )
	

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟mod 2π( ) , 									2≤ i ≤N −1 . (2.52)

This trajectory is predictable, as the user only has control of N, which enables simple book-keep-
ing for reconstruction (which is an important point for non-Cartesian encoding). While uniform, the 

2.4 NON-CARTESIAN 3D ENCODING
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pattern is highly ordered and increases image artifacts from any regular temporal pattern, which re-
duces the ability to use an arbitrary number of undersampled points for reconstruction.

Chan [2-20] proposed two ratios for use in 3D imaging with improved undersampling 
tolerance—similar to the 2D golden angle. These are called the golden means and have the values:

     f1 =0.6823	 = 	Golden	Angle	 / 	2π 	, (2.53)

     f2 =0.4656 . (2.54)

In order to distribute the density across the sphere in the slice direction, the second rotational 
angle, ϕgold, has its density related to its arccosine. Thus, for the ith readout, the angles are:

     θ i( )= i ⋅ f1 ⋅ 	2π , (2.55)

     φ i( )= arccos i ⋅ f2( ).  (2.56)

2.4.2 ADVANCED 3D ENCODING

3D radial sampling is not efficient for covering k-space compared to any method that acquires 
data in more than a single line per excitation. The simplest 3D encoding method is to stack a 2D 
acquisition, two other common methods are 3D twisted projection imaging (TPI) and cones (3D 
spirals) [2-21–2-23] (see Figure 2.10).

3D stacking includes the stack of stars, and stack of spirals [2-22]. To achieve 2D stacking, 
a 2D non-Cartesian k-space trajectory is repeated using a conventional phase-encoding gradient in 
the slab select direction. With a slightly more advanced form, the 2D trajectory is repeated with a 
2D rotation in order to reduce the temporal coherence between adjacent slices. Temporal coherence 
can also be reduced through non-sequential ordering of the slice-phase. 
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3D Stack of Spirals 3D Conespp  

Figure 2.10: Two spiral-based 3D methods are shown: a stack of spirals (left) and 3D spirals / cones 
(right). The stack of spirals is shown with each spiral rotated by the golden angle to reduce sampling 
coherence between slices. The 3D cones sequence consists of spirals that have a changing amplitude 
and width to sample a spherical volume. The 3D cones sequence is shown with only the positive half 
of k-space for clarity, although this would be repeated for a symmetric negative half to increase the 
stability from off-resonance effects.

2.4.3 3D EULER ROTATIONS

2D trajectories can fill 3D k-space with rotated, instead of stacked, repeats of the trajectory. The 
complication with this method is that unlike in two dimensions, rotations in three dimensions do 
not commute, hence the order of rotations matters. 3D rotations use standard rotation matrices, 
similar to those discussed in Chapter 3. 

A standard convention of Euler rotations is “yaw,” “pitch,” and “roll,” which refers to the ro-
tations about the z, y, and x axes, and where Rz(ψ), Ry(θ), and Rx(ϕ) refer to their respective rotation 
matrices. These are also known as the normal/precession, transversal/nutation, and longitudinal/
intrinsic rotations, respectively. These are often, but not always, performed in the order of “roll” (x) 
first, “pitch” (y) second, and “yaw” (z) third, i.e., Rz(ψ)Ry(θ)Rx(ϕ), particularly when acting on row 
vectors. These are also known as the Tait-Bryan, nautical, or Cardan rotations. 

The full rotation matrix in order of Rz(ψ)Ry(θ)Rx(ϕ) is considered the intrinsic rotation, as 
follows:
Rz(ψ)Ry(θ)Rx(ϕ) =
 
 

	
cosθ cosψ −cosφsinψ + sinφ 	sin	θ cosψ sinφsinψ + cosφsinθ cosψ
cosθ sinψ cosφcosψ + sinφsin	θ 	sinψ −sinφcosψ + cosφsin	θ 	sinψ
−sinθ cosθ sinφ cosθ cosφ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.
        

(2.57)

2.4 NON-CARTESIAN 3D ENCODING
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When performing a pre-multiplication of the rotation matrix on a columnar vector, we use 
the extrinsic rotation, which occurs in the opposite order, Rx(ϕ)Ry(θ)Rz(ψ), such that:

   

.        (2.58)

For two angles that consider only roll, ϕ, and pitch, θ, such that ψ = 0, the extrinsic rotation 
matrix, Rx(ϕ)Ry(θ), rotates a k-space vector with: 

   (2.59)

2.5 PHASE OFFSETS

2.5.1 PARTIAL FOURIER ENCODING

With ideal sampling, k-space has symmetry about any axis, and can be mirrored with the phase-cor-
rected complex conjugate of the mirrored axis (called homodyne detection [2-24]). This allows us 
to reduce the amount of data required for encoding by obtaining just over half the data for similar 
reconstruction. However, partial Fourier encoding is sensitive to phase offsets from motion and 
off-resonance. Cartesian partial encoding will often undersample by 5/8—where 4/8 is only half of 
k-space sampling—to ensure phase stability and easier reconstruction. 

2.5.2 MOTION

Bulk motion, such as from the heart, respiration, or patient movement, changes the phase of indi-
vidual k-space acquisitions and results in image artifacts. Both contrast encoding and motion can 
introduce phase changes in the k-space center. Fast encoding schemes, such as EPI, and k-space 
centric encoding schemes, such as radial, are less sensitive to motion than spin warp encoding. 

With non-Cartesian schemes, the effects of motion are reduced due to the directionality of 
encoding and due to the high amount of central k-space oversampling. Non-Cartesian encoding 
measures k-space across many different spatial directions—some opposite—reducing the impact of 

k x 	

k y

k z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

	
cosθ cosψ −cosθ sinψ sinθ

−cosφsinψ + sinφcosψ cosφcosψ − sinφsin	θ 	sinψ −cosθ sinφ
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⎢
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motion from any singular direction. In-plane motion can result in artifact, like the undersampled 
FOV artifact, presenting as increased image speckling. Through-plane motion can result in addi-
tional artifacts, particularly if the tissue moves through the imaging plane, e.g., respiration, during 
data acquisition. 

2.5.3 OFF-RESONANCE

Differences in resonant frequency, i.e., off-resonance from water due to air or fat can cause image 
blurring for long encoding times. Fast encoding reduces image blurring from off-resonance and re-
laxation effects, which often results in reduced SNR due to the higher sampling bandwidth required.

Considering water alone, the signal will be modulated during k-space readout by the off-res-
onance ΔB0:

   SH20 kx t( ) , 	ky t( )( )= 	S0,H20 kx t( ) , 	ky t( )( )exp iγ t	ΔB0( ).  (2.60)

Fat also has an off-resonance Δffat with a similar, but separate, signal modulation:

         S fat kx t( ) , 	ky t( )( )= 	S0, fat kx t( ) , 	ky t( )( )exp iγ t	 ΔB0 +Δ ffat⎡⎣ ⎤⎦( ).  (2.61)

These will add linearly when both are present within a voxel, such as at tissue boundaries. 
Replacing 𝑡 with TE and readout time, Treadout, the signal will be modulated to

    S kx t( ) ,ky t( )( )= 	S0 kx t( ) ,ky t( )( )exp iγ 	 TE +Treadout( )⋅ ΔB0 +Δ f⎡⎣ ⎤⎦( ).        (2.62)

This formulation allows us to estimate the effect of the off-resonance artifact in terms of a spatial 
shift of the signal,

                 Off − resonance	Shift ∝ ΔB0 +Δ f⎡⎣ ⎤⎦⋅ TE +Treadout( ). (2.63)

In addition, the electron structure of water and fat means that there is a small shift in their 
resonant frequencies (Δffat = 3.5 ppm), referred to as the chemical shift. The number of voxels 
shifted in image space due to this chemical shift is

    Δxvoxels = 	
1

Δ f fat
⋅
Nmatrix

BWreceiver

. (2.64)

Thus, a higher receiver bandwidth reduces off-resonance artifact and fat/water chemical shift artifact.

2.6 CONCLUSION
In this chapter, we discussed how to encode several types of trajectories, and some of the under-
lying principles for deciding on those trajectories. The trajectory decision is influenced by many 

2.6 CONCLUSION
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factors, such as scan time, field-of-view, resolution, motion, and available SNR. With fast encoding 
methods, particularly those that enable high incoherence following multiple readouts, such as 
the non-Cartesian methods discussed, we have the potential to encode temporal signals, such as 
time-varying image contrast, which we will discuss in the next chapter, more efficiently. The next 
chapter will discuss how contrast may be encoded in the MR signals.
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CHAPTER 3

Contrast Encoding
In Chapters 1 and 2, we discussed the basics of NMR spin dynamics and spatial encoding respec-
tively. Here we discuss basic pulse sequences and derive the equations for the partitioning of mag-
netization into configurations. Then, we present the concept of the extended phase graph method 
to illustrate the effects of RF pulses and relaxation. Finally, we discuss qMRI methods to acquire 
data with different T1 and/or T2 contrasts in order to fit a quantitative model. 

3.1 PULSE SEQUENCES
In MRI, pulse sequences are temporal combinations of RF and gradient pulses. The RF pulses rotate 
the longitudinal and/or transverse magnetization while the gradient pulses have the effect of dephas-
ing the magnetization and are generally used also to spatially localize the signal in order to create 
an image. Spatial localization was discussed in Chapter 2, while here we focus on the flip angles and 
timings between RF and how gradient pulses are manipulated in order to generate the contrast in an 
MRI image and, if desired, make an estimate of the T1 and T2 relaxation times. The following section 
provides a brief introduction to the main strategies used to manipulate nuclear spins in order to get 
meaningful MRI signals producing contrasts between different biological tissues.

3.1.1 FREE INDUCTION DECAY

The simplest pulse sequence is a single RF excitation pulse that tips the longitudinal magnetization 
by a given flip angle, resulting in the creation of detectable transverse magnetization known as a 
free induction decay (FID). As discussed, in Section 1.6 the transverse magnetization will dephase 
with a time constant called T2* . The time between subsequent RF excitation pulses, during which 
the magnetization will recover due to T1 relaxation, is referred to as the repetition time (TR). The 
direct acquisition of FID signals is often used in magnetic resonance spectroscopy (MRS), however 
in MRI the FID is usually collected as part of a gradient echo acquisition described below. 

3.1.2 SPIN ECHO

Since the FID decays due to T2*  relaxation a spin echo sequence is used to eliminate the T2ʹ con-
tribution resulting in a pure T2 signal contribution. The original spin echo sequence comprised of 
two 90° pulses, separated by a time τ [3-1]. The first 90° pulse created transverse magnetization that 
dephases due to T2* . The second 90° pulse rephases a component of this magnetization resulting in 
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the classic Hahn or so-called “eight-ball” echo at a time 2τ after the first pulse, i.e., [90° – τ – 90° 
– τ – Hahn_echo – T1 recovery] (Figure 3.1). The effect of this refocusing is to reverse the fixed 
dephasing due to T2ʹ. However, the dephasing caused by intrinsic T2 effects is irreversible, hence 
the signal will only be attenuated by this mechanism. The time between the first (excitation) pulse 
and the peak of the echo signal is known as the echo time (TE), i.e., TE = 2τ. The time between 
subsequent excitation pulses is the TR.

a b c d e f g

h i j k ll m n

Figure 3.1: Vector representation of the classic Hahn 8-ball echo. Following the first 90° RF pulse the 
magnetization starts to dephase in the transverse (x–y) plane (a–e), The second 90° RF pulse about 
the x-axis then rotates this disk of dephased magnetization into the x–z plane (f–i). The magnetization 
then continues to precess (j–m), eventually forming the 8-ball echo (n). Figure created using the Inter-
active Spin Viewer developed by Dr. Stefan Petersson, GE Healthcare, Sweden.

In practice, it is more common to use a spin echo sequence comprising a 90°, 180° pulse 
pair, i.e., [90° – τ – 180° – τ – spin_echo – T1 recovery]. The initial transverse magnetization is 
fully dephased in the transverse plane before the application of the 180° pulse that flips the entire 
magnetization resulting in a natural rephasing in the transverse plane at a time TE = 2τ after the 
initial 90° pulse (Figure 3.2). This results in an echo signal twice the magnitude of the Hahn echo 
for the same TE. The signal equation for such a spin echo sequence is:

     S = S0 1−e
−TR
T1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
ie

−TE
T2S  = S0 1−e

−  TR
T1

⎛

⎝⎜
⎞

⎠⎟
 i e

− TE
T2 , (3.1)

where S0 is the equilibrium signal. The intrinsic difference in tissue T1, T2 and proton density will 
result in different signal amplitudes, and hence contrast between tissues, depending upon the cho-
sen TE and TR. The transverse magnetization will decay during the TE period, while the longitu-
dinal magnetization will recover during TR. Due to practical limitations on TE and TR the images 
from standard spin echo sequences are referred to as being contrast “weighted” since the signal is 
not purely from a single tissue parameter. 
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τ τ τ τ

TETE

TR

90˚ 90˚

180˚ 180˚

Figure 3.2: Basic 90°–180° spin echo sequence. The echo forms at a time TE after the 90° excitation 
pulse, which is equal to twice the time, τ, between the 90° and 180° pulses. The sequence is repeated 
with a repetition time (TR), allowing for T1 recovery.

3.1.3 STIMULATED ECHO

Stimulated echoes are not widely used for MR imaging but are often used for MR spectroscopy. 
However, they can contribute to the signal formation in several pulse sequences. A stimulated 
echo arises from three RF pulses (Figure 3.3). The first pulse creates a component of transverse 
magnetization, the second RF pulse tips a component of that transverse magnetization into the 
longitudinal direction for a period of time, sometimes called the mixing time (TM), where it does 
not dephase any further but recovers due to T1 relaxation, until the third RF pulse tips a compo-
nent of this longitudinal magnetization back into the transverse plane. The net effect is to cause 
refocusing of the transverse magnetization and the formation of a stimulated echo, i.e., for three 
α pulses [α – τ – α – TM – α – τ – stimulated_echo – T1 recovery]). If TM = τ then the stimulated 
echo will occur at the same time as the Hahn echoes from the preceding RF pulses introducing an 
additional T1-weighting into the signal.

3.1 PULSE SEQUENCES
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τ τ

α1 α2 α3

TM

TM + τ

TM – τ
TM 

TR

SE1
(1,2)

STE
(1,2,3)

SE2
(SE1,3)

SE3
(2,3)

SE4
(1,3)

Figure 3.3: Evolution of a stimulated echo (STE) from three α pulses, separated by time τ and TM. 
Note that in addition to the STE four Hahn echoes can also occur. Three echoes arise from the refo-
cusing of two RF pulses (SE1, SE3, and SE4), while a fourth echo (SE2) arises from a second refo-
cusing of the SE1 echo by the third α pulses. The sequence is repeated with a repetition time (TR).

3.1.4 INVERSION RECOVERY

If we apply a 180° pulse to the initial magnetization M, aligned along the z-direction, it will become 
inverted. The magnetization will then recover exclusively due to T1 relaxation, since no transverse 
magnetization has been created. Following a suitable time period, known as the inversion time (TI), 
the recovered z-magnetization is tipped into the transverse plane with the signal typically being 
formed by a spin echo, i.e., [180° – TI – 90° – τ – 180° – τ – spin_echo – T1 recovery] (Figure 3.4). 
The inversion recovery sequence can be used to increase the T1-weighting within an image or more 
commonly to null specific tissues, e.g., fat. Acquiring images with different TI values can be used 
to quantify T1 relaxation.
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 TE/2 TE/2

TI

TR

180˚

90˚

Figure 3.4: Basic inversion recovery spin echo sequence. The initial magnetization is inverted by the 
first 180° pulse. After the chosen inversion time (TI) the signal is formed by a spin echo. The sequence 
is repeated with a repetition time (TR) to allow T1 recovery.

3.1.5 GRADIENT ECHO

A gradient echo sequence forms an echo signal through the application of a magnetic field gradient 
pulse that forcibly dephases the transverse magnetization and then forcibly rephases it by a gradient 
of equal area but opposite polarity. For an introduction to gradient pulses and their use in spatial 
encoding, see Chapter 2.

Since an RF refocusing pulse is not used, the TE can be shorter than a spin echo sequence, 
however the echo amplitude is dependent on T2*  rather than T2 decay. Gradient echo sequences 
also typically use RF excitation pulses α < π2  (90°), which allows the use of a shorter TR while still 
maintaining an acceptable signal amplitude, i.e., [α – τ – gradient_echo – T1 recovery]. A conse-
quence of a shorter TR is that there may still be appreciable transverse magnetization at the time 
of the next RF pulse, e.g., if TR << T2. This second pulse may then act as a refocusing pulse, i.e., 
the TR effectively becomes τ in the spin echo description above, adding a T2-weighted component 
into the detected signal. There are three main types of gradient echo sequence. The first is the (“fully 
balanced”) steady-state free precession sequence (SSFP) in which the imaging gradient areas are 
balanced on all three axes (Figure 3.5a). A limitation of this sequence is that it is very sensitive to 
magnetic field non-uniformities. A slightly different variant of this sequence (“gradient spoiled”) 
doesn’t balance all the gradients resulting in a constant dephasing of the residual transverse magne-
tization and a reduced sensitivity to field non-uniformities (Figure 3.5b).  There is also a third type 
of gradient echo sequence, “RF spoiled,” that destroys the residual transverse magnetization using 

3.1 PULSE SEQUENCES
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an appropriate RF phase cycling scheme. The various MRI system vendors call these gradient echo 
variants by different names, Table 3.1 provides a basic list of vendor acronyms.

 

TE

Gx

TE
TR
(b)

TR
(a)

α α α α

Figure 3.5: Gradient echo sequences: (a) the bSSFP sequence has all the gradients fully balanced on 
each axis, so the time integral, or first moment, of the gradient fields for each TR is zero. This diagram 
only shows the Gx frequency encoding gradient, but both the slice select and phase encoding gradients 
are also fully balanced; (b) the gradient-spoiled and RF-spoiled sequence have unbalanced gradients, 
so the integral of the gradient fields is different from zero, but equal for each TR. The only difference 
between the gradient-spoiled and RF-spoiled version is that in the RF-spoiled version the excitation 
pulses α are phase cycled to destroy the residual transverse magnetization.

Table 3.1. Gradient echo sequence acronyms. FE: Field Echo, FFE: Fast Field Echo, FIESTA: Fast 
Imaging with Enhanced Steady sTate Acquisition, FISP: Fast Imaging with Steady Precession, 
FLASH: Fast Low Angle SHot, GRE: Gradient Recalled Echo, GRASS: Gradient Recalled Ac-
quisition in the Steady State, SPGR: SPoiled GRass, SARGE: Steady state Acquisition Rewound 
Gradient Echo

Generic Philips Siemens GE Hitachi Toshiba

Gradient spoiled FFE FISP 
GRE (was 
GRASS) 

Rephased SARGE SSFP 

RF spoiled T1-FFE FLASH SPGR RF Spoiled SARGE T1-FFE
Balanced steady-

state free precession
Balanced-FFE TrueFISP FIESTA Balanced SARGE

True 
SSFP

3.1.6 FAST/TURBO SPIN ECHO

Fast/turbo spin echo (FSE/TSE) sequences use an excitation pulse followed by multiple RF re-
focussing pulses to create a train of spin echoes (Figure 3.6), i.e., [90° – τ – 180° – τ – spin_echo 
– τ– 180° – τ – spin_echo – … – T1 recovery]. While multiple spin echoes can be used to quantify 
T2 relaxation the original Fast Spin Echo (FSE)/Turbo Spin Echo (TSE) method, known as Rapid 
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Acquisition with Relaxation Enhancement (RARE) [3-2], was used to accelerate image acquisi-
tion. Each spin echo was individually spatially encoded and incorporated into the raw data for the 
whole image (see Chapter 2). More recently, there has been considerable interest in reducing and/or 
varying the amplitude of the refocusing pulses across the train of echoes, to improve image quality 
and to manage the RF power deposition associated with large RF flip angles, especially at higher 
magnetic field strengths.

TR

τ 2τ
180˚

90˚

180˚ 180˚ 180˚

Gx

Gy

RF

Figure 3.6: Scheme of a fast spin echo, or RARE sequence with an ETL of 4. Refocusing pulses are 
spaces 2τ apart and an echo forms at every 2τ after the 90° excitation pulse. The sequence is repeated 
with a repetition time (TR) to allow T1 recovery.

3.2 BLOCH EQUATION SIMULATIONS
The most accurate method to investigate the effect of a pulse sequence on the magnetization is to 
perform a discrete time simulation of the Bloch equations. This involves the use of rotation matri-
ces to describe the effect of the RF pulses about a given axis of rotation and exponential terms to 
describe the relaxation of the magnetization. The simulations also assume signal dephasing and re-
phasing. While this may arise due to intrinsic magnetic field non-uniformities it is usual to associate 
these effects with the imaging gradients. We will start with a brief review of rotations using matrices.

A rotation of angle θ about the x-axis can be expressed as

 
   Rx θ( )=

1 0 0
0 cos θ( ) −sin θ( )
0 sin θ( ) cos θ( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. (3.2)

3.2 BLOCH EQUATION SIMULATIONS

*
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A rotation of angle θ about the y-axis can be expressed as

   Ry θ( )=
cos θ( ) 0 sin θ( )
0 1 0

−sin θ( ) 0 cos θ( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. (3.3)

A rotation of angle θ about the z-axis can be expressed as

   Rz θ( )=
cos θ( ) sin θ( ) 0

−sin θ( ) cos θ( ) 0

0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. (3.4)

We can express the transverse magnetization in complex terms, i.e,

    Mxy = Mx + iMy (3.5)

and its complex conjugate

    Mxy = 	Mx + iMy . (3.6)

In matrix form this conversion can be performed by a basis transformation

   M =

Mxy

Mxy
*

Mz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= S

Mx

My

Mz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

, where S =
1 i 0
1 −i 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, (3.7)

such that

   1 i 0
1 −i 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
i

Mx

My

Mz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 
=

 
Mx + iMy

Mx − iMy

Mz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

Mxy

Mxy
*

Mz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.
 

(3.8)

The inverse transformation of S is given by 

    S−1 = 1
2

1 1 0
1− i i 0
0 0 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, (3.9)

such that
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    1
2

1 1 0
1− i i 0
0 0 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
i

Mxy

Mxy
*

Mz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

Mx

My

Mz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. (3.10)

The new transformation matrix encompassing a rotation α about the x-axis is given by Tx(α), 

 Tx α( )= S iRx α( )i S−1
 =  

   1
2
1+ cos α( )( ) 1

2
1− cos α( )( ) −isin α( )

1
2
1− cos α( )( ) 1

2
1+ cos α( )( ) isin α( )

−i
2
sin α( ) i

2
sin α( ) cos α( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

              . (3.11)

which can be rewritten using the standard trigonometrical identities 12   (1 + cos(α)) = cos2 ( 
α
2  ) and 

1
2   (1 – cos(α)) = sin2 ( 

α
2  ) to give

 

   Tx α( )=

cos2 α
2

⎛
⎝⎜

⎞
⎠⎟

sin2 α
2

⎛
⎝⎜

⎞
⎠⎟

−isin α( )

sin2 α
2

⎛
⎝⎜

⎞
⎠⎟

cos2 α
2

⎛
⎝⎜

⎞
⎠⎟

isin α( )
−i
2
sin α( ) i

2
sin α( ) cos α( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (3.12)

Note that Tx does not have the property of a rotation matrix anymore because of the basis transformation.
Similarly, a rotation ϕ about the z-axis can be described by the transformation matrix Tz (ϕ)

   					Tz φ( )= S iRz φ( )i S−1
   

            
  	=

1 i 0
1 −i 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
i

cos φ( ) sin φ( ) 0

−sin φ( ) cos φ( ) 0

0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

i
1
2

1 1 0
1− i i 0
0 0 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   
      

  

 

																	 =

cos φ( )+ isin φ( ) 0 0

0 cos φ( )− isin φ( ) 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥  (3.13)

3.2 BLOCH EQUATION SIMULATIONS
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=
eiφ 0 0
0 e− iφ 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

 

 Combining the above two results Tϕ(α) = Tz(ϕ) Tx(α) Tz(–ϕ) gives the solution for a general 
RF pulse with a flip angle of α with an initial RF phase of ϕ which acts on the complex magnetiza-
tion vector, such that the magnetization after the pulse (positive superscript) is related to that prior 
to the pulse (negative superscript) as follows:

  
Mxy

Mxy
*

Mz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

=

cos2 α
2

⎛
⎝⎜

⎞
⎠⎟

e2iφsin2 α
2

⎛
⎝⎜

⎞
⎠⎟

−ieiφsin α( )

e−2iφsin2 α
2

⎛
⎝⎜

⎞
⎠⎟

cos2 α
2

⎛
⎝⎜

⎞
⎠⎟

ie− iφsin α( )
−i
2
e− iφsin α( ) i

2
eiφsin α( ) cos α( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Mxy

Mxy
*

Mz

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

.

   
       

.           (3.14)

This equation demonstrates the so-called “partitioning effect” of an arbitrary RF pulse. The 
magnetization can be split into three parts, from the perspective of the initial transverse magne-
tization M+: (i) dephasing transverse magnetization M+; (ii) rephasing transverse magnetization 
M–; and (iii) longitudinal magnetization Mz. The first component can be considered as not being 
affected by the RF pulse, and hence is sometimes represented as a “0°-like” pulse with a fraction 
proportional to cos2 (α

2 ), the second component will rephase to form an echo and is therefore rep-
resented by a “180°-like” pulse with a fraction proportional to sin2 (α

2   ), while the final component 
becomes longitudinal magnetization and is represented as a “90°-like” pulse with a fraction propor-
tional to sin(α).

The concept of partitioning magnetization into configurations was first proposed by Woess-
ner to describe NMR diffusion experiments [3-3], and more recently reintroduced by Hennig for 
the description of pulse sequences which have multiple RF pulses, separated by fixed time intervals 
and balanced gradients [3-4]. 

The phase increment θ created by a gradient (G) between RF pulses separated by a time (t) 
is given by

     θ t( )= γ
0

t

∫G t( )zdt , (3.15)

where z is the location across a voxel. The phase is a simple twist in the magnetization across the 
voxel. The application of multiple pulses and dephasing periods can therefore be compactly repre-
sented as a Fourier series with transverse (F) and longitudinal (Z) coefficients [3-5].
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The transverse magnetization after n pulses and n dephasing periods with phase increment 
θ can therefore be represented as

     M+ z( )=
n=−N

n=N

∑Fne
inzθ .  (3.16)

The longitudinal magnetization Mz after the nth pulse is given by

     Mz z( )=
n=−N

n=N

∑ Zne
inzθ TR( ) .  (3.17)

Note that Zn = Zn* , since Zn is always real and that the longitudinal “twists” are sinusoids.
We can therefore define the transverse magnetization phase twists as sub-states defined as 

follows:

     Fn =
0

1

∫Mxy z( )e− inzθdz , (3.18)

     F−n
* =

0

1

∫Mxy
* z( )e− inzθdz , (3.19)

and the longitudinal magnetization sinusoids as sub-states defined as follows

    Zn =
0

1

∫Mz z( )e− inzθ t( )dz.  (3.20)

These sub-states can be easily propagated in MR sequences according to the following 
transition rules [3-6] from the pre-pulse state (negative subscript) to the post-pulse state (positive 
subscript). 

1. Gradients increase Fn, i.e., dephasing: Fn+  → Fn– +1, or decrease F–* n+ , i.e., rephasing: 
F–* n+ , → F–* n– +1 .

2. RF pulses mix sub-states between Fn, F–n, and Zn as given in the transition matrix:

Fn
F−n
*

Zn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

=

cos2 α
2

⎛
⎝⎜

⎞
⎠⎟

e2iφsin2 α
2

⎛
⎝⎜

⎞
⎠⎟

−ieiφsin α( )

e−2iφsin2 α
2

⎛
⎝⎜

⎞
⎠⎟

cos2 α
2

⎛
⎝⎜

⎞
⎠⎟

ie− iφsin α( )
−i
2
e− iφsin α( ) i

2
eiφsin α( ) cos α( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Fn
F−n
*

Zn

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−

               . (3.21)

3. T2 relaxation attenuates Fn, i.e., Fn
+ → Fn+1

− = E2Fn
+ , 	, where E2 = e

− t
T2 .

4. T1 relaxation attenuates Zn, i.e., Zn
+ → Zn

− = E1Zn
+ , for n ≠ 0, where E1 = e

− t
T1 .

3.2 BLOCH EQUATION SIMULATIONS
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5. T1 relaxation results in recovery of Z0+ , i.e., Z0
+ → Z0

− = E1Z0
+ +M0 1−E1( ) . 

Let us consider a simple pulse sequence comprising of two RF pulses, applied around the 
x-axis (ϕ = 0). The initial magnetization is at equilibrium, i.e., M0 = Mz = Z0 =1. The magnetization 
after the first excitation pulse (α1) will be F0+ = –i sin(α1), F0* + = i sin(α1), and Z0+ = cos(α1). This 
corresponds to a transverse magnetization (Mxy) of amplitude sin(α1), aligned along the –y-axis and 
a remaining longitudinal magnetization (Mz) of amplitude cos(α1). During the time period t = τ, F0+ 
will evolve into E2F1

– and F0* + will evolve into E2F1*  
– . Applying the transition matrix for the second 

RF pulse (α2) will result in two fully dephased states F1
+  and F–* 1

+ :

    F1
+ = iE2cos

2 α2

2
⎛

⎝⎜
⎞

⎠⎟
sin α1( ) , (3.22)

    F−1
*+ = E2sin

2 α2

2
⎛

⎝⎜
⎞

⎠⎟
sin α1( ) . (3.23)

Since F–* 1
+  has a reversed phase history during the next time period τ, the F–* 1

+  state will refo-
cus to form a spin echo (F0), at time t = 2τ, of amplitude E2sin2 (

α2)sin(α1), while the F1
+  state will 

continue to dephase generating the F2
– sub-state. As well as producing the two dephased transverse 

sub-states the second RF pulse will also create a further Fo sub-state, that will continue to dephase, 
and an additional longitudinal state (Z1). 

If α1 = π and α2 = π, then F0 = 1.0×E2, i.e., the classic 90°–180° spin echo. However, if α1 = 
α2 = π = 90°, then F0 = 0.5E2. This is the classic Hahn 8-ball echo described previously.

3.2.1 EXTENDED PHASE GRAPH

A simple way to represent these various states is to use an extended phase graph (EPG), where 
the dephasing of the transverse magnetization is plotted against time [3-7]. Between RF pulses 
the phase is a straight line with a slope proportional to the precession rate. The EPG essentially 
depicts magnetization in spatial Fourier space, with the calculation of the echo amplitudes obtained 
through the above matrix multiplications. The EPG for a 90°–180° spin echo is shown in Figure 3.7 
while the EPG for two α 90° pulses is shown in Figure 3.8.

The EPG for a gradient echo sequence comprising of a train of identical α pulses is shown in 
Figure 3.9. Note that the third echo is combination of the primary free-induction decay from the 
third α pulse together with the rephased F–* 1

+ magnetization from the second α pulse.

 2   

 2
2
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Figure 3.7: Simple extended phase graph for a 90°–180° spin echo with gradient dephasing/rephasing.
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Figure 3.8: EPG for a 90°-90° Hahn echo with gradient dephasing/rephasing.

 Additional spoiler gradients may also be included to ensure complete dephasing across a 
voxel. If we continue our EPG simulation for 65 α pulses and we look at the amplitude of the 
echoes (Fo state) we see strong oscillations at the beginning of the pulse train that converge to a 
steady state after about 40 pulses (Figure 3.10a). Figure 3.10b shows the generation and flow of the 
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transverse states over the first 65 RF pulses. There is a linear increase in the number of pathways. 
Note that the term “gradient spoiling” is a misnomer, gradients cannot destroy transverse magneti-
zation they can only dephase it; only effects such as RF pulse rotations, relaxation or diffusion can 
destroy magnetization.
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Figure 3.9: EPG for a train of four α pulses each comprising a gradient recalled echo sequence. Note 
the third echo (pink pathway) is a combination of the primary free-induction decay from the third α 
pulse together with the rephased F–* 1

+  magnetization from the second α pulse (yellow pathway).
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Figure 3.10: (a) Amplitudes of the echo (F0) for the first 65 α pulses for a gradient-spoiled gradient 
echo. (b) The full extended phase graph showing the amplitude of the transverse magnetization states.
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RF-spoiling involves the use of a train of RF pulses with a specific phase increment scheme 
that effectively destroys the residual transverse magnetization. The phase of the RF excitation pulse 
(ϕj) is incremented, usually quadratically, on each excitation according to the following scheme: 

    ϕj = 12  ϕ0 (j2 + j + 1), j = 0,1,2,…  (3.24)

There are certain “magic numbers” for the for the phase increment (ϕ0) that can produce 
excellent spoiling across a range of T1, T2 and excitation flip angles [3-8] and is equal to the steady-
state transverse magnetization for a perfectly spoiled sequence, i.e., no T2 contribution, as given by 
the Ernst equation for a flip angle α: 

    Mss =M0

1−e
−TR
T1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1− cos α( )ie−
TR
T1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

isin α( ) . (3.25)

Figure 3.11 shows the calculated signal as a function of quadratic phase increment. Note 
the good agreement between the simulation and the Ernst signal at ϕ0 = 117°. This value works 
well across a range of T1 and T2 values. Figure 3.12 shows the EPGs for three RF-spoiled gradient 
echo sequences with different phase increments. A vlaue of 117° is commonly used in commercial 
MR systems.
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Figure 3.11: Signal in a RF-spoiled gradient echo sequence as a function of quadratic phase incre-
ment. The Ernst signal for perfect spoiling is also shown (red line). Note that both signals match at a 
phase increment of 117°. The simulated parameters were: T1 = 112 ms, T2 = 97 ms, TE = 3.3 ms, and 
TR = 7.1 ms.

 
RF Spoiled GRE RF Spoiled GRE RF Spoiled GRE

Refocusing Pulse Number n Refocusing Pulse Number n Refocusing Pulse Number n

F n F n F n

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

TR = 1.0 ms, T1 = 500.0 ms, T2 = 500.0 ms, flip = 60˚, inc = 2˚ TR = 1.0 ms, T1 = 500.0 ms, T2 = 500.0 ms, flip = 60˚, inc = 5˚ TR = 1.0 ms, T1 = 500.0 ms, T2 = 500.0 ms, flip = 60˚, inc = 117˚ 

ϕ = 5˚ ϕ = 117˚

Figure 3.12: This figure shows RF-spoiled EPGs for three different RF spoiling increments (ϕ0). Note 
how the spoiling creates a sinusoidal oscillation of spreading and confluence with the oscillation fre-
quency increasing with increased phase increment demonstrating the cancellation of the steady-state 
transverse component. 

As mentioned before FSE/TSE sequences can be performed with reduced and/or variable 
refocusing flip angles. For example, the use of refocusing pulses < 180° give rise to a number of co-
herence pathways which lead to the creation of a so-called pseudo-steady-state (PSS) [3-9]. Figure 
3.13a shows the echo amplitudes for an echo train using 90° refocusing pulses. Note the steady-state 
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amplitude of 0.71, which is approximately 30% less than the amplitude for a sequence using 180° 
refocusing pulses, but with effectively a 75% reduction in power deposition (since power deposition is 
proportional to the square of the flip angle). Also note the initial signal modulation during the initial 
echoes. Figure 3.13b shows the EPG demonstrating the evolution of the transverse sub-states.
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Figure 3.13: (a) Echo amplitudes during a 70 pulse CPMG sequence, with a flip angle of 90° and 
ignoring relaxation effects. Note the signal modulation during the initial echoes. (b) Extended phase 
graph (EPG) for a 70 pulse CPMG sequence using a refocusing flip angle of 90°, showing the evo-
lution of the transverse substates. The color scale is proportional to the magnitude of Fn. Relaxation 
effects are ignored in this example.

3.3 CONVENTIONAL METHODS FOR RELAXOMETRY
Here we will discuss conventional MRI methods for the quantification of relaxation times, as well 
as introduce new methods for generating additional contrasts from a single-pulse sequence.

3.3.1 INVERSION RECOVERY ESTIMATION OF T1

The gold standard method for measuring T1 relaxation is the multiple inversion recovery (IR) 
method, discussed in Section 3.1.4. In the IR method the initial longitudinal magnetization M0 is 
inverted by the application of an RF pulse that nutates it by 180°. The z-component of the magne-
tization (Mz) then recovers with time (t) via T1 relaxation as described by the Bloch equation that 
assumes that T1 relaxation follows first order rate kinetics, i.e., an exponential recovery,

    dMz t( )
dt

=
M0 −Mz t( )

T1
. (3.26)

3.3 CONVENTIONAL METHODS FOR RELAXOMETRY
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After a selected inversion time (TI), Mz is nutated into the transverse plane so it can be mea-
sured. In an IR-based imaging sequence this usually involves a spin echo sequence to sample the 
nutated Mz with the shortest possible echo time (TE) to minimize any transverse dephasing, i.e., 
T2 effects. Since Mz has been nutated into the transverse plane it is necessary to then wait enough 
time, i.e., the repetition time (TR) needs to be long enough, for Mz to fully recover back to thermal 
equilibrium, i.e., M0. Once this has happened the whole experiment can be repeated using a differ-
ent inversion time. In this way the T1 recovery curve can be sampled at several T1 values and the T1 
can be estimated by fitting the following equation to the data 

    S TI( )= S0 1− Ae
−TI
T1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  (3.27)

where S(TI) is the measured signal intensity at each T1 value and S0 is the signal that, theoretically, 
could be obtained from M0. Effectively, S0 can be considered to represent the relative proton density 
(ρ). In addition, the RF flip angles need to be exact and uniform across the region being sampled. 
Errors can be due to a variety of factors including mis-calibration of the pulse amplitude and poor 
slice profile. These effects are most commonly addressed using adiabatic inversion pulses, such as the 
hyperbolic secant, that will perfectly invert the magnetization for a B1 field above a certain thresh-
old. This pulse also gives a uniform excitation profile across the imaging slice. In the case of perfect 
inversion, the factor A, the inversion efficiency, is 2. However, in case of an imperfect inversion this 
parameter can also be fitted in addition to T1 and S0.

A complication of using the IR method is that when TI < 0.693 ∙ T1, Mz is negative. Since 
it is usually the magnitude signal that gets reconstructed this negative sign information is lost, 
i.e., only the modulus is observed. While it is possible to fit the equation to the modulus data it is 
preferable, in order to reduce the variance in the fitted T1 value, to restore the polarity of the data. 
There are several methods described in the literature to achieve this result. Figure 3.14a shows 
the above equation fitted to (a) the magnitude data and (b) the polarity restored data obtained at 
11 different inversion times ranging from 50–4,000 ms. An advantage of using modulus data in 
clinical IR-prepared imaging is that by judicious selection of TI it is possible to null the signal 
from a particular tissue. For example, in Figure 3.14a the signal is nulled at approximately 300ms. 
In clinical MR neuroimaging the TI value is often set to null the signal from cerebrospinal fluid, 
which typically has a very high signal. Such a sequence is known as FLuid Attenuated Inversion 
Recovery (FLAIR).
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Figure 3.14: Inversion recovery data acquired at eleven different inversion times ranging from 50– 
4,000 ms. The T1 of this sample is estimated to be 438 ms, S0 is estimated to be 2,776 and the in-
version efficiency is 1.6: (a) shows the magnitude data where the negative magnetization for the first 
three inversion times is shown as the absolute value; (b) shows the situation where the polarity of the 
first three data points in corrected; and (c) shows the magnitude images of a test object containing gels 
with different relaxation times at each TI.

The IR method ideally requires TR > 5 ∙ T1, so that Mz is fully recovered before the next 
experiment. This also has the advantage that any residual transverse magnetization will have de-
cayed away before the next inversion pulse. However, this means that the use of a standard spin 
echo as the readout method is not particularly time efficient. Alternative readout strategies have 
been proposed including echo-planar imaging (EPI) where the entire image is acquired following 
a single inversion pulse. This has the advantage that the EPI readout does not affect the recovery 
of Mz. However, there may be image quality issues, particularly distortions, associated with the use 
of EPI readouts. Alternatively, fast or turbo spin echo readouts can be used. It is possible to acquire 

3.3 CONVENTIONAL METHODS FOR RELAXOMETRY
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an entire image from a single inversion using half-Fourier single-shot fast spin echo (SSFSE) 
acquisitions or HASTE [3-2, 3-10, 3-11]. The main disadvantage of these types of acquisitions is 
the presence of T2 decay during the echo train that can result in image blurring. Finally, gradient 
echo readouts can be used. However, since gradient echo sequences typically use reduced flip angles 
excitations, i.e., <90°, they affect the recovery of Mz, accelerating the relaxation and giving rise to 
incorrect T1 values unless this effect is addressed in the calculation. In addition, if multiple gradient 
echo readouts are used after a single inversion pulse, Mz will be changing during the readout period 
potentially causing artifacts in the image.

There are numerous variants of the IR-prepared methods that use a variety of readout strat-
egies in either 2D or 3D. The readouts are often segmented meaning that a fraction of the total 
number of lines of raw data required to reconstruct the image(s) are acquired following a single 
inversion pulse. The acquisitions are then repeated with several different TIs in order to estimate T1.

3.3.2 FASTER ESTIMATION OF T1 WITH INVERSION RECOVERY: LOOK-
LOCKER METHODS

The Look-Locker (LL) methods differ from the IR methods described above in that they acquire 
data at multiple TIs from a single inversion pulse, i.e., during a single recovery period [3-12]. The 
readout method is typically a segmented, low flip angle, gradient echo. However, like the gradient 
echo readout described above the effect of the low flip angle pulses, is to accelerate the T1 recovery. 
The result is that the observed T1 relaxation time, often referred to as T1* , depends upon the TR 
of each gradient echo readout and the flip angle. To estimate a true T1 a LL correction is applied 
where T1 = (A-1)T1* . The parameter A is obtained from fitting  Equation 3.27 to the data. The use 
of a balanced steady-state free precession (bSSFP) gradient echo readout perturbs the Mz recovery 
less and is the method of choice in a variant of the LL method used for myocardial T1 mapping, 
commonly referred to as MOdified Look-Locker Imaging (MOLLI) [3-13]. The MOLLI method 
acquires several single-shot bSSFP acquisitions synchronized to the subject’s ECG, interleaved 
with periods of recovery. The original MOLLI method implemented a 3(3)3(3)5 scheme, taking 17 
heartbeats (HB), the numbers refer to the number of images acquired in subsequent HBs, while the 
numbers in brackets refer to the number of recovery HBs. The data acquisition scheme is shown in 
Figure 3.15. Other, potentially more efficient, schemes have also been proposed such as 5(3)3. One 
other notable alternative to MOLLI is the SAturation single-SHot Acquisition (SASHA) method 
that uses 90° saturation pulses rather than 180° inversion pulses and increments the time between 
the saturation pulse and the bSSFP readout in typically 10 heartbeats. The first image is acquired 
without a 90° pulse to provide an estimate of the fully relaxed magnetization.
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Figure 3.15: MOdified Look Locker Imaging (MOLLI): (a) illustrates the acquisition strategy for the 
classic MOLLI sequence that requires 17 heartbeats (HB). Each image acquisition is based upon a 
single-shot balanced SSFP sequence (ss-SSFP) acquired at end-diastole. The sequence employs three 
180° inversion pulses. Following the first trigger the first image is acquired with a TI of 100 ms, the 
subsequent image is acquired with a TI (TI1) of 100 ms + 1 × HB interval and the third image with a 
TI of 100 ms + 2 × HB intervals (red points). There is then a magnetization recovery period of 3 HB 
intervals, followed by a further three acquisitions but this time with the initial TI (TI2) set to 200 ms 
(green points). After three further acquisitions and a second recovery period there is a final set of im-
ages acquired with an initial T1*  (TI3) of 350 ms (blue points); (b) shows the relationship of the acqui-
sitions to the T1 recovery curve. A magnitude inversion recovery model is fitted to the data points to 
determine the T1; and (c) Shows a calculated myocardial T1 map.

3.3.3 ESTIMATIONS OF T1 WITH VARIABLE FLIP ANGLE GRADIENT 
ECHO

An alternative method to estimate T1 is to use a short TR, RF-spoiled, gradient echo sequence with 
different flip angles. The advantage of an RF-spoiled gradient echo sequence is that even in the 
case where TR ≪ T2 there is no residual transverse magnetization. This means that the signal is a 
function of T1, TR and the flip angle (α) if the TE is kept very short. T1 can therefore be calculated 
by acquiring several RF-spoiled gradient echo images with different flip angles and fitting the fol-
lowing equation, known as the Ernst equation, to the data 
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This method is most commonly used with 3D RF-spoiled gradient echo sequences in which 
the slice profile is perfectly rectangular. The method is still sensitive to RF pulse calibration errors, 
so it is advisable to map the B1 transmit field variation across the field-of-view using an appropriate 
B1-mapping technique. The resulting maps can then be used to spatially correct the estimated T1 
values. Figure 3.16 shows the above equation fitted to data obtained using a 3D spoiled gradient 
echo sequence excitation flip angles of 2°, 5°, 12°, 17°, 22°, and 27°. 
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Figure 3.16: Data obtained using a 3D spoiled gradient echo sequence with a TE of 1.9 ms and a TR 
of 5.1 ms and excitation flip angles of 2°, 5°, 12°, 17°, 22°, and 27°. (a) In this example, the T1 was 
estimated to be 314 ms and S0 estimated to be 4,860, and ((b) shows the images of a test object con-
taining gels with different relaxation times at each flip angle.

3.3.4 T2 ESTIMATIONS WITH MULTIPLE-ECHO SPIN ECHO

The gold-standard for measuring T2 relaxation is the multiple-echo spin echo (MESE) method. 
The initial longitudinal magnetization M0 is tipped into the transverse plane by the application of 
a 90° RF pulse, where it dephases due to T2 relaxation. Following a time τ after the 90° excitation 
pulse a 180° pulse is used to flip the dephased transverse magnetization about the axis of the pulse. 
This phase reversal means that the previously dephasing magnetization precesses in the opposite 
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sense and naturally rephases producing a spin echo signal a further time τ later, i.e., 2τ after the 
90° pulse. This time is referred to as the echo time (TE). The effect of the refocusing pulse is to 
effectively reverse the dephasing due to static field non-uniformities. However, the dephasing due 
to intrinsic T2 relaxation is irreversible and the transverse magnetization (Mxy) will decay with time 
as described by the Bloch equation. Again, assuming first-order rate kinetics the T2 relaxation can 
be expressed as follows:

    dMxy t( )
dt

= −
Mxy t( )
T2

. (3.29)

It is therefore possible to quantify T2 relaxation by forming echoes at different TEs by in-
creasing the time τ between the 90° excitation pulse and the refocusing pulse. However, since a 
long TR is required to allow full Mz recovery before the next excitation this is very time consuming. 
In 1954, Carr and Purcell showed that a spin echo sequence using sequential refocusing pulses 
could create a train of sequential echoes, i.e., at increasing TEs, from the same excitation pulse. This 
combination of pulses can be written as 90°x – τ – [180°x – 2τ]n and is known as a Carr-Purcell 
sequence. The subscript x denotes the axis along which the pulse is applied in the transverse plane. 
This method has the advantage that as well as reducing the time to acquire multiple echoes, it also 
dramatically reduces the effect of molecular self-diffusion on the determination of T2, since diffu-
sion only occurs during the period 2τ.  In this way the T2 decay curve can be sampled at several TE 
values and the T2 can be estimated by fitting the following equation to the data 

    S TE( )= S0e
−TE
T2 , (3.30)

where S(TE) is the measured signal intensity at each TE value and S0 can be considered to represent 
the relative proton density (ρ). This equation only applies if the TR is sufficiently long TR > 5 ∙ T1 
to ensure that that Mz is fully recovered before the next experiment.

As with T1 mapping any miscalibration of the RF pulse amplitude can result in erroneous 
measurements of T2. This problem was identified in the early days of NMR and can be addressed 
using an appropriate RF phase cycling scheme. The preferred embodiment is the so-called Carr–Pur-
cell–Meiboom–Gill (CPMG) method, [90°x] – τ – [180°y - 2τ]n, where n is the number of echoes.

Within this method the excitation and refocusing pulses are applied orthogonally to each 
other. This simple modification makes the accuracy of the 180° refocusing pulse less critical. How-
ever, when using slice-selective refocusing pulses the required flip angle falls off toward the edges 
of the slice. Ideally the refocusing pulses should be non-selective, often known as “hard” pulses, but 
this is obviously incompatible with interleaved multi-slice T2 mapping. A potential compromise 
is to make the slice width of the refocusing pulse double that of the excitation pulse and use an 
appropriate spacing between the multiple slices. It should also be noted that any spins that do not 
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receive a perfect 180° refocusing will ultimately generate stimulated echoes (see Section 3.1.3) in a 
long train of echoes, that may introduce a T1 weighting into the echo train resulting in erroneous 
T2 values. Figure 3.17 shows the above equation fitted to 16 echoes of a CPMG acquisition. 

3.3.5 MULTIPLE-ECHO FAST/TURBO SPIN ECHO

Given the relatively long acquisition time to perform quantitative T2 measurements, several ap-
proaches have been used to try and reduce the acquisition time. It is possible to modify a fast or 
turbo spin echo (FSE/TSE) sequence, in which the echoes in an CPMG echo train are individually 
phase encoded to reduce the overall acquisition time, to create a fast, multi-echo. acquisition. For 
example, an FSE sequence with a total echo train length (ETL) of 16 could divide the acquisition 
into 4 different echo images, each comprised of 4 phase-encoded echoes. 
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Figure 3.17: (a) Shows data acquired at 16 echoes of a CPMG acquisition with TEs at a multiple of 
5.35 ms and a TR of 2500 ms. The T2 was estimated to be 55.8 ms and S0 is estimated to be 2,962. (b) 
Shows the images of a test object containing gels with different relaxation times at each TE.

3.3.6 T2 ESTIMATIONS WITH T2 PREPARATION

An alternative to multi-echo readouts is to encode the T2 weighting into a preparation scheme 
that can be applied prior to a time efficient readout scheme. For example, quantitative myocardial 
T2 mapping has been performed with a T2-prepared single-shot SSFP readout The T2 preparation 
[3-14] consists of a Malcolm Levitt (MLEV) sequence [90°x] – τ – [180°x] – 2τ – [180°x] – 2τ – 
[–180°x] – 2τ – [–180°x] – τ – [–90°x], where τ = TE/8.
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The 180° pulses are composite pulses {[90°x] – [180°y] – [90°x]} and the final -90° “tip-up” 
pulse is also composite {[270°x] – [-360°x]} to provide more uniform off-resonance behavior. Such 
a preparation scheme can also be applied to volumetric (3D) sequences as well. The T2 is calculated 
from a small number of different TE values.

3.3.7 T2*   ESTIMATIONS WITH MULTIPLE TES

As mentioned above, T2*  relaxation results primarily from non-uniformities in the static magnetic 
field. These non-uniformities may be due to limitations in the achievable homogeneity of the MRI 
system magnet itself or from susceptibility-induced distortions produced by the subject being 
imaged. The former is minimized by the process of “shimming” the magnet, where small pieces of 
steel (known as “shims”) are appropriately positioned inside the bore of the magnet to compensate 
for the inherent design and manufacturing limitations. The latter is an inevitable consequence of 
the magnetism associated with tissue or other materials placed inside the magnetic field. There are 
several diseases that can affect T2*  relaxation such as iron overload in the heart and/or liver. Quan-
titation of the T2*  relaxation time can be used as a biomarker of disease progression and to quantify 
the tissue iron concentration.

The gold-standard for measuring T2*   relaxation is a multi-echo gradient echo sequence. Since 
a gradient echo forms the echo signal through a gradient reversal rather than an RF refocusing pulse 
the contribution due to static field non-uniformities is not eliminated and the T2*  decay curve can be 
sampled at several TE values and the T2*  can be estimated by fitting the following equation to the data 

    S TE( )= S0e
−TE
T2
*

.  (3.31)

Multiple echoes are generally achieved by reversing the polarity of the frequency encoding 
gradient. Due to the difference in precessional frequencies between hydrogen nuclei in water and 
fat the signal from a multi-echo gradient echo can also be modulated by their periodic coming 
in- and out-of-phase. Care should therefore be taken in considering which echoes to use in the 
estimation of tissue T2*  relaxation times.

3.4 MULTI-PARAMETRIC QUANTITATIVE MRI (mqMRI)
There has always been an interest in reducing the acquisition time of MRI—while maximizing 
the number of image contrasts. New methods can acquire additional quantitative maps efficiently 
within a single acquisition. 

New multi-parametric quantitative mqMRI methods have included: multi-step or inter-
leaved (ZTE), SSFP (Fingerprinting), and FSE contrast based (MAGIC).

3.4 MULTI-PARAMETRIC QUANTITATIVE MRI (mqMRI)
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3.5 INTERLEAVED CONTRASTS
The simplest method to obtain multiple contrasts with a single scan is to interleave more than one 
type of contrast generation strategy within a single sequence [3-15–3-17]. Two examples of this 
are shown in Figure 3.18, which obtains both T2*  and T2 contrast by using a T2 preparation with 
multiple variable TEs (τ in Figure 3.18a), and reading out at multiple readout time points (TEr). 
MASE [3-16] and SAGE-EPI [3-17] acquire additional GRE data between the 90° and inversion 
pulses. These methods become complicated for quantification due to inaccuracies of slice profiles, 
signal refocusing during T2*  decay, and T2 and T2*  decay during each readout [3-16]. NEATR-SMS 
[3-18] combines deep learning with SAGE-EPI to obtain parametric maps.

 

TE0 + τ

180˚ 180˚
90˚ 90˚

EPI EPI EPI EPI EPI EPI EPI EPI

TE1 TE1TE2 TE2TE3 TE3 TE4 TE5

(a) (b)

MASE SAGE-EPI

Gx
Gy
Gz

RF

Figure 3.18: A straightforward method for generating multiple types of contrasts within a single se-
quence is to interleave the contrasts available, as is done with (a) MASE and (b) SAGE, where data 
with different T2 and T2*  contrasts are obtained. 

EPI-mix

T1-FLAIR GRE ×2Diffusion

Full Fourier Partial Partial

  

Figure 3.19: EPI-mix: An EPI method that uses several preparation modules to interleave T1, T2 and 
diffusion contrast. The acquisition consists of fully sampled and undersampled EPI datasets that are 
combined to generate maps. One possible ordering of contrasts and EPI acquisitions is shown here, 
with GRE repeated multiple times in the third block.
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EPI-mix [3-19] is another EPI method with mixed contrast (Figure 3.19). EPI-mix incor-
porates multiple “modules” that are repeated throughout its acquisition to obtain multiple contrasts. 
Each module might be put in different orders, and acquire either partial or fully sampled k-space 
data. The modules incorporate T1-FLAIR, T2-FLAIR, diffusion, and GRE contrasts. Portions of 
each module might be combined to generate additional contrasts. The data can be used to fit signal 
models to generate quantitative maps.

3.5.1 3D RADIAL WITH ZERO ECHO TIME 

Zero-echo time (ZTE) MRI involves a radial sequence that begins its k-space trajectory during 
the RF excitation resulting in the center of k-space being missed. This data is separately acquired 
or estimated.  ZTE mqMRI (also known as “3D Silent Data Mining”) [3-20] involves two steps: 
a T1-dominated step after an inversion pulse and a T2-dominated step after T2 preparation (Figure 
3.18). After each preparation, the readout is repeated during a train of pulses (each with flip angle 
α). The signal model can then be fitted to the data in order to obtain quantitative maps. The train 
of pulses follows the equation

  Mz ,n =Mz ,0E1
ncosnα +M0 1−E1( ) 1−E1ncosnα( )/ 1−E1cosα( ) . (3.32)

This model assumes that Mz,n after the nth inversion pulse is perfect, and is therefore Mz,n+ = 
– Mz,n–. Similarly, it assumes that after T2 preparation, the signal is attenuated by T2, such that Mz,n+ 
= – Mz,n– e–TE/T2. The model is then fit by least-squares minimization to obtain values for T1 and T2.
 

180˚180˚

90˚

3D Silent Data Mining

Inversion Preparation T2 Preparation

k-Space Readout Recovery k-Space Readout

RF

Gx

α α α α α α α

Figure 3.20: “Silent data mining” is a zero echo time sequence that acquires T1 weighted followed by 
T2 weighted data that can be fit to generate quantitative maps. 

ZTE mqMRI has low (so considered to be essentially silent) acoustic noise due to the radial 
acquisition. The low flip angles used will generate a native proton density (ρ) contrast with minimal 
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cos cos cos
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T1 saturation [3-21, 3-22]. 3D ZTE mqMRI may be of interest for lung imaging, although it has 
not yet been demonstrated for that purpose.

3.6 MULTI-PARAMETRIC SSFP

3.6.1 STEADY-STATE METHODS

As previously discussed, SSFP can create T1 and T2 contrast, which enables the generation of multi-
ple contrasts simultaneously. The small flip angle, steady-state signal approximation of SSFP [3-23] 
is (where E1 and E2 are given in Equation 3.21) 

   Ssteady−state = S0
1−E1( )sinα

1− E1 −E2( )cosα −E1E2
. (3.33)

An inversion pulse before the SSFP sequence generates additional T1 contrast [3-24, 3-25], 
which then follows an equation related to the time after the pulse—described by the nth repetition 
of the TR: 

   S nTR( )= Sss 1− S0 /Sss ⋅exp −nTR
T1
*

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (3.34)

T1
*  in this equation is a combination of both T1 and T2,

   T1* = 1/T1cos
2 α /2( )+1/T2sin2 α /2( )⎡⎣ ⎤⎦

−1
. (3.35)

The signal is then fitted to determine T1 and T2.
Linear least squares fitting is a fast computational method for calculating the intercept, a, and 

slope, b, from a vector of known parameters, x, and measured parameters, y,

             𝒚 = � + 𝒙 × �. (3.36)

The DESPOT1 method [3-26] is a common method for obtaining quantitative relaxation 
values by linearizing Equation (3.35), but using a spoiled gradient echo sequence such that E2 is 
zero. DESPOT1 linearisation results in an equation of the form 

    
S α( )
sinα

=M0 1−E1( )+ 	 S α( )
tanα

E1 , (3.37)

where S is the signal obtained from measurement, E1 is equal to exp(–TR/T1), and α can either 
assumed from the pulse sequence setting or as a measured parameter. For this linearization, the 

S S

cos sin
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intercept is a = M0(1–E1) and the slope is b = E1. After fitting for the slope, b, a T1 measurement 
can be obtained: 

     T1 = −TR/ln b⎡⎣ ⎤⎦ . (3.38)

Using a linear least squares (LLS) fit, the vectorized calculation of the slope from the x and 
y vectors is 

     b=
N∑ xi yi( )−∑xi∑ yi
N∑ xi

2( )− ∑xi( )2
.  (3.39)

More advanced fitting methods can be used, which are discussed in Chapter 5. 
DESPOT2 is similar to DESPOT1 [3-26], although it uses SSFP, where E2 is not null in 

Equation (3.35). The linearized form of DESPOT2 is 

 
S α( )
sinα

=M0 1−E1( ) E2
1−E1E2

+
S α( )
tanα

(E1 −E2)/ 1−E1E2( )  × (𝐸1 – 𝐸2)/(1 – 𝐸1 𝐸2),              (3.40)

where, in this case, E2 = exp(–TR/T2). DESPOT2 is related to DESPOT1, although with more 
parameters, with the intercept a = M0 (1 – E1)              and the slope b = (E1 – E2)/(1 – E1E2). 
DESPOT2 uses knowledge of T1 from a prior fit (such as from a DESPOT1 measurement) to 
obtain the T2 values from the fitted slope. T2 is then equal to

    T2 = −TR/ln
b−E1
bE1 −1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (3.41)

Both DESPOT1 and DESPOT2 are prone to errors from flip angle estimation inaccuracies, 
and a flip angle map is often used to reduce these errors. DESPOT2 is also affected by any addi-
tional inaccuracies from T1 estimations.

3.6.2 TRANSIENT-STATE METHODS

Transient state imaging involves acquiring data whilst the magnetization is evolving from prior 
RF pulses, i.e., the magnetization is not in  a steady-state. MR Fingerprinting (MRF) [3-27] is a 
form of transient-state imaging that uses inversion recovery preparation followed by a variable flip 
angle SSFP (IR-vSSFP) readout to generate multiple image contrasts (see Figure 3.21). The vari-
able flip angles follow a pseudo-random pattern. MR Fingerprinting then uses a Bloch simulation 
signal variation, often using the EPG formalism as discussed above, to generate a “dictionary.” The 
dictionary is a look-up table of possible signal patterns for different possible T1 and T2 values. The 
acquired signal patterns and generated signal patterns are “matched” to find the optimum fit. MRF, 
and other transient state methods, can be performed with either fully sampled or undersampled 

E2
1 – E1E2
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SS
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k-space. The latter is commonly used to increase acquisition speed. Other parameters might be 
incorporated and randomized into both the acquisition and simulation, such as B1, B0, TR, or TE. 
Transient-state contrast decoding is discussed more fully in Chapter 5.

MRF gets its name from the random looking transient signal evolutions, which appear like 
“fingerprints,” and are unique for different T1s and T2s. The relative proton density (ρ) is the scaling 
factor used to match the simulated signal evolution with the measured signal. 
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Figure 3.21: (a) A pseudorandom variation of flip angles and TR that is commonly used for MRF 
repeatability studies. The TR is sometimes held fixed rather than randomized. (b) An image at one 
time point within the 979 frames. Undersampling artifact can be seen, as well as the multiple contrasts 
between tissue. (c) A dictionary, for the same time point as in (a), showing the magnitude of the signal 
for different possible T1 and T2 values.

MR-STAT [3-28] (Magnetic Resonance Spin TomogrAphy in Time-domain) is similar to 
MRF, as it uses a pseudorandom flip angles in the steady state. MR-STAT reconstruction occurs within 
the k-space domain, rather than in the image domain as used in the MRF reconstruction method.

3.7 MULTI-PARAMETRIC FSE: syMRI/MAGIC

3.7.1 syMRI/MAGIC T1

SyMRI, also known as MAGnetic resonance Image Compilation (MAGIC) [3-29], uses the se-
quence “QRAP-MASTER” [3-30, 3-31] (“Quantification of Relaxation times And Proton density 
by Multiecho Acquisition of a Saturation Recovery using TSE Readout”). QRAP-MASTER 
begins its sequence with a saturation/inversion pulse before a turbo/fast spin echo readout, which 
generates two forms of contrast from the saturation and the excitation pulses (θ and α, respectively; 
see Figure 3.22). QRAP-MASTER is then repeated with variations in these two angles or with 
pulse timing differences.

 The QRAP-MASTER analytical solution can be found by separating the equation into two 
parts (and ignoring the 180⁰ pulses) along the T1 recovery curve, both equations are very similar:



71

   MTD =M0 − M0 −MTRcosθ( )e−TD/T1 , (3.42)

and

   MTR =M0 − M0 −MTDcosα( )e− TR−TD( )/T1 , (3.43)

where θ is the initial saturation pulse, which is commonly 120° or 180°; α is the excitation pulse, 
which rotates the longitudinal magnetization into the transverse direction for read-out; TR is the 
time between two θ pulses; and, TD is the time between the θ and α pulses. Note that TD is the 
delay time and could also be replaced with TI, or inversion time, with only a minor change of 
meaning.

These two equations are then combined to find the steady-state solution, which then gives 
the signal equation of QRAP-MASTER [3-30, 3-31]:

  STD = S0
1− 1− cosθ( )e−TD/T1 − cosθe−TR/T1

1− cosθ cosαe−TR/T1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− S0 − STR cosθ( )e−TD/T1 . (3.44)

This equation enables T1 and M0 (= S0) estimation through signal fitting. The M0 calculation is 
much more easily performed at the T2 estimation stage, as described in the next section.

3.7 MULTI-PARAMETRIC FSE: syMRI/MAGIC

cos

cos
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180˚ 180˚ 180˚

θ = 120˚ α = 90˚

T1 Preparation
T2 Refocusing

Spoiling

Echo 1 Echo 2 Echo 3

T2 Refocusing T2 Refocusing
Excitation

EPI EPI EPI

TD

TR

QRAP-MASTER (MAGIC, SyMRI)

Figure 3.22: The QRAP-MASTER sequence uses a slice selective saturation pulse for T1 preparation 
(= θ, often 120° or 180°), followed by an excitation pulse (= α, often 90°). A spin-echo acquisition 
accelerated with EPI follows these combined preparations. The acquisition is then repeated with mul-
tiple θ and α angles, which can then be fit to the equations in Section 3.7.

3.7.2 syMRI/MAGIC T2

The above equation describes the signal effects of T1, but not T2. The T2 refocusing pulses cause a 
standard exponential decay after slice selection. Very simply, the magnetization is

    STE = S 0( )e−TE/T2 . (3.45)

The starting magnetization, S(TE=0), is the magnetization immediately after the α pulse, 
which is attenuated by sin(α) from the rotation of the longitudinal magnetization into the trans-
verse plane. This signal is also attenuated by the flip angle, α, caused by the coil sensitivity profile. 
In order to obtain a relative proton density (ρ) measurement, the signal S(0) that results from T2 
exponential fitting should be scaled by these, such that the ρ is 



73

    
ρ
 

rPD=
S 0( )

α 	sin α( ) . (3.46)

This relative proton density is a proton density measurement that is affected by arbitrary 
scaling factors, such as those that the scanner introduces for digital processing. The inclusion of 
all factors would include additional receiver hardware, field strength, temperature, voxel size, and 
sample loading effects.

3.7.3 syMRI/MAGIC B1

An B1 effective field map is found from the ratio of the magnetization before and after the satura-
tion pulse, θ. The signal then depends only on the flip angle, θ:

    θeff= cos
−1 MT0

MTR

⎛

⎝⎜
⎞

⎠⎟
. (3.47)

This could be applied similarly for direct measurement of the flip angle α, although the slice 
selection complicates the estimation.

3.8 CONCLUSION
In this chapter, we discussed acquisition methods for the quantification of T1, T2, and T2* . We 
discussed both conventional and fast quantification MRI methods, although further discussion of 
advanced spatial and contrast reconstructions follows in the next chapters.

BIBLIOGRAPHY
[3-1] E. L. Hahn, Spin echoes, Phys. Rev., 80(4), pp. 580–594, Nov. 1950. DOI: 10.1103/Phys-

Rev.80.580. 41

[3-2] J. Hennig, A. Nauerth, and H. Friedburg, RARE imaging: A fast imaging method 
for clinical MR, Magn. Reson. Med., 3(6), pp. 823–833, Dec. 1986. DOI: 10.1002/
mrm.1910030602. 47, 60

[3-3] D. E. Woessner, Effects of diffusion in nuclear magnetic resonance spin‐echo experi-
ments, J. Chem. Phys., 34(6), pp. 2057–2061, Jun. 1961. DOI: 10.1063/1.1731821. 50

[3-4] J. Hennig, Echoes—how to generate, recognize, use or avoid them in MR-imaging se-
quences. Part I: Fundamental and not so fundamental properties of spin echoes, Concepts 
Magn. Reson., 3(3), pp. 125–143, Jul. 1991. DOI: 10.1002/cmr.1820030302. 50

[3-5] M. Weigel, Extended phase graphs: Dephasing, RF pulses, and echoes—pure and simple, 
J. Magn. Reson. Imaging, 41(2), pp. 266–295, Feb. 2015. DOI: 10.1002/jmri.24619. 50

BIBLIOGRAPHY

https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1103/PhysRev.80.580
https://doi.org/10.1002/mrm.1910030602
https://doi.org/10.1002/mrm.1910030602
https://doi.org/10.1063/1.1731821
https://doi.org/10.1002/cmr.1820030302
https://doi.org/10.1002/jmri.24619


74 3. CONTRAST ENCODING

[3-6] K. Scheffler, A pictorial description of steady-states in rapid magnetic resonance imag-
ing, Concepts Magn. Reson., 11(5), pp. 291–304, Jan. 1999. DOI: 10.1002/(SICI)1099-
0534(1999)11:5<291::AID-CMR2>3.0.CO;2-J. 51

[3-7] J. Hennig, Multiecho imaging sequences with low refocusing flip angles, J. Magn. Reson., 
78(3), pp. 397–407, Jul. 1988. DOI: 10.1016/0022-2364(88)90128-X. 52

[3-8] Y. Zur, M. L. Wood, and L. J. Neuringer, Spoiling of transverse magnetization in steady-
state sequences, Magn. Reson. Med., 21(2), pp. 251–263, Oct. 1991. DOI: 10.1002/
mrm.1910210210. 55

[3-9] D. C. Alsop, The sensitivity of low flip angle RARE imaging, Magn. Reson. Med., 37(2), 
pp. 176–184, Feb. 1997. DOI: 10.1002/mrm.1910370206. 56

[3-10] R. F. Busse, S. J. Riederer, J. G. Fletcher, A. E. Bharucha, and K. R. Brandt, Interac-
tive fast spin-echo imaging, Magn. Reson. Med., 44(3), pp. 339–348, Sep. 2000. DOI: 
10.1002/1522-2594(200009)44:3<339::AID-MRM1>3.3.CO;2-E. 60

[3-11] R. C. Semelka, N. L. Kelekis, D. Thomasson, M. A. Brown, and G. A. Laub, HASTE 
MR imaging: Description of technique and preliminary results in the abdomen, J. Magn. 
Reson. Imaging, 6(4), pp. 698–699, Jul. 1996. DOI: 10.1002/jmri.1880060420. 60

[3-12] M. Karlsson and B. Nordell., Analysis of the Look-Locker T1 mapping sequence in dy-
namic contrast uptake studies: simulation and in vivo validation, Magn. Reson. Imaging, 
18(8), pp. 947–954, 2000. DOI: 10.1016/S0730-725X(00)00193-4. 60

[3-13] D. R. Messroghli, A. Radjenovic, S. Kozerke, D. M. Higgins, M. U. Sivananthan, and J. 
P. Ridgway, Modified Look-Locker inversion recovery (MOLLI) for high-resolutionT1 
mapping of the heart, Magn. Reson. Med., 52(1), pp. 141–146, Jul. 2004. DOI: 10.1002/
mrm.20110. 60

[3-14] P. Kellman, A. H. Aletras, C. Mancini, E. R. McVeigh, and A. E. Arai, T2-prepared 
SSFP improves diagnostic confidence in edema imaging in acute myocardial infarction 
compared to turbo spin echo, Magn. Reson. Med., 57(5), p. 891, May 2007. DOI: 10.1002/
mrm.21215. 64

[3-15] R. D. Newbould et al., Perfusion mapping with multiecho multishot parallel imaging 
EPI, Magn. Reson. Med., 58(1), pp. 70–81, Jul. 2007. DOI: 10.1002/mrm.21255. 66

[3-16] C. Wang et al., Simultaneous dynamic R2, R2’, and R2* measurement using periodic π 
pulse shifting multiecho asymmetric spin echo sequence moving estimation strategy: A 
feasibility study for lower extremity muscle, Magn. Reson. Med., 77(2), pp. 766–773, Feb. 
2017. DOI: 10.1002/mrm.26126. 66

https://doi.org/10.1002/(SICI)1099-0534(1999)11:5<291::AID-CMR2>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1099-0534(1999)11:5<291::AID-CMR2>3.0.CO;2-J
https://doi.org/10.1016/0022-2364(88)90128-X
https://doi.org/10.1002/mrm.1910210210
https://doi.org/10.1002/mrm.1910210210
https://doi.org/10.1002/mrm.1910370206
https://doi.org/10.1002/1522-2594(200009)44:3<339::AID-MRM1>3.3.CO;2-E
https://doi.org/10.1002/1522-2594(200009)44:3<339::AID-MRM1>3.3.CO;2-E
https://doi.org/10.1002/jmri.1880060420
https://doi.org/10.1016/S0730-725X(00)00193-4
https://doi.org/10.1002/mrm.20110
https://doi.org/10.1002/mrm.20110
DOI: 10.1002/mrm.21215
DOI: 10.1002/mrm.21215
https://doi.org/10.1002/mrm.21255
https://doi.org/10.1002/mrm.26126


75

[3-17] H. Schmiedeskamp et al., Combined spin- and gradient-echo perfusion-weighted imag-
ing, Magn. Reson. Med., 68(1), pp. 30–40, Jul. 2012. DOI: 10.1002/mrm.23195. 66, 65

[3-18] B. Bilgic et al., Highly accelerated multishot EPI through synergistic machine learning 
and joint reconstruction, arXiv Prepr., vol. arXiv:1808, Aug. 2018. 66

[3-19] S. Skare et al., A 1-minute full brain MR exam using a multicontrast EPI sequence, 
Magn. Reson. Med., 79(6), pp. 3045–3054, Jun. 2018. DOI: 10.1002/mrm.26974. 67

[3-20] A. B. Wiesinger, F. Janich, M. Ljungberg, E. Barker, and G. Solana, 3D MR parameter 
mapping using magnetization prepared zero TE,” in Proc. Intl. Soc. Mag. Reson. Med., 
2018, p. 0061. 67

[3-21] M. Weiger, K. P. Pruessmann, and F. Hennel, MRI with zero echo time: hard versus 
sweep pulse excitation, Magn. Reson. Med., 66(2), pp. 379–389, 2011. DOI: 10.1002/
mrm.22799. 68

[3-22] D. M. Grodzki, P. M. Jakob, and B. Heismann, Ultrashort echo time imaging using 
pointwise encoding time reduction with radial acquisition (PETRA), Magn. Reson. Med., 
67(2), pp. 510–518, Feb. 2012. DOI: 10.1002/mrm.23017. 68

[3-23] K. Sekihara, Steady-state magnetizations in rapid NMR imaging using small flip angles 
and short repetition intervals, IEEE Trans. Med. Imag., 6(2), pp. 157–164, 1987. DOI: 
10.1109/TMI.1987.4307816. 68

[3-24] P. Schmitt et al., Inversion recovery TrueFISP: Quantification of T1, T2, and spin density, 
Magn. Reson. Med., 51(4), pp. 661–667, Apr. 2004. DOI: 10.1002/mrm.20058. 68

[3-25] K. Scheffler, On the transient phase of balanced SSFP sequences, Magn. Reson. Med., 
49(4), pp. 781–783, Apr. 2003. DOI: 10.1002/mrm.10421. 68

[3-26] S. C. L. Deoni, B. K. Rutt, and T. M. Peters, Rapid combined T1 and T2 mapping using 
gradient recalled acquisition in the steady state, Magn. Reson. Med., 49(3), pp. 515–526, 
Mar. 2003. DOI: 10.1002/mrm.10407. 68, 69

[3-27] D. Ma et al., Magnetic resonance fingerprinting, Nature, 495(7440), pp. 187–192, Mar. 
2013. DOI: 10.1038/nature11971. 69

[3-28] A. Sbrizzi et al., Fast quantitative MRI as a nonlinear tomography problem, Magn. Reson. 
Imaging, 46, pp. 56–63, Feb. 2018. DOI: 10.1016/j.mri.2017.10.015. 70

[3-29] L. N. Tanenbaum et al., Synthetic MRI for clinical neuroimaging: Results of the mag-
netic resonance image compilation (MAGiC) prospective, multicenter, multireader trial, 
Am. Soc. Neuroradiol., 38(6), pp. 1103–1110, 2017. DOI: 10.3174/ajnr.A5227. 70

BIBLIOGRAPHY

https://doi.org/10.1002/mrm.23195
https://doi.org/10.1002/mrm.26974
https://doi.org/10.1002/mrm.22799
https://doi.org/10.1002/mrm.22799
https://doi.org/10.1002/mrm.23017
https://doi.org/10.1109/TMI.1987.4307816
https://doi.org/10.1109/TMI.1987.4307816
https://doi.org/10.1002/mrm.20058
https://doi.org/10.1002/mrm.10421
https://doi.org/10.1002/mrm.10407
https://doi.org/10.1038/nature11971
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mi>z</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:math>
https://doi.org/10.3174/ajnr.A5227


76 3. CONTRAST ENCODING

[3-30] J. B. M. Warntjes, O. D. Leinhard, J. West, and P. Lundberg, Rapid magnetic resonance 
quantification on the brain: Optimization for clinical usage, Magn. Reson. Med., 60(2), pp. 
320–329, Aug. 2008. DOI: 10.1002/mrm.21635. 70, 71

[3-31] J. B. M. Warntjes, O. Dahlqvist, and P. Lundberg, Novel method for rapid, simultaneous 
T1, T2*, and proton density quantification, Magn. Reson. Med., 57(3), pp. 528–537, Mar. 
2007. DOI: 10.1002/mrm.21165. 70, 71

https://doi.org/10.1002/mrm.21635
https://doi.org/10.1002/mrm.21165


77

CHAPTER 4

Spatial Decoding
Magnetic resonance signals are encoded in k-space using gradient pulses. Image reconstruction is 
the process of decoding these signals. In Chapter 2, the basics of continuous Fourier transforma-
tions were reviewed, where signals in k-space were related to spatial locations in an image. Here, 
we review the theory behind reconstructing images from digital, discrete MRI signals, deriving the 
effect of non-Cartesian acquisitions. In order to produce images on a Cartesian grid, non-uniform 
k-space acquisitions must be re-gridded. In addition, fast acquisitions that do not sample a complete 
k-space produce imperfect point spread functions, and produce aliasing in the final images. Strat-
egies involving multiple receiver coils and nonlinear reconstructions, commonly used to anti-alias 
accelerated acquisitions will be discussed here. 

4.1 THE DISCRETE FOURIER TRANSFORM
Analog signals in MRI are sampled by data acquisition boards with finite sampling bandwidths in 
order to be converted to digital signals. The maximum allowable image resolution is then defined by 
this bandwidth and follows the Nyquist-Shannon theorem. This theorem states that a band-limited 
signal with bandwidth, B, can be completely reconstructed from its samples if they are sampled at 
a rate no larger than ½B, hence defining the achievable image resolution for a fully sampled experi-
ment of discrete points. The final image resolution is usually the highest achievable by the Nyquist/
Shannon theorem. This criterion is commonly referred to as the Nyquist criterion.

Fourier operations are written in a discrete form for image reconstruction. The forward and 
inverse Fourier transform on a discrete grid of N Cartesian points can be written as:

 Forward: S k( )= 	
n=0

N−1

∑s n( )e− j2πnk/N

        
Inverse: s n( )= 	

k=0

N−1

∑S k( )e j2πnk/N .
 

(4.1)

Since these are linear operations, an N×N transformation can also be written in a matrix 
form as S = Fs, where
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⎥
⎥

		
, (4.2)

where w = e–j2π/N, and F FH = FH F = I.

4.2 NON-CARTESIAN k-SPACE RECONSTRUCTION
Although many MRI experiments sample data on a discrete uniformly spaced Cartesian grid, as 
seen in Chapter 3, non-Cartesian data sampling patterns (e.g., spiral and radial) have unique ad-
vantages, such as their robustness to undersampling. To reconstruct images from radial k-space, pro-
jection algorithms can be used as well as gridding approaches. Filtered back projection (FBP) was 
originally developed for CT as an approximate solution to the inversion of the Radon transform 
[4-1]. FBP uses the central slice theorem where the radial spokes acquired in k-space represent 
the Fourier transform of the image projections, and the operations performed are similar to those 
employed in computed tomography (CT). Although FBP is still widely used in nuclear medicine, 
FBP has been replaced in MRI by gridding techniques that interpolate data onto a 2D regular grid. 
Regridding or simply gridding aims at performing a transformation from a non-uniform grid in the 
frequency domain into a uniformly-sampled image domain grid. Uniformity is not necessarily a 
requirement of the image domain, but methods achieving images on non-uniform grids are beyond 
the scope of this text. Following Jackson et al. [4-2], if one considers a two-dimensional image 
I(x,y), its Fourier transform is given by:

   c kx ,ky( )=
−∞

+∞

∫ I x , y( )e− ikx ⋅x ie− iky ⋅y idx 	dy 	.  (4.3)

If the index l going from 1 to L is associated with the discrete samples acquired, the k-space 
sampling trajectory t(kx, ky) is approximated by a series of 2D delta functions at positions kx (l) and 
ky (l):

   t kx ,ky( )=
l=1

L

∑δ kx −kx l( ) ,	ky −ky l( )⎡⎣ ⎤⎦.  (4.4)

The sampled signal is given by:

      cs kx ,ky( )= c kx ,ky( )	i	t kx ,ky( ).  (4.5)
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In gridding, the sampled data are interpolated onto a Cartesian grid after convolving with a 
suitable interpolation weighting function, f(kx, ky), often called a convolution kernel, and re-sampling 
onto a unit-spaced grid (sampled, convolved and sampled - scs):

      cscs kx ,ky( )= 	 cs kx ,ky( )* f kx ,ky( )	⎡
⎣

⎤
⎦ i	III kx ,ky( )= c i	t⎡⎣ ⎤⎦* f 	{ }i III , (4.6)

where “*” is the symbol for convolution and III(kx, ky) is the Dirac comb function, which consists 
of the sum of equispaced 2D delta functions that represent a 2D Cartesian grid. To obtain the effect 
on the ideal image (I(x,y)) of sampling, convolving, and sampling in k-space, Iscs, we apply a Fourier 
transformation to Equation (4.6):

   Iscs x , y( )= I x , y( )*T x , y( )	⎡⎣ ⎤⎦ iF x , y( )	{ }* III x , y( ) , (4.7)

where T(x, y) and F(x, y) are the inverse Fourier transforms of t(kx, ky) and f(kx, ky), respectively. 
Ignoring T(x, y), we can see that the result of the gridding is multiplied by the inverse Fourier 
transform of the convolution kernel. 
 

Acquired 
Trajectory

Convolution
Kernel Cartesian Grid

Ky

Kx

1.0x OS

1.5x OS

-FOV/2 FOV/2 -FOV/2 FOV/2

(b) (c)(a)

Figure 4.1: (a) Gridding kernel convolution and resampling; (b) effect of oversampling on a windowed 
SINC gridding kernel; and (c) effect of oversampling on a single-lobe kernel.

To obtain a perfect rectangular FOV, the ideal convolution function f(kx, ky) would be a 
SINC [=sin(x)/x] function with a full-width [at] half-maximum (FWHM) of one pixel. However, 
the SINC function is defined over infinitely many points, which is impossible to implement in 
practice. For practical reasons, the SINC convolution is windowed to a local region (see Figure 
4.1a). The use of a windowed SINC produces classical image aliasing from adjacent samples as well 
as an increase in central image intensity, or “apodization.” These aspects can be traded off using 
simpler, single lobe kernels (see Figure 4.1b,c). De-apodization can also be achieved by dividing 
the resulting image by F(x, y). Aliased replicas in the image domain can be pushed out of the FOV 
by using an oversampled k-space grid, although this increases computational complexity, which can 
be an issue for large matrix sizes.

 

4.2 NON-CARTESIAN k-SPACE RECONSTRUCTION
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Figure 4.2: Non-Cartesian sampling patterns have, by definition, a non-uniform k-space density. This 
non-uniformity results in regions of the sampled k-space with a high and low sampling densities, 
which can result in image artifacts. For this reason, density correction is applied prior to convolution 
to correct for non-uniform sampling of the k-space. For radial or projection reconstruction, the density 
compensation factors can be derived analytically, while other trajectories require numerical estimations 
to establish a k-space mesh, such as a Voronoi diagram. The trajectory in (a), for instance, is a 4-arm 
spiral trajectory, while in (b) the mesh associated with the Voronoi diagram can be observed in the 
central part of the k-space. The curves in (c) represent the density compensation factors (DCFs) asso-
ciated with the points in the trajectories, proportional to the area elements derived in (b), hence to the 
inverse of the area density function, or the density of samples per unit area.

In addition to the gridding kernel, another important factor is the convolution with the 
inverse Fourier transform of the trajectory sampling function ([I(x, y) * T(x, y) ]). This can be 
addressed by adding a density compensation weighting function, w(kx, ky) =   1   , representing the 
inverse of an area density function, or the density of k-space samples per unit area (see Figure 4.2). 
The sampled, weighted, convolved, and re-sampled (swcs) data can then be represented as:

  cswcs kx ,ky( )= 	 cs i	w⎡⎣ ⎤⎦* f 	{ }	i	III = 	 c 	i	 t
t * f
⎡

⎣
⎢

⎤

⎦
⎥* f 	

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	i	III . (4.8)

While the corresponding image is:

   Iswcs x , y( )= I 	* T 	*−1 	 T 	i	F( )⎡⎣ ⎤⎦	{ }	i	F( )*	III , (4.9)

where *-1 stands for deconvolution. The final operation to obtain gridding is given by de-apodiza-
tion of the gridding kernel:

    I * x , y( )= 	 Iswcs x , y( )
F x , y( ) .  (4.10)

t * f
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Figure 4.3: Simulated effect of undersampling on image reconstruction. Underdetermined systems 
create aliasing, dependent on k-space sampling: (a) fully sampled Shepp–Logan phantom; (b) Shepp–
Logan phantom with ¼ of the k-lines acquired with a cartesian scheme (unacquired lines are dotted); 
and (c) Shepp–Logan phantom with ¼ of the k-lines acquired with a radial scheme.

As discussed above, the reconstruction of MR images from arbitrary k-space data is a linear 
operation going from coefficients in k-space to image pixels. When undersampled acquisitions 
are performed for speeding up examinations, the number of coefficients acquired in the k-space 
is smaller than the number of required image pixels. As the system of equations for linear recon-
struction becomes underdetermined, multiple solutions exist for the linear reconstruction problem. 
As a result, if the missing data is simply zero-filled and reconstructed linearly, then aliasing will be 
present in the image (see Figure 4.3). 

4.3 SPATIAL DECODING IN THE TRANSIENT STATE 
Here, we discuss the effects of temporally changing trajectories, while sampling signals in the 
transient-state. Following the point spread function formalism from Stolk and Sbrizzi [4-3], we 
explore some of the implications of using transient-state acquisitions in combination with tempo-
rally-varying undersampled, non-Cartesian, k-space trajectories. We also consider other advanced 
reconstruction methods to further improve the results. 

An image Ij consists of the effects from a perfect, noiseless signal, Sj(x, y), and noise, Nj(x, y): 

    I j x , y( )= S j x , y( )+N j x , y( ).  (4.11)

As seen in Chapter 3, by performing a simulation of the Bloch equations, it is possible to 
predict signal evolutions for a certain tissue with known physical properties. The vector of physical 

4.3 SPATIAL DECODING IN THE TRANSIENT STATE



82 4. SPATIAL DECODING

parameters, θ[T1, T2, ρ,..], includes, but is not limited to, relaxation times (T1, T2) and proton density 
(ρ). We consider that each location has a specific (but not-necessarily unique) vector of parameters, 
θ(x, y) = θ[T1, T2, ρ,..]. The impact of transient-state acquisitions, due to both contrast and spatial 
encodings, results in time-varying spatial effects.

The reconstruction of transient-state images involves operations going from the signal 
domain into the image domain. If the spatial domain to be reconstructed is a 2D image of Nx by 
Ny pixel indices, signals received from acquisitions in the transient-state can be written with an 
encoding equation:

    (4.12)

where Mj is the transverse magnetization at the j-th echo and kx(j,l) and ky(j,l) are the k-space 
sampling locations of the l-th readout sample during the j-th echo. σj,l is complex Gaussian noise, 
which for a single receiver can be measured, and is modeled as a sample from a Gaussian distribu-
tion with zero mean.

After acquisition, signals are transformed into a stack of images associated with a temporal 
response. From these, we can reconstruct an image for every echo index, j, of the transient response, 
with a decoding equation:

    (4.13)

where wj,l are a series of density compensation weights, to be applied if the sampling density is not 
uniform across k-space (see Figure 4.2). Ideally, the combination of the encoding and decoding steps 
would result in the intensity of each pixel of our image corresponding to the instantaneous trans-
verse magnetization evolving following the Bloch equation, without additional point spread func-
tion (PSF) effects. However, in practice, especially when acquiring undersampled or non-Cartesian 
imaging, data will suffer from noise corruption and convolution with non-ideal PSFs. Therefore, we 
formulate the problem in general and assess the implications of each confounder separately. 

Combining the encoding and decoding equations above, we can obtain for the signal:

  (4.14)

Following Stolk and Sbrizzi [4-3], we rewrite Sj(x, y) as the convolution of Mj�θ(x,y)� and 
a time-dependent point spread function, Pj(x, y): 

   S j x , y( )	= 	
′x =1

Nx∑ ′y =1

Ny∑ Mj θ ′x , ′y( )( )⋅Pj x − x ', y − y '( ) , (4.15)

𝑆𝑗(𝑥,𝑦) =     1     �
𝑙
 ��𝑁𝑥 �𝑁𝑦  𝑤𝑗,𝑙 𝑀𝑗�  (𝑥ˊ,𝑦ˊ�� 𝑒𝑖𝑘𝑥(𝑗,𝑙) ∙[𝑥-𝑥ˊ] 𝑒𝑖𝑘𝑦(𝑗,𝑙) ∙[𝑦-𝑦ˊ]�.

𝑁𝑥𝑁𝑦
𝑥'= 1 𝑦'= 1 θ

𝑠𝑗,𝑙 =  �𝑁𝑦
  �

𝑁𝑥  𝑀𝑗�  (𝑥,𝑦�� 𝑒-𝑖𝑘𝑧(𝑗,𝑙) ∙ 𝑥 𝑒-𝑖𝑘𝑦(𝑗,𝑙) ∙𝑦+  𝜎𝑗,𝑙 ,𝑦= 1 𝑥= 1 θ

𝐼𝑗(𝑥,𝑦) =     1     �
𝑙
 𝑤𝑗,𝑙 𝑒

𝑖𝑘𝑥(𝑗,𝑙) ∙𝑥 𝑒𝑖𝑘𝑦(𝑗,𝑙) ∙𝑦 𝑠𝑗,𝑙 ,
𝑁𝑥𝑁𝑦
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where Pj(x, y) =  1   ∑l wj,l eikx(j,l)∙x eiky(j,l)∙y. The more similar the PSF, Pj(x, y), is to a 2D Dirac delta 
function, δ, the more the final image pixel represent the underlying magnetization signal evolution. 

Due to the linearity of convolutions, the decoded noise contribution, Nj(x, y), is simpler to 
derive:

    (4.16)

4.4 FULL CARTESIAN SAMPLING
We now analyze the combination of encoding and decoding in several special cases, evaluating the 
effect of undersampling and non-Cartesian trajectories on image artifacts.

We start with the situation of “full” sampling, although full sampling in MRI is only an 
approximation as it is practically unachievable. By sampling in frequency space, resolving a single 
rectangular pixel would require infinite points in the frequency spectrum. Since we are limited to 
a finite set of coefficients in the Fourier domain, the image data will always be truncated, which 
is equivalent to a convolution with the Fourier transform of a RECT function, i.e., a SINC. So, full 
sampling in MRI is in theory impossible, but is commonly defined as having fulfilled the Nyquist 
criterion. If we want to reconstruct an image of X by Y pixels, we need to sample an equispaced grid 
in k-space of X by Y points.

4.4.1 CARTESIAN SAMPLING OF NOISELESS DATA 
In order to compare signal and data models, a full Cartesian sampling of discrete points, without 
noise is the simplest case to consider. We start from the general equation in (4.14). In this case 
sampling is uniform, so wj,l = 1 ∀{i, j}. With zero noise, σj,l = 0 ∀{i, j}:

  (4.17)

The time-dependent point spread function is given by: Pj(x, y) =  1  ∑l eikx(j,l)∙x eiky(j,l)∙y. For 
the fully-sampled case, the index l is such that kx(j, l) and ky(j, l) sample the whole space within 
the Nyquist limits; and Pj(x, y) is the Fourier transform of a RECT, or a 2D SINC function with 
a FWHM of one pixel, which is considered a good approximation to a two-dimensional Dirac δ. 
Leading to:

  I j x , y( )	= 	
′x =1

Nx∑ ′y =1

Ny∑ SINC x − x ', y − y '( )Mj θ ′x , ′y( )( ).                    (4.18)

The reconstructed image, Ij(x, y), is the convolution between the real underlying data, Mj, and 
a SINC providing: Ij(x, y) ≅ Mj(θ(x, y)). This is the common assumption made when sampling with 
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𝑁𝑗(𝑥,𝑦) =     1     �
𝑙
 𝑤𝑗,𝑙 𝜎𝑗,𝑙 𝑒𝑖𝑘𝑥(𝑗,𝑙) ∙𝑥 𝑒𝑖𝑘𝑦(𝑗,𝑙) ∙𝑦.

𝑁𝑥𝑁𝑦

𝑁𝑥𝑁𝑦

𝐼𝑗(𝑥,𝑦) =     1     �
𝑙
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MRI, where if the resolution is high enough the sidelobes of the SINC are assumed to be negligible, 
otherwise truncation artifacts (Gibbs ringing) may be seen.

For a 2D fully sampled Cartesian-encoding experiment in the absence of noise, the time 
evolution of the complex signal in each pixel can be directly compared with a transient-state sim-
ulation, making this an unbiased estimator. 

4.4.2 CARTESIAN SAMPLING IN THE PRESENCE OF NOISE
In this case of fully sampled Cartesian data, with non-zero noise, wj,l = 1 ∀{i,j}, σj,l ≠ 0 :

 

(4.19)

                                                                                                

In the presence of acquisition noise, for the fully sampled Cartesian case, the intensities in image 
space correspond to the evolution of the magnetization plus a zero-mean complex Gaussian noise. 

4.5 FULL NON-CARTESIAN SAMPLING

4.5.1 TIME-DEPENDENT POINT-SPREAD FUNCTION
The difference between non-Cartesian sampling compared to Cartesian, is that the time-dependent 
PSF Pj will also include a density compensation factor different from 1, wj,l: 

   (4.20)

When the data are fully sampled, Pj(x, y) is a constant for all echoes j, and depends only on 
a single acquisition trajectory. With a fully sampled, non-Cartesian acquisition, the convolution 
function is not a SINC and depends on the sampling density across k-space. This induces a broad-
ening of the point-spread function, leading to additional blurring of the final image. In addition, 
Equation (4.20) explains the robustness of common non-Cartesian k-space trajectories, such as 
radial or spiral, to undersampling. As the center of k-space is oversampled and the high frequencies 
are undersampled, wj,l is low at low frequencies and higher at high frequencies, hence aliasing from 

𝐼𝑗(𝑥,𝑦) =  𝑆𝑗(𝑥,𝑦)  +  𝑁𝑗(𝑥,𝑦) 
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=     1     �
𝑙
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non-Cartesian acquisitions tends to be high frequency and appears more incoherent. An example 
of this behavior can be observed in Figure 4.3.

The noise statistics in the image are also influenced by w and will hence have a frequency 
dependency:

     (4.21)

The effect of wj,l will be to amplify noise in k-space areas that are sampled less densely (usu-
ally the k-space edges, i.e., at the high spatial frequencies). 

4.5.2 NON-CARTESIAN UNDERSAMPLING
We will now consider the cases where there are insufficient coefficients in k-space to reconstruct an 
image for each timeframe. Starting from more conventional undersampled images in the steady-
state toward transient-state acquisitions.

Undersampling Noiseless Signals in the Steady State

In order to understand the effects of undersampling during temporal variations, it is easier to con-
sider noiseless signals in the steady state. When the magnetization is in a steady-state, the acqui-
sition may be considered a special case of the transient-state acquisition and Mj�θ(x,y)� becomes 
independent of j. In this case, a set of undersampled images Ij(x, y) are acquired after a sufficient 
number of RF excitation pulses bring the magnetization to a steady state, and then separate sections 
of k-space can be encoded. Normally, a single image is reconstructed from all time points that are 
combined because a single contrast is assumed over all available frames. 

The point-spread function at each instant j is:

    (4.22)

Averaging over all values of j:

     (4.23)

        . (4.24)

Unless P(x, y) is a good approximation of a 2D Dirac δ, the final reconstruction will suffer 
from undersampling artifacts (Figure 4.4).

4.5 FULL NON-CARTESIAN SAMPLING
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1 Spoke 5 Spokes 55 Spokes 987 Spokes

2D PSF

Image

Figure 4.4: 2D PSF and reconstructed image of a Shepp-Logan phantom for, respectively: 1 radial 
spoke, 5 radial spokes, 55 radial spokes, and 987 radial spokes. Orientation of radial trajectories was 
incremented by the golden angle. When increasing the number of spokes, the PSF becomes gradually 
more localized, and striking artifacts due to aliasing are in turn reduced.

Undersampling During the Transient-State Evolution of the Magnetization

Let us assume that we are in a highly undersampled environment, and that the noise is negligible 
compared to undersampling artifacts. The general expression of the local signal in each pixel, where 
Sj(x, y) is the signal contribution without noise is the combination of encoding and decoding, as 
seen in Equation (4.14) where the time-dependent point-spread function Pj (x, y) was:

                                (4.25)

If we call Pj(x, y) =  1 ∑ j=1 Pj(x, y) the PSF of the full sampling, with Ns equal to the total 
number of echoes in our acquisition, we can write an estimate of the fully-sampled case S ̂j(x, y), 
starting from the undersampled case,           :

               . (4.26)

By applying P = (P – Pj) + Pj:
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 (4.27)

where we have defined the undersampling error εj(x, y) = ∑     ∑   (P – Pj) * Mj�θ(xʹ, yʹ)�, which 
depends on sampling trajectory as well as the evolution of the magnetizations Mj�θ(x, y)�, hence 
also depends on the spatial distribution of the object. 

4.6 ANTI-ALIASING
It is possible to resolve at least part of image aliasing by filling the missing datapoints in the image 
estimation model by using anti-aliasing strategies. The most common strategies used can be divided 
in linear techniques such as parallel imaging, or nonlinear techniques such as compressed sensing. 

4.6.1 PARALLEL IMAGING
The spatial sensitivities of multiple RF receiver coils can be leveraged to reduce image aliasing 
caused by undersampling. Although the signal is highly correlated between adjacent receivers, each 
coil “sees” at least partially uncorrelated noise and has a unique sensitivity profile. Signal from dif-
ferent receiver coils can be utilized to resolve aliasing in undersampled acquisitions by solving for 
Nc sets of estimated images (where Nc is the number of coils), rather than a single set of equations. 
The most commonly used algorithms used for parallel imaging are GeneRalised Autocalibrating 
Partial Parallel Acquisition (GRAPPA) and SENSitivity Encoding (SENSE) [4-4]. For example, 
in SENSE (see Figure 4.5), individual coil images can be estimated as the multiplication of the 
object by the coil sensitivity map at that location:

    F1 = 	A1 +B1 = 	IACA1 + 	IBCB1 , (4.28)

where F1 is the aliased pixel for coil 1, CA1 and CB1 are the coil sensitivity for coil 1 at locations 
A and B, and IA and IB are the values of the pixels in the desired image at locations A and B (in 
Figure 4.5). In Equation (4.28), even if the values of the coil sensitivities CA1 and CB1 are known 
(for instance from a calibration step), there are two unknown values (the actual pixel values IA and 
IB), for a known F1 value. We can write a similar equation for each receiver coil and pixel, allowing 
us to solve the system of equations for each location and unfold the aliased images. In contrast to 
SENSE, GRAPPA works directly in the undersampled k-space domain rather than in the aliased 
image domain. 

 

4.6 ANTI-ALIASING

N𝑥 N𝑥N𝑦 N𝑦𝑆�𝑗(𝑥,𝑦) = �
𝑥ˊ= 1

�
𝑦ˊ= 1

𝑃𝑗 *𝑀𝑗�  (𝑥ˊ,𝑦ˊ) � + �
𝑥ˊ= 1

�
𝑦ˊ= 1

(𝑃− 𝑃𝑗) * 𝑀𝑗�  (𝑥ˊ,𝑦ˊ) �= 𝑆𝑗(𝑥,𝑦) + 𝜀𝑗(𝑥,𝑦) ,θ θ

Nx
xʹ=1 

Nx
xʹ=1



88 4. SPATIAL DECODING
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Figure 4.5: In SENSE folded coil images are unfolded utilizing coil sensitivities derived from fully 
sampled calibration. A linear model is used in order to recover spatial data in image domain.

The root-sum-of-squares (RSOS) algorithm is a common method to combine images from 
multiple coils, although this creates magnitude only data with a Rician biased noise-floor. The 
strength of the RSOS method is that it does not require knowledge of the individual coil sensitiv-
ities before combining the complex images from individual coils. 

In some applications, estimates of the complex coil sensitivities are used in order to obtain 
also the phase of the combination of coil images. In order to optimally combine the complex in-
formation from each coil, the individual signals can be thought of as a stochastic signal process in 
the time domain s(t) and an undesired noise process n(t), also in the time domain. These signals are 
modeled in terms of their correlation statistics, and an optimization formula is used to compute an 
array filter maximizing the SNR for the assumed signal and noise statistics. The correlation matrices 
for temporal signal and noise statistics are given by:

    Rs j ,k( )= E s j t( )sk t( )⎡⎣ ⎤⎦ , (4.29)

    Rn j ,k( )= E nj t( )nk t( )⎡⎣ ⎤⎦ , (4.30)

for j = 1…,Ncoils and k = 1…,Ncoils.
A filter maximizing the SNR power ratio is given by the eigenvector of the matrix P = Rn

–1 

Rs. For a proof, see [4-5, 4-6].

2
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In order to apply this to the images acquired by individual receivers, the problem can be 
reformulated in the image domain as opposed to the time domain, an approach called adaptive coil 
combination [4-7]:

                                             , (4.31)

where sROI is a local set of coordinates around x and y, of arbitrary size. The noise correlation 
statistics can be estimated through a noise calibration scan or assumed to be white (i.e., Rn is the 
identity matrix). Under the assumption that Rn is the identity matrix, coil sensitivities can be esti-
mated directly by computing the eigenvectors of Rs. In practice, this can be achieved by performing 
a singular value decomposition of Rs and taking the first right singular vectors.

4.6.2 COMPRESSED SENSING
In contrast to parallel imaging, which as formulated above uses linear algebra to combine different 
receivers, compressed sensing (CS) utilizes a nonlinear iterative reconstruction instead of a linear 
system of equations. Compressed sensing assumes that pixels are not independent, and the image is 
“compressible” in a given space. So, when data are transformed to a compressed space, a large num-
ber of coefficients will tend toward zero. A space with this characteristic is often called a “sparse” 
domain. There are many “sparse” domains that can be used, which depends on the properties of the 
data. A common example of a sparse representation is given by the discrete wavelet transform, at 
the basis of the compression algorithm adopted by JPEG. The sparse property of this transform can 
be readily demonstrated as JPEG compression can be applied to most medical images, reducing 
file size without noticing significant alterations (an example of compressed sensing using Wavelet 
regularization is seen in Figure 4.6).

There are three main requirements for compressed sensing.

• Sparsifying transform: There must be a sparse domain where most of the transformed 
coefficients tend toward zero.

• Incoherent aliasing: Undersampling must generate aliasing which is equally spread 
among datapoints in the sparse domain. Incoherent sampling will generate incoherent 
aliasing, which can be used to reduce the amount of data required.

• Iterative reconstruction: Nonlinear reconstruction is needed to remove the aliasing, 
so that consistency can be preserved with the acquired data. 

Compressed sensing can be formulated as a constrained minimization problem. Iterative 
algorithms can be formulated if the forward and inverse transforms between signal and image do-

4.6 ANTI-ALIASING
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mains are reversible, linear operations. If m represents the acquired data in the k-space and d is the 
resulting image, in a noiseless, fully sampled case then: 

d = Fm       m = F-1d,
where F represents the linear transform between k-space and image space, while F-1 is its inverse. 
These are such that the direct application of F without using an iterative algorithm would produce 
an aliased image. As proposed by the seminal paper in compressed sensing MRI [4-8], the condi-
tion of sparsity, formulated theoretically as the condition of most coefficients being equal to zero in 
a sparse domain, is practically implemented as a minimization of the L1 norm:

            , (4.32)

where ψ is the sparsifying transform. The L2 term enforces the data consistency condition, while 
the L1 enforces the sparsity condition. The factor λ is the regularization weighting parameter. One 
method to solve this is the projection onto convex sets (POCS) algorithm, also known as the al-
ternating projection method [4-4‒4-9]. An efficient approach to solve the minimization problem is 
also the alternating direction method of multipliers (ADMM), which solves the convex optimization 
problem by breaking it into smaller pieces, each of which have then better convergence properties 
[4-4‒4-10].
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Figure 4.6: Compressed Sensing Flowchart, using a wavelet as a sparsifying transform. Some “typical” 
images of the iterative reconstruction are depicted for visualization purposes. Panel inspired by Blasche 
& Forman, “Compressed Sensing—the flowchart”, from MAGNETOM Flash Magazine, 2017.
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m



91

Although static images can be successfully recovered using compressed sensing, higher un-
dersampling can be achieved when acquiring a temporal series. In dynamic imaging, the intrinsic 
correlation between frames can be exploited in the temporal domain because the frames share spa-
tial features. An example of a sparsifying transformation for dynamic imaging is to perform finite 
differences in the time domain. Another example, in the case of periodic motion of, e.g., cardiac 
imaging, a sparsifying transform can be given by a pixel-wise Fourier transform of the time domain. 
Both of these approaches for sparsifying data are shown Figure 4.7.
 

(a)

(b)

(c)

Figure 4.7: Examples of sparse representation of dynamic MRI: (a) CINE imaging of a mouse heart, 
showing the heart at different time-frames within the cardiac cycle; (b) the finite differences in the 
time domain between adjacent images in (a), showing that only a subset of pixels will change signifi-
cantly between frames; and (c) the frequency components following a Fourier transformation of the 
time domain data (a), showing that the primary components have large contributions at low frequen-
cies, while higher frequencies have small contributions.

4.6.3 LOW-RANK MODELS
Transient-state MRI as well as dynamic MRI data have some intrinsic correlations between time-
frames. A low-rank approximation is a minimization problem where the cost function measures the 
fit between a given data matrix and a lower-dimensional low-rank matrix. If a low-rank domain 
exists, then the data can be approximated by a subspace representation [4-4‒4-11]. Considering our 
complex temporal evolution, M�θ(x, y)�, which we can write as a vector m ϵ CT×N, with N coordi-
nates (x and y pairs) and T timepoints. If there exists a transformation matrix Ф ϵ CT×T that is an 
orthonormal basis, such that I = ФФH, then our vector can be rewritten m = ФФHm.

Considering a basis Ф = [φ1 ⋯ φT], its h-dimensional subspace Фh = span{φ1 ⋯ φh} is a good 
approximation of the data if:

                                       , (4.33)

4.6 ANTI-ALIASING
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where ϵ is the modeling error tolerance, and “H” indicates the Hermitian adjoint. If the norm in 
Equation (4.33) is the L2 norm, a solution can be found by principal component analysis (PCA). A 
standard PCA method is SVD. If d = Fm is the relation between data in the image domain d and 
data in the signal domain m:

     

      
(4.34)

     

where α = Фh
H m are represented by the h temporal basis coefficients describing our data. If modeling 

error tolerance ϵ is neglected, we can also project the data back on the full signal domain m = Фh α.
 A subspace representation of transient-state data can be obtained by performing a SVD on 

a set of simulated signal evolutions for certain combinations of T1, T2, etc. Data in any subspace has 
a reduced size, decreasing the memory needed for storage and reconstruction. Because the Fourier 
transformation is a linear operator and SVD compression is a linear summation, compression can 
be performed either before or after Fourier transformations. This linearity is especially advantageous 
because the number of computations required can be substantially reduced by performing the Fou-
rier transformation operations after changing the data into a compressed subspace. 

4.7 TRAJECTORY ERRORS
When gradient coils are rapidly switched, the varying magnetic field induces currents in other 
conducting surfaces, such as the magnet cryostat. These currents, known as “eddy currents,” gener-
ate magnetic fields that distort the gradient waveforms and create artifacts in the images that are 
consistent with delays in the gradient waveforms. In addition to eddy currents, errors in hardware 
timing/calibration errors can also introduce delays between the received signals and the applied 
gradients [4-12].

For conventional Cartesian MRI, trajectory delays produce a shift of k-space in the read-
out direction, which results in a phase-shift of the reconstructed image, with no observable effect 
on the magnitude image. In contrast, when segmented or non-Cartesian k-space acquisitions are 
employed, significant artifacts are seen. A very common example where this effect is significant is 
echo planar imaging (EPI) (see Chapter 2) where each successive k-line is acquired in the opposed 
direction. Here, opposed k-space shifts in successive k-lines result in coherent ghosting artifacts 
(see Figure 4.8c). Similarly, in a non-Cartesian acquisition, shifted data will result in an erroneous 
assignment of k-space coordinates to the actual trajectory. However, in this case the effect will result 

𝐝 = 𝐅𝒎 

=  𝑭ΦΦ  𝒎 

=  𝑭ΦhΦh 𝒎 

: =  𝑭Φh𝜶,

𝐻
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in a more complex phase interference between acquisition interleaves rather than coherent ghosts. 
The effect of this trajectory error will be mostly visible as a low-frequency modulation of the image 
intensity. Some signal will “leak” from the object to areas around it, generating “shading” and “halos” 
(see Figure 4.8d).
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Figure 4.8: Simulated effect of a trajectory delay (1 pixel shift in k-space) on a numerical Shepp-Lo-
gan phantom: (a) no delay; (b) delay applied to standard Cartesian imaging, no effect is noticeable; 
and (c) delay on EPI acquisition, visible ghosting is present; and (d) the same delay in case of radial 
sampling, arrow points to shading, arrowhead to halos.

In some situations, eddy currents or errors in hardware calibration will produce not only 
gradient terms but static field (B0) terms. These terms will produce a constant phase-shift along the 
readout. When MRI is acquired with standard Cartesian sampling, this phase addition is constant 
and will produce a static displacement of the whole image; in EPI or radial acquisitions different 
readouts will have multiple constant phase additions, resulting in phase interferences in k-space 
generating artifacts (see Figure 4.9).

 

4.7 TRAJECTORY ERRORS
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(a) (b) (c)

Figure 4.9: Simulated effects of B0-induced phase errors (1 radians) for (a) Cartesian MRI, (b) EPI, 
and (c) Radial MRI.

4.8 CONCLUSION
This chapter demonstrated concepts associated with image reconstruction, compression and un-
dersampling. In order to achieve quantitative imaging, contrast in the tissues of these images must 
now be decoded into quantifiable physical parameters. The next chapter reviews the basic concepts 
needed to perform contrast decoding.
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CHAPTER 5

Contrast Decoding
In this chapter, we discuss the methods for parameter estimation by decoding the images acquired 
from the time-series data. In Chapter 3, we discussed the fundamentals of Bloch simulations and 
methods whereby multiple image contrasts could be obtained. Here, we focus our investigation on 
methods that can decode the contrast information in the steady-state or transient-state data, result-
ing in quantitative multi-parametric maps. We begin our formalism with the least squares approach, 
afterwards deriving a “pattern matching” algorithm based on a maximum inner product search used 
in magnetic resonance fingerprinting, thereafter exploring developments into compressed sensing 
anti-aliasing and machine learning routines.

5.1 INTRODUCTION
Magnetic resonance imaging time series can be used for local estimation of the parameters underly-
ing a physical model of magnetization evolution. Here, we investigate methods to perform estima-
tions of the signal by formulating the general inference problem from steady-state or transient-state 
data. We focus mostly on estimations of transient-state undersampled and non-Cartesian data as 
the general case; steady-state, Cartesian, or fully sampled data can be considered as a special case 
of this formalism.

5.2 LEAST SQUARES ESTIMATIONS
In Chapter 4, we defined the instantaneous, local magnetization Mj�θ(x, y)�, where θ was a func-
tion of physical parameters, which included the location’s proton density, T1 and T2, among any 
other parameters. We divide our temporal magnetization signal into a static component, or linear 
component M0(x, y), and a dynamic component, or nonlinear component m(ϑ(x, y),tj), where ϑ(x, y) 
is a function of physical properties of the sample with the exclusion of the proton density. Thus, at 
echo number j and voxel location (x, y):

   Mj θ x , y( )( )=M0 x , y( )m ϑ x , y( ) ,t j( ).  (5.1)

We assume here that the equilibrium magnetization, M0(x, y), is static and unaffected by 
the temporal evolution of the magnetization. We also consider that M0(x, y) can be written as the 
multiplication of the local proton density ρ(x, y), real-valued receiver sensitivity profile B1

– (x, y), and 
transceiver phase eiφ(x,y) (obtained as a combination of transmitter and receiver phases):
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   M0 x , y( )= ρ x , y( )B1− x , y( )eiϕ x ,y( ) . (5.2)

With this formalism, we investigate the simultaneous estimation of M0 and ϑ from tran-
sient-state data, starting with a least square formulation. Given the instantaneous image pixel, dj = 
Ij(x, y), it is possible to write a local estimation per each location (x, y) (thus dropping (x, y) from 
the equations):

  M0
! ,ϑ̂( )= arg	minM0 ,ϑ

f M0 ,ϑ( )= arg	min
M0 ,ϑ j=1

Nt

∑M0m ϑ ,t j( )− 	dj
2
, (5.3)

which can be rewritten in L2 –space vectors as:

    (5.4)

If ϑ̂ is a solution of the minimization problem, then it is possible to write: 

    M0
! = arg	min

M0 ,ϑ
f M0 ,ϑ̂( )= m ϑ̂( )H 	d

m ϑ̂( )2
.  (5.5)

Substituting (5.5) in (5.4), we can obtain an estimate of ϑ independent of the static compo-
nent M0:

   ϑ̂ = arg	min
ϑ

I −
m ϑ( )⋅m ϑ( )H

m ϑ( )2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
i	d ,                                 (5.6)

where I is the identity matrix. This is a variable projection problem, which can be solved with stan-
dard optimization tools. Then, M0 can be estimated as a second step by applying Equation (5.5).

5.3 MAXIMUM INNER PRODUCT SEARCH (MIPS)
With d as the temporally evolving signal evolution of a voxel, and under the assumption that its 
noise is Gaussian, the problem in Equation (5.6) is equivalent to a Maximum Likelihood Estima-
tion (MLE). This MLE can be written as a Maximum Inner Product Search (MIPS), looking at the 
maximum correlation between the measured data, d, and the predicted magnetization values, m(ϑ):

         (5.7)

In this case, it is relatively easy to formulate the problem as an exhaustive search over a 
pre-computed dictionary obtained simulating m(ϑ) for certain values of ϑ, where ϑ is evaluated over 
a grid of physically acceptable parameters. We can evaluate the scalar product:

�𝑀� 0,𝜗̂�=  arg min  ⃦𝑀0 𝒎 (𝜗) −  𝒅 ⃦2. 
𝑀0 𝜗

2

2
2

2
2

‖

‖

‖

‖

𝜗̂ =  arg max   〈𝒅, 𝒎 (𝜗) 〉    .   ⃦𝒅  ⃦2  ⃦𝒎 (𝜗) 2⃦𝜗

.
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   Cϑ =
j=1

Nt∑ mj ϑ( )† 	dj
j=1

Nt∑ 	dj
† 	dj j=1

Nt∑ mj ϑ( )†mj ϑ( )
, (5.8)

for each ϑ in our space, where † is the complex conjugate. We then use a lookup table to extract 
the underlying physical values of the dictionary entry achieving the highest value of C, that is 
the highest similarity or best match. Then, M0 can be estimated as a second step, again by applying 
Equation (5.5):

    
M0
! =

m ϑ̂( )H 	d
m ϑ̂( )2 . (5.9)

5.4 MRF “MATCHING” WITH MIPS
One method that takes advantage of MIPS to estimate quantitative parameters is MRF [5-1]. In 
a typical MRF implementation, a dictionary is precalculated of the possible transient-state signals 
using Bloch equation simulations (see Chapter 3 for Bloch equation simulations) over a range 
of possible, relevant tissue parameters (ρ, T1, T2, etc.) and system imperfections (B0, B1

+ ). MRF 
relies on a transient-state acquisition achieved by the variation of acquisition parameters after each 
TR and can be acquired with undersampled snapshots. As discussed in Chapter 2, there are many 
different contrast-encoding acquisitions that can be tailored to maximize the contrast between 
the relevant tissue properties. Once the data are acquired and transformed into the image domain, 
the aliased signals in individual locations are compared with unaliased dictionary elements (see 
Figure 5.1). 

A simple way to solve the MIPS problem is to perform a grid search, i.e., to compute the inner 
product between the vector representing the acquired data and all dictionary vectors, outputting the 
indices of the vector with highest inner product. A grid search is the “pattern matching” technique 
conventionally considered for MRF. Such an approach is straightforward and effective, as it does 
not require more complicated calculations, such as the computation of gradients of functionals, and 
can provide global solutions in non-smooth search spaces. However, a grid search is also computa-
tionally demanding. A MIPS problem performed on 128×128×128 image voxels (2M voxels) and 
different simulated parameter sizes with a naive search requires several trillions inner product com-
putations. The estimated computation times are reported in Table 5.1 for various dictionary sizes.

5.4 MRF “MATCHING” WITH MIPS

█    ‖2

2
2    ‖     ‖
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Table 5.1: Benchmark values (time per each pattern matching problem) of 3D MRF on a brain 
using a 128×128×128 image matrix, given a pre-simulated dictionary, with: (1) only T1 and T2; (2) 
fat fraction estimations; (3) blood perfusion; and (4) a model including the whole water diffusion 
tensor, currently intractable. All data was simulated with complex singles

Number of 
dictionary 
elements

Number 
of singular 
values per 

element

Total 
dictionary 

size

Intel® Xeon® 
processor E5-

2600 v4 (48 
cpu)

NVIDIA 
Tesla K80 

GPU

1. MR Relaxation 
times only

250 thousand 10 2.5 million 615 s 340 s

2. T1, B1, B0 
and fat fraction 
estimations 

3.2 million 30 32 million 6.5 h 3 h

3. T1, T2, two 
blood perfusion 
parameters 

300 million 30 3 billion
27 days 

(estimated)
14 days 

(estimated)

4. T1, T2 and 
diffusion tensor 
estimations

15.6 billion 10 156 billion
3.5 years 

(estimated)
1.5 years 

(estimated)

To reduce the number of pattern matching operations, several techniques can be used. For 
instance, methods based on SVD factorization [5-2] or fast group matching [5-3] have been shown 
to reduce the size of the pattern matching problem without significant loss in accuracy.

The use of a dictionary reduces the requirements to compute all local minima and under-
sampling effects when compared with a simple least squares fit (see Figure 5.2). This is partially 
because MIPS searches over a large domain of possible parameters where all minima are consid-
ered. MIPS does not require full sampling, as the MRF reconstruction “sees through” aliasing, and 
aliasing artifacts are “averaged out” with MIPS during the scalar product computation. This effect 
of “averaging out” can also be observed with reduced aliasing artifacts in estimation using MIPS, 
where signals of equal amplitude and opposite phase can appear at different timepoints and cancel 
out in the complex domain, whereas in a nonlinear least squares (NLLS) estimation these errors 
sum in quadrature, which increases the sensitivity of NLLS to undersampling. 
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Data Acquisition
[Samples × Repetitions × Coils]

Coil Sensitivity Estimation
[Nx × Ny × (Nz) × Coils]

Coil Combination
[Nx × Ny × (Nz) × Subspace Images]

Parameter Estimation
[Nx × Ny × (Nz) × Quantitative Maps]

Subspace Projection, Gridding and FFT
[Nx × Ny × (Nz) × Subspace Images × Coils]
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Figure 5.1: In MRF, acquisition parameters are varied at each TR to keep the magnetization in the 
transient state (a). For fast acquisition, k-space is sampled using non-Cartesian schemes, maximizing 
sample density in areas rich of signal and undersampling areas that contain lower signal, such as the 
edges of k-space. In order to reduce the amount of data to be processed, data can be compressed in 
a temporal subspace using SVD (b). Then, coil sensitivities are estimated in the image domain with 
adaptive coil combination (c) and coil images are combined (d) for each voxel, the acquired data is 
compared to the simulation to find a match using pattern recognition (e), generating parameter maps. 

MIPS NLLS
ρ (au) T1 (ms) T2 (ms) ρ (au) T1 (ms) T2 (ms)

0 1 0 2500 0 300 0 1 0 2500 0 300

Figure 5.2: Estimated parametric maps from a SSFP spiral MRF acquisition using the method in 
Figure 5.1 with MIPS, also known as dictionary matching and nonlinear least squares (NLLS). For 
MIPS, matching noisy data to the simulated dictionary results in consistent parametric maps. Con-
versely, the high level of noise in the data restricts NLLS fitting and the results converge to inaccurate 
local minima, even when initialized with MIPS. Images courtesy of P. A. Gómez, TUM Germany.

5.4 MRF "MATCHING" WITH MIPS
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5.5 UNDERSAMPLING AND MIPS 
As proven by successful applications of MRF, MIPS is robust to aliasing due to undersampling. 
However, if high undersampling factors are used, then significant aliasing artifacts will remain [5-4], 
[5-5]. Let’s review the case of undersampled data in the absence of noise as seen in Chapter 4:

    dj x , y( )	= 	
′x =1

Nx∑ ′y =1

Ny∑ P*Mj θ ′x , ′y( )( ) . (5.10)

By applying P = (P‒Pj) + Pj:

     dj x , y( )	= 	
′x =1

Nx∑ ′y =1

Ny∑ Pj*Mj θ ′x , ′y( )( )+ 	
′x =1

Nx∑ ′y =1

Ny∑ (P −Pj )*Mj θ ′x , ′y( )( )= S j x , y( )+ ε j x , y( ) ,
 

(5.11)

where εj (x, y) is the undersampling error.
When computing the MIPS scalar products for maximization in Equation (5.8), we obtain:

     C2 ∝
i=1

Nt

∑S j
	†dj +

i=1

Nt

∑ε j
	†dj ,  (5.12)

where “†” is the complex conjugate. We have found that in the presence of undersampling, the value 
of the MIPS scalar product is biased by undersampling error. 

In an ideal world, there would be no undersampling error in the scalar product, in which 
case the optimum sampling method would disregard these effects and could be obtained by the 
acquisition schedule maximizing the contrast of signals per each TR. However, in practice, the local 
quantification accuracy in MRF depends both on the used flip angle schedule and on the k-space 
trajectory, as time-dependent point spread functions will have unique interference in different 
spatio-temporal coordinates [5-6]. There are special cases where the undersampling error has a 
negligible contribution to the MIPS scalar product. For instance, Equation (5.11) shows that if the 
evolution of the magnetization, Mj (θ(x′, y′ )), is sufficiently slow with respect to a full acquisition 
of k-space interleaves, the estimation differences due to aliasing from each acquisition interleave 
averages out. This behavior is surely part of the reason why most successful MRF implementations 
have used smoothly varying flip-angle and repetition time schedules. 

Undersampling errors from pattern matching on highly undersampled data biases the es-
timation results in irregular spatial locations. In order to reduce this problem, the time series can 
be anti-aliased before pattern matching. For instance, a sliding window reconstruction is a simple 
algorithm that can greatly reduce undersampling artifacts prior to matching [5-7]. For maximum 
accuracy, the dictionary should be adjusted so that it is equal to the number of k-space interleaves 
used in the window length. This is possible due to the linear nature of the Fourier transformation, 
which allows the summation of points in the dictionary and in the reconstructed interleaves. Iter-
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ative methods such as compressed sensing can also be used as anti-aliasing algorithms. Assuming 
that the projection into a temporal subspace (e.g., SVD compression) is a fair approximation of the 
information contained in our signals, the temporal subspace can be used as a sparsifying transform 
in a compressed sensing algorithm. Written in term of the SVD-compressed vector α, as defined 
in Chapter 4:

    argmin  || 
α

d − F  Φh    || 2
2  + λR   ( ) , (5.13)

where R(α) is a regularization functional, corresponding to a local low-rank operator that acts on 
spatio-temporal image patches [5-8]. 

The functional R(α) is the sparsifying term (see Chapter 4 on compressed sensing) based on 
temporal compression, where only the first h SVD coefficients are used to represent α providing 
temporal regularization. In addition to temporal regularization, R(α) also produces spatial regular-
ization, following the work on T2 shuffling by Tamir et al [5-9] :

    R   ( ) = 
r

∑ ||Rr   ( ) ||�����. (5.14)

The operator Rr extracts a block from each temporal coefficient image centered around voxel 
r and reshapes each block into a column of a matrix. The nuclear norm ‖∙‖* is then applied to each 
matrix and the result is summed. 

Such operations can make the representation of the data smoother, allowing methods that 
rely more explicitly on the computation of gradients (such as simple gradient descent) to better 
converge to global minima by reducing undersampling effects, as shown in Figure 5.3.
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Figure 5.3: Same data as in Figure 5.2. Compressed sensing (CS) reconstruction eliminates aliasing 
and reduces noise levels, facilitating convergence of NLLS fitting. NLSS results are initialized with 
MIPS but converge to values that are different from the ones in the precomputed grid of MIPS. Im-
ages courtesy of P. A. Gómez, TUM Germany.
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5.6 MULTI-COMPONENT ESTIMATION
Under the assumption that one pixel is not a pure tissue species but a mixture, or a linear combi-
nation of different species contributing to a portion of the signal, it is possible to write the magne-
tization in each location (x, y) as the combination of a certain number of signal evolutions Ntissues, 
equal to the number of tissues to be modeled:

   Mj θ x , y( )( )=M0 x , y( )
i=1

Ntissues

∑Wi x , y( )imi ϑ x , y( ) ,t j( ) , (5.15)

where Wi are the weights of tissue fractions, and where   ∑   Wi = 1. Note that here each Wi is in-
dependent of other tissue parameters such as T1, T2 or the static contribution to the signal M0(x, y). 
Following this model, if mixtures produce signal evolutions that are sufficiently different from the 
pure species, it is possible to discriminate tissue fractions uniquely using a combined dictionary 
(Figure 5.4). An example of this is represented by fat and water separation, possible by including 
off-resonance in the estimation, and assuming a constant chemical shift of 3.5 ppm between fat 
and water [5-10].
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Figure 5.4: Exemplary fat-water mixtures on resonance (100% water, 100% fat, 50% water/50% fat) 
evolutions: water T1/off-resonance were set to 900 ms/0 Hz while fat T1/off-resonance were set to 300 
ms/220 Hz.

In addition to fat/water, other multi-component effects can be added to the model in order 
to achieve more accurate estimations. Other examples of multi-compartment models include brain 
tissue class segmentation [5-11], as well as myelin water fraction models [5-12].

Other effects that impact T1 and T2 quantification are represented by B1
+  effects. These can 

be added to the model in the form of a global scaling factor to the nominal flip angle. However, 
in case of 2D imaging, different locations throughout the slice profile are seen by a different B1

+ , 
hence a different signal evolution can be written per each slice location, and these can be combined 
to obtain a single “slice” model [5-13]. 

Ntissues

i=1
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5.7 NONLINEAR MR TOMOGRAPHY
Quantitative MRI is normally performed in two steps: the spatial localization to transform time 
domain signals into spatially resolved images, and the inference from a model for parameter esti-
mation. It is possible to combine the two steps above by formulating the inference problem directly 
in the frequency domain (see Figure 5.5). This approach combines the spatial encoding and the 
parameter estimation in a single, large computation, enforcing simultaneously the time-dependent 
image contrasts with the Bloch Equation, Faraday’s law of induction, and spatial-encoding via the 
accumulating effects of the gradient fields [5-14].

We can start from our encoding equation as in Equation (4.12):

   s j ,l = y=1

Ny∑ x=1

Nx∑ Mj θ x , y( )( )e− ikx j ,l( )⋅xe− iky j ,l( )⋅y +σ j ,l .  (5.16)

We then decompose Mj (θ(x, y)) in linear and nonlinear term as in (5.1):

  s j ,l = y=1

Ny∑ x=1

Nx∑ M0 x , y( )	m ϑ x , y( ) ,t j( )e− ikx j ,l( )⋅xe− iky j ,l( )⋅y +σ j ,l
, (5.17)

where sj, l is modeled as a function both of the space-only components M0(x, y) m(ϑ (x, y),tj), and 
of the Fourier encoding term e-ikx (j,l)∙x e-iky (j,l)∙y, which is independent of tissue parameters. The 
process σj,l is Gaussian noise. We can now write the full estimation problem directly, without de-
coupling the Fourier encoding and the Bloch signal model:

M0
! x , y( ) ,ϑ̂ x , y( )( )

   = arg	min
M0 ,ϑ j=1

Nt

∑ y=1

Ny∑ x=1

Nx∑ M0 x , y( )	m ϑ x , y( ) ,t j( )e− ikx j ,l( )⋅xe− iky j ,l( )⋅y − 	s j ,l
2

 (5.18)

conditional to m(ϑ (x, y),tj ) being a solution of the Bloch equation. 
Here, differently from other methods discussed in this chapter, we are looking at solving 

simultaneously for M0 and ϑ at all spatial locations, and not at solving each pixel/location inde-
pendently. The extended set of unknowns calculated by MR-STAT is composed of six unknowns 
per pixel, and includes amplitude and phase of the static term M0, as well as T1, T2, B1

+  and off-res-
onance (ΔB0) as part of the dynamic component of the magnetization m.

This approach only assumes Gaussian noise on the acquired time-domain data, hence not 
requiring assumptions on aliasing in the image domain. This is a great advantage over image do-
main methods, as the assumption of Gaussian noise is more valid in the acquired time domain, 
as no aliasing is present there even when undersampling. However, this approach also requires a 
significant amount of computation to estimate parameters. Given that the approach is not local but 
requires to take into account all spatial coordinates at once, 2D or 3D MR-STAT reconstruction 

5.7 NONLINEAR MR TOMOGRAPHY



106 5. CONTRAST DECODING

problems are extremely demanding. In a 3D acquisition of 128×128×128 voxel grid, there are 12 
M unknowns, since there are 6 parameters per approximately 2 M voxels. 

Data Acquisition
[Samples × Repetitions ×Coils]

Parameter Estimation from k-space Data
[Nx ×xNy × (Nz) × Quantitative Maps]
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Figure 5.5: MR-STAT estimates quantitative parameters directly from k-space assuming Gaussian 
noise, hence not requiring any assumption on aliasing structure. Given this property, MR-STAT can 
be formulated using any k-space trajectory, including Cartesian. Representative sequence parameters 
for MR-STAT are shown in (a), while representative results in vivo are shown in (b). Images courtesy 
of A. Sbrizzi and O. Van der Heide, UMC Utrecht, The Netherlands.
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5.8 MACHINE LEARNING
In the following, we will discuss introductory theory of neural networks (for a more complete 
introduction see [5-15]) and discuss their use for parameter estimation within quantitative tran-
sient-state imaging.

The methods described in this chapter for parameter estimation relied on different approaches 
for the solution of the quantification problem but shared a common drawback. So far, the methods 
reviewed had large computational demands (i.e., significant calculation time requirements), which 
becomes a limiting factor if they are expected to be used within clinical practice. Neural Networks 
(NNs) present a valid alternative to address these time limitations. The NN approach assumes that 
parameter estimation can be “learned” by an NN after training on the physical model, such as one 
generated by a Bloch simulation. NNs have can require significant network training times, but once 
trained, the NN can greatly reduce storage requirements as well as estimation times, and can main-
tain high estimation accuracy (see Table 5.2). The computational complexity of NN algorithms at 
run-time depends on the structure of the network only, and not on the number of samples included 
in the training. Current literature on “machine learning” methods for transient signals demonstrate 
models with significantly reduced sizes, which impacts the speed for which parameters can be de-
rived by learning the topology of the Bloch response manifold [5-16]. 

Table 5.2: Space occupied and estimated execution time for (a) MRF dictionary matching and 
network for different small dictionaries. Measurement performed on an Intel® Xeon® processor E5-
2600 v4 (48 cpu) equipped with a NVIDIA Tesla K80 GPU

MIPS Neural Network
# Words in the 
dictionary

345 2550 7500 33121 345 2550 7500 33121

Occupied space 8 Mb 60 Mb 173 Mb 763 Mb 1.5 Mb 1.5 Mb 1.5 Mb 1.5 Mb
Time for 256×256 
pixels

5s 7s 12s 22s 0.2s 0.2s 0.2s 0.2s

 A simple neural network can be thought of as a general linear model, where we wish to 
determine a function, f(x), that is determined from weighting, w, of each input x to derive a final 
representation:

    f x( )=
i=0∑ wi*xi .     (5.19)

This equation, f(x), underlies a “neuron”—which is a single element of a neural network. A 
neural network is created by the nonlinear combination of a number of these neurons. In general, a 
neural network tries to find the optimum weights, w, so that f(x) can be determined, given a vector 
of x. The most basic type of neural network is a feed-forward network, where the linear outputs 

5.8 MACHINE LEARNING
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of each neuron feeds into another layer of neurons. When there are many neurons or layers, this is 
considered a deep neural network. 

However, this model is can represent only systems of linear equations, while we wish to 
“learn” approximate nonlinear responses, such as those present with transient-state MRI. To achieve 
nonlinearity, an “activation function” is used: an activation function, which we call g, is the function 
that the linear fit, f(x), in the section above is passed through, resulting in g(f(x)). Activation func-
tions are inspired by biology and mirror the firing of a cell after passing an action potential thresh-
old. Activation functions determine whether the outputs of a neuron are amplified or subdued by 
enabling parameters to increase or decrease in importance during training. A common activation 
function, for instance, is the sigmoid function:

     (5.20)

The sigmoid function allows the function f(x) to be activated or reversed. An alternative to a 
sigmoid activation function, among others, is a rectified linear unit, or ReLu. The ReLu is the inte-
gration of the Heaviside step function, which is zero for negative values and is linear for positive 
values. The ReLu is relatively simple to calculate and saves computational processes. The basis of a 
neural network is the “learning” of the weights, w, of a function, g(f(x)), given the input parameters, 
x, to predict the measured values, ym. In order to do this, the weights are updated using fitting 
techniques that usually rely on gradient descent algorithms. 

Gradient descent is used to calculate the differences between the measured and predicted 
values, ym and g(f(x)), respectively, and to iteratively update the weights within the predictive model. 
Gradient descent can be understood as the least-squares fitting of a linear function, with nonlinear 
activation, given x inputs and y outputs. In order to evaluate the goodness of such agreement, a 
Loss function is used. This Loss function depends on the gradient between the estimated values, 
g(f(x)), and the measured values, y. A common Loss Function is L = E[Δ(g(x),ym)]. The model seeks 

to minimize the following function L m,b( )= 1N i=1

N

∑ yi − g xi( )( )2  . The Loss function is repeatedly 

minimized through backpropagation of the derivatives that define gradient descent. 
For demonstration, let’s state that g(x) is a linear function, mx + b:

 L m,b( )= 1N i=1

N

∑ yi − mxi +b( )( )2  . The partial derivatives of the gradient inform how we update our 

estimates of m and b.
   

′f m,b( )=
∂ f
∂m
∂ f
∂b

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

−1
N

Σ2xi yi − mxi +b( )( )
−1
N

Σ2 yi − mxi +b( )( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

                   . (5.21)

g�f (x)� =      1     .
              

1+ e-f(x)

yi xi
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Each variable, m and b, is updated based on the calculated partial derivative or gradient be-
tween the measured, y, and predicted, f, outputs. Our goal is to minimize any change in f with the 
variable, such that we come to local minima by ensuring f ′ approaches zero. In order to do this, 
we change our estimates of the weights m and b by ‒η ∂ f

∂m
 and by ‒η ∂ f

∂b  , respectively, where η is 
often an arbitrarily determined “learning rate,” and the negative is used to cause f to approach zero.

This method can be extended to more variables that are not necessarily within a linear 
function, provided a derivative is possible. A feed-forward NN can be considered a series of nested 
equations. Z(x)= h(g(f(x))), where f, g, and h are NNs incorporating activation functions. Then, to 
find the total derivative with respect to x, we use the chain rule: Z′ (x) = Z′ (h) ⋅ h′ (g) ⋅ g′ (f) ⋅ f ′(x). 
This is performed in reverse order from the feed forward order, such that the derivatives “back-
propagate” their weights from the final estimation and prediction values. The “Loss” is estimated 
iteratively for all weights within each function. 

As discussed, NNs are very efficient at approximating functions. A continuous, differentiable 
function can often be represented by a sufficiently deep NN with a finite number of neurons [5-17], 
it is theoretically possible to train a network to learn the Bloch response manifold as a function of 
several quantitative parameters, which is difficult due to nonlinearity of the spin dynamic equations. 
In Figure 5.6, a network with an SVD layer and three NN layers (also called “hidden layers”) is 
trained with Bloch simulated data, and is shown to estimate quantitative measurements in vivo, 
with results similar to a MIPS algorithm using a grid search.
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Figure 5.6: Inference of T1 and T2 using an NN. Acquisition parameters were based on SSFP MRF 
and matched the ones in Figure 1: (a) structure of the NN; and (b) the results of the NN estimation 
corresponded to the ones obtained with MIPS, despite order of magnitude shorter computation times 
(see Table 5.2). Images courtesy of L. Peretti, University of Pisa, Italy.
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5.9 CONCLUSION
In this chapter, we have described several strategies for performing parameter estimations useful 
for quantitative MRI. In order to bring these techniques successfully to the clinical practice, it is 
important to visualize the results appropriately and to put these into context of the disease and 
treatment assessments object of study. In the next chapter, we will discuss visualization, applications 
and challenges of quantitative MRI.
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CHAPTER 6

Conclusion
Once quantitative maps are obtained, these need to be provided in an appropriate form for clinical 
evaluation. Repeatable and reproducible quantifications may improve on current diagnosis tech-
niques. In this chapter, we discuss image visualization methods; the development and need for 
repeatable imaging; and, finally, on the future and need for quantitative imaging.

6.1 QUANTITATIVE IMAGING
Quantitative changes in longitudinal (T1) and transverse (T2) relaxation times have been described 
for many diseases, including neurodegenerative (Alzheimer’s [6-1, 6-2], Parkinson’s [6-3, 6-4], 
multiple sclerosis [6-5, 6-6], epilepsy [6-7], schizophrenia [6-8]), autism [6-9, 6-10], oncological 
[6-11], musculoskeletal [6-12, 6-13], cardiac [6-14], respiratory [6-15], hepatic [6-16], and many 
other diseases. However, the clinical adoption of quantitative MRI (qMRI) has been limited by 
the time required to quantify relaxation parameters. Additionally, qMRI is sensitive to MRI system 
imperfections due to high inter-parameter correlations [6-17, 6-18]. While qMRI was introduced 
near the inception of MRI, effective qMRI remains challenging and has yet to become univer-
sally relevant for clinical disease characterization. Recent advances in qMRI enables it to become 
more efficient and repeatable. Multi-parametric quantitative (mqMRI) is being studied with new 
approaches for deriving several image contrasts simultaneously. When quantitative maps exist, syn-
thetic MRI contrasts can then be created from them for advanced visualization of tissues.

6.2 IMAGE VISUALIZATION
In order to enable meaningful radiological evaluation of the quantitative maps, as obtained in 
Chapter 5, appropriate visualization of this data is required. Contrast-weighted images are the cor-
nerstone of radiological assessments. Contrasts obtained with quantitative imaging protocols can 
also be useful for diagnosis and treatment assessments. When acquiring dynamic or transient-state 
signal responses, images for each frame in the transient state are informative of the individual tissue 
responses. If undersampled timeframes are recovered with anti-aliasing techniques such as com-
pressed sensing, different frames contain different tissue information. This can be done after pattern 
matching as well, where single frames can be obtained by projecting back quantitative results into 
the signal domain, i.e., substituting time evolutions in each pixel with the evolution corresponding 
to the best matching signal, as shown in Figure 6.1.
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Figure 6.1: (a) Frames from the transient-state response to a flip-angle ramp following an inversion 
preparation, after pattern matching; (b) the flip-angle ramp used; and (c) the simulated transient-state 
response of gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and diseased white 
matter (dWM).

The underlying T1, T2, and M0 values derived from parameter estimation, such as the ones 
shown in Figure 6.2, should be useful for improving clinical evaluation. Quantitative values should 
be comparable across sessions, operators, and scanners, for repeatable and reproducible diagnosis. 
Some T1 and T2 weighted images have reversed contrast compared to quantitative T1, T2, and ρ 
maps. Radiologists are more familiar with weighted images, rather than quantitative maps. The 
contrasts can either be reversed by changing the color scale, or the inverted map for relaxivities (R1 
= 1/T1, R2 = 1/T2) can be obtained. As radiologists have a limited experience in assessing quan-
titative maps of T1, T2, and ρ, synthetic contrasts for displaying images from standard sequences 
are obtainable post-hoc. These synthetized images can use sequence parameters matching clinical 
protocols, or any specific parameters suitable for a particular patient/exam, like shown in Figure 6.3. 
Image synthesis follows conventional forward models for relevant imaging sequences. For instance, 
creating a spin echo acquisition with repetition time TR and echo time TE:

   SSE =M0 1−exp −TR
T1

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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T2

⎛

⎝⎜
⎞

⎠⎟
										. (6.1)

For a fluid-attenuated inversion recovery with inversion time T1:
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Figure 6.2: M0, T1, and T2 in a healthy volunteer from a 3D MR Fingerprinting acquisition using spi-
ral projections. Like in nuclear imaging visualisations, colormaps can be used to visualize quantitative 
maps. 
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And for a spoiled gradient echo with a 90° flip angle:

    SGRE =M0 1−exp −TR
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6.2 IMAGE VISUALIZATION
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Figure 6.3: (a) Different contrasts obtained a posteriori from QRAPMASTER using Synthetic MR 
by modifying TR and TE in a simple spin echo signal model. (b) Quantitative maps and synthetic im-
ages in the same subject of Figure 6.1 obtained with spiral SSFP MRF acquisition.

One of the main reasons for the wider usage of contrast-weighted images when compared to 
quantitative maps is the relatively simpler process to obtain an image. While quantitative maps rely 
on full modeling and encoding of signals, qualitative contrast-weighted MRI is only accounting for 
such physical effects in order to produce clinically relevant images. Often, such images are obtained 
more efficiently than fully-quantitative estimation, and sometimes these are clinically relevant. 
An example of this is time-of-flight (TOF) angiography. TOF does not rely on accurate models, 
but is rather based on the broad concept that fresh, unsaturated spins flow into the slice during a 
gradient echo acquisition and generate a bright blood signal in the images. Although multi-para-
metric quantitative imaging is based on the concept of full modeling of the underlying physics, it 
is possible to add simplified, qualitative models to obtain additional, clinically relevant information 
from quantitative MRI protocols [6-19]. One example of this is to account for blood inflowing in 
the slice during the transient-state acquisition, without specifically measuring the velocity, similar 
to TOF angiography, as shown in Figure 6.4. 
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Figure 6.4: Maximum intensity projections from transient-state data using only the 160 frames with 
the highest flip angle, resulting in angiographic images. This allows visualization of all the main vas-
cular structures in the head, such as the carotid arteries and the superior sagittal sinus. The images 
show axial, sagittal, and coronal maximum intensity projections of a stack of 3D images  (left to right, 
respectively). Images courtesy of P. A. Gómez, TUM Germany.

During the synthesis of images from quantitative parameters, models used can have different 
degrees of complexity. It is possible to extend multi-parametric signal models to account for mul-
tiple tissues at a single location. For instance, some of the most common confounders for synthetic 
image evaluations are CSF and flowing blood. To account for these, the dictionary D can be written 
as a weighted combination of tissue, CSF, and vessels dictionaries (see Figure 6.5) DT,CSF,v:

    D=wTDT +wCSFDCSF +wvDv , (6.4)

where wT,CSF,v ∈R; wT + wCSF + wv = 1 are the tissue, CSF, and vessel fraction. 
Synthetic FLAIR can then be obtained as:

  SFLAIR =wT PD 1−2exp −TI
T1
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6.2 IMAGE VISUALIZATION
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Figure 6.5: (a) Estimations from a three compartment model, summarized in (b). In such a model, soft 
tissues are characterized by zero velocity and low T1 and T2, CSF is characterized by zero velocity and 
high T1 and T2; while blood has a velocity different from zero. (c) Shows the model for blood velocity, 
where fresh spins, which only underwent the inversion preparation, enter the slice and are excited by 
the pulses in the transient-state train. (d) The effect of each element in the model on the synthetic 
FLAIR image, compared to a conventional FLAIR on the same slice. Images courtesy of Matteo 
Cencini, University of Pisa, Italy.

6.3 REPEATABLE AND REPRODUCIBLE QUANTIFICATIONS
The development of biomarkers includes the “identification of objective and quantifiable medical 
signs” [6-20]. In order to obtain quantifiable features from images, these should be analysed metro-
logically, and treated as measurements as in any other science. Mean bias and limits of agreement 
between different quantification techniques are relevant in order to compare values across mea-
surements. In addition, repeatability and reproducibility are important for individual measurements 
techniques. Briefly, repeatability refers to the degree of agreement between experiments repeated 
at the same location, using the same measurement procedure and equipment, performed under 
similar conditions, and repeated at separate time points. In comparison, reproducibility refers to 
the degree of agreement between the results of experiments conducted at different locations and 
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with similar but separate instruments. Examples of MRF repeatability and reproducibility can be 
seen in Figure 6.6.

MRI’s sensitivity to many different physical and chemical mechanisms is its blessing and its 
curse. Difficulties with MRI quantitation thus far have been introduced in Chapters 1 and 2. The 
large number of degrees of freedom that are available for imaging—both those accessible to a user 
and the invisible parameters—can often be ignored. We hope that the sensitivity of MRI and un-
derstanding its underlying physics will improve, which will guide new technological developments 
for further repeatable, reproducible research and increased sensitivity to disease states.
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Figure 6.6: (a) Repeatability and reproducibility measurements of 2D spiral FISP MRF in the NIST/
ISMRM phantom. (b) Test and re-test in a subject using 2D spiral FISP MRF. Data from Buonin-
contri et al. 2019 [6-21].

6.4 THE FUTURE OF QUANTITATIVE IMAGING
A move to quantitative imaging is being strongly promoted by leading professional societies such 
as the Radiological Society of North America (RSNA) in their QIBA (Quantitative Imaging of 
Biomarkers Alliance [6-22]) initiative. In this context, QIBA defined quantitative imaging as “the 
acquisition, extraction, and characterization of relevant quantifiable features from medical images 
for research and patient care.” Transforming MRI to a quantitative science would ideally directly 
result in enhanced patient healthcare from the accelerated development of diagnostic and thera-
peutic procedures. 

Methods for fast, quantitative, and multi-parametric MRI should continue to develop to 
obtain similar quality images, but much faster, as current clinical imaging. Quantitative MRI has yet 
to have had this clear clinical impact beyond cardiac and hepatic diseases. The methods discussed in 

6. 4 THE FUTURE OF QUANTITATIVE IMAGING
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this book will ideally lead to these developments, which we hope will have a future, if not immedi-
ate, clinical impact. The goal is that fast, quantitative MRI will enable better prognosis than is cur-
rently achievable for many more diseases, impacting the lives and care of many people worldwide.
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