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Preface
This book covers the novel strategy of the state-of-the-art approaches for automated non-invasive 
system for early cardiovascular disease diagnostics. Cardiovascular disease is the leading cause of 
death for people of most ethnicities in the United States, including African Americans, Hispanics, 
and whites. According to the American Heart Association, cardiovascular disease accounts annu-
ally for almost 801,000 deaths in the United States, which is about 1 of every 3 deaths. This means 
cardiovascular disease claims more lives each year than all forms of cancer. However, early detec-
tion of cardiovascular disease increases the chances of patients’ survival.

Current non-invasive cardiovascular imaging includes ultrasound, computed tomography (CT), 
magnetic resonance imaging (MRI), magnetic resonance angiography (MRA), and computed 
tomography (CT). Today’s CAD systems can analyze images from these different modalities for 
detecting cardiovascular disease and determining its aggressiveness. Generally, the CAD systems 
analyze the images in three steps: segmentation, description or feature extraction, and classification 
of the status.

The main aim of this book is to help advance scientific research within the broad field of early 
detection of cardiovascular disease. This book focuses on major trends and challenges in this area, 
and it presents work aimed at identifying new techniques and their use in biomedical image analysis.
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1.1 INTRODUCTION

High blood pressure (HBP) affects approximately one in three adults in the United States. HBP is 
the primary or contributing cause of mortality in 410,000 adults each year with associated health-
care costs of $46 billion [1]. Chronic stress [2], high sodium intake [3], and renal dysfunction [4] 
are the primary causes for HBP and elevated cerebrovascular perfusion pressure (CPP). Chronically 
elevated CPP, which is directly related to HBP, changes the structure of cerebral blood vessels 
and disturbs cerebral vasoregulatory mechanisms. Significantly, high CPP induces hypertrophic 
and eutrophic remodeling in cerebral blood vessels [5]. In hypertrophic remodeling, elevated CPP 
increases the wall thickness and reduces the vessel lumen in cerebral blood vessels. For eutrophic 
remodeling, cells of smooth muscles undergo a rearrangement that results in reducing the vessel 
lumen without changing the total vascular mass or wall thickness. These cerebrovascular changes 
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are hypothesized to be a significant contributor to strokes, brain lesions, cerebral ischemic injury, 
dementia, and cognitive impairment [5–7].

Currently, HBP is diagnosed and medically managed when systemic BP measurements using a 
sphygmomanometer are greater than 140/90 mmHg. However, BP measurement via sphygmoma-
nometer cannot quantify cerebrovascular structural changes that can increase the risk of cerebral 
adverse events. Importantly, some recent evidence suggests that cerebrovascular structural and CPP 
changes may precede elevation of systemic BP to clinical levels rather than cerebrovascular damage 
due to sustained exposure to HBP [8–11]. Thus, quantification of cerebrovascular changes may help 
identify and stratify patients at risk of cerebral adverse events, potentially enable medical treatment 
prior to the onset of systemic hypertension in conjunction with other cognitive tests, and optimize 
medical management of HBP patients.

Imaging techniques, which include Magnetic Resonance Imaging (MRI) and Magnetic 
Resonance Angiography (MRA) scans, have been traditionally used in the quantification of organ 
structural changes. In the literature, MRI scanning has been used for volumetric measurement of 
the ventricular cavities and myocardium [12] and to determine intravascular pressures from mag-
netic resonance (MR) velocity data in large vessels such as the aorta or pulmonary artery [13]. MRA 
scanning has been used to quantify measurements of the flow in the collateral arteries of patients 
that have occlusions in an internal carotid artery [14]. Neither MRA nor MRI has been utilized for 
the estimation of vascular pressure changes in the brain, to our knowledge. Detection of cerebrovas-
cular or CPP changes using MRA analysis has not been accomplished due to the lack of accurate 
segmentation algorithms that can delineate the smaller blood vessels in the brain (in comparison 
to aorta or pulmonary arteries) from the surrounding soft tissue. Further, there are no methods to 
quantify cerebrovascular structural changes and to correlate them to changes in mean arterial pres-
sure (MAP) from MRI/MRA imaging. This manuscript presents novel methodologies to delineate 
cerebral blood vessels from the surrounding tissue, quantify cerebrovascular structural changes, 
and correlate the cerebrovascular changes to MAP.

1.2 METHODS

The goal of this manuscript is to develop a new MRA-based framework for the detection of changes 
in cerebrovascular structure and to demonstrate proof-of-concept of correlation between cerebro-
vascular structural changes to MAP. Patient demographics, and details about the proposed method-
ology and data analysis, are presented next.

1.2.1 Patient DemograPhics

This work has been approved by the Institutional Review Board (IRB) at the University 
of Pittsburgh. MRA data and systemic BP measurements obtained from patients =(n 15,

= = = ±M 8,  F 7,  Age 49.2 7.3) over a 700-day study period were retrospectively analyzed. The 
15 subjects were selected to represent a range of blood pressure changes over the 700 days, and the 
imaging data were analyzed blinded to the patient BP. MRA imaging data were obtained using a 
3T Trio TIM scanner using a 12-channel phased-array head coil. BP and MAP were determined 
from the arithmetic average of four sphygmomanometer readings taken during two visits imme-
diately preceding the MRI scanning. The volume of scans was composed of 3D multi-slab high-
resolution images with 160 slices, thickness of 0.5 mm, resolution of ×384 448, a flip angle of 
15 degrees, repetition time of 21 ms, and echo time of 3.8 ms.

The subjects had an average day 0 systolic pressure of ±122 6.9 mmHg, an average day 0  diastolic 
pressure of ±82 3.8 mmHg, an average day 700 systolic pressure of ±118.9 12.4 mmHg, and an 
average day 700 systolic pressure of ±79.9 11.0 mmHg (i.e., the mean systolic pressure remained 
comparable over time, though some individuals increased in pressure and some decreased or stayed 
the same).
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1.2.2 Data analysis

The analysis of patient MRA data consists of five key steps (Figure 1.1) consisting of: (1) manual 
segmentation of training slices to identify ground truth, (2) automatic segmentation for all slices to 
delineate the blood vessels from the surrounding soft tissue by combining the segmented ground 
truths with the Linear Combination of Discrete Gaussians (LCDG) models for gray level distribu-
tion, (3) voxel matching for obtaining temporal subtraction images to enhance the ability to see 
cerebrovascular change via a distance map created to quantify the change in patients between day 
0 and day 700, (4) generation of a probability distribution function (PDF), which describes the 
distribution of pixel distances from vascular edges and is used to statistically correlate to BP, and 
(5) estimation of the cumulative distribution function (CDF) to observe the summated probability 
of cerebrovascular changes in the same patient from day 0 and day 700.

1.2.2.1 Manual Segmentation of Training Slices
MRA data from a patient consists of 160 MRA slices. Every tenth slice is manually segmented to 
extract the blood vessels from surrounding tissue using Adobe Photoshop. This methodology allows 
for delineation of the blood vessel from the surrounding tissue at a pixel level accuracy where the 
largest limitation is the resolution of the MRI machine itself. The manually segmented training 
binary (black for surrounding tissue and white for target vasculature) slices are referred to as ground 
truths (GT) as the images are correct and free from artifacts or noise (Figure 1.2). The manual 

FIGURE 1.1 Framework of the data analysis for quantifying cerebrovascular changes from MRA imaging data.

(a) (b)

FIGURE 1.2 (a) Original MRA image slice of sample patient at day 0. (b) Manually segmented ground truth 
(GT) image from image in (a).
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segmentation of select slices is used for the initialization and optimization of the segmentation 
algorithm, which is subsequently used for segmenting all obtained slices.

1.2.2.2 Automatic Segmentation
One of the most challenging issues relating to common computer-assisted diagnostics is the seg-
mentation of accurate 3D cerebrovascular system information from MRA images. Our approach 
is to rapidly and accurately extract the blood vessel data by defining the probability models for 
all regions of interest within the statistical approach and not predefining the probability models 
[15–17]. For each MRA slice, the empirical gray level distribution is closely approximated with an 
LCDG. Then, it is divided into three individual LCDGs, one for every region of interest associated 
with each of the following dominant modes: darker bones and fat, gray brain tissues, and bright 
blood vessels. The identified models specify an intensity threshold to extract blood vessels in that 
slice. A 3D connectivity filter is then applied on the extracted voxels ( = ×voxel volume element; a 
representation for a 3D pixel) to select the desired vascular tree. This method results in higher preci-
sion region models with higher segmentation accuracy compared to other methods [16].

Adapting the Expectation-Maximization (EM) based technique to the LCDG allows for precise 
identification of the LCDG model, which included the number of its components (positive and 
negative) [18], and for identification of a continuous LCDG model that contains the probability 
distribution.

An expected log-likelihood is used as a criterion for model identification [16]. Consider 
s SX X= = …( : 1, , )s  to be denoting a 3D MRA image that contains S co-registered 2D slices 

X = ∈ ∈(X (i, j) : (i, j) R;  X (i, j) Q)s s s . R Q = … − and  {0,1, ,Q 1} represent a rectangular arithmetic 
lattice that supports the 3D image and a finite set of Q-ary intensities (gray levels), respectively. 
Consider F Q Q= ∈ Σ =∈f (q) : q ; fs(q) 1s s q , where q is the gray level, to be an empirical marginal 
probability distribution for gray levels of the MRA slice Xs.

According to [18], each slice is considered a K-modal image with a known number K of the 
dominant modes related to the regions of interest. For the segmentation of the slice by modes sepa-
rating, an estimation of the individual probability distributions of the signals associating each mode 
from Fs is necessary. Fs is closely approximated with LCDG opposing conventional mixture of 
Gaussians, one per region, or slightly more flexible mixtures involving other simple distributions, 
one per region. The image LCDG is then divided into submodels that are related to each dominant 
mode [19–21].

A discrete Gaussian distribution is defined on the set of integers (gray levels) QQ = … −{0,1, , 1} 
by the probability mass function
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The weights w w w wp p Cp n n Cnw = … …( , , , , , ),1 , ,1 ,  are restricted to be all nonnegative and to satisfy
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In general, valid probabilities are nonnegative: qw ≥p ( ) 0,  for all q Q∈ . This implies that the 
probability distributions only make use of a valid subset of all the LCDGs in (1.1), which can have 
negative components w <p (q) 0,  for some Q∈q .

Our aim is finding a K-modal probability model that approximates closely the unknown 
marginal distribution of gray level. Consider Fs, its Bayesian estimate F is as follows [22]: 

R R= + +f(q) ( f (q) 1)/( Q)s , and the intended model should maximize the expected log-likelihood 
of the statistically independent empirical data with the parameters of the model:
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The entire segmentation algorithm is as follows [16].

1. For each slice = …X , s 1, Ss ,
a. First gather the marginal empirical probability distribution Fs of gray levels.
b. Find a starting LCDG model that is nearing Fs by using the initialization algorithm to 

approximate the values of C K Cp n− , , and the parameters w,  (weights, means, and 
variances) of the negative and positive discrete Gaussians (DG).

c. Fixing Cp and Cn, refine the LCDG model with the modified EM algorithm by manipu-
lating the other parameters.

d. Separate the final LCDG model into K submodels. Each dominant mode has a cor-
responding submodel. This is done by minimizing the misclassification predicted 
errors and selecting the LCDG submodel that has the greatest average value (cor-
responding to the pixels with highest brightness) to be the model of the wanted 
vasculature.

e. Use intensity threshold t to extract the voxels of the blood vessels in the MRA slice, 
which separates their LCDG submodel from the background.

2. Remove the artifacts from the extracted voxels whole set with a connection filter that chooses 
the greatest connected tree system built by a 3D growing algorithm [23]. Algorithm 1 sum-
marizes the adopted segmentation approach.

The aim of this procedure is to decipher the threshold for each MRA slice that will enable 
the complete extraction of the bright blood vessels while removing the darker, unwanted tis-
sue while also separating surrounding non-vasculature tissue that may be of similar brightness 
and along the same boundaries. Step 1b’s initialization creates the LCDG with the non-negative 
starting probabilities θp (q)w, . The refinement in 1c increases the likelihood, but the probabilities 
continue to be non-negative. The experiments presented in [16] show the opposite situations were 
never met.

The automatic segmentation’s accuracy is evaluated by calculating total error compared to the 
ground truths. True positive (TP), true negative (TN), false positive (FP), and false negative (FN) 
segmentations are measured for evaluation.

Q

Q

QQ

Q
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In Figure 1.3, if C is the segmented region, G is the ground truth, and R represents the entire image 
frame, then the = ∩TP C G , the = − ∪TN R C G , the = − ∩FP C C G , and the = − ∩FN G C G . 
The total error ε is given in [24] as (FN FP)/(TP FN) (FN FP)/Gε = + + = + .

1.2.2.3 Voxel Matching
Voxels are an array of volume elements that constitute a notional three-dimensional space. A 3D 
affine registration is used to handle the pose, orientation, and the data spacing changes and other 
scanning parameter changes between day 0 and day 700 [25]. In this step, the determined Euclidian 
radii are converted into diameter values. The output is then converted into a distance map.

1.2.2.4 Generation of Probability Distribution Function and Validation
The EM-based technique is adapted to the LCDG model, and the distribution of pixel distances 
is extracted from the distance map to calculate the probability distribution of the cerebrovascular 
changes. The PDF marks the distribution of white pixels as a true value, and black pixels are ignored 
for the data set. The diameters of the blood vessels are determined by estimating Euclidian center 

ALGORITHM 1 MAIN STEPS OF THE SEGMENTATION APPROACH

For each slice Xs, the following steps were completed:

 1. LCDG Initialization:
• Find the marginal empirical probability distribution of gray levels Fs.
• Estimate C K Cp n− , , W, and Θ of the positive and negative DGs.
• Find the initial LCDG model that approximates Fs.

 2. LCDG Refinement:
• Fixing Cp and Cn, refine the LCDG model with the modified EM algorithm by 

manipulating other parameters.
 3. Initial Segmentation:

• Divide the final LCDG model into K submodels by minimizing the expected 
errors of misclassification.

• Select the LCDG submodel that has the largest mean value to be the model of 
the wanted vasculature.

• Use the intensity threshold t to extract the voxels of the blood vessels in the MRA 
slice, separating their LCDG submodel from the background.

 4. Final Segmentation:
• Remove the artifacts from the extracted voxels whole set with a connection filter 

that chooses the greatest connected tree system built by a 3D growing algorithm.

FIGURE 1.3 Illustration of segmentation accuracy and errors 
of the proposed automatic segmentation (C) by comparing to the 
ground truth (G) [5].
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point distances from the edge of a vessel. The data points in the generated PDFs are then extracted 
and compared to the blood pressure data using statistical analysis.

1.2.2.5 Calculation of Cumulative Distribution Function
The integral of the PDF is used to generate the CDF (the CDF FX of a random variable X is calcu-
lated from its PDF Xf  using F x f t dtX

x
X= ∫−∞( ) ( ) ). The CDF shows the total summated probability 

that a blood vessel will take a value less than or equal to a diameter value, that represents an average 
blood vessel diameter in each slice. It shows the cumulative distribution of the PDF with an upper 
limit of 1. The more quickly the CDF line approaches 1, the more certain that the diameter of the 
blood vessel is smaller compared to a CDF that takes longer to approach 1. This is illustrated in the 
results section.

1.2.3 statistical analysis

Statistical analysis was performed using R software, version 3.3. A mixed effects linear model 
was used to test the relationship of MRA data with clinical BP measurements. Brain slices were 
separated into upper (above circle of Willis) and lower (below circle of Willis) compartments to 
determine correlation with clinical BP readings. The circle of Willis, near the brain base, is where 
the intracranial cerebral arteries take off from and give rise to progressively smaller vessels [5]. 
The BP measurements were combined into a single value, the estimated mean arterial pressure 
MAP (2 DBP SBP)/3= × + , which was a covariate in the model. Also included in the model were 
patient age, gender, and a random intercept per patient. The dependent variable was the mean of 
the Euclidean distance map over the entire vascular tree within each compartment. (Two separate 
models were fit to the upper and lower compartments.) Statistical significance of fixed effects in the 
fitted models was determined using likelihood ratio chi-square tests.

1.2.4 3D reconstruction of the cerebral Vasculature

A growing tree model, which eliminates any unwanted segmented voxels by choosing the great-
est connected vascular tree system, coupled with a smoothing algorithm, was used to generate a 
3D model based on segmented slices [23]. An example of the resultant vascular system is visualized 
and illustrated in the results section.

1.3 RESULTS

Specificity and sensitivity values were obtained from the segmented images as shown in Table 1.1. 
The automatically segmented slices for all 15 patients were compared to the manually segmented 
GTs to determine accuracy of algorithm (Figure 1.4). The segmentation algorithm resulted in the 
cumulative sensitivity of ±0.997 0.008 (sensitivity range = 0.969 to 1) and the cumulative specificity 
of ±0.9998 0.0001 (specificity range = 0.9994 to 1).

TABLE 1.1
Sensitivity and specificity values for automatically 
segmented images at day 0, day 700, and 
cumulative sensitivity and specificity values.

Time Sensitivity Specificity

Day 0 ±0.997 0.006 ±0.9998 0.0001

Day 700 ±0.996 0.008 ±0.9998 0.0001

Cumulative ±0.997 0.008 ±0.9998 0.0001
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The results of the linear mixed effects model analysis (Table 1.2) revealed an inverse relation-
ship between MAP and the mean vessel diameter below the circle of Willis p =( 0.0007). The mean 
diameter of vessels below the circle of Willis was not found to vary significantly with the age of the 
patient or the gender of the patient. Above the circle of Willis, the mean diameter of vessels showed 
a statistically significant decrease with age p =( 0.0005).

FIGURE 1.4 Example of segmentation algorithm output: (a) Sample image slices of a patient at day 0. The 
automatically segmented slices were compared to the manually segmented ground truths (GT) to determine 
the accuracy of the segmentation algorithm. (b) Sample 3D reconstruction of the segmented cerebrovascular 
system using a growing tree model.

TABLE 1.2
Mixed effects linear model statistical evaluation. p-values < 0.05 
was considered statistically significant. Diameter denotes size of 
vasculature in segmentation images. Age, gender, and timepoints 
are clinically acquired data.

Mean Diameter of Vessels below Circle of Willis

Effect χ2 p-value

Age 3.2 μm/y 0.356 0.551

Gender F > M by 12.8 μm 0.026 0.872

Mean Arterial Pressure −5.3 μm/mmHg 11.63 0.0007

Mean Diameter of Vessels above Circle of Willis

Effect χ2 p-value

Age −16.5 μm/y 12.29 0.0005

Gender F > M by 16.0 μm 0.199 0.655

Mean Arterial Pressure 1.6 μm/mmHg 0.402 0.525
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In the analysis, 13 out of 15 patients showed significant correlation between MAP and the diam-
eters indicated via CDF. Out of the 13 patients that showed CDF correlation with MAP, two example 
patients (A and B) are shown with the two patients (C and D) where the correlation between CDF 
and MAP was not found (Figure 1.5). Patient C had a shift in CDF that was in opposition to the 
MAP change, and patient D had a larger shift in CDF compared to the MAP change (Figure 1.5c 
and 1.5d; Table 1.3). The 3D cerebrovascular model reconstruction of patients C and D indicated 
significant vascular changes between day 0 and day 700 (Figure 1.6).

1.4 DISCUSSION

The average cumulative segmentation algorithm had a sensitivity of ±0.997 0.008 and a specificity 
of ±0.9998 0.001. This high level of accuracy demonstrates the benefit of using a manual input to 
initialize automatic segmentation. Using manual segmentation alone would be too time intensive to 
be used in a practical healthcare setting, while utilizing only an automatic segmentation approach 

FIGURE 1.5 Sample patient CDFs demonstrating the temporal changes from day 0 to 700. The graphs 
 indicate the probability that blood vessels may be of a certain diameter or less.

TABLE 1.3
BP measurements of patients A, B, C, and D.

Day 0 Day 700

Patient Systolic BP Diastolic BP MAP Systolic BP Diastolic BP MAP

A 120 80.5 93.7 103.5 66.5  78.8

B 130.5 83 98.8 143.5 94 110.5

C 118 80.5 93 105.3 69  81.1

D 114 84.5 94.3 120 88  98.7
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would not provide sufficient segmentation accuracy to delineate and quantify the diameters of the 
smaller arteriolar (< 10 micrometers) cerebral blood vessels. The proposed segmentation algorithm 
combines the accuracy of manual segmentation with the benefit of an automated and less time-
intensive approach and provides segmentation with a high degree of accuracy while also minimiz-
ing the required time and effort.

The high degree of sensitivity and specificity of our approach in accurately delineating blood 
vessels from surrounding brain tissue enables the quantification of cerebrovascular changes. The 
PDFs indicate the total blood vessel diameter change in time from day 0 and day 700. Below the 
circle of Willis, there is a statistical correlation between PDFs and systemic BP (p-value = 0.0007), 
demonstrating that increased MAP (and consequently CPP) are related to decreased average vessel 
diameter and PDF.

The BP and MAP measurements correlate well with most patients’ non-invasive mean PDF 
diameter measurements below the circle of Willis. Since cerebral changes have been hypothesized 
to precede systemic hypertension [9,10,26], our methodology may present a tool for potentially 
initiating early treatment to prevent or optimize management of systemic HBP in conjunction with 
other approaches, such as cognitive testing.

This finding is important as it suggests that the remodeling of vessels due to increasing blood 
pressure occurs prior to the onset of diagnosed essential hypertension. Individuals in the current 
study were explicitly selected to have pre-hypertensive values of blood pressure. Of equal impor-
tance, the methodology can determine the relationship of cerebrovascular remodeling to cortical 
small vessel disease and lacunar lesions known to occur with advanced hypertensive disease and 
with implications for stroke and dementia [27,28]. The correlation of PDF to MAP was independent 
of patient gender. The difference in PDF of vessels above the circle of Willis was statistically sig-
nificant with age, which indicates that older patients have constricted cerebral vessels, which may 
put them at a higher risk for strokes.

FIGURE 1.6 Applying a 3D growing algorithm to the volume of binary segmented images allows for 
 visualization of the automatically segmented MRA data. Day 0 of patient C (top left). Day 700 of patient C 
(top right). Day 0 of patient D (bottom left). Day 700 of patient D (bottom right). These results demonstrate the 
temporal changes in cerebrovascular structure in these patients (circled).
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In some patients (C and D), the change in CDF did not correlate to changes in MAP, which may 
indicate impaired autoregulation of cerebral blood flow, potentially due to cerebrovascular remodel-
ing [5,26]. The 3D cerebrovascular model reconstruction of these patients demonstrated significant 
vascular changes between day 0 and day 700. These results may indicate that drug therapies pre-
scribed using systemic BP alone may not provide optimal medical management. Lack of correlation 
between CDF and MAP may indicate cerebrovascular changes and a higher risk of cerebrovascu-
lar adverse events, which necessitates more frequent monitoring and/or optimization of medical 
management, despite having normal systemic BP and MAP. Using a combination of BP and CDF 
changes may help minimize the occurrence of adverse events.

The segmentation algorithm and metrics for vascular and blood pressure changes (CDF, PDF) 
are not limited to cerebral vasculature. These methodologies may also be used to quantify vascular 
changes in other end organs that are sensitive to blood pressure (e.g., kidneys).

1.5 LIMITATIONS

While our segmentation algorithm significantly improves automatic segmentation methodologies, 
it is limited by the resolution limit of the MRI machine performing the MRA scanning. The CDF 
diameters (Figure 1.5) start at 0.5 mm because the distance map calculations determine radius from 
the edge of a blood vessel and a pixel in the MRA imaging represented 0.25 mm. Any value less 
than 0.5 mm would not be accurately represented due to the resolution limit. Subsequently, the accu-
racy of the statistical analysis decreases with decreasing blood vessel size (smaller blood  vessels 
< 10 micrometers) above the circle of Willis.

Various over-the-counter medications and supplements were used by the subjects during the 
time period of this study; however, the BP changes caused by these medications should be minimal. 
Nonetheless, larger sample sizes are required to establish a definitive relationship with progression 
to HBP. While elevated CPP is hypothesized to precede systemic hypertension, essential hyperten-
sion remains likely due to a mosaic of causes that are not completely understood. Despite these limi-
tations, our method is relevant to understanding brain pathology relevant to hypertension whether 
such pathology precedes or follows the establishment of clinical hypertension.

1.6 CONCLUSION

Changes in cerebral vasculature can be non-invasively obtained through MRA image analysis. 
Cerebrovascular changes are correlated to MAP below the circle of Willis. The improved seg-
mentation algorithm coupled with the calculation of CDF and PDF can indicate cerebrovascular 
and cerebral perfusion pressure changes, which may be a useful tool for clinicians to optimize 
medical management of HBP. In addition to blood vessels [121,122,139,140], this work could also 
be applied to various other applications in medical imaging, such as the kidney, the heart, the pros-
tate, the lung, and the retina. One application is renal transplant functional assessment. Chronic 
kidney disease (CKD) affects about 26 million people in the U.S. with 17,000 transplants being 
performed each year. In renal transplant patients, acute rejection is the leading cause of renal dys-
function. Given the limited number of donors, routine clinical post-transplantation evaluation is 
of immense importance to help clinicians initiate timely interventions with appropriate treatment 
and thus prevent the graft loss. In recent years an increased area of research has been dedicated to 
developing non-invasive CAD systems for renal transplant function assessment, utilizing different 
image modalities (e.g., ultrasound, computed tomography (CT), MRI, etc.). The accurate assess-
ment of renal transplant function is critically important for graft survival. Although transplanta-
tion can improve a patient’s well-being, there is a potential post-transplantation risk of kidney 
dysfunction that, if not treated in a timely manner, can lead to the loss of the entire graft, and even 
patient death. Thus, accurate assessment of renal transplant function is crucial for the identification 
of proper treatment.
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In recent years, an increased area of research has been dedicated to developing non-invasive, 
image-based CAD systems for the assessment of renal transplant function. In particular, dynamic 
and diffusion MRI-based systems have been clinically used to assess transplanted kidneys with the 
advantage of providing information on each kidney separately. For more details about renal trans-
plant functional assessment, please read [30–55].

The heart is also an important application to this work. The clinical assessment of myocardial 
perfusion plays a major role in the diagnosis, management, and prognosis of ischemic heart dis-
ease patients. Thus, there have been ongoing efforts to develop automated systems for the accu-
rate analysis of myocardial perfusion using first-pass images [56–72]. Another application for this 
work could be the detection of retinal abnormalities. The majority of ophthalmologists depend 
on visual interpretation for the identification of disease types. However, inaccurate diagnosis will 
affect the treatment procedure, which may lead to fatal results. Hence, there is a crucial need for 
computer-automated diagnosis systems that yield highly accurate results. Optical coherence tomog-
raphy (OCT) has become a powerful modality for the non-invasive diagnosis of various retinal 
abnormalities such as glaucoma, diabetic macular edema, and macular degeneration. The problem 
with diabetic retinopathy (DR) is that the patient is not aware of the disease until the changes in the 
retina have progressed to a level that treatment tends to be less effective. Therefore, automated early 
detection could limit the severity of the disease and assist ophthalmologists in investigating and 
treating it more efficiently [73,74].

Abnormalities of the lung could also be another promising area of research and a related applica-
tion to this work. Radiation-induced lung injury is the main side effect of radiation therapy for lung 
cancer patients. Although higher radiation doses increase the radiation therapy effectiveness for 
tumor control, this can lead to lung injury as a greater quantity of normal lung tissues is included 
in the treated area. Almost one-third of patients who undergo radiation therapy develop lung injury 
following radiation treatment. The severity of radiation-induced lung injury ranges from ground-
glass opacities and consolidation at the early phase to fibrosis and traction bronchiectasis in the 
late phase. Early detection of lung injury will thus help to improve management of the treatment 
[75–115].

This work can also be applied to other brain abnormalities, such as dyslexia and autism. Dyslexia 
is one of the most complicated developmental brain disorders that affect children’s learning abili-
ties. Dyslexia leads to the failure to develop age-appropriate reading skills in spite of normal 
intelligence levels and adequate reading instructions. Neuropathological studies have revealed an 
abnormal anatomy of some structures, such as the corpus callosum in dyslexic brains. There has 
been a lot of work in the literature that aims at developing CAD systems for diagnosing dyslexia and 
autism, along with other brain disorders [116–138].
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Appendices

A. INITIALIZATION SEQUENTIALLY USING EM ALGORITHM

Consider F being the marginal distribution of gray level, EM algorithm [22,29] is used to initially 
build an LCDG model that approximates F as explained in the following steps:

1. A mixture KP  of dominant mode K positive discrete Gaussians (DG) is used to approxi-
mate F.

2. Subordinate components of the LCDG alternatingly approximate the deviations between 
F and KP  as follows:
• Separating and scaling up the positive and the negative deviations to get the two prob-

ability distributions, pD  and nD .
• Iteratively finding subordinate mixtures of positive and negative DGs using the same 

EM algorithm. These mixtures should best approximate pD  and nD . The mixtures 
sizes, p −C K and nC , are found by sequentially minimizing the error between each 
distribution ( pD  or nD ) and its corresponding mixture model with the components 
number.

• Scaling down the positive and negative subordinate mixtures and adding them to the 
dominant mixture, which gives the initial LCDG model whose size is p n= +C C C .

The initial LCDG has K dominant weights p rw , , where = …r 1,2, ,K. The sum of these weights is 

equal to 1 wK
p r∑ ==( 1)r 1 , . In addition, there are several lower valued subordinate weights that fulfil 
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B. REFINING LCDGS USING MODIFIED EM ALGORITHM

Refining the initial LCDG is done by estimating the local maximum of the log-likelihood in 
(1.3) using the DGs adapted EM algorithm in [18], which extends the conventional EM algorithm 
in [22] [29] to handle the alternating components.

Consider p q w ww
m

r
C

p r
p

l
C

n l
m

n l
mp n= ∑ ψ θ − ∑ ψ θθ − =( ) (q )   (q ),

[ ]
1 ,

[ ]
p,r
[m]

1 ,
[ ]

,
[ ]  to be the LCDG at the iteration  m. 

Each signal ∈q Q contributes relatively to each positive and negative DG at iteration m as specified 
by the corresponding conditional weights

 

r q
w

p q
l q

w

p q
p
m p r

m

m

n l
m

w
m

w,

( ) ( )( )( ) =
ψ θ

=
ψ θ[ ]

θ
π

q

( )
; π

q

( )
[ ] , p,r

[m]

[ ] n
[m] ,

[ ]
n,l
[m]

,
[ ]

 

(1.4)

taking into consideration that the following constraints apply:
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Two main steps are repeated iteratively until the log-likelihood is maximized, the E-step[m] and the 
M-step[m], which are summarized as follows:

• E-step[m]: Fixing parameters w[m−1], Θ[m−1], calculate the weights in (1.4) from the iteration 
m − 1.

• M-step[m]: Maximize L(w, Θ) fixing the weights of (1.4) to get the conditional maximum 
likelihood estimates (MLEs) w[m], Θ[m].

The described process showed to be converging to a local log-likelihood maximum, using simi-
lar considerations as in [22] [29]. Moreover, it was demonstrated in [18] that this process is a block 
relaxation minimization-maximization.

Considering unit factor constraints in (1.5), the log-likelihood in (1.3) can be equivalently given as:
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Using (1.4), consider replacing log p qm ( )[ ]  in the first summation with p r
m +logw ,
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[ ] . During the E-step, the conditional Lagrange maximization of the log-

likelihood of (1.6) under the restrictions of (1.5) yields the weights r qp
m+π ( )[ 1]  and l qn

m+π ( )[ 1]  of (1.4) 

for all r lp n = =1, ,  C ; 1, ,  C  and q ∈ Q. During the M-step, the conditional Lagrange maximi-
zation of the log-likelihood in (1.6) under the restriction of (1.2) and the fixed conditional weights of 
(1.4) results in the DG weights w f q r qp r

m
q p

m=∑+
∈

+( )π ( ),
[ 1]

Q
[ 1]  and w f q l qn l

m
q n

m=∑+
∈

+( )π ( ),
[ 1]

Q
[ 1] . For 

each DG, the conventional MLEs of the parameters originating from maximizing the log-likelihood 
after each difference of the cumulative Gaussians can be approximated with the Gaussian density:

w
q f q r qc r

m

c r
m c

m

q

∑ ( )µ = ⋅+
+

+

∈

1
( )π,

[ 1]

,
[ 1]

[ 1]

Q

w
q f r qc r

m

c r
m c i

m
c
m

q

∑( ) ( ) ( )σ = − µ ⋅+
+

+ +

∈

1
(q)π,

[ 1] 2

,
[ 1] ,

[ 1] 2 [ 1]

Q

where c can be either p or n. The modified EM-algorithm is true till the weights w become strictly 
positive. The iterations must be ended if the log-likelihood of (1.3) becomes almost constant or 
starts decreasing resulting from rounding errors accumulation.

Associating the subordinate DGs with the dominant terms, the final mixed LCDG model pC  (q) 
is divided into the K LCDG submodels P p q k qK Q= ∈[ ( ) : ][ ] , one per class k K= 1, , , and hence 
the misclassification rate becomes minimal.
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2.1 INTRODUCTION

CONTENTS

Accurate 3D cerebrovascular system segmentation from magnetic resonance angiography (MRA) 
images is one of the most important problems in practical computer-assisted medical diagnostics. 
Phase Contrast MRA (PC-MRA) provides good suppression of background signals and quantifies 
blood flow velocity vectors for each voxel. Time-of-flight MRA (TOF-MRA) is less quantitative, but 
it is fast and produces images with high contrast. The most popular techniques for extracting blood 
vessels from MRA data are scale-space filtering, centerline-based methods, deformable models, 
statistical models, and hybrid methods.

Multiscale filtering enhances curvilinear structures in 3D medical images by convolving an image 
with Gaussian filters at multiple scales [4–7]. Eigenvalues of the Hessian at each voxel are analyzed 
to determine the local shapes of 3D structures (by the eigenvalues, voxels from a linear structure, 
like a blood vessel, differ from those for a planar structure, speckle noise, or unstructured compo-
nents). The multiscale filter output forms a new enhanced image such that the curvilinear structures 
become brighter, whereas other components become darker [4]. Such an image can be directly visu-
alized, thresholded, and segmented using a deformable model. Alternatively, the obtained eigenval-
ues define a candidate set of voxels corresponding to the centerlines of the vessels [5]. Multiscale 
filter responses at each of the candidates determine the likelihood that a voxel belongs to a vessel of 
each particular diameter. The maximal response over all the diameters (scales) is assigned to each 
voxel, and a surface model of the entire vascular structure is reconstructed from the estimated cen-
terlines and diameters. After segmenting the filtered MRA image using thresholding, anisotropic 
diffusion techniques are used to remove noise, while preserving small vessels [6]. Lacoste et al. [7] 
proposed a multiscale technique based on Markov marked point processes to extract coronary arter-
ies from 2D X-ray angiograms. Coronary vessels are modeled locally as piece-wise linear segments 
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Centerline minimal path-based techniques [8–10] formulate the two-point centerline extraction 
as the minimum cost integrated along the centerline path. Gülsün and Tek [8] used multiscale 
medialness filters to compute the cost of graph edges in a graph-based minimal path detection 
method to extract the vessels’ centerlines. A post-processing step, based on the length and scale of 
vessel centerlines, was performed to extract the full vessel centerline tree. Pèchaud et al. [9] pre-
sented an automatic framework to extract tubular structures from 2D images by the use of shortest 
paths. Their framework combined multiscale and orientation optimization to propagate 4D (space + 
scale + orientation) paths on the 2D images. Li and Yezzi [10] represented the 3D vessel surface as 
a 4D curve, with an additional non-spatial dimension that described the radius (thickness) of the 
vessel. They applied a minimal path approach to find the minimum path between user-defined end 
points in the 4D space. The detected path simultaneously described the vessel centerline as well as 
its surface. To overcome the possible shortcut problem of minimal path techniques (i.e., track a false 
straight shortcut path instead of following the true curved path of the vessel), Zhu and Chung [11] 
used a minimum average-cost path model to segment the 3D coronary arteries from CT images. In 
their approach, the average edge cost is minimized along paths in the discrete 4D graph constructed 
by image voxels and associated radii.

Deformable model approaches to 3D vascular segmentation attempt to approximate the bound-
ary surface of the blood vessels [12–17]. An initial boundary, called a snake [18], evolves in order 
to optimize a surface energy that depends on image gradients and surface smoothness. To increase 
the capture range of the evolving boundary, Xu and Prince [19] used a gradient vector flow (GVF) 
field as an additional force to drive snakes into object concavities, which was later used to segment 
the blood vessels from 3D MRA [12]. Geodesic active contours [20] implemented with level set 
techniques offer flexible topological adaptability to segment the MRA images [13], including more 
efficient adaptation to local geometric structures represented. Fast segmentation of blood vessel 
surfaces is obtained by inflating a 3D balloon with fast marching methods [14].

Holtzman-Gazit et al. [15] extracted blood vessels in computed tomography angiography (CTA) 
images based on variational principles. Their framework combined the Chan-Vese minimal variance 
model with a geometric edge alignment measure and the geodesic active surface model. Manniesing 
et al. [16] proposed a level set based vascular segmentation method for finding vessel boundaries 
in CTA images. The level set function is attracted to the vessel boundaries based on a dual object 
(vessels) and background intensity distributions, which are estimated from the intensity histogram. 
Recently, Forkert et al. [17] used a vesselness filter to guide the direction of a level set to extract 
vessels from TOF-MRA data. Compared to scale-space filtering, deformable models produce much 
better experimental results, but have a common drawback, namely, manual initialization. Also, both 
group approaches are slow when compared to statistical approaches.

Statistical extraction of a vascular tree is completely automatic, but its accuracy depends on the 
underlying probability models. The MRA images are multi-modal in that the signals (intensities, 
or gray levels) in each region of interest (e.g., blood vessels, brain tissues, etc.) are associated with 
a particular dominant mode of the total marginal probability distribution of signals. To the best of 
our knowledge, adaptive statistical approaches for extracting blood vessels from the MRA images 
have been proposed so far only by Wilson and Noble [21] for the TOF-MRA data and Chung and 
Noble [22] for the PC-MRA data. The former approach represents the marginal data distribution 
with a mixture of two Gaussians and one uniform component for the stationary cerebrospinal fluid 
(CSF), brain tissues, and arteries, respectively, whereas the latter approach replaces the Gaussians 
with the more adequate Rician distribution. To identify the mixture (i.e., estimate all its parameters), 
a conventional EM algorithm is used in both cases. It was called a “modified EM” [21], after replac-
ing gray levels in individual pixels considered by their initial EM scheme with a marginal gray level 
distribution. Actually, such a modification returns to what has been in common use for decades for 

of varying locations, lengths, widths, and orientations. The vessels’ centerlines are extracted using 
a Markov object process modeled by a uniform Poisson process. Process optimization was achieved 
via simulated annealing using a reversible Markov chain Monto Carlo algorithm.
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density estimation (see e.g., [23]), while the individual pixels appeared in their initial scheme only 
as a verbatim replica of a general EM framework.

Different hybrid approaches have attempted to combine the aforementioned approaches. For 
instance, a region-based deformable contour for segmenting tubular structures is derived in [24] by 
combining signal statistics and shape information. Law and Chung [25] guided a deformable sur-
face model with the second-order intensity statistics and surface geometry to segment blood vessels 
from TOF- and PC-MRA images. A combination of a Gaussian statistical model with the maximum 
intensity projection images acquired at three orthogonal directions [26] allows for extracting blood 
vessels iteratively from images acquired by rotational angiography. Alternatively, Hu et al. [27] 
extracted the object boundaries by combining an iterative thresholding approach with region grow-
ing and component label analysis.

Mille et al. [28] used a generalized cylinder (GC) region-based deformable model for the seg-
mentation of the angiogram. The GC is modeled as a central planar curve, acting as a medial axis, 
and variable thickness. The GC is deformed by coupling the evolution of the curve and thickness 
using narrow band energy minimization. This energy was transformed and derived in order to allow 
implementation on a polygonal line deformed using a gradient descent approach. Tyrrell et al. [29] 
proposed a superellipsoid geometric model to extract the vessel boundaries from in-vivo optical 
slice data. Their approach predicted the direction of the centerline utilizing a statistical estimator. 
Chen and Metaxas [30] combined a prior Gibbs random field model, marching cubes, and deform-
able models. First, the Gibbs model is used to estimate object boundaries using region information 
from 2D slices. Then, the estimated boundaries and the marching cubes technique are used to 
construct a 3D mesh specifying the initial geometry of a deformable model. Finally, the deformable 
model fits the data under the 3D image gradient forces.

Recently, Shang et al. [31] developed an active contour framework to segment coronary artery 
and lung vessel trees from CT images. A region, competition-based active contour model is used to 
segment thick vessels based on a Gaussian mixture model of the gray-level distribution of the vessel 
region. Then, a multiscale vector field, derived from the Hessian matrix of the image intensity, is 
used to guide the active contour through thin vessels. Finally, the surface of the vessel is smoothed 
using a “vesselness” function that selects between a minimal principal curvature and a mean cur-
vature criterion. Gao et al. [32] used a statistical model to find the main cerebrovascular structure 
from TOF-MRA. Then, an edge-strength function that incorporates statistical region distribution 
and gradient information is used to guide a 3D geometric deformable model to deal with the under-
segmentation problem. Dufour et al. [33] proposed an interactive segmentation method that incor-
porates component-trees and example-based segmentation to extract the cerebrovascular tree from 
TOF-MRA data. Liao et al. [34] used a parametric intensity model to extract thick and most thin 
vessels from seven Tesla MRA images. To fill the remaining gaps, a generative Markov random field 
method was applied.

The previous overview shows the following limitations of the existing approaches:

1. Most of them presume only a single image type (e.g., TOF- or PC-MRA).
2. Most of them require user interaction to initialize a vessel of interest.
3. Some deformable models assume circular vessel cross-sections; this holds for healthy peo-

ple, but not for patients with a stenosis or an aneurysm.
4. All but statistical approaches are computationally expensive.
5. Known statistical approaches use only predefined probability models that cannot fit all 

cases, because actual intensity distributions for blood vessels depend on the patient, scan-
ner, and scanning parameters.

This chapter derives a more general probabilistic model of blood vessels on MRA images 
to account for normal and abnormal states of the vascular system, that is, for both laminar and 
turbulent blood flow without and with stenosis. To accurately separate blood vessels from other 
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regions-of-interest, the marginal distribution is precisely approximated with an adaptive linear 
combination of the derived model and a number of dominant and subordinate discrete Gaussians 
rather than with a mixture of only three pre-selected Gaussian and uniform or Rician components. 
Experiments show that our adaptive model results in significantly improved segmentation of MRA 
images. The rest of the chapter is organized as follows: in Sections 2.2 and 2.3, we discuss in detail 
the proposed probability model of vascular signals and the adaptive model of multi-modal MRA. 
Section 2.4 presents the experiments of proposed segmentation methodology of the blood vessels. 
Section 2.5 explains the validation, and compares our results with other alternatives. Finally, con-
clusions are drawn in Section 2.6.

2.2 PROBABILITY MODEL OF VASCULAR SIGNALS

Let q; q QQ = {0,1, , 1}∈ − , be the Q-ary signals (image intensity, or gray level). Conventional 
models of intensities for vessel voxels in [1], [21] assume laminar blood flow with parabolic 
velocity flow through a circular cross-section of the vessel [2]. Then the intensity profile for a 

vessel is = (1 )max
2

2−q qr
r
R

 where qr  is the intensity at the distance r from the center of a vessel 
of radius R and the constant ≤ −q Q 1max  depends on the scanner. In this case the intensities over 
the circular cross-section are distributed uniformly with the probability density: ϕ q q( ) =lam

1
max

 
in the range [0, ]maxq . Nonetheless, the laminar flow holds only for subjects with normal vascular 
systems [3].

Various diseases change either blood velocity or viscosity or both and cause the turbulent flow. 
Turbulence depends on the diameter of vessel and blood velocity and viscosity. For example, due to 
lower blood viscosity, anemia leads frequently to turbulence. Artery constrictions increasing blood 
velocity (see Figure 2.1) and vascular diseases such as thrombosis, embolism, thyrotoxicosis, ath-
erosclerosis, and valvular heart diseases also result in turbulence [3].

Typically, the turbulence adds a uniform random factor ξ in the range −[ 1,1] to the parabolic 
intensity profile [3]:
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FIGURE 2.1 Influence of constriction (C) on the blood velocities in a vessel (arrows indicate flow directions) 
and ranges of velocities at each cross-section along the vessel [3].
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To derive the probability density of the intensities in Eq. (2.1) over the vessel, let a rr = 2π  and 
a R= πmax

2  be a circular area of radius r and the maximum area for the circular vessel cross-section 

for radius R, respectively. Let ( ),f q ar ϕ q( ),tur  and ( ) = Pr ( ) = ( )tur 0 turΦ ≤ ∫ ϕx q x q dqx  denote the 
conditional density of intensities on the border of ar, the unconditional density, and the probability 
of the intensities over the whole vessel, respectively.

The density of ξ ∈y = [0,1]2  is ( ) = (2 ) 1−p y y  because y x x x xPr ( ) Pr ( ) = 2≤ ≡ − ≤ ξ ≤ .  

In accord with Eq. (2.1), = (1 ),max
max

−y a
a

q
qr
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Therefore, the unconditional probability density is:
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Since the MRA may represent both normal and abnormal subjects, the model of vascular signals 
can be built as a mixture of the laminar and turbulent components:

 

( ) = (1 ) ( ) ( )
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( )
lam tur
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ϕ − β ϕ + βϕ ≡ − β + β
−

q q q
q q q q

 

(2.4)

Probability densities for different mixing weights β ∈ [0,1]  in this model are presented in  
Figure 2.2.

(a) (b) (c)

FIGURE 2.2 Probability densities for Eq. (2.4) with = 0.0,0.2,0.4, ,1.0β  and synthetic cross-section 
images of a blood vessel with laminar β b( = 0, ) and turbulent β c( = 1, ) flow.
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2.3 ADAPTIVE MODEL OF MULTI-MODAL MRA

MRA images contain three regions-of-interest (signal classes): (i) darker CSF from bones and fat, 
(ii) brain tissues (gray matter and white mater), and (iii) brighter blood vessels. Marginal signal 
distributions for the first two classes are typically of intricate shape that differs greatly from the 
conventional individual Gaussians in [1], [21]. The model in Eq. (2.4) describes only circular ves-
sels and should have additional terms changing its shape to account for variations of the blood flow 
due to stenosis. Generally, no predefined probability model can accurately describe all the signal 
variations due to changes in blood velocity and viscosity, vessel diameter, and scanner sensitivity.

Therefore, we propose an adaptive probability model to handle both normal and abnormal MRA 
images. It mixes three submodels representing the above-mentioned major image areas (abbreviated 
by “csf”, “bt”, and “bv”, respectively):

 

∑ α ϕ
∈

p q q
i

i i( ) = ( )MRA

{bv,csf,bt}  

(2.5)

where αi are the mixing weights α + α + α( = 1).1 2 3  Each of the three submodels ϕ qi ( )  is a mixture 
of one dominant component with a linear combination of several sign-alternate subordinate compo-
nents chosen to closely approximate corresponding parts of an empirical marginal signal distribu-
tion = ( ( ) : )emp emp ∈QF f q q .

The dominant component for the blood vessels submodel is the discrete parametric distribution 
= ( ( ) : = 0, , ),bv bv maxΨ ψ θθ q q q with a shorthand notation = ( , )maxθ β q for its parameters. It is 
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Because typically −q Q= 1max , this distribution has only a single parameter β.
Two other dominant components are discrete Gaussians (DGs) defined in [36] as a dis-

crete probability distribution = ( ( ) : )Ψ ψ θ ∈θ Qq q  integrating a normal parametric density 
over unit intervals: ψ θ Φ + − Φ −θ θq q q( ) = ( 0.5) ( 0.5) for = 1, , 2,−q Q ψ θ Φθ(0 ) = (0.5) ,  
ψ − θ − Φ −θQ Q( 1 ) = 1 ( 1.5) where Φθ q( ) is the cumulative Gaussian probability function with 
parameters θ µ σ= ( , )2 , that is, the mean µ, and variance σ .2

The subordinate part of each submodel ϕ qi ( ) is a linear combination of discrete Gaussians 
(LCDGs) with Ci,p positive and Ci,n  negative components under obvious restrictions on their 
weights. To identify the three submodels (estimate parameters of their dominant components and 
numbers and parameters of the positive and negative subordinate components), we use the EM-based 
techniques introduced in [36]. The only difference here is in the non-analytical estimation of the 
parameter β  on the M-steps using the gradient-based search for the global maximum of the goal 
likelihood function β ∑ π ψ βG i q f q qq

q( ) = ( = bv ) ( ) ln ( )=0
max

emp bv where π i q( ) is the responsibility of 
the submodel i for q [37].

2.4 SEGMENTATION OF BLOOD VESSELS

To justify the adaptive model of Eq. (2.5), Figure 2.3 shows how different scanners affect the mea-
surements. These three TOF-MRA slices were acquired for a subject with anemia using a Picker 
1.5T Edge MRI scanner with resolution of × ×512 512 93,  a subject with parietal lobe hemorrhage 
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using a Signa Horizon GE 1.5T scanner with resolution × ×512 512 150, and a normal subject using 
a state-of-the-art Siemens 3T scanner with resolution × ×512 512 125, respectively. The slice thick-
ness is 1 mm in all the cases.

The models of Eq. (2.5) were built with the EM-based approach (see [36] for detail). Figure 2.3 pres-
ents both the marginal empirical distributions Femp and the initial three-component dominant mixtures 
for them containing the two Gaussian components and our model of blood vessels in Eq. (2.4). The 
estimated parameters β of the latter are 0.92, 0.18, and 0.038 for the slices A, B, and C in Figure 2.3, 
respectively, which reflects levels of blood turbulence expected from physics-based considerations.

Figure 2.4 illustrates basic stages of our EM-based initialization and final refinement of the whole 
model of Eq. (2.5) for the slice A. Given the dominant mixture ∈P p q q Q= ( ( ) : ),3 3  the number and 
the parameters of the subordinate DGs are estimated from the absolute deviations −f q p q( ) ( )emp 3  by 
minimizing the residual approximation error. In this case the eight DGs are added to the dominant mix-
ture to obtain the best initial 3-class model. The final model is obtained using the EM-based refinement 
(here, the first nine refining iterations increase the log-likelihood of the model from −5.9  to −4.4. The 
final submodels of each class provide the best segmentation thresholds t = 641  and t = 187.2

To highlight the advantages of our approach, Figure 2.5 shows results obtained with the model 
of Wilson and Noble [21] (the mixture of two Gaussians and ϕ q( )lam ). The quality is evaluated by 
the Levy distance [38] and the absolute error between the empirical distribution and the estimated 
3-class model. In this example, the Wilson-Noble’s and our approach result in the Levy distance of 
0.14 and 0.0002 and the absolute error of 0.14 and 0.004, respectively. The lower Levy distance and 
absolute error suggest our approach yields the notably better approximation, ensuring more accurate 
separation of the blood vessels from their background. As shown later in Figure 2.8, the typically 
higher separation threshold of the Wilson-Noble’s approach, e.g. t = 2032  versus our t = 1872  in this 
particular example, results in many missed blood vessels.

Figures 2.6 and 2.7 show our and Wilson-Noble’s models estimated for the slices in Figure 2.3 
B and C, respectively. In these examples, our models are more accurate. We compared both the 
approaches on 50 real MRA data sets, too. Results of the six tests in Figure 2.8 as well as other tests 
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FIGURE 2.8 Each column relates to one patient: our (a) and the Wilson-Noble’s (b) segmentation, and 
their differences (c): the red voxels are detected by the both approaches and the green ones are missed by the 
latter one.



33Blood Vessel Segmentation Using MRA Images

confirm that the Wilson-Noble’s approach fails to detect large fractions of vascular trees validated 
by an expert–radiologist. Our approach is more accurate in restoring detail of the brain vascular tree.

2.5 VALIDATION

It is very difficult to accurately get manually segmented complete vascular trees to validate our 
algorithm. To quantitatively evaluate its performance, we created three 3D phantoms in Figure 2.9 
with geometrical shapes similar to blood vessels with known ground truth. These three phantoms 
mimic bifurcations, zero and high curvature existing in any vascular system, and their changing 
radii simulate both large and small blood vessels. To make the distributions of these three phantoms 
similar to MRA images, first we compute the empirical class distributions p q( bv), p q( csf), and 
p q( bt) from the signals that represent blood vessels, CSF, and brain tissues from the MRA images 
segmented by a radiologist (we have selected 200 images from a data set of over 5,000 images of 
50 subjects). Then, the phantoms signal are generated by using the inverse mapping methods. The 
resulting phantom’s histograms are similar to those in Figure 2.4(e).

The total segmentation error is evaluated by a percentage of erroneous voxels with respect to the 
overall number of voxels in the ground truth 3D phantom. Figure 2.9 shows that, on average, our 
approach is 14 times more accurate than the Wilson-Noble approach. Table 2.1 gives error statistics 
for 440 synthetic slices segmented in the phantoms with both approaches and compares them to 
three other known segmentation algorithms.

Therefore, comparing to the more conventional probability model in [21], our adaptive model 
notably improves the accuracy of segmenting the MRA images acquired with different scanners. 
The conventional approaches either assume a purely laminar blood flow or pre-select a simple para-
metric distribution in attempts to take account of actual signal features. By contrast, our model is 

“Cylinder” Error 0.18% Error 3.97%

“Spiral” Error 1.34% Error 9.52%

“Tree” Error 0.29% Error 4.64%

Phantom OA WN

FIGURE 2.9 Segmentation of 3D phantoms with our (OA) and the Wilson-Noble’s (WN) approaches 
(the same color code as in Figure 2.8).



34 Cardiovascular Imaging and Image Analysis

derived from the physical description of the blood flow and thus can accurately handle both normal 
and abnormal cases. Moreover, the estimated weights β ∈ [0,1]  in Eq. (2.4) provide a natural mea-
sure of the percentage of abnormality of the blood flow for a particular subject.

2.6 CONCLUSION

We presented a new physically justified adaptive probability model of blood vessels on magnetic 
resonance angiography (MRA) images. It accounts for laminar (normal subjects) and turbulent 
blood flow (abnormal cases like anemia or stenosis). Better accuracy of segmenting MRA images 
with our approach compared to more conventional algorithms is confirmed by experts-radiologists 
and also is validated using special 3D geometrical phantoms.

Our present C++ implementation of the algorithm on a single 2.4 GHz Pentium 4 CPU with 
512 MB RAM takes about 49 sec to segment 93 TOF-MRA slices of size ×512 512 pixels each.

The proposed model is suitable for segmenting both TOF-MRA and PC-MRA images. 
Experiments with the latter type was not included in this chapter due to space limitations. But the 
algorithm’s code, sample data, and segmentation results for all the MRA images will be provided 
in our web page. This work could also be applied to various other applications in medical imaging, 
such as the kidney, the heart, the prostate, the lung, and the retina.

One application is renal transplant functional assessment. Chronic kidney disease (CKD) affects 
about 26 million people in the U.S. with 17,000 transplants being performed each year. In renal 
transplant patients, acute rejection is the leading cause of renal dysfunction. Given the limited num-
ber of donors, routine clinical post-transplantation evaluation is of immense importance to help 
clinicians initiate timely interventions with appropriate treatment and thus prevent the graft loss. 
In recent years an increased area of research has been dedicated to developing noninvasive CAD 
systems for renal transplant function assessment, utilizing different image modalities (e.g., ultra-
sound, computed tomography (CT), MRI, etc.). Accurate assessment of renal transplant function is 
critically important for graft survival. Although transplantation can improve a patient’s well-being, 
there is a potential post-transplantation risk of kidney dysfunction that, if not treated in a timely 
manner, can lead to the loss of the entire graft, and even patient death. Thus, accurate assessment 
of renal transplant function is crucial for the identification of proper treatment. In recent years, 
an increased area of research has been dedicated to developing non-invasive image-based CAD 
systems for the assessment of renal transplant function. In particular, dynamic and diffusion MRI-
based systems have been clinically used to assess transplanted kidneys with the advantage of pro-
viding information on each kidney separately. For more details about renal transplant functional 
assessment, please read [40]–[57], [57]–[65].

TABLE 2.1
Minimum εn, maximum εx, and mean ε segmentation errors, and standard 
deviations σ of errors on the geometrical 3D TOF-MRA phantoms for our (OA) and the 
Wilson–Noble’s (WN) approaches as well as for three other segmentation algorithms 
using iterative thresholding (IT) [27] and gradient based (DMG) [18] or gradient vector 
flow based (GVF) [19] deformable models.

  OA WN IT DMG GVF

ε ,%n 0.09 0.10 4.81 10.1 2.45

ε ,%x 2.10 12.1 33.1 21.8 13.6

ε,% 0.61 6.20 18.8 11.9 5.96

σ,% 0.93 7.40 8.41 3.79 2.79
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The heart is also an important application to this work. The clinical assessment of myocardial 
perfusion plays a major role in the diagnosis, management, and prognosis of ischemic heart disease 
patients. Thus, there have been ongoing efforts to develop automated systems for accurate analysis 
of myocardial perfusion using first-pass images [66]–[82].

Another application for this work could be the detection of retinal abnormalities. The majority 
of ophthalmologists depend on visual interpretation for the identification of disease types. However, 
inaccurate diagnosis will affect the treatment procedure, which may lead to fatal results. Hence, 
there is a crucial need for computer automated diagnosis systems that yield highly accurate results. 
Optical coherence tomography (OCT) has become a powerful modality for the non-invasive diagno-
sis of various retinal abnormalities such as glaucoma, diabetic macular edema, and macular degen-
eration. The problem with diabetic retinopathy (DR) is that the patient is not aware of the disease 
until the changes in the retina have progressed to a level that treatment tends to be less effective. 
Therefore, automated early detection could limit the severity of the disease and assist ophthalmolo-
gists in investigating and treating it more efficiently [83], [84].

Abnormalities of the lung could also be another promising area of research and a related applica-
tion to this work. Radiation-induced lung injury is the main side effect of radiation therapy for lung 
cancer patients. Although higher radiation doses increase the radiation therapy effectiveness for 
tumor control, this can lead to lung injury as a greater quantity of normal lung tissues is included in 
the treated area. Almost 1/3 of patients who undergo radiation therapy develop lung injury following 
radiation treatment. The severity of radiation-induced lung injury ranges from ground-glass opaci-
ties and consolidation at the early phase to fibrosis and traction bronchiectasis in the late phase. 
Early detection of lung injury will thus help to improve management of the treatment [85]–[125].

This work can also be applied to other brain abnormalities, such as dyslexia and autism. Dyslexia 
is one of the most complicated developmental brain disorders that affect children’s learning abili-
ties. Dyslexia leads to the failure to develop age-appropriate reading skills in spite of a normal 
intelligence level and adequate reading instructions. Neuropathological studies have revealed an 
abnormal anatomy of some structures, such as the Corpus Callosum in dyslexic brains. There has 
been a lot of work in the literature that aims at developing CAD systems for diagnosing such disor-
ders, along with other brain disorders [126]–[148].
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3.1 INTRODUCTION

The human cerebrovascular system is a complex three-dimensional (3D) anatomical structure. 
Serious types of vascular diseases such as carotid stenosis, aneurysm, and vascular malformation 
may lead to brain stroke, which is the third leading cause of death and the number one cause of dis-
ability [1]. An accurate model of the vascular system is needed to detect these diseases at an early 
stage and make invasive treatments unnecessary.

Increasingly, imaging is being applied in minimally invasive surgery to provide two-dimensional 
(2-D) and 3-D visualization of vascular structures to assist clinicians in pre-operation planning, 
real-time operating room decision making, and post-operation monitoring. One emerging area of 
interest is in quantitative image processing techniques that can aid in the development of new and 
safer methods of endovascular treatment for intracranial saccular aneurysms, whereby tiny plati-
num coils are used to prevent blood flow within cerebral aneurysms [2].

Magnetic resonance imaging has always been especially suited for vascular imaging [3], [4]. This 
was first made possible by the flow void phenomenon and later by special vascular sequences known 
as in-flow or TOF and phase-contrast imaging (PCA). This led to the term magnetic resonance 
angiography (MRA). The direct relationship between signal intensity and flow velocity allowed 
MRAs to be used for quantitative measurement, but MRAs also have inherent drawbacks in areas 
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of increased flow (stenosis) and reduced or complex flow (aneurysms). Ideally, MRA suppresses the 
signal from static tissue so that the signal comes exclusively from flowing blood and theoretically 
the vessel segmentation becomes very simple.

Segmentation and 3D rendering of vascular structures require sufficient vessel contrast. 
Computed tomographic angiography (CTA) is able to acquire this type of data and has been applied 
to arteriovenous malformations and cerebral aneurysms [5]. Helical CT acquires this data at a much 
higher speed than classic CT, and thus is capable of imaging a wide variety of vascular lesions while 
preserving bony morphology for anatomic reference.

X-ray angiography is used to image and diagnose diseases of the blood vessels of the body, 
including the brain and heart [6], [7]. Traditionally, angiography was used to diagnose pathology of 
these vessels such as blockage caused by plaque buildup. However in recent decades, radiologists, 
cardiologists, and vascular surgeons have used X-ray angiography to guide minimally invasive pro-
cedures of the blood vessels and arteries of the heart.

Medical image processing applications such as surgical planning and navigation benefit from 
segmentation of anatomical structures from medical images. For example, CT data segmentation 
of some structures can be performed simply using an intensity threshold. In general, however, seg-
mentation is challenging and requires sophisticated algorithms and significant human input. The 
distribution of gray level values corresponding to one structure may vary throughout the structure 
and may also overlap those of another structure.

In many cases, the 3D segmentation is performed using deformable models. The mathematical 
foundation of such models represents the confluence of physics and geometry [10]. The latter rep-
resents an object shape and the former puts constraints on how the shape may vary over space and 
time. Deformable models have had great successes in imaging and computer graphics. In particular 
in [11], the deformable models recover the object’s structure using some properties of its shape. The 
model evolves iteratively towards the steady state of energy minimization. But the disadvantage of 
this method is that the initial contour should be close to the final one. The model faces problems 
with topological changes of a complex structure.

Level set techniques of segmentation overcome problems of the classical deformable models 
[12]–[14]. A curve in 2D or a surface in 3D evolves in such a way as to cover a complex shape or struc-
ture. Its initialization is either manual or automatic, and it need not be close to the desired solution. 
But these methods depend on a large number of parameters to be tuned for the success of the process.

In [15], a more efficient 3D segmentation technique was proposed. In this approach, surface 
evolution is controlled by current probabilistic region information. Probability density functions for 
the regions are assumed to be Gaussian and their parameters are estimated iteratively. The level set 
model designed is based on these density functions.

Brain vessels extraction has attracted lots of attention from the computer vision community, with 
developments of very interesting dedicated level-sets implementations for thin tubular structure 
extraction. In this field, Lorigo et al. [16] have developed flows using the Hessian information [18], 
co-dimension 2 evolution schemes for the extraction of thin curves in 3D [17], with application to the 
brain vessels. The same target was followed in [19] where the authors use a flow based on the diver-
gence of the gradient in the image. Both works achieve extraction of thin curves where even level-sets 
classical formulation cannot. However, the computing cost to achieve this result is too significant.

Choyke et al. [20] presented a method for reconstructing vessel surfaces from 3-D angiographic 
images that allows for objective measurement of vessel stenosis. The method is a deformable model 
that employs a tubular coordinate system. Vertex merging is used with the coordinate system to 
maintain even vertex spacing and to avoid problems of self-intersection of the surface.

Yim et al. [21] proposed a methodology for deforming the isosurface to conform to the boundar-
ies of objects in the image with minimal a priori assumptions of object shape. As in conventional 
methods, external forces attract the surface toward edges in the image. However, smoothing is 
produced by a moment that aligns the normals of adjacent surface triangles. Notably, the moment 
produces no translational motion of surface triangles.
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There is another class of techniques based on statistical approaches for extracting the vascular 
tree. Wilson et al. [8] proposed an adaptive statistical approach for the extraction of blood vessels 
from TOF-MRA data. This algorithm is based on a mixture of three components that model the 
intensity distribution of TOF-MRA data. The first component is uniformly distributed and repre-
sents the blood vessels. The other two components have Gaussian distributions and model the fat, 
bones, and brain tissues (white matter and gray matter). The parameter estimation of these three 
components is performed recursively on smaller and smaller subvolumes of data using the EM algo-
rithm. In [9] they improved the model proposed in [8] by using the Rician distribution to model the 
background-noise to better match the empirical density distribution and the estimated distribution. 
In [22] they improved the model proposed in [8] by using a mixture of one Rayleigh and two normal 
distributions to model the histogram intensity of TOF-MRA data.

In this chapter we introduce a novel approach to extract the vascular tree in images from various 
modalities. This approach depends on combining the level set techniques with a precise statistical 
model for the intensity distribution of the given data. The proposed technique is considered to be 
a nonparametric level set approach that does not need any tuning of parameters. The statistical 
approach gives accurate estimates for the empirical density of the data using a linear combination 
of Gaussian with positive and negative components.

We propose an extension for our work in [15]. The adaptive Gaussian models are modified using 
an expectation-maximization algorithm that approximates an empirical probability density func-
tion of scalar data with a linear combination of Gaussians (LCG). Due to both positive and nega-
tive components, the LCG approximates interclass transitions more accurately than a conventional 
mixture of only positive Gaussians.

The initialization of level set functions is very important for the success of this segmentation 
process. An automatic seed initialization is used to accelerate the process and make it less sensitive 
to noise. The chosen initialization needs an accurate estimate of the density function of each class. 
Our modified EM algorithm is used to give initial estimates of class density. Our experiments in 3D 
segmentation of the vascular tree demonstrate the accuracy of the algorithm.

3.2 SURFACE MODELLING BY LEVEL SETS

Within the level set formalism [23], the evolving surface is a propagating front embedded as the 
zero level of a 4D scalar function φ( , ).x t  This hypersurface is usually defined as the signed distance 
function positive inside, negative outside, and zero on the boundary of a region. The continuous 
change of φ can be described by the partial differential equation:

 
∂φ

∂
+ ∇φ =( , )

( , ) 0,
x t

t
FF x t  (3.1)

where FF is a scalar velocity function depending on the local geometric properties (local curva-
ture) of the front and on the external parameters related to the input data (e.g., image gradient). The 
hypersurface φ deforms iteratively according to FF, and the position of the 3D front is given at each 
iteration step by the equation φ =( , ) 0x t . Practically, instead of Eq. (3.1), the value φ +( , )1x tn  at step 

+ 1n  is computed from φ( , )x tn  at step n by the relation:

 x t x t t FF x tn n n, , , ,1( ) ( ) ( )φ = φ − ∆ ⋅ ∇φ+  (3.2)

The design of the velocity function FF plays a major role in the evolutionary process. Among 
several formulations proposed in [24] and [25], we have chosen the following formulation:

 = ν − ε( )( ),FF h I k  (3.3)
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where ν = 1 or −1 for the contracting or expanding front, respectively, ε is a smoothing coefficient 
always small with respect to 1, and k is the local curvature of the front defined in the 3D case as 
follows:
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The latter parameter acts as a regularization term. The data consistency term ( )h I  acts as a stopping 
criterion at the location of the desired boundaries; it is defined according to the intensity I  of the 
input data.

With this representation a single level set either contracts until vanishing, or expands to cover 
all the space. To stop the evolution at the edge, FF can be multiplied by a value that is a function 
of the image gradient [26]. But if the edge is missed, the surface can not move back. So to depend 
only on the edge is not sufficient for accurate segmentation; thus other information from the image 
should be used.

The segmentation partitions the image into regions, each belonging to a certain class. In our 
approach, a separate level set function is defined for each class and the automatic seed initializa-
tion is used. Given the gray level density of each class, the volume is initially divided into equal 
non-overlapping sub-volumes. For each sub-volume, the average gray level is used to specify 
the most probable class with the given density estimated by the modified EM. Such initializa-
tion differs from that in [27] where only the distance to the class mean is used. Then a signed 
distance level set function for the associated class is initialized. The automatic seed initialization 
produces initially non-overlapped level set functions. The competition between level sets based 
on the probability density functions stops the evolution of each level set at the boundary of its 
class region.

3.3 STATISTICAL GRAY LEVEL DISTRIBUTION MODEL

In this chapter we introduce a new algorithm called a modified expectation-maximization algorithm 
that approximates an empirical probability density function of scalar data with a linear combination 
of Gaussians (LCG) with positive and negative components. Due to both positive and negative com-
ponents, the LCG approximates interclass transitions more accurately than a conventional mixture 
of only positive Gaussians.

To most accurately identify the model, we approximate the marginal gray level probability den-
sity in each region with a LCG having p,C i positive and n,C i negative components [31], [32]:

 p q i w q w q
r

C

i r i r

l

C

i l i l

i i

( ) ;
1

p, , p, ,

1

n, , n, ,
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= =
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such that ∫ =−∞
∞ ( ) 1.p q i dq  Here, q is the gray level, and ϕ θ( )q  is a Gaussian density having a short-

hand notation θ = µ σ( , )2  for its mean, µ, and variance, σ .2  In contrast to more conventional normal 
mixture models, the components are now both positive and negative and have only one obvious 
restriction in line with Eq. (3.5): ∑ − ∑ == = 1.1 p, , 1 n, ,

p, n,w wr
C

i r l
C

i l
i i  These weights are not the prior prob-

abilities, and the LCG of Eq. (3.5) is considered as a functional form of the approximation of a 
probability density depending on parameters θ( , )w  of each component.
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In the general case, the actual probability densities belong to a proper subset of the set of 
all possible LCGs of Eq. (3.5). In the subset, the weights and parameters of the Gaussians are 
limited to maintain non-negative values of the combined densities over the whole infinite signal 
range. The latter restriction would normally be considered impracticable because it results in 
strongly interdependent parameters. However, in our particular case the interdependence may 
be ignored. We use the LCG model to better approximate not only the main bodies but also the 
tails of the empirical distributions, to within a finite and relatively small actual signal range 
[0, ].Q  Thus, the model behavior outside the range and the associated restrictions on the model 
parameters are of no concern. Moreover, the likelihood maximization is also directed toward 
keeping the probability densities positive at points where they approximate the empirical posi-
tive values.

The mixture of K  LCGs, = ∑ =( ) ( ),1p q w p q ii
K

i  has the same form but a larger number of com-
ponents, for example, = ∑ =p 1 p,C Ci

K
i and = ∑ =n 1 n,C Ci

K
i  if all the values θp, ,i r and θn, ,i l differ for the 

individual models:
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To identify this model in the unsupervised mode, the mixed empirical distribution of gray levels 
over the image has to be first represented by a joint LCG of Eq. (3.6) and then partitioned into indi-
vidual LCG-models for each class = …1, , .i K

Under the fixed number of the positive and negative components, C , the model parameters 
= = …{ ; 1, , }w w c Cc  and Θ = θ = …{ : 1, , }c Cc  maximizing the image likelihood can be found 

using an EM algorithm introduced in Section 3.3.1. It modifies the conventional EM-scheme to take 
account of the components with alternating signs [33], [34].

The modified EM algorithm is sensitive to both its initial state specified by the numbers of posi-
tive and negative Gaussians, and the initial parameters (mean and variance) of each component. To 
find a close initial LCG-approximation of the empirical distribution, we develop in Section 3.3.2 a 
sequential initializing EM-based algorithm (see also [35]).

3.3.1 moDifieD em algorithm for lcgs

Let = ∈[ ( ) : ]F Qf q q  be an empirical relative frequency distribution representing an unknown 
probability density function ψ( )q  such that ∫ ψ ≡ ∑ =−∞

∞
=( ) ( ) 10q dq f qq

Q . We assume that F is 
approximated by an LCG = ∈Θ [ ( ) : ]:W,P Qp q qC C  with pC  positive and nC  negative components 
ϕ θ( )q :
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In line with Eq. (3.7), the positive weights w are restricted as follows:
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We also assume here that the numbers pC  and nC  of the components of each type are known after the 
initialization in Section 3.3.2 and do not change during the EM process. The initialization provides 
also the starting parameter values [0]w  and Θ[0].

The probability densities form a proper subset of the set of the LCGs due to the additional 
restriction p q( ) 0,, ≥Θw  which holds automatically only for probability mixtures with no negative 
components. As was mentioned earlier, this special feature is ignored because our goal is to closely 
approximate the empirical data only to within the limited range [0, ].Q  The approximating function 
of Eq. (3.7) is assumed strictly positive only in the points = …0,1, ,q Q.

The LCG that provides a local maximum of the log-likelihood of the empirical data:

 L f q p q
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can be found using the iterative block relaxation process extending conventional EM schemes.
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Using these weights, the log-likelihood of Eq. (3.9) can be rewritten in the equivalent form:
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where p qmlog ( ),
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[ ]+ ϕ θ − π  respectively.

The block relaxation converging to a local maximum of the likelihood function in Eq. (3.11) 
repeats iteratively the following two steps:

1. E-step +[ 1]m : to find the parameters m m,[ 1] [ 1]Θ+ +w  by maximizing Θ( , )wL  under the fixed 
conditional weights of Eq. (3.10) for the step ,m  and

2. M-step +[ 1]m : to find these latter weights by maximizing Θ( , )wL  under the fixed param-
eters Θ+ +,[ 1] [ 1]w m m

until the changes of the log-likelihood and all the model parameters become small.
The E-step performs the conditional Lagrange maximization of the log-likelihood of Eq. (3.11) 

under the restriction of Eq. (3.8) to obtain the following estimates of the weights:

 w f q r q w f q l qr
m

q

m
l

m

q

m( ) ; ( )p,
[ 1]

p
[ ]

n,
[ 1]

n
[ ]∑ ∑ ( )( )= π = π+

∈

+

∈Q Q
 



49Vascular Tree Segmentation

Then the parameters of each Gaussian are obtained by the unconditional maximization just as in the 
conventional EM scheme (below “c” stands for “p” or “n,” respectively):
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The M-step performs the conditional Lagrange maximization of the log-likelihood of Eq. (3.11) 
under the + 1Q  restrictions of Eq. (3.10), and determines the conditional weights π + ( )p

[ 1] r qm  and 
π + ( )n

[ 1] l qm  of Eq. (3.10) for all 1, , ; 1, ,p nr C l C= … = …  and 0, ,q Q= … . The modified EM-algorithm 
is valid until these weights are strictly positive, and the initial LCG-approximation should comply to 
this limitation. The iterations have to be terminated when the log-likelihood of Eq. (3.11) begins to 
decrease. Generally, if the initialization is incorrect, this algorithm may diverge at the first iteration. 
Thus the initial LCG has to closely approximate the empirical distribution.

3.3.2 sequential em-baseD initialization

We assume that the number of dominant modes is equal to the given number of classes. To 
simplify the notation, let the empirical distribution have only two separate dominant modes 
representing the object and the background, respectively. The algorithm we present is easily 
extended to the general case of > 2K  dominant modes. We assume that each dominant mode is 
roughly approximated with a single Gaussian and the deviations of the empirical density from 
the two-component dominant Gaussian mixture are described by other components of the LCG 
in Eq. (3.6). Therefore the model has the two dominant positive weights, say, p,1w  and p,2w , such 
that + = 1p,1 p,2w w , and a number of “subordinate” weights of smaller absolute values such that 
∑ − ∑ == = 03 p, 1 n,

p nw wr
C

r l
C

l .

The following sequential algorithm allows for estimating both the weights and parameters 
of the individual Gaussians in the latter LCG model, including the number of the non-dominant 
components

1. Approximate a given empirical distribution ,F  of gray levels in the image ,Y  with a domi-
nant mixture ,2P  of two Gaussians using the conventional EM-algorithm.

2. Find the deviations ∆ = ∆ = − ∈[ ( ) ( ) ( ) : ]2 Qq f q p q q  between F and 2P  and split them into 
the positive and negative parts such that δ = δ − δ( ) ( ) ( ):p nq q q

 

{ }
{ }

∆ = δ = δ ∈

∆ = δ = −δ ∈

[ ( ) max ( ),0 : }

[ ( ) max ( ),0 : }

p p

n n

Q

Q

q q q

q q q  

(3.12)

3. Compute the scaling factor for the deviations: = ∫ δ ≡ ∫ δ−∞
∞

−∞
∞( ) ( )p ns q dq q dq.

4. If the factor s is less than a given accuracy threshold, terminate and return the model 
= 2P PC .

5. Otherwise consider the scaled-up absolute deviations ∆1
ps  and ∆1

ns  as two new 
“empirical densities” and iteratively the conventional EM-algorithm to find sizes pC  
and nC  of the Gaussian mixtures, pP  and nP  respectively, approximating the scaled-up 
deviations.
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a. The size of each mixture corresponds to the minimum of the integral absolute error 
between the scaled-up absolute deviation ∆p (or ∆n) and its model pP  (or nP ). The 
number of the components is increasing sequentially by unit step, while the error is 
decreasing.

b. Due to multiple local maxima, such a search may be repeated several times with dif-
ferent initial parameter values in order to select the best approximation.

6. Scale down the subordinate models pP  and nP  (i.e., scale down the weights of their compo-
nents) and add the scaled model pP  to and subtract the scaled model nP  from the dominant 
model 2P  in order to form the desired model PC of the size = + +2C C Cp n.

Since the EM algorithm converges to a local maximum of the likelihood function, it may be repeated 
several times with different initial parameter values for choosing the model giving the best approxi-
mation. In principle, this process can be repeated iteratively in order to approximate more and more 
closely the residual absolute deviations between ( )F  and PC. But because each Gaussian in the lat-
ter model impacts all the values ( )p q , the iterations should be terminated when the approximation 
quality begins to decrease.

We use the Levy distance [30], ρ( , ),F P  between the estimated model P and the empirical 
distribution F to evaluate the approximation quality. The distance is defined as the minimum 
positive value α such that the two-sided inequalities − α − α ≤ ≤ + α + α( ) ( ) ( )p q f q p q  hold for 
all ∈ :Qq

 ρ = α − α − α ≤ ≤ + α + α ∀ ∈
α>

( , ) min{ : ( ) ( ) ( ) }
0

F P Qp q f q p q q  (3.13)

It is proven [30] that the model P weakly converges to F when ρ →( , ) 0F P . Our experiments in 
Section 3.6 show that the modified EM algorithm typically decreases an initially large Levy dis-
tance between the empirical distribution and its estimated model to a relatively small value.

3.3.3 classification of the moDel comPonents

The final mixed LCG-model P has to be split into K  LCG-submodels, one per class, by associat-
ing each subordinate component with a particular dominant term in such a way as to minimize the 
expected misclassification rate. To illustrate the association principle, let us consider the bi-modal 
case with the two dominant Gaussians having the mean values µ1 and µ ;2  < µ < µ <0 1 2 Q. Let all 
the subordinate components be ordered by their mean values, too. Then let those with the mean 
values smaller than µ1 and greater than µ2 relate to the first and second class, respectively. The 
components having the mean values in the range µ µ[ , ]1 2  are associated with the classes by simple 
thresholding such that the means below the threshold, t, belong to the components associated with 
the first class. The desired threshold minimizes the classification error ( )e t :

 ( ) 2 1 .e t p q dq p q dq

t

t
∫ ∫( ) ( )= +
−∞

∞

 (3.14)

3.4 EVOLUTIONARY SURFACE MODEL

The term ( 1)ν = ±  in Eq. (3.3) specifies the direction of the front propagation. Several approaches 
were developed to make all fronts either contracting or expanding (see, e.g., [28]) in order to evolve 
in both directions and avoid overlaps between the regions. The problem can be reformulated as clas-
sification of each point at the evolving front. If the point belongs to the associated class, the front 
expands; otherwise, it contracts.
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3.4.1 PDe system

The classification decision is based on Bayes’ decision [29] at point x as follows:

 ( ) arg max ( ( )) .*

1,..,
i x p I x

i K
i( )=

=
 (3.15)

where ( ( ))p I xi  is the estimated density of class i calculated using the modified EM algorithm and K  
stands for the number of classes. The term ν( ) for each point x is replaced by the function ν ( )xi  so 
the velocity function is defined as:

 ( ) ( )( ( ) ( )), 1... .FF x h I x k x i Ki i i= ν − ε ⋅ ∀ =  (3.16)

where

 x
i i x

i ( )
1 if ( )

1 otherwise

*

ν =
− =





 (3.17)

If the pixel x belongs to the front of the class = ( )*i i x  associated to the level set function, the front 
will expand, otherwise it will contract. Now, we put the Eq. (3.1) in the general form using the 
derivative of the Heaviside step function (δα ( )z ) [27] as follows:

 ( , )
( ( , ))( ( ) ( )) ( ) ( ).

x t

t
x t k x x x h Ii

i i i i
∂φ

∂
= δ φ ε ⋅ − ν ∇φα  (3.18)

The function δα ( )z  selects the narrow band points around the front. Solution of the PDEs requires 
numerical processing at each point of the image or volume, which is a time-consuming process. 
Actually we are interested only in the changes of the front, so that the solution is important at the 
points near the front. Such narrow band points are selected in Eq. (3.18). Points outside the narrow 
band are given large positive or large negative values to be excluded from processing in order to 
accelerate the iterations. Also the equation contains the magnitude of the image gradient to make 
sure that the evolution will stop at the boundary.

3.4.2 Data consistency coefficient hi(I)

The data consistency term was always a function of image gradient. But this is a disadvantage when 
we have images with high noise. Our approach is similar to the one described in [36]. We have 
related the stopping factor hi to the posterior probability of having a transition between the classi and 
its background of the other classes. Let x be a voxel of the current interface, and λ be the estimated 
class of .x  The posterior probability of x being a transition, given I and λ, is given by:

 p x I
p I x class

p I x
T s i

s i

i

,
( ( )) if

( ( )) otherwise

∑( )λ =
′ λ ∈

′









≠  (3.19)

where ′x  is a neighbouring voxel of x located outside the volume defined by hypersurface φi. Thus 
if x is more likely to be inside the object to be segmented, then the posterior transition probability 
of x is the probability of ′x  to be located outside the object to be segmented.
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The data consistency term ( )h Ii  at point x belonging to the interface is defined as a decreasing 
function of ( , ).p x IT λ  Then hi is defined to be a decreasing function as follows:

 = − ζ( ) 1 ( ),h p H pi T Ti  (3.20)

where ζH i  is a smoothed version of the Heaviside step function parameterized by the prior probabil-
ity estimate ζi [27]. This estimate can be calculated by using the following equation:

 
( )

( )
.

1

H dx

H dx
i

i

i

K

i

∫
∑ ∫

ζ =
φ

φ
Ω

α

=
α

Ω

 (3.21)

Where ζi is considered as a class proportion and it is calculated by counting the pixels in the level 
set area of interest and dividing by the total number of pixels.

By this representation, the coefficient will be large if the voxel and its neighbor belong to the 
same class and vice versa.

3.5 EVALUATION OF THE SEGMENTATION APPROACH

It is not easy to find a method of validating the vascular tree segmentation. We can not have a shape model 
or an atlas for the vascular system, which differs from patient to patient. Also the expert radiologists differ 
in their evaluation [22]. Thus, to validate the accuracy of our method, we created a 3D phantom of blood 
vessels with a tree shape (Table 3.1). This phantom is a part of a real wood tree. We made a CT scan of 
that part in order to have digital image slices of the phantom, which is × ×1024 1024 125 in size.

A gold standard model is extracted from the CT scan manually. The modalities used in our 
experiments are the computed tomography of the aorta and magnetic resonance angiography of 
the brain. Each modality has a specific intensity distribution. To validate the segmentation of these 
modalities, we need a phantom that has a similar intensity distribution. Noise is added to the gold 
standard data to give the desired intensity distribution using the inverse mapping technique.

A level set function is assigned to each class. These functions are initialized using the automatic 
seed initialization except for the vessels or tree class. The tree level set function is initialized manu-
ally as a set of balloons inside the tree as shown in Figure 3.1.

As a result of such initialization, the estimated prior probability will change because the small 
region of the initial balloons can not represent the whole tree. So the equation for the priors of the 
non-vessels class are modified as follows:

 
( )

.
H dx

dx
i

i∫
∫

ζ =
φα

Ω

Ω

 (3.22)

TABLE 3.1
The validation table for the phantom segmentation.

Modality Pixels

No. of Pixels 
in Tree

Error Pixels 
in Tree

No. of Pixels 
in Background

Error Pixels 
in Background

TOF 211656 1316 130860344 198

PC 211656 120 130860344 2223

CT 211656 3510 130860344 1170
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Then the estimated prior probability of the tree (vessels) class is estimated by the following 
equation:

 Vessels non Vessels1 .∑ζ = − ζ −  (3.23)

where the priors satisfy the obvious condition ∑ ζ = 1i .
After these modifications, the initial balloons will evolve to cover the tree without overlapping 

the other regions.

3.6 EXPERIMENTAL RESULTS

To assess robustness and computational performance, the proposed segmentation techniques have 
been tested on three different types of medical images: MRA-TOF of the brain; MRA-PC of the 
brain; and CT of the aorta. The first two types were acquired with the Picker 1.5T Edge MRI scan-
ner. The TOF-MRA slices are with a resolution of ×512 512 and were 1 mm thick. The CT has the 
same in-plan size and resolution and was collected with 4 mm thick slabs reconstructed every 2 mm 
with a scanning pitch of 1.5 mm.

In our experiments, we used a Pentium III (1.8 GHZ) computer with 512 MB of RAM. Table 3.2 
shows the average execution time per slice for each type of image modality with a different data set 
size. We demonstrate our experiments in detail in the following subsections.

FIGURE 3.1 The visualization of the evolution of the level set function that represents the tree. The first 
image to the left shows the initialization of the balloons inside the tree.

TABLE 3.2
The average execution time per slice for different image modalities.

Modality Data Set Size Average Execution Time per Slice

TOF 512 512 93× × 3–5 mins

PC 256 256 117× × 1–2 mins

CT 512 512 125× × 3–5 mins
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TABLE 3.3
Initial parameters of each dominant component of the LCG-model 
of the MRA image in Figure 3.2(a).

Parameters Classes

Bones Brain Tissues Blood Vessels and Fat

Mean value 24.7 105.7 210.7

Variance 12.6 31.8 25.0

Weight (w) 0.518 0.456 0.026

0 50 100

(a) (b)

150 200 250

0.002

0.006

0.01

0.014

0.018 f(q)  

p3(q)

q

FIGURE 3.2 Typical TOF-MRA scan slice (a) and deviations between the empirical distribution and the 
dominant mixture (b).

3.6.1 seParation of blooD Vessels in mra-tof images

The first application of the proposed algorithm is the extraction of blood vessels from MRA-TOF 
data. Figure 3.2 shows an MRA-TOF image and its tri-modal empirical gray level distribution 
approximated with the dominant three-component normal mixture. The three classes represent 
dark bones, brain tissues, and bright blood vessels, respectively. The goal is to separate the latter 
class in spite of its large intersection with the second class and very low prior probability. The initial 
parameters of the dominant mixture are given in Table 3.3, and the Levy distance of 0.08 indicates 
a significant mismatch between the mixture and the empirical distribution. Figure 3.3 shows the 
scaled deviations between these two distributions as well as the six estimated subordinate Gaussians 
giving the minimum approximation error.

Figure 3.4 shows the approximated absolute deviation and the initial LCG-model obtained after 
the subordinate LCG is combined with the dominant mixture. The minimum classification error 
of 0.01 on the intersecting distribution tails is obtained for the separation thresholds = 571t  and 

= 190.2t  In this case the subordinate components 1–3, 4–5, and 6 correspond to the first (bones), 
second (brain tissues), and third (blood vessels and fat) classes, respectively. The estimated LCG-
submodels for each class are shown in Figure 3.5.

We apply the proposed approach on three data sets of MRA-TOF, and the results are shown 
in Figure 3.6. Figure 3.6(a) shows the segmentation using the proposed statistical approach only. 
Figure 3.6(b) shows the final segmentation using the combined level sets approach. The final 
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FIGURE 3.3 Estimated subordinate components of the absolute deviation (a) and the absolute error as a 
function of the number of Gaussians approximating the scaled absolute deviation in Figure 3.3(a).
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FIGURE 3.4 Subordinate mixture (a) estimated for the absolute deviation in Figure 3.3(a), and the empirical 
and estimated densities (b) for the MRA image in Figure 3.2(a).
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FIGURE 3.5 LCG-models of the classes “Bones,” “Brain tissues,” and “Blood vessels and fat.”
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parameters of the dominant mixture are given in Table 3.4. It is clear from Figure 3.6(a) if we 
use only the statistical model, the other tissues (e.g., fat, brain tissues, etc.) will appear around 
the blood vessels. Using the combined level set approach by initializing the level set function of 
the vessels inside those vessels with the largest cross-sections, we will get only the blood vessels 
as shown in Figure 3.6(b). The other tissues will be removed as they are not connected to the 
vessel tree.

(a) (b)

FIGURE 3.6 (a) Segmentation using the proposed statistical approach only. (b) Final segmentation after 
using the level sets approach.
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3.6.2  extraction of blooD Vessels from Phase contrast images

The second application of the proposed algorithm is the extraction of blood vessels from MRA-PC 
data. Figure 3.7 shows an MRA-PC image and its tri-modal empirical gray level distribution 
approximated with the dominant three-component normal mixture. The three classes again rep-
resent dark bones, brain tissues, and bright blood vessels, respectively. The goal is to separate the 
latter class in spite of its large intersection with the second class and very low prior probability. As 
mentioned above, the first step in the proposed algorithm is to get an accurate density model for 
each class using LCG of positive and negative components. Figure 3.8(a) presents the final LCG-
model obtained by the modified EM-algorithm. The resulting Levy distance of 0.02 indicates that 
the estimated distribution is very close to the empirical distribution. Successive changes of the 
log-likelihood at the refining iterations, the eight components of the final LCG-model, and the 
final LCG-models of each class for the refined separation thresholds = 161t  and = 712t  are shown 
in Figure 3.8(b)–(d), respectively. The first six iterations of the refining EM-algorithm increase the 
log-likelihood of Eq. (3.11) from −4.01 to −3.98. Then the refinement process is terminated since 

TABLE 3.4
Final parameters of each dominant component of the 
LCG-model of the MRA image in Figure 3.2(a).

Parameters Classes

Bones Brain tissues Blood vessels and fat

Mean value 23.2 101.5 208.9

Variance 9.9 32.9 27.0

Weight (w) 0.52 0.451 0.028

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02
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0.03

q

(b)(a)

f(q) 
p3(q) 

FIGURE 3.7 Typical TOF-PC scan slice (a) and deviations between the empirical distribution and the 
dominant mixture (b).
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FIGURE 3.8 Final 3-class LCG-approximation of the mixed density (a), dynamics of the log-likelihood at 
the refining iterations (b), components of the final LCG (c), and the LCG-models of each class.

the log-likelihood in Eq. (3.11) begins to decrease. The results of the segmentation of blood vessels 
from MRA-PC using the combined level sets approach are shown in Figure 3.9.

3.6.3 extraction of the aorta from cta images

In this section we will use the proposed algorithm to extract the aorta and the major vessels from 
spiral CT angiograms in order to show that the proposed algorithm is general and can be used to 
extract the blood vessels from any medical imaging modality. Figure 3.10 shows a CTA image and 
its four-modal empirical gray level distribution approximated with the dominant four-component 
normal mixture. The four classes represent dark lung, liver, bright blood vessels, and heart, respec-
tively. Figure 3.11(a) presents the final LCG-model obtained by the modified EM-algorithm. 
The resulting Levy distance of 0.011 indicates that the estimated distribution is very close to the 
empirical distribution. Successive changes of the log-likelihood at the refining iterations, the 13 com-
ponents of the final LCG-model, and the final LCG-models of each class for the refined separa-
tion thresholds = 511t , = 1612t  and = 2423t  are shown in Figure 3.11(b)–(d), respectively. The first 
five iterations of the refining EM-algorithm increase the log-likelihood of Eq. (3.11) from −5.0  to 
−4.2. Then the refinement process is terminated because the log-likelihood in Eq. (3.11) begins to 
decrease. The results of the segmentation of blood vessels from CT angiograms using the combined 
level sets approach are shown in Figure 3.12.
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FIGURE 3.9 The visualization of two segmented PC data sets of size 256 256 117× × .
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FIGURE 3.10 Typical CTA scan slice (a) and deviations between the empirical distribution and the 
dominant mixture (b).



60 Cardiovascular Imaging and Image Analysis

3.7 CONCLUSION AND FUTURE RESEARCH

We developed a simple and fast statistical evolutionary model based on the level set techniques. The 
model does not need fine tuning of weighting parameters, but the number of classes (regions) has to 
be known. Each class is assigned with a level set function, and our modified EM algorithm provides 
the probability density function of each class. These densities permit us to initialize the level sets 
near to the optimal solution in order to reduce considerably the number of iterations. Also the speed 
function of each level set depends on these densities.

We validated our approach using a tree phantom that is geometrically similar to the blood 
vessels. The segmentation results of the phantom in all cases show the accuracy of our approach 
(see Table 3.1).

Experiments with TOF, PC, and CTA 3D images confirm that the proposed method is robust 
and accurate. In future work, we are going to add some shape constraints to our model in order to 
increase the accuracy of the results.

This work could also be applied to various other applications in medical imaging, such as the 
kidney, the heart, the prostate, the lung, and the retina.

One application is renal transplant functional assessment. Chronic kidney disease (CKD) affects 
about 26 million people in the U.S. with 17,000 transplants being performed each year. In renal 
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FIGURE 3.11 Final 3-class LCG-approximation of the mixed density (a), dynamics of the log-likelihood at 
the refining iterations (b), components of the final LCG (c), and the LCG-models of each class.
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transplant patients, acute rejection is the leading cause of renal dysfunction. Given the limited num-
ber of donors, routine clinical post-transplantation evaluation is of immense importance to help 
clinicians initiate timely interventions with appropriate treatment and thus prevent the graft loss. 
In recent years an increased area of research has been dedicated to developing noninvasive CAD 
systems for renal transplant function assessment, utilizing different image modalities (e.g., ultra-
sound, computed tomography (CT), MRI, etc.). Accurate assessment of renal transplant function is 
critically important for graft survival. Although transplantation can improve a patient’s well-being, 
there is a potential post-transplantation risk of kidney dysfunction that, if not treated in a timely 
manner, can lead to the loss of the entire graft, and even patient death. Thus, accurate assessment 
of renal transplant function is crucial for the identification of proper treatment. In recent years, 
an increased area of research has been dedicated to developing non-invasive image-based CAD 
systems for the assessment of renal transplant function. In particular, dynamic and diffusion MRI-
based systems have been clinically used to assess transplanted kidneys with the advantage of pro-
viding information on each kidney separately. For more details about renal transplant functional 
assessment, please read [37]–[54], [54]–[62].

The heart is also an important application to this work. The clinical assessment of myocardial 
perfusion plays a major role in the diagnosis, management, and prognosis of ischemic heart disease 
patients. Thus, there have been ongoing efforts to develop automated systems for accurate analysis 
of myocardial perfusion using first-pass images [63]–[79].

Another application for this work could be the detection of retinal abnormalities. The majority of 
ophthalmologists depend on a visual interpretation for the identification of disease types. However, 
inaccurate diagnosis will affect the treatment procedure, which may lead to fatal results. Hence, 
there is a crucial need for computer automated diagnosis systems that yield highly accurate results. 

FIGURE 3.12 The visualization of the segmented aorta from CT-angiogram data of size × ×512 512 125.
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Optical coherence tomography (OCT) has become a powerful modality for the non-invasive diagno-
sis of various retinal abnormalities such as glaucoma, diabetic macular edema, and macular degen-
eration. The problem with diabetic retinopathy (DR) is that the patient is not aware of the disease 
until the changes in the retina have progressed to a level that treatment tends to be less effective. 
Therefore, automated early detection could limit the severity of the disease and assist ophthalmolo-
gists in investigating and treating it more efficiently [80], [81].

Abnormalities of the lung could also be another promising area of research and a related applica-
tion to this work. Radiation-induced lung injury is the main side effect of radiation therapy for lung 
cancer patients. Although higher radiation doses increase the radiation therapy effectiveness for 
tumor control, this can lead to lung injury as a greater quantity of normal lung tissues is included in 
the treated area. Almost 1/3 of patients who undergo radiation therapy develop lung injury following 
radiation treatment. The severity of radiation-induced lung injury ranges from ground-glass opaci-
ties and consolidation at the early phase to fibrosis and traction bronchiectasis in the late phase. 
Early detection of lung injury will thus help to improve management of the treatment [82]–[122].

This work can also be applied to other brain abnormalities, such as dyslexia and autism. Dyslexia 
is one of the most complicated developmental brain disorders that affect children’s learning abili-
ties. Dyslexia leads to the failure to develop age-appropriate reading skills in spite of a normal 
intelligence level and adequate reading instructions. Neuropathological studies have revealed an 
abnormal anatomy of some structures, such as the Corpus Callosum in dyslexic brains. There has 
been a lot of work in the literature that aims at developing CAD systems for diagnosing such disor-
ders, along with other brain disorders [123]–[145].
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4.1 INTRODUCTION

Accurate segmentation of MRA images to extract a 3D cerebrovascular system is one of most 
important problems in practical computer-assisted medical diagnostics. PC-MRA provides good 
suppression of background signals and quantifies blood flow velocity vectors for each voxel. TOF-
MRA is less quantitative, but it is fast and provides images with high contrast. The most popu-
lar present techniques for extracting blood vessels from the MRA data are scale-space filtering, 
deformable models, statistical models, and hybrid methods.

Multiscale filtering [1]–[6] enhances curvilinear structures in 3D medical images by convolv-
ing an image with Gaussian filters at multiple scales. Eigenvalues of the Hessian at each voxel are 
analyzed to determine the local shapes of 3D structures (by the eigenvalues, voxels from a linear 
structure like a blood vessel differ from those for a planar structure, speckle noise, or unstructured 
component). The multiscale filter output forms a new enhanced image such that the curvilinear 
structures become brighter, whereas other components (e.g., speckle noise and planar structures 
such as skin) are darker [1], [5], [6]. Such an image can be directly visualized [5], or thresholded [1], 
or segmented using a deformable model [6]. Alternatively, the obtained eigenvalues define a candi-
date set of voxels corresponding to centerlines of the vessels [2]–[4]. Multiscale filter responses at 
each of the candidates determine how likely that voxel belongs to a vessel of each particular diam-
eter. The maximal response over all the diameters (scales) is assigned to each voxel, and a surface 
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model of the entire vascular structure is reconstructed from the estimated centerlines and diameters. 
After segmenting the filtered MRA image by thresholding, anisotropic diffusion techniques are 
used to remove noise but preserve small vessels [3], [7], [8].

An alternative medial axes based multiscale approach assumes the vessels centerlines are often 
the brightest and detects them as intensity ridges of the image [9]. The vessel’s width is then deter-
mined by multiscale filter responses. This algorithm has been used in conjunction with 2D/3D reg-
istration to incorporate information from a pair of X-ray angiograms [10]. By involving differential 
geometry, the volumetric MRA image is treated as a hypersurface in a 4D space whose extrema of 
curvature correspond to the vessel centerlines [11].

Deformable model approaches to 3D vascular segmentation attempt to approximate the bound-
ary surface of the blood vessels. An initial boundary is evolving in order to optimize a surface 
energy, which depends on image gradients and surface smoothness [12]. Topologically adaptable 
surfaces make classical deformable models more efficient for segmenting intracranial vasculature 
[13]. Geodesic active contours implemented with level set techniques offer flexible topological 
adaptability to segment the MRA images [14], including more efficient adaptation to local geo-
metric structures represented (e.g., by tensor eigenvalues) [15]. Fast segmentation of blood vessel 
surfaces is obtained by inflating a 3D balloon with fast marching methods [16]. Two-step segmen-
tation of a 3D vascular tree in [17] is first carried out locally in a small volume of interest. Then a 
global topology is estimated to initialize a new volume of interest. A multiscale geometrical flow is 
proposed in [18] to segment the vascular tree.

Comparing to the scale-space filtering, the deformable models produce much better experimen-
tal results but have a common drawback, namely, a manual initialization. Also both groups are slow 
compared to statistical approaches.

Statistical extraction of a vascular tree is completely automatic, but its accuracy depends on 
underlying probability models. The MRA images are multi-modal in that the signals (intensities, or 
gray levels) in each region-of-interest (e.g., blood vessels, brain tissues, etc.) are associated with a 
particular dominant mode of the total marginal probability distribution of signals. To the best of our 
knowledge, adaptive statistical approaches for extracting blood vessels from the MRA images have 
been proposed so far only by Wilson and Noble [19] for the TOF-MRA data and Chung and Noble 
[20] for the PC-MRA data. The former approach represents the marginal data distribution with a 
mixture of two Gaussians and one uniform component for the stationary CSF, brain tissues, and 
arteries, respectively, whereas the latter approach replaces the Gaussians with the more adequate 
Rician distributions. To identify the mixture (i.e., estimate all its parameters), a conventional EM 
algorithm is used in both cases. It was called a “modified EM” in [19], after replacing gray levels 
in individual pixels considered by their initial EM scheme with a marginal gray level distribution. 
Actually, such a modification simply returns to what is in common use for decades in probability 
density estimation (see, e.g., [21]), while the individual pixels appeared in their initial scheme only 
as an unduly verbatim replica of a general EM framework.

Different hybrid approaches attempt to combine the aforementioned three approaches. For 
instance, a region-based deformable contour for segmenting tubular structures is derived in [22] by 
combining signal statistics and shape information. A combination of a Gaussian statistical model 
with the maximum intensity projection (MIP) images acquired at three orthogonal directions [23] 
allows for extracting blood vessels iteratively from images acquired by rotational angiography. 
The MIP Z-buffer is segmented using a continuity criterion to generate candidate sets of “seed” 
voxels being then coupled with a global threshold to extract the whole tree using region growing 
techniques [24].

Cylinder matching [25], [26] detects vessels by minimizing the inertia moments of a cylinder and 
using prior knowledge about the intensity profiles in and at the edge of a vessel. A more generalized 
technique in [27] approximates the vessel’s cross-section by a polygon. Continuity and orientation 
between the consecutive slices are used to calculate a locally optimal shape for the polygon with 
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good accuracy. An octree decomposition of a velocity field PC-MRA image is proposed in [28] to 
find an optimal tessellation. Each block of the octree contains at most one feature defined by gray 
levels and orientation vectors.

An alternative approach in [29] extracts an initial shape of vessels by image thresholding. Then 
a locally smooth surface is formed by region growing using binary morphological operations. A 
recursive hybrid segmentation framework in [30], [31] combines a prior Gibbs random field model, 
marching cubes, and deformable models. First, the Gibbs model is used to estimate object boundar-
ies using region information from 2D slices. Then the estimated boundaries and the marching cubes 
technique are used to construct a 3D mesh specifying the initial geometry of a deformable model. 
Finally, the deformable model fits to the data under the 3D image gradient forces.

The preceding overview shows the following limitations of the existing approaches:

1. Most of them presume only a single type of image (e.g., TOF- or PC-MRA).
2. Most of them require user interaction to initialize a vessel of interest.
3. Some deformable models assume the circular vessels cross-sections; this holds for healthy 

people but not for patients with stenosis or aneurysm.
4. All but statistical approaches are computationally expensive.
5. Known statistical approaches use only predefined probability models that cannot fit all the 

cases because actual intensity distributions for blood vessels depend on the patient, scan-
ner, and scanning parameters.

In the following, we show the fast and highly accurate statistical approach to extract blood vessels 
that can be obtained when the probability models of each region-of-interest in TOF- or PC-MRA 
images are precisely identified rather than predefined as in [19], [20]. In our approach, the empirical 
gray level distribution for each MRA slice is closely approximated with an LCDG. Then the latter 
is split into three individual LCDGs, one per region-of-interest. These regions associated with the 
three dominant modes relate to darker bones and fat, gray brain tissues, and bright blood vessels, 
respectively. The identified models specify an intensity threshold for extracting blood vessels in 
that slice. Finally, a 3D connectivity filter is applied to the extracted voxels to select the desired 
cerebrovascular system.

As our multiple experiments show, more precise region models result in significantly better seg-
mentation accuracy compared to other methods.

4.2 SLICE-WISE SEGMENTATION WITH THE LCDG MODELS

We use the expected log-likelihood as a model identification criterion. Let ( : 1, , )= = …s SsX X  
denote a 3D MRA image containing S  co-registered 2D slices X R Q= ∈ ∈X i j i j X i js s s( ( , ) : ( , ) ; ( , ) ). 
Here, R  and Q = … −Q(0,1, , 1) are a rectangular arithmetic lattice supporting the 3D image and a 
finite set of Q-ary intensities (gray levels), respectively. Let F Q Q= ∈ ∑ =∈f q q f qs s q s( ( ) : ; ( ) 1 where 
q  denotes the gray level be an empirical marginal probability distribution of gray levels for the 
MRA slice X .s

In accord with [32], each such slice is considered as a K -modal image with a known number K  
of the dominant modes related to the regions of interest (in our particular case, K = 3). To segment 
the slice by separating the modes, we have to estimate from Fs  individual probability distributions 
of signals associated with each mode. In contrast to a conventional mixture of Gaussians, one per 
region [21], or a slightly more flexible mixture involving other simple distributions, one per region, 
as for example in [19], [20], we will closely approximate Fs with a linear combination of discrete 
Gaussians (LCDG). Then the LCDG for the whole image is partitioned into the like submodels 
relating to each dominant mode.
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The DG is defined as the probability distribution Qψ = ψ θ ∈θ q q( ( ) : ) on Q of gray levels such 
that each probability qψ θ( ) relates to the cumulative Gaussian probability function Φθ q( ) as fol-
lows (here, θ is a shorthand notation θ = µ σ( , )2  for the mean, µ, and variance, σ2):
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Generally, the true probabilities are non-negative: w ≥Θp q( ) 0,  for all Q∈q . Therefore, the prob-
ability distributions comprise only a proper subset of all the LCDGs in Eq. (4.1), which may have 
negative components w <Θp q( ) 0,  for some Q∈q .

Our goal is to find a K -modal probability model that closely approximates the unknown mar-
ginal gray level distribution. Given Fs, the Bayesian estimate F of the latter is as follows [21]: 

R R= + +f q f q Qs( ) ( ( ) 1) / ( ), and the desired model has to maximize the expected log-likelihood 
of the statistically independent empirical data by the model parameters:
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For simplicity, we do not restrict the identification procedure to only the true probability distri-
butions, but instead check the validity of the restrictions during the procedure itself. The Bayesian 
probability estimate F with no zero or unit values in Eq. (4.3) ensures that a sufficiently large vicin-
ity of each component f q( ) complies to the restrictions.

To precisely identify the LCDG model including the numbers of its positive and negative com-
ponents, we adapt to the LCDGs our EM-based techniques introduced in [32] for identification of 
a probability density with a continuous LCG-model. For completeness, the adapted algorithms are 
outlined in Appendix A.

The entire segmentation algorithm is as follows.

1. For each successive MRA slice Xs, s S= …1, , ,
a. Collect the marginal empirical probability distribution F Q= ∈f q qs s( ( ) : ) of gray levels
b. Find an initial LCDG model that closely approximates Fs by using an initializing 

algorithm in Appendix A to estimates the numbers C K− ,p  Cn and parameters w, Θ 
(weights, means, and variances) of the positive and negative DGs.

c. Refine the LCDG model with the fixed Cp and Cn by adjusting all other parameters 
with a modified EM algorithm in Appendix B.
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d. Split the final LCDG model into K  submodels, one per each dominant mode, by mini-
mizing the expected errors of misclassification and select the LCDG submodel with 
the largest mean value (i.e., the submodel corresponding to the brightest pixels) as the 
model of the desired blood vessels.

e. Extract the blood vessels voxels in this MRA slice using the intensity threshold t  sepa-
rating best their LCDG submodel from the background ones.

2. Eliminate artefacts from the whole set of the extracted voxels using a connectivity filter that 
selects the largest connected tree structure built by a 3D volume growing algorithm [33].1

The main goal of the whole procedure is to find the threshold for each MRA slice that extracts the 
brighter blood vessels from their darker background in such a way that the vessels’ boundaries are 
accurately separated from the surrounding structures with sometimes almost the same brightness 
along these boundaries.

The initialization at Step 1b always produces the LCDG with the non-negative starting probabilities 
w Θp q( ).,  While the refinement at Step 1c increases the likelihood, the probabilities continue to be non-

negative. In our experiments as shown in the following, the opposite situations have never been met.

4.3 EXPERIMENTAL RESULTS

Experiments in extracting blood vessels have been conducted with the 3D TOF-MRA and PC-MRA 
images of the following spatial resolution and size acquired with the Picker 1.5T Edge MRI scanner:

Resolution, mm Size of each data set, voxels

TOF-MRA × ×0.43 0.43 1.0 × ×512 512 93

PC-MRA × ×0.86 0.86 1.0 × ×256 256 123

Both the image types are three-modal K =( 3) with the aforementioned signal classes of dark gray 
bones and fat, gray brain tissues, and light gray blood vessels. Typical 2D TOF- and PC-MRA slices 
and their 3-class dominant Gaussian mixtures P3 approximating the estimated marginal distribu-
tions F are shown in Figure 4.1.

4.3.1 segmentation of natural tof- anD Pc-mra images

Figure 4.2 illustrates how Step 1b of our algorithm builds an initial LCDG model for the TOF- and 
PC-MRA images in Figure 4.1. Absolute deviations f q p q−( ) ( )3  are scaled up to make the unit 
sums of the positive or absolute negative deviations for q Q= … −0, , 1. The minimum approximation 
errors are obtained in both cases with the six-component Gaussian mixtures. Each initial LCDG 
model can be split, if necessary, into the three LCDG submodels for each signal class.

Figure 4.3 presents the final LCDG models after Step 1c of our algorithm and shows succes-
sive changes of the log-likelihood during the refining EM-process. For the TOF- and PC-MRA 
images, the first nine EM-iterations increase the log-likelihood from −5.7 to −5.2 and −5.5 to −4.4, 
respectively. The final LCDG submodels of each class (Step 1d) suggest that thresholds t =192 and 
t = 73 separate blood vessels from the TOF- and PC-MRA images, respectively, with the minimum 
expected misclassification error.

To highlight the advantages of our approach, Figure 4.4 shows the approximation of the distribu-
tions F for the TOF- and PC-MRA images in Figure 4.1 with the three-component Wilson-Noble’s [19] 

1 Step 2 is necessary due to MRA sensitivity to tissues with short T1 responses (e.g., subcutaneous fat) that may obscure 
the blood vessels in the segmented volume.
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and Chung-Noble’s [20] mixtures, respectively. Our approach provides considerably higher approxi-
mation quality in terms of the Levy inter-distribution distance [35] and the total absolute difference 
between two distributions:

Levy distance Absolute difference

TOF-MRA Our approach 0.00013 0.00020

Wilson-Noble [19] 0.110 0.123

PC-MRA Our approach 0.0026 0.0085

Chung-Noble [20] 0.110 0.093

Comparisons of the approaches on 50 natural TOF-MRA and 35 PC-MRA data sets confirm 
our more precise model yields much higher segmentation accuracy. Typically higher separation 
thresholds of the Wilson-Noble’s or Chung-Noble’s approaches (e.g., t = 214 versus our t =192 for 
the TOF-MRA and t = 97 versus our t = 73 for the PC-MRA in the previous examples) miss some 
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FIGURE 4.1 Typical TOF-MRA (top) and PC-MRA (bottom) slices with the dominant Gaussian mixtures 
P Q= ∈p q q( ( ) : )3 3  laid over the distributions F Q= ∈f q q( ( ) : ).
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blood vessels. For example, the test results in Figures 4.5 and 4.6 after applying the connectivity 
filter (Step 2) to our and Wilson-Noble’s or Chung-Noble’s segmentation, respectively, show these 
latter fail to detect sizeable parts of the brain vascular trees assigned by experts-radiologists to 
the actual trees and extracted by our approach. In the opposite cases, such as in the bottom row 
of Figure 4.6, the Chung-Noble’s thresholding adds fat tissues to the vascular trees, whereas our 
approach correctly separates these.

4.3.2  ValiDating the segmentation accuracy  
with sPecial Phantoms

It is very difficult to get accurate “ground truth” data to evaluate the segmentation performance 
by manually segmenting complete vasculatures. Although qualitative visual analysis by experts-
radiologists confirm the advantages of our approach, its quantitative validation is of prime impor-
tance. Thus we have constructed three wooden phantoms in Figure 4.7 to imitate geometric 
features of blood vessels typical for any vascular system including different sizes, bifurcations, 
and zero and high curvature. Each set of 2D slices obtained by scanning the phantoms with a 
CT scanner is manually segmented to produce “ground truth” region maps. Then synthetic TOF- 
or PC-MRA signals are generated with inverse mapping methods according to their marginal 
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FIGURE 4.4 The Wilson-Noble’s [19] (a,b) and Chung-Noble’s [20] (c,d) models: the estimated distribution 
(a,c) and the class submodels (b,d).
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probability distributions p q( 3)  (“blood vessels”) and mixed p q( 1), p q( 2)  (“background”) in 
Figure 4.3(b,d), respectively. The resulting gray level distributions for each slice are similar to 
those in Figure 4.1(b and d).

Figure 4.7 compares results of our, the Wilson-Noble’s, and the Chung-Noble’s segmentation, the 
errors being in terms of the numbers of wrong (i.e., missed or extra) voxels relative to the total vox-
els number in the manually segmented 3D phantoms. In total, our approach produces 0.18–1.34% 
erroneous voxels compared to 3.97–9.52% for the Wilson-Noble’s approach on the synthetic TOF-
MRA data, and 0.14–0.79% of erroneous voxels compared to 2.12–4.01% for the Chung-Noble’s 
approach on the synthetic PC-MRA data. The error constituents per each 2D slice of the three 
phantoms for all the approaches and data types are plotted in Figure 4.8.

Table 4.1 combines the error statistics for all the 440 synthetic TOF- or PC-MRA slices in these 
three phantoms segmented with our, the Wilson-Noble’s or Chung-Noble’s, and three other segmen-
tation algorithms.

t2 = 192 t2 = 214

t2 = 185

t2 = 209t2 = 187

t2 = 168

(a) (b) (c) (d)

FIGURE 4.5 Each row relates to one patient: our segmentation before (a) and after (b) noise and small fat 
voxels are eliminated with the connectivity filter, the Wilson-Noble’s segmentation (c) after the connectivity 
filter, and the differences (d) between both approaches highlighted in green.
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(a) (b) (c) (d)

FIGURE 4.6 Each row relates to one patient: our segmentation before (a) and after (b) noise and small fat 
voxels are eliminated with the connectivity filter, the Chung-Noble’s segmentation (c) after the connectivity 
filter, and the differences (d) between both approaches highlighted in green.

“Cylinder” (a) Error 0.18% (b) Error 3.97% (c) Error 0.14% (d) Error 2.12%

“Spiral” (a) Error 1.34% (b) Error 9.52% (c) Error 0.79% (d) Error 4.01%

“Tree” (a) Error 0.31% (b) Error 4.64% (c) Error 0.18% (d) Error 3.14%

FIGURE 4.7 True 3D geometrical phantoms; our (a) and the Wilson-Noble’s (b) segmentation of their synthetic 
TOF-MRA 3D images, and our (c) and Chung-Noble’s (d) segmentation of their synthetic PC-MRA images.
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4.4 CONCLUSION

These and other experiments confirm high accuracy of the proposed LCDG-based extraction 
of blood vessels from the TOF- and PC-MRA images. Our present implementation on a single 
2.4 GHZ Pentium 4 CPU with 512 MB RAM using C++ programming language takes about 49 sec 
for segmenting one TOF-MRA 3D data set with 93 2D slices of size ×512 512 pixels each and 
29 sec for one PC-MRA 3D data set with 123 2D slices of size ×256 256 pixels each.

The proposed segmentation is not limited to only MRA; it could also be applied to various other 
applications in medical imaging, such as the kidney, the heart, the prostate, the lung, and the retina.

One application is renal transplant functional assessment. Chronic kidney disease (CKD) affects 
about 26 million people in the U.S. with 17,000 transplants being performed each year. In renal 
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FIGURE 4.8 Total errors per slice in each 3D geometrical phantom for our and the Wilson-Noble’s segmen-
tation (top) and for our and the Chung-Noble’s segmentation (bottom).

TABLE 4.1
The minimum εn, maximum εx, mean ε segmentation error, and the standard deviation σ 
of errors on the TOF-MRA and PC-MRA phantoms for our approach (OA) and the 
Wilso-Noble’s (WN) or Chung-Noble’s (CN), respectively, as well as for the other 
algorithms using the iterative thresholding (IT) [36], the gradient-based deformable model 
(DMG) [37], and the deformable model based on the gradient vector flow (GVF) [38].

TOF-MRA phantoms PC-MRA phantoms

OA WN IT DMG GVF OA CN IT DMG GVF
ε ,%n 0.09 0.10 4.81 10.1 2.45 0.02 0.08 3.71 9.80 1.96

ε ,%x 2.10 12.1 33.1 21.8 13.6 1.25 7.90 29.1 20.8 12.1
ε,% 0.61 6.20 18.8 11.9 5.96 0.37 2.90 10.9 9.80 3.12

σ,% 0.93 7.40 8.41 3.79 2.79 0.62 4.30 6.22 2.10 2.06
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transplant patients, acute rejection is the leading cause of renal dysfunction. Given the limited num-
ber of donors, routine clinical post-transplantation evaluation is of immense importance to help 
clinicians initiate timely interventions with appropriate treatment and thus prevent the graft loss. 
In recent years an increased area of research has been dedicated to developing noninvasive CAD 
systems for renal transplant function assessment, utilizing different image modalities (e.g., ultra-
sound, computed tomography (CT), MRI, etc.). Accurate assessment of renal transplant function is 
critically important for graft survival. Although transplantation can improve a patient’s well-being, 
there is a potential post-transplantation risk of kidney dysfunction that, if not treated in a timely 
manner, can lead to the loss of the entire graft, and even patient death. Thus, accurate assessment 
of renal transplant function is crucial for the identification of proper treatment. In recent years, an 
increased area of research has been dedicated to developing noninvasive image-based CAD systems 
for the assessment of renal transplant function. In particular, dynamic and diffusion MRI-based 
systems have been clinically used to assess transplanted kidneys with the advantage of providing 
information on each kidney separately. For more detail about renal transplant functional assess-
ment, please read [40]–[57], [57]–[65].

The heart is also an important application to this work. The clinical assessment of myocardial 
perfusion plays a major role in the diagnosis, management, and prognosis of ischemic heart disease. 
Thus, there have been ongoing efforts to develop automated systems for accurate analysis of myo-
cardial perfusion using first-pass images [66]–[82].

Another application for this work could be the detection of retinal abnormalities. The majority of 
ophthalmologists depend on a visual interpretation for the identification of disease types. However, 
inaccurate diagnosis will affect the treatment procedure, which may lead to fatal results. Hence, 
there is a crucial need for computer automated diagnosis systems that yield highly accurate results. 
Optical coherence tomography (OCT) has become a powerful modality for the noninvasive diagno-
sis of various retinal abnormalities such as glaucoma, diabetic macular edema, and macular degen-
eration. The problem with diabetic retinopathy (DR) is that the patient is not aware of the disease 
until the changes in the retina have progressed to a level that treatment tends to be less effective. 
Therefore, automated early detection could limit the severity of the disease and assist ophthalmolo-
gists in investigating and treating it more efficiently [83], [84].

Abnormalities of the lung could also be another promising area of research and a related applica-
tion to this work. Radiation-induced lung injury is the main side effect of radiation therapy for lung 
cancer patients. Although higher radiation doses increase the radiation therapy effectiveness for 
tumor control, this can lead to lung injury as a greater quantity of normal lung tissues is included in 
the treated area. Almost 1/3 of patients who undergo radiation therapy develop lung injury following 
radiation treatment. The severity of radiation-induced lung injury ranges from ground-glass opaci-
ties and consolidation at the early phase to fibrosis and traction bronchiectasis in the late phase. 
Early detection of lung injury will thus help to improve management of the treatment [85]–[125].

This work can also be applied to other brain abnormalities, such as dyslexia and autism. Dyslexia 
is one of the most complicated developmental brain disorders that affect children’s learning abilities. 
Dyslexia leads to the failure to develop age-appropriate reading skills in spite of a normal intelli-
gence level and adequate reading instruction. Neuropathological studies have revealed an abnormal 
anatomy of some structures, such as the Corpus Callosum in dyslexic brains. There has been a lot 
of work in the literature that aims at developing CAD systems for diagnosing such disorders, along 
with other brain disorders [126]–[148].



84

Appendices

A. SEQUENTIAL EM-BASED INITIALIZATION

The initial LCDG model closely approximating a given marginal gray level distribution F is built 
using the conventional EM-algorithm [21], [34], [39] adapted to the DGs. The approximation 
involves the following steps:

1. The distribution F is approximated with a mixture PK  of K  positive DGs relating each to 
a dominant mode.

2. Deviations between F and PK  are approximated with the alternating “subordinate” compo-
nents of the LCDG as follows.
a. The positive and the negative deviations are separated and scaled up to form two seem-

ing “probability distributions” Dp and Dn.
b. The same conventional EM algorithm is used iteratively to find a subordinate mixture 

of positive or negative DGs that approximates best Dp or D ,n  respectively (i.e., the 
sizes C K−p  and Cn  of the mixtures are found by minimizing sequentially the total 
absolute error between each “distribution” Dp or Dn and its mixture model by the 
number of the components).

c. The obtained positive and negative subordinate mixtures are scaled down and then 
added to the dominant mixture yielding the initial LCDG model of the size C C C= + .p n

The resulting initial LCDG has K  dominant weights, say, …w w K, ,p,1 p,  such that wr
K

r∑ == 1,1 p,  
and a number of subordinate weights of smaller values such that w wr K

C
r l

C
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B. MODIFIED EM ALGORITHM FOR REFINING LCDGs

The initial LCDG is refined by approaching the local maximum of the log-likelihood in Eq. (4.3) 
with the EM process adapting that in [32] to the DGs. The latter extends in turn the conventional 
EM-process in [34] onto the alternating components.
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The following two steps iterate until the log-likelihood increases and its changes become small:

  E–step[m]: Find the weights of Eq. (4.4) under the fixed parameters w −m[ 1], mΘ −[ 1] from the 
previous iteration m −1, and

  M–step[m]: Find conditional MLEs w m[ ], Θ m[ ] by maximizing w ΘL( , ) under the fixed 
weights of Eq. (4.4).

Considerations closely similar to those in [21], [34], [39] show this process converges to a local 
log-likelihood maximum. The further evidence in [32] demonstrates it is actually a block relaxation 
MM-process (in a very general way, this is also shown in [39]). Let the log-likelihood of Eq. (4.3) be 
rewritten in the equivalent form with the constraints of Eq. (4.5) as unit factors:
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Let the terms p qmlog ( )[ ]  in the first and second brackets be replaced with the equal terms 
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follow from Eq. (4.4). At the E-step, the conditional Lagrange maximization of the log-likelihood of 
Eq. (4.6) under the Q  restrictions of Eq. (4.5) results just in the weights π + r qm ( )p

[ 1]  and l qmπ + ( )n
[ 1]  of 

Eq.  (4.4) for all = …r C1, , p; = …l C1, , n and Q∈q . At the M-step, the DG weights 
= ∑ π+

∈
+( ) ( )p,

[ 1]
p
[ 1]w f q r qr

m
q Q

m  and Q= ∑ π+
∈

+w f q l ql
m

q
m( ) ( )n,

[ 1]
n
[ 1]  follow from the conditional 

Lagrange maximization of the log-likelihood in Eq. (4.6) under the restriction of Eq. (4.2) and the 
fixed conditional weights of Eq. (4.4). Under these latter, the conventional MLEs of the parameters 
of each DG stem from maximizing the log-likelihood after each difference of the cumulative 
Gaussians is replaced with its close approximation with the Gaussian density (in the following, “c” 
stands for “p” or “n,” respectively):
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This modified EM-algorithm is valid until the weights w are strictly positive. The iterations should 
be terminated when the log-likelihood of Eq. (4.3) almost does not change or begins to decrease due 
to accumulation of rounding errors.

The final mixed LCDG model p qC ( ) is partitioned into the K  LCDG submodels 
P Q= ∈p q k qk [ ( ) : ][ ] , one per class = …k K1, , , by associating the subordinate DGs with the domi-
nant terms so that the misclassification rate is minimal.
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5.1 INTRODUCTION

A stroke is defined as rapid disturbance in the cerebral blood flow, resulting in a short-term or 
permanent change in cerebral function [5]. Based on its pathological background, stroke can be clas-
sified as either ischemic or hemorrhagic. Ischemic stroke is the most frequent type, caused by a brief 
interruption of the blood supply to a certain part of the brain. Ischemic strokes can further be clas-
sified as thrombotic and embolic. Thrombotic strokes are characterized by a blood clot (thrombus) 
blocking an artery to the brain, hence interrupting regular blood flow. Embolic strokes are a result 
of a thrombus travelling from its original location such that it blocks an artery downstream. The 
damage occurred by an embolic stroke depends on the depth of the blockage manifestation in 
the artery [6]. In most cases, arteries affected by thrombotic or embolic strokes are not entirely 
blocked, enabling a small stream of blood to the brain. However, reduced blood flow decreases 
the amount of nutrients coming to the cells, which quickly affects their functionality, leading to 
symptoms of stroke occurring [7]. To treat ischemic strokes, the obstruction blocking the blood 
flow needs to be removed to restore the functionality of the cells and affected brain regions. A com-
mon treatment is a tissue plasminogen activator (tPA), which must be applied within a maximum of  
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three hours from the occurrence of symptoms. However, only 3–5 percent of patients are able 
to reach the hospital in time for the treatment to be administered. Moreover, the tPA treatment 
increases the risk for intracranial hemorrhage. Other treatment options include intra-arterial throm-
bolysis with drugs or mechanical devices, carotid endarterectomy, and stenting of the cervical and 
intracranial vessels [8]. A hemorrhagic stroke can occur due to hypertension, fracture of an aneu-
rysm or vascular deformity, as well as a consequence of anticoagulation medications. Two types 
of hemorrhage exist, an intracerebral hemorrhage and subarachnoid hemorrhage. An intracerebral 
hemorrhage occurs as a result of direct bleeding into the brain tissue, which further causes a lump 
within the brain. When bleeding expands into the cerebrospinal fluid areas around the brain, we 
refer to subarachnoid hemorrhage [1]. Due to intracranial pressure caused by bleeding, hemorrhagic 
stroke requires surgical treatment to prevent further damage and additional strokes. Stroke treat-
ment additionally involves recovery and rehabilitation.

A frequent cause of ischemic strokes and attacks is carotid stenosis, which is defined as a severe 
blockage of internal carotid arteries by fat and cholesterol accumulation [9]. Symptoms of carotid 
stenosis usually first appear with transient ischemic attacks, caused by temporary interruption of 
blood flow to the brain. These last for a small period of time, for a couple of minutes, after which 
the symptoms disappear. Symptoms of transient ischemic attacks include weakness or numbness 
in an arm or leg, difficulty speaking, a drooping face, vision problems, or paralysis affecting one 
side of the body. Carotid stenosis is diagnosed by either a Doppler ultrasound of the neck, a com-
puted tomography angiogram (CTA) of the neck, magnetic resonance angiography (MRA), or a 
cerebral angiogram [10]. An additional common cause of strokes is a cerebral aneurysm, defined 
by the area in the brain where the blood vessel weakens, resulting in expanding beyond the vessel 
wall. Aneurysms generally occur at the points where a blood vessel branches, as these regions are 
structurally weaker and exhibit higher vulnerability [11]. Unruptured cerebral aneurysms can be 
identified by noninvasive techniques, such as MRA or by a carotid angiogram. In case of a rupture, 
aneurysms cause subarachnoid hemorrhage, as well as intracranial hematoma (clot) if bleeding 
occurs in the cerebrospinal fluid. Ruptures can be detected using a CT scan or lumbar puncture, 
followed by cerebral angiography.

Regardless of what type of stroke the patient has suffered, it is critical that patients receive 
emergency medical treatment as soon as possible for the best possible outcome. Moreover, it is 
of the utmost importance to accurately detect signs and symptoms of stroke and apply preventive 
treatment to avert from the actual stroke or attack occurring. Thus, being able to obtain an early 
diagnosis of the aforementioned cerebrovascular diseases, especially detecting carotid stenosis and 
the development of aneurysms in time for applying early treatment.

With the rapid development of medical imaging technology, medical imaging techniques have 
become critical factors in patient care and essential tools for doctors to identify stroke risk factors 
and diagnose cerebrovascular diseases. Such technology allows for the detection of serious vascular 
diseases including carotid stenosis, aneurysm, and vascular malformation, which could potentially 
lead to severe headaches, strokes, or a life-threatening coma if left untreated [12]. Thus, accurate 
cerebrovascular segmentation is of prime importance for cerebrovascular anatomy analysis and ves-
sel stenosis detection, which in turn enables timely diagnosis and endovascular treatment. However, 
precise cerebrovascular segmentation has posed a challenge for many years as cerebral vessels are 
of a relatively complex structure, while at the same time the differences in intensity levels between 
the surrounding tissue and vessels is often too narrow [4].

Computed tomography (CT) and magnetic resonance imaging (MRI) have had a major influ-
ence on the study of the brain, due to their noninvasive nature and ability to evaluate the brain 
structure more accurately and infer causes of different cerebrovascular diseases. Many cerebro-
vascular segmentation methods have been proposed utilizing images collected by applying CT and 
MRI techniques. However, a considerable drawback of CT is the need for a high radiation dose. 
On the other hand, MRI is a more complicated technique, as well as more time-consuming [13]. 
For the purpose of pathology detection applications and functional characterization, where cellular 
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activity is studied, positron emission tomography is utilized. When integrated with CT or MRI, 
utilizing both functional and structural information results in a higher sensitivity and specificity 
compared to using either modality by itself. Nevertheless, PET cannot be used as a stand-alone 
modality for these applications, as anatomical information from CT or MRI are needed for proper 
interpretation [14]. Moreover, ultrasound has been widely utilized for detection and evaluation of 
cerebrovascular diseases. One of the most significant ultrasound methods is transcranial Doppler 
sonography, due to being noninvasive, non-ionising, portable, and safe. It is utilized for the assess-
ment of intracerebral blood flow by employing a pulsed Doppler transducer, as well as for the 
detection of occlusion of intracranial arteries [15]. However, these techniques are highly operator 
dependent, inaccurate because of poor acoustic window, and require extensive skills and experience 
for proper interpretation.

Currently, MRI provides the best solution for noninvasive imaging of brain vasculature and 
its segmentation. Compared to other modalities, MRI has a much greater range of available soft 
tissue contrast, depicts anatomy in more detail, and is more sensitive to abnormalities within the 
brain. Furthermore, scanning using MRI can be done in any imaging plane, without a need to 
physically move the patient, its contrast agents are low-risk toward any allergic reactions, and it 
allows for the interpretation of structures potentially concealed by artifacts from bones in CT 
images [13].

In the following sections, we introduce detailed imaging techniques using MRI, as well as seg-
mentation methods of MRI-collected images. This is followed by proposing a new approach toward 
cerebrovascular system segmentation, which incorporates a statistical mixture of Gaussian model 
with the spatial interaction model defined by Markov-Gibbs random field models. The proposed 
two-level segmentation is applied on Gaussian scale spaces obtained by employing two Gaussian 
kernels with different sizes. Finally, we present experimental results obtained by applying the pro-
posed segmentation method, and conclude with a small discussion.

5.2 MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) has become one of the most versatile and widely used tools for 
clinical diagnosis of diseases over the last few decades. It has been considered essential for diag-
nosis of acute injuries, musculoskeletal diseases, brain pathologies, cancer detection, and cardiac 
imaging [16]. Being a noninvasive imaging modality, it is preferred over CT, especially in chil-
dren and patients requiring multiple imaging examinations. Further advantages include superior 
intrinsic soft tissue contrast, unrestricted penetration depth, and high anatomical resolution [17]. 
Thus, MRI characterizes anatomy in greater detail, and is more sensitive to abnormalities within 
the studied tissues, compared to CT methods. Moreover, it allows for the evaluation of structures 
that may be ambiguous due to remaining artifacts from bone tissues in CT images [18]. However, 
for accurate estimation of intracranial vascular diseases through cerebrovascular segmentation, we 
require functional information about organ impairment during the infection, which is not avail-
able through structural MRI. Noninvasive magnetic resonance angiography (MRA) can accurately 
represent high-level information of the anatomy, function, and metabolism of the studied tissue. 
MRA is useful for detecting aneurysm, occlusions, and stenoses. Moreover, it has been extensively 
utilized in cases when the injection of contrast agents introduces high risk. As such, MRA allows 
for an accurate and noninvasive evaluation of blood flow and blood vessel morphology [19]. Two 
main MRA techniques commonly used for observing vascular structures are contrast-enhanced and 
non-contrast-enhanced MRA. While contrast-enhanced MRA utilizes a contrasting substance, such 
as intravenous gadolinium injection for blood flow detection, non-contrast-enhanced MRA methods 
rely on the effects of vascular flow as a fundamental contrast. The latter exploit mechanisms such as 
time-of-flight (TOF) and phase contrast angiography (PCA) [20].

PCA-based methods are useful for quantifying flow velocity vectors for each voxel in an MRA 
image. The signal representing a contrast between flowing and stationary nuclei is generated 
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by producing a phase shift proportional to the velocity of blood flow [21]. Thus, two data-sets 
with opposite phases for moving nuclei and identical phases for stationary nuclei are obtained, 
respectively. Having the net phase of zero, stationary nuclei are not represented in the final image, 
while flowing nuclei remain as a residual due to movement from one position in the field gradi-
ent to another between the first and the second sensitization times. When the two data-sets are 
subtracted, the signal contribution from stationary nuclei is eliminated and only signals repre-
senting flowing nuclei remain [22]. However, the accuracy of PCA-based methods depends on the 
precise choice of a velocity encoding factor (VENC), which usually corresponds to the maximum 
velocity through a certain region. Inaccurate selection of VENC can lead to errors, where most 
common side effects include flow aliasing. A disadvantage of the phase contrast MRI is the need 
for multiple acquisitions to encode a single velocity direction, which ensues long-duration scan 
times [23].

On the other hand, TOF-MRA uses short echo time and flow compensation to produce high 
contrast images with a significantly shorter acquisition time compared to other methods, including 
PCA methods [24]. A signal difference between blood and stationary tissues is achieved by applying 
rapid radiofrequency excitation pulses that saturate stationary tissue signals, while the flowing spins 
are subjected to only a few excitation pulses [25]. Consequently, in-flowing spins moving into the 
saturated tissue have a bright signal compared to the suppressed background containing stationary 
tissue, as the blood flows continuously during image acquisition, never experiencing enough excita-
tion pulses to become saturated [26]. Thus, slow blood flow or stasis, retrograde filling, tortuous 
vessels, or vessels existing in the same plane as the image slice cause the blood flow to be saturated 
in the image volume, which is followed by poor vessel visualization.

5.3  CEREBROVASCULAR SEGMENTATION USING 
MAGNETIC RESONANCE IMAGING

5.3.1 relateD work on cerebroVascular segmentation

Various approaches for cerebrovascular segmentation from MRA data have been proposed, 
which can be generalized into two categories: skeleton-based and non-skeleton-based. Skeleton-
based methods [27]–[29] segment and reconstruct vessels by extracting the centerlines of the 
vessels from the two-dimensional slices, thus having the ability to construct the vessel tree or 
a skeleton. These methods are referred to as indirect since they require pre-computation of the 
vessel cross-sections through approaches such as edge-based techniques, parametric-based mod-
els, and geometric-based models [30]. Non-skeleton-based methods compute vessels directly 
without estimating the vessel cross-sections. Most prominent non-skeleton-based techniques 
employed for vascular segmentation from MRA data can be divided into two general categories: 
deformable models and statistical-based methods. Deformable models rely on contour functions 
to adjust an originally defined boundary surface to blood vessels, based on optimization tech-
niques that depend on image gradients and smoothness of the surface. Commonly used deform-
able models include topologically adaptable surfaces [31], geodesic active contours with level set 
techniques [32], multi-scale geometrical flows [33], and region-based deformable contours [34]. 
Despite good reported performance and experimental results, these methods suffer from the need 
for manual initialization, as well as inefficiency in terms of speed, which makes them slower than 
statistical-based methods [24].

Statistical methods have the ability to derive vascular trees in an automatic manner, but the 
accuracy of such techniques varies with the ability to correctly predict or define the probability 
model representing the data [35]. Data collected from MRA imaging techniques can be described 
as multi-modal, where signals correlated with each class, label, or region-of-interest can be repre-
sented by a particular marginal probability distribution. Thus, each mode of the marginal probability 



99Unsupervised Parametric Mixture Model 

distribution can serve as a segmentation basis for objects of interest in the MRA image (e.g., blood 
vessels, brain tissues, etc.). Moreover, a statistical model can also be represented by a linear combi-
nation of several probability distribution functions derived based on the properties of observed ana-
tomical structures. The choice or combination of probability distribution functions largely depends 
on the utilized imaging modality. By estimating the parameters of the chosen statistical models, 
objects of interests can be separated from the background based on a variety of statistical tech-
niques, such as Bayesian inference statistics and maximum a posteriori estimation [36]. One of 
the first statistical-based cerebrovascular segmentation methods was proposed in [37], where they 
utilize a mixture of two Gaussian probability distributions and one uniform distribution to represent 
stationary cerebrospinal fluid (CSF), brain tissue, and arteries, respectively. They find that the low-
est intensity area corresponds mainly to CSF (surrounding the brain tissue), bone tissue, and the 
background air. The next lowest intensity region represents brain tissues (gray and white matter) and 
eyes. Finally, the highest intensity region include cerebral vessels.

Estimation of parameters for the mixture model presented is done by using the traditional expec-
tation-maximization (EM) algorithm. A more adaptive approach for cerebrovascular segmentation 
has been proposed in [38]. The approach consists of deriving an adaptive number of dominant and 
subordinate discrete Gaussian distributions, instead of a certain number of predefined distributions, 
to approximate intensity distributions of voxels in MRA images. Moreover, a model consisting of 
one Rayleigh and two Gaussian distributions for modeling CSF and brain tissue has been proposed 
in [39].

Cerebrovascular segmentation can be performed on 2D images, sequences of 2D images, or 
3D volumetric images. The majority of proposed methods have focused on 2D images, while data 
characterized in 3D space is segmented individually, followed by post-processing algorithms to 
combine segmented 2D slices into a 3D volume or surface. The drawback of such approaches is 
the omission of important anatomical information contained in the 3D space, which could lead to 
inconsistencies and uneven surfaces [40]. Therefore, there is a need for the development of 3D seg-
mentation algorithms for handling volumetric data to achieve more accurate volumetric segmenta-
tion. Moreover, statistical models discussed previously often fail to handle image noise and other 
imaging artifacts, thus making first-order feature insufficient for accurate cerebrovascular MRA 
segmentation. Therefore, more effective second-order discriminative features are employed, which 
combine spatial interaction between intensities with the first-order intensity model. The most popu-
lar models for defining local spatial interactions between pixel/voxel intensities are represented by 
the Markov random field (MRF) theory, which allows for decreasing misclassification errors due to 
image noise and artifacts after initial segmentation based on first-order features.

In the following discussion, we propose a probability model for estimating brain blood ves-
sels from 3D volumetric MRA images, whose parameters are approximated using expectation-
maximization (EM) algorithm, followed by refinement using Gibbs-Markov random field model 
with higher order cliques.

5.3.2 ProPoseD work

TOF-MRA images consist of three regions-of-interest or three distinct classes: darker cerebrospinal 
fluid (CSF) together with bones and fat, brain tissues (gray matter and white mater), and brighter 
in appearance blood vessels. Based on this, we can employ statistically based parametric models to 
classify the three classes by assuming that each class exhibits a Gaussian distribution of intensities. 
Thus, the global distribution of data can be defined as a linear combination of the distributions of 
the three classes, referred to as a Gaussian mixture model and expressed as

 

p q w q
k

M

k k∑ ( )ρ θ( ) =
=0  

(5.1)
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where ; = 0,1, , 1,∈ −q q Q Q  is the gray or intensity level, p q( ) is the global distribution over the 
intensities q M, , is the number of classes or Gaussian distributions, kθ  stands for the parameters 
of the Gaussian distribution for a particular class k θ = µ σ ρ θ( ( , )), ( )qk k k k  is the Gaussian intensity 
distribution of class k , and wk is the probability, or the mixing weight representing the proportions 
of each class within the data. Thus, each class is represented by a Gaussian distribution with mean 

kµ  and standard deviation ,kσ  such that
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To estimate the parameters kθ  for each given class, we utilize the EM algorithm, which maxi-
mizes the likelihood of the distribution for a certain set of data [41]. The EM algorithm estimates the 
distribution parameters by updating initial parameter estimates iteratively, with the aim of minimiz-
ing the difference between log-likelihood of the mixture distribution. Initial parameter values are 
either found manually or by a separate initialization procedure. Given the number of distributions 
or classes ,M  relative contribution or responsibility of each intensity level q toward the Gaussian 
distribution for each iteration n is given by
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Furthermore, we estimate the distribution parameters, as well as prior probability or mixing 
weights wk for each iteration n +1 as follows:
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The iterations of the EM algorithm for updating the model parameters should be terminated 
when a certain stopping criteria is satisfied, such as in the case of the log-likelihood of the mixture 
distribution not being changed, as described in [42]. However, it is important to notice that all of the 
equations listed previously for parameter estimation perform the calculations on the entire number 
of voxels contained in the data-set. For large data-sets such as in the case of 3D data, this can be 
computationally expensive and inefficient. Thus, the computations shown previously are performed 
over every possible intensity instead of each voxel separately, by utilizing the frequency with which 
each intensity occurs in the data.

Employing only the statistically based intensity model or Gaussian mixture model for segmenta-
tion leads to misclassification errors, evident by our experimental results shown in III-C. Thus, we 
refine the results by employing a spatial interaction model based on the Gibbs-Markov Random Field 
(GMRF) theory. We define the finite arithmetic grid = {( , , ) :1 ,1 ,1 }T i j z i I j J z Z≤ ≤ ≤ ≤ ≤ ≤  for 
grayscale TOF-MRA images such that g R Q→:  and region maps : ,m R M→  where = 0, , 1−Q Q  
represent the set of gray levels or intensities and = 1, ,M M  are the set of classes. Q is the number 
of gray levels or intensities, and M  is the number of classes that the image needs to be separated 
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in after segmentation. To segment the images using the GMRF model, we look at the joint prob-
ability distribution of the images and the needed region maps, as ( , ) ( ) ( ).P g m P m P g m=  P m( ) is an 
unconditional probability distribution of maps, representing the higher level of the two-level Gibbs 
segmentation model, while P g m( ) is the conditional distribution of images g given a map m, or the 
lower level of the model. Thus, P g m( ) is estimated using the previously discussed Gaussian mix-
ture model, while P m( ) is obtained using the MGRF models. The Bayesian maximum a posteriori 
(MAP) estimate of the map m, given the image g is

 
∈

= argmax ( , )m L m g
m M

 
(5.6)

and maximizes the log-likelihood function given by

 L g m logP g m logP m( ) +( , ) = ( ).  (5.7)

The generic Markov-Gibbs model of region maps defines only pairwise interactions between 
each region label and its neighbors. Moreover, the interactions are restricted to the nearest voxels 
and are by symmetry independent of relative region orientation, are the same for all classes, and 
depend only on whether the pair of labels are equal or not. Thus, the model is similar to conven-
tional auto-binomial models [43], with the difference of having the potentials independent of any 
predefined functions and having analytically obtained estimates.

The symmetric label interactions we consider, only up to a 26-neighborhood system, include 
the closest horizontal, vertical, and diagonal interactions in the current slice chvd( ), the closest 
horizontal, vertical, and diagonal interactions in the upper slice uhvd( ), and the closest horizon-
tal, vertical, and diagonal interactions in the lower slice lhvd( ). Potentials of each type are bi-valued 
as only coincidental or different labels are considered. Let V Va a eqν η( , ) = ,  if = : , Mν η ν η ∈  
and ( , ) = ,V Va a neqν η  if : , Mν ≠ η ν η ∈  indicate bi-valued Gibbs potentials characteriz-
ing symmetric pairwise potentials between each label consisting of = { , , }.a A c u lhvd hvd hvd∈  If 

= {( 1, 1,0), (0, 1,0), (1, 1,0), (1,0,0), (1,1,0), (0,1,0), ( 1,1,0), ( 1,0,0)},Nchvd − − − − − −  = {(0, 0,1),Nuhvd  
( 1, 1,1), (0, 1,1), (1, 1,1), (1, 0,1), (1,1,1), (0,1,1), ( 1,1,1), ( 1, 0,1)},− − − − − − , and = {(0,0, 1),Nlhvd −  
( 1, 1, 1), (0, 1, 1), (1, 1, 1), (1, 0, 1), (1,1, 1), (0,1, 1), ( 1,1, 1), ( 1, 0, 1)}− − − − − − − − − − − − − −  are  
subsets of inter-voxel offsets for the utilized neighborhood system. Thus, the Gibbs probability dis-
tribution of region maps is defined as:
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Determining the MGRF model described in Eq. (5.8) requires the estimation of Gibbs param-
eters using the analytical maximum likelihood estimation proposed in [5], as follows:
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where f ma′( ) and f ma′′( ) stand for the relative occurence of the equal and non-equal label pairs in all 
equivalent voxel pairs {(( , , ), ( , , )) : ( , , ) ; ( , , ) ;( , , ) }.i j z i j z i j z R i j z R Na+ ι + ξ + ζ ∈ + ι + ξ + ζ ∈ ι ξ ζ ∈  
To reduce the inhomogeneity in the obtained TOF-MRA data, we utilize the Gaussian scale 
space theory and convolve the original data with two different scales of the 3D Gaussian 
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kernels. Figure 5.1 provides an example of the original and smoothed TOF-MRA images using 
the 3D Gaussian kernels. Thus, the original image data and the generated Gaussian scale space data 
are segmented by the Gaussian mixture models, and iteratively refined by the MGRF model. Finally, 
the majority voting scheme is utilized to select the label of each voxel by selecting the label that most 
segmentations agree on. After the candidate vessel voxels have been determined, we apply the 3D 
connected component analysis to identify the vessels and discard the background containing CSF, 
bones, fat, and brain tissue. This further includes filling holes and removing any small noisy regions.

5.3.3 exPerimental results

Experiments were performed with the use of TOF-MRA images, containing 3D data-sets of size 
× ×696 768 161. TOF-MRA images consist of three classes, darker bones and fat, brain tissue, 

and blood vessels that appear the brightest in the images. Typical TOF-MRA slices forming a 3D 
data-set, its empirical marginal gray level distribution f q( ), and the estimated Gaussian mixture 
model p q( ) are shown in Figure 5.2.

Using the final estimated parameters, data is segmented into different classes by labeling each 
voxel as belonging to the class k for which w p q k w p q jk j( ) > ( ) for all k j≠ . Figure 5.3 depicts the 
marginal gray level distribution f q( ) and the estimated Gaussian mixture model p q( ) for a differ-
ent data-set, together with the Gaussian models for each of the three existing classes. Since we are 
interested in segmenting the voxels belonging to the blood vessels (depicted by p q( 3) in Figure 5.3), 
we utilize the second threshold to discriminate between the voxels whose conditional probability of 
belonging to the third class is higher than the conditional probability of coming from either of the 
other two distributions, as these are the same voxels above the second intensity threshold.

Thus, we obtain the initial segmentation based on the intensity model described above, which 
can be observed in Figure 5.4 for different subjects from the 3D data-set. After refining the 
Gaussian mixture model or the intensity-based model using the MGRF model, we further employ 

(a) (b) (c)

FIGURE 5.1 Original TOF-MRA images (a), smoothed TOF-MRA images by convolving the original 
images with the first 3D Gaussian kernel (first-scale) (b), and smoothed TOF-MRA images by convolving the 
original images with the second 3D Gaussian kernel (second-scale) (c).
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FIGURE 5.2 Typical TOF-MRA slices from the 3D data-set (a) and deviations between the empirical 
distribution q( )f  and the estimated Gaussian mixture model ( )p q  (b).
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FIGURE 5.3 Deviations between the empirical distribution q( )f  and the estimated Gaussian mixture 
model ( )p q  for a different data-set (a) and the estimated Gaussian models for each class (b).

Subject 1 Subject 2

Subject 3 Subject 4

FIGURE 5.4 Original image from the TOF-MRA 3D data-set with the initial segmentation based on the 
intensity model and the ground truth for four different subjects.
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FIGURE 5.5 Two-level segmentation model applied to the original data w.r.t. the ground truth for five dif-
ferent patients in the TOF-MRA data-set.
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majority voting on the refined original and generated Gaussian scale space data, to obtain the 
finalized segmentation. Figure 5.5 presents the initial and final segmentation of the vessels, at the 
same time comparing them to the expert’s ground truth, for five different subjects in the TOF-MRA 
data-set. Figure 5.5 demonstrates the ability of the proposed two-level segmentation model to 
reduce misclassification errors and extract vessels with a significantly higher accuracy. TOF-MRA 
data tends to be sensitive to tissues such as subcutaneous fat, which can obscure the actual blood 
vessels in the segmented image or volume. Thus, to eliminate the unwanted tissue, the 3D volume is 
processed with a connectivity filter, which generates a 3D segmented volume by selecting the larg-
est connected tree structures with the help of the 3D volume growing algorithm, presented in [45]. 
Final segmentation results visualized in 3D are presented in Figure 5.6. Figure 5.7 demonstrates the 
difference between the vascular trees obtained by the proposed two-level segmentation approach 
with respect to the vascular trees obtained by utilizing the ground truth data for two subjects.

(a)

(b)

(c)

(d)

FIGURE 5.6 Segmented vascular trees obtained by the proposed approach, where each row relates to one 
patient.
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(a) (b)

FIGURE 5.7 Deviations between segmented vascular trees using the TOF-MRA 3D data-set generated by 
the (a) proposed two-level segmentation approach (b) by the expert-generated ground truth for two different 
subjects.

5.4 CONCLUSION

Precise cerebrovascular segmentation is crucial for early diagnosis and timely endovascular treat-
ment of intracranial vascular diseases. Magnetic resonance imaging has become the most powerful 
noninvasive tool for clinical diagnosis of diseases. It offers best soft tissue contrast among all imag-
ing modalities, as well as the most sensitive noninvasive way of imaging the brain, spinal cord, or 
other areas of the body. For the purpose of accurate cerebrovascular segmentation and modelling, it is 
important to visualize arterial blood flow and blood vessel morphology. As such, utilizing magnetic 
resonance angiography allows for obtaining the aforementioned characteristics and functionalities.

In this chapter, we review recent methods utilized for cerebrovascular segmentation from 
MRA images, including their strengths and limitations. Moreover, we introduce a two-level seg-
mentation model for accurate brain blood vessel segmentation from TOF-MRA images, which 
combines statistical methods with the spatial interaction model between the intensities with the 
first level statistical model. More precisely, we propose the use of the Gaussian mixture model, 
followed by applying the MGRF model to refine the initial segmentation. Furthermore, we apply 
the two-level segmentation on Gaussian scale space data generated from the original data using 
3D Gaussian kernels. By combining the scale space data with the use of the majority voting 
scheme and connectivity analysis, we obtain the final 3D segmentation of the brain vessels from 
TOF-MRA images.

In conclusion, the presented experimental data indicates that the proposed segmentation algo-
rithm for extracting cerebrovascular trees from TOF-MRA images shows promising results. 
Moreover, the advantages of the proposed approach include a completely unsupervised segmenta-
tion method, without the need for additional pre-processing and post-processing steps to obtain a 
three-dimensional visualization of the segmented cerebrovascular tree.
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 40. I. Despotović, B. Goossens, and W. Philips, “MRI segmentation of the human brain: challenges, meth-
ods, and applications,” Computational and Mathematical Methods in Medicine, vol. 2015, 2015.

 41. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM 
algorithm,” Journal of the Royal Statistical Society. Series B (methodological), pp. 1–38, 1977.

 42. A. A. Farag, A. S. El-Baz, and G. Gimel’farb, “Precise segmentation of multimodal images,” IEEE 
Transactions on Image Processing, vol. 15, no. 4, pp. 952–968, 2006.

 43. G. Gimelfarb, Image Textures and Gibbs Random Fields.
 44. A. El-Baz, G. Gimel’farb, V. Kumar, R. Falk, and M. A. El-Ghar, “3D joint Markov-Gibbs model 

for segmenting the blood vessels from MRA,” in Proceedings of IEEE International Symposium on 
Biomedical Imaging: From Nano to Macro (ISBI’09), 2009, pp. 1366–1369.

 45. A. A. Farag, A. El-Baz, and G. Gimel’farb, “Density estimation using modified expectation-
maximization algorithm for a linear combination of Gaussians,” in 2004 International Conference on 
Image Processing (ICIP’04), vol. 3, IEEE, 2004, pp. 1871–1874.

http://dx.doi.org/
http://dx.doi.org/
http://www.sciencedirect.com/


109

6 Left Atrial Scarring 
Segmentation from 
Delayed-Enhancement 
Cardiac MRI Images: A 
Deep Learning Approach

Guang Yang1, Xiahai Zhuang2, Habib Khan3, 
Eva Nyktari3, Shouvik Haldar3, Lei Li4, Rick Wage3, 
Xujiong Ye5, Greg Slabaugh6, Raad Mohiaddin1, 
Tom Wong1, Jennifer Keegan1, David Firmin1

1Royal Brompton Hospital and Imperial College London
2Fudan University
3Royal Brompton Hospital
4Shanghai Jiao Tong University
5University of Lincoln
6City University London

CONTENTS

6.1 Introduction .......................................................................................................................... 110
6.1.1 Background ............................................................................................................... 110
6.1.2 Related Work ............................................................................................................ 111
6.1.3 Our Contributions ..................................................................................................... 112

6.2 Method .................................................................................................................................. 112
6.2.1 Study Population ....................................................................................................... 112
6.2.2 MRI Protocol ............................................................................................................ 113
6.2.3 Multi-Atlas Whole Heart Segmentation (MA-WHS) ............................................... 113
6.2.4 Image Over-Segmentation Using SLIC Super-Pixels ............................................... 115
6.2.5 Atrial Scarring Segmentation Based on Super-Pixels Classification ....................... 116

6.2.5.1 Training Data Construction and Ground Truth Definition ........................ 116
6.2.5.2 Deep Learning Using Stacked Sparse Auto-Encoders .............................. 117
6.2.5.3 Hyper-Parameters Settings ........................................................................ 119

6.2.6 Validation Approaches .............................................................................................. 120
6.2.6.1 Validation for the Whole Heart Segmentation ........................................... 120
6.2.6.2 Validation for the Atrial Scarring Validation ............................................ 120

6.3 Results ................................................................................................................................... 121
6.3.1 Whole Heart Segmentation ....................................................................................... 121
6.3.2 Atrial Scarring Segmentation ................................................................................... 121



110 Cardiovascular Imaging and Image Analysis

6.4 Discussion ............................................................................................................................. 122
6.5 Conclusion ............................................................................................................................124
Acknowledgments .......................................................................................................................... 125
References ...................................................................................................................................... 125

6.1 INTRODUCTION

6.1.1 backgrounD

Atrial fibrillation (AF) is the most common arrhythmia of clinical significance, and it affects 
approximately 1–2% of the population, a figure that is rising fast with ageing [1], [2]. AF occurs 
when chaotic and disorganized electrical activity develops in the atria, causing muscle cells to 
contract irregularly and rapidly. Moreover, it is associated with structural remodelling, including 
fibrotic changes in the left atrial substrate [3]. AF can cause increased morbidity, especially stroke 
and heart failure, and result in poor mental health, dementia, and increased mortality [2], [4], [5].

Pharmacological treatment of AF aims to restore and maintain sinus rhythm [6]. However, AF 
recurrence, side effects of antiarrhythmic drugs, and risks of proarrhythmia may offset the benefits 
of pharmacological treatment [7]. Consequently, there have been increasing efforts to develop non-
pharmacological methods to treat AF patients such as percutaneous catheter ablation (CA) and 
surgical ablation (SA). Since the importance of pulmonary vein (PV) triggers in the initiation of AF 
was found [8], CA, which electrically isolates the PVs, has developed into an important interven-
tional therapy [9]. However, despite efforts to improve targeting and delivery of CA, the success rate 
for a single procedure is just 30–50% at 5 years follow-up [10], [11]. Thoracoscopic SA has shown 
higher long-term success rates for a single procedure [12]–[14], but this comes with a procedural 
major adverse event rate of 23% [15].

The high failure rate of ablation in AF patients can be attributed to: (1) inadequate understand-
ing of the arrhythmia mechanisms and arrhythmogenic substrates; (2) difficulty in identifying the 
potential non-responders of ablation; (3) inability to establish the ideal ablation strategy for each 
patient; (4) inadequate information of lesion integrity and longevity; and (5) limitations in the infor-
mation about the location and extent of the ablation-induced scarring during and/or after the proce-
dure [16], [17]. These have motivated researchers to develop better fibrosis imaging and assessment 
techniques to provide accurate guidance of the pre- and post-ablation procedures and improve their 
performance.

The current clinical gold standard for assessment of atrial scarring is electro-anatomical map-
ping (EAM), performed during an electrophysiological (EP) study [17]. The electrical activity of the 
left atrium (LA) is recorded using a mapping catheter prior to CA, with regions of scarring being 
associated with low voltage (<0.5mV). The main limitations of this technique are its invasiveness, 
the use of ionizing radiation, and the suboptimal accuracy, with reported errors of up to 10 mm in 
the localization of scar tissue [18], [19].

Late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) is an established 
noninvasive technique for detecting myocardial scar tissue [20]. With this technique, healthy and 
scar tissues are differentiated by their altered wash-in and wash-out contrast agent kinetics, which 
result in scar tissue being seen as a region of enhanced or high signal intensity while healthy tissue 
is nulled. While 2D breath-hold LGE MRI is well-established for ventricular imaging, there is a 
growing interest in imaging the thinner walled atria for identification of native and ablation scar-
ring in AF patients [21]–[24]. This requires higher spatial resolution and contiguous coverage, and 
data are best acquired as a 3D volume during free-breathing with diaphragmatic respiratory-gating. 
Atrial 3D LGE imaging has been used to: (1) assess patient suitability for AF ablation by identify-
ing potential non-responders [22], [25]–[30], and (2) define the most appropriate ablation approach 
[26], [27], [31]. In addition, visualization and quantification of native and post-ablation atrial scar-
ring derived from LGE MRI has been used to guide initial and follow-up ablation procedures [27], 
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[28], [32]–[35]. Histopathological studies have validated LGE MRI for quantification of native AF 
fibrosis [30], [36] and for characterization of AF ablation-induced wall injury [37].

Visualization and quantification of atrial scarring requires objective, robust, and accurate 
segmentation of the enhanced scar regions from the LGE MRI images. Essentially, there are two 
segmentations required: one showing the cardiac anatomy (geometry), particularly the LA wall and 
PVs, the other delineating the enhanced scar regions. The former segmentation is required to rule 
out confounding enhanced tissues from other parts of the heart (e.g., the mitral valve and aorta), or 
the enhancement from non-heart structures, while the latter is a prerequisite for insightful visual-
ization and meaningful quantification. Segmentation of the atrial scarring from LGE MRI images 
is a very challenging problem. Firstly, the LA wall is very thin, and scarring is hard to distinguish 
even by experienced expert cardiologists specialized in cardiac MRI. Secondly, residual respiratory 
motion, heart rate variability, low signal-to-noise ratio (SNR), and contrast agent wash-out during 
the long acquisition (current scanning time ≈ 10mins) frequently result in image quality being poor. 
In addition, artifactual enhanced signal from surrounding tissues may result in a large number of 
false positives.

6.1.2 relateD work

Oakes et al. [22] quantified the enhanced atrial scarring by analyzing the intensity histogram of the 
manually segmented LA wall. Perry et al. [38] applied k-means clustering to quantitatively assess 
normal and scarred tissue from manual LA wall segmentation. A grand challenge was carried 
out for evaluation and benchmarking of various atrial scarring segmentation methods, including 
histogram analysis, simple and advanced thresholding, k-means clustering, and graph-cuts [39]. 
Although these pioneering studies have shown promising results on the segmentation and quantifi-
cation of atrial scarring using LGE MRI images, most have relied on manual segmentation of the 
LA wall and PVs. This has several drawbacks: (1) it is a time-consuming task; (2) there are intra- 
and inter-observer variations; (3) it is less reproducible for a multi-center and multi-scanner study. 
Moreover, some previous studies have assumed a fixed thickness of the LA wall, while there is no 
evidence that this is the case, and re-orientation and interpolation of the MR images can result in 
partial volume effects and increase the variance of the wall thickness. Inaccurate manual segmen-
tation of the LA wall and PVs can further complicate the delineation of the atrial scarring, and its 
quantification can be error-prone. This could be one of the major reasons that there are ongoing con-
cerns regarding the correlation between atrial scarring identified by LGE MRI (enhanced regions) 
and the gold standard EAM (low voltage regions) [30], [40].

The LA and PVs would ideally be segmented from the cardiac and respiratory-gated LGE MRI 
dataset. However, this is difficult as normal tissue is nulled and only scar tissue is seen with high sig-
nal. Other options are to segment them from a separately acquired breath-hold magnetic resonance 
angiogram (MRA) study [29], [41], [42] or from a respiratory and cardiac gated 3D Roadmap acqui-
sition, that is, using a balanced steady state free precession (b-SSFP) sequence [43]. While MRA 
shows the LA and PVs with high contrast, these acquisitions are generally un-gated and acquired 
in an inspiratory breath-hold. The anatomy extracted from MRA therefore can be highly deformed 
compared to that in the LGE MRI study. Although the 3D Roadmap acquisition takes longer to 
acquire, it is in the same respiratory phase as the LGE MRI, and the extracted anatomy can be bet-
ter matched. Ravanelli et al. [29] proposed to manually segment the LA wall and PVs using MRA 
images in 3D, for which both efficiency and accuracy have been claimed. The segmented LA and 
PVs were then mapped to LGE MRI and this was followed by a thresholding-based segmentation 
of the atrial scarring [29]. Recently, Tao et al. [42] combined atlas-based segmentation of LGE MRI 
and MRA to define the cardiac anatomy. After image fusion of the LGE MRI and MRA, accurate 
LA chamber and PVs segmentation has been achieved by a level set based local refinement, based 
on which an objective atrial scarring assessment is envisaged in future development [42]. Instead of 
using MRA, Karim et al. [43] used b-SSFP whole-heart acquisition to define the cardiac anatomy. 



112 Cardiovascular Imaging and Image Analysis

The cardiac anatomy was resolved using a statistical shape model, and the atrial scarring was then 
segmented using a graph-cut model assuming that the LA wall is ±3mm from the endocardial bor-
der obtained from the LA geometry extraction [43]. Table 6.1 provides a summary of previously 
published methods on atrial scarring segmentation using LGE MRI.

6.1.3 our contributions

In this chapter, we present a novel fully automatic segmentation and objective assessment of atrial 
scarring for longstanding persistent AF patients scanned by LGE MRI. The LA chamber and PVs 
are defined using a multi-atlas based whole heart segmentation (MA-WHS) method on Roadmap 
MRI images, which are acquired using a respiratory and cardiac gated 3D b-SSFP sequence. LA 
and PVs geometry is resolved by mapping the segmented Roadmap anatomy to LGE MRI using the 
DICOM header data, and is further refined by affine and nonrigid registration steps. The LGE MRI 
images are over-segmented by a novel Simple Linear Iterative Clustering (SLIC) based super-pixels 
method [46]. Then a fully automatic supervised deep learning classification method is applied to 
segment the atrial scarring within the segmented LA and PVs geometry. In this study, two valida-
tion steps have been performed: one for the LA chamber and PVs segmentation; and one for the 
atrial scarring segmentation—both against established ground truths from manual segmentations 
by experienced expert-cardiologists specialized in cardiac MRI. This chapter is based on our previ-
ous work on atrial scarring segmentation [47]–[49].

The rest of this manuscript is organized as follows. Section 2 details the materials and main 
methods of this study. Section 3 demonstrates our experimental results, which are followed by dis-
cussions and a conclusion (Sections 4 and 5).

6.2 METHOD

6.2.1 stuDy PoPulation

Cardiac MRI was performed in longstanding persistent AF patients between 2011–2013 in agreement 
with the local regional ethics committee. A Likert-type scale was applied to score the image quality of 
each LGE MRI scan, e.g., 0 (non-diagnostic), 1 (poor), 2 (fair), 3 (good), and 4 (very good) depending on 
the level of SNR, appropriate inversion time, and the existence of navigator beam and ghost artefacts.

TABLE 6.1
Previous Studies on Atrial Scarring.

Methods
Subjects 

No. LA Wall Segmentation Scarring Segmentation
Evaluation Methods for 
Scarring Segmentation

Oakes et al., 2009 [22] 81 Manual 2-4 SD Scar Percentage

Knowles et al., 2010 [41]  7 Semi-Auto Maximum Intensity 
Projection

Scar Percentage

Perry et al., 2012 [44] 34 Manual k-means Clustering Dice Score

Ravanelli et al., 2014 [29] 10 Manual 4 SD Dice Score

Karim et al., 2014 [43] 15 Semi-Auto Graph-Cuts Dice Score, ROC, 
Scar Percentage

Tao et al., 2016 [42] 46 Automatic Atlas Maximum Intensity 
Projection

Qualitative Visualization

Veni et al., 2017 [45] 72 Automatic ShapeCut Threshold/k-Means 
Clustering

Scar Percentage

Ours 20 Automatic Atlas Super-Pixel and Deep 
Learning

Multiple Quantitative 
Metrics
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Ten pre-ablation scans with image quality ≥2 have been retrospectively entered into this study 
(~60% of all the scanned pre-ablation cases). To make a balanced dataset, we randomly selected 
10 post-ablation cases from all the 26 post-ablation scans with image quality ≥2 (~92% of all the 
scanned post-ablation cases).

6.2.2 mri Protocol

Cardiac MR data were acquired on a Siemens Magnetom Avanto 1.5T scanner (Siemens Medical 
Systems, Erlangen, Germany).

Transverse navigator-gated 3D LGE MRI [21], [22], [50] was performed using an inversion pre-
pared segmented gradient echo sequence (TE/TR 2.2ms/5.2ms) 15 minutes after gadolinium (Gd) 
administration (Gadovist—gadobutrol, 0.1mmol/kg body weight, Bayer-Schering, Berlin, Germany) 
when a transient steady-state of Gd wash-in and wash-out of normal myocardium had been reached 
[51]. Detailed scanning parameters are: 30–34 slices at 1.5×1.5×4mm3, reconstructed to 60–68 slices 
at 0.75×0.75×2mm3, field-of-view 380×380mm2, acceleration factor of 2 using generalized auto-
calibrating partially parallel acquisition (GRAPPA), acquisition window 125ms positioned within 
the subject-specific rest period, single R-wave gating, chemical shift fat suppression, flip angle 20°. 
Data were acquired during free-breathing using a crossed-pairs navigator positioned over the dome 
of the right hemi-diaphragm with navigator acceptance window size of 5mm and CLAWS respira-
tory motion control [52]. The nominal acquisition duration was 204–232 cardiac cycles assuming 
100% respiratory efficiency.

Coronal navigator-gated 3D b-SSFP (TE/TR 1ms/2.3ms) Roadmap data were acquired with the 
following parameters: 80 slices at 1.6×1.6×3.2mm3, reconstructed to 160 slices at 0.8×0.8×1.6mm3, 
field-of-view 380×380mm2, acceleration factor of 2 using GRAPPA, partial Fourier 6/8, acquisition 
window 125ms positioned within the subject-specific rest period, single R-wave gating, chemical 
shift fat suppression, flip angle 70°. Data were acquired during free-breathing using a crossed-pairs 
navigator positioned over the dome of the right hemi-diaphragm with navigator acceptance window 
size of 5mm and CLAWS respiratory motion control [52]. The nominal acquisition duration was 
241 cardiac cycles assuming 100% respiratory efficiency. More details of the acquisition parameters 
can be found in Table 6.2.

6.2.3 multi-atlas whole heart segmentation (ma-whs)

A multi-atlas approach [53], [54] was developed to derive the whole heart segmentation of the 
Roadmap acquisition and then mapped to LGE MRI [55], [56]. This segmentation consists of two 
major steps: (1) atlas propagation based on image registration algorithms and (2) label fusion from 
multi-atlas propagated segmentation results.

First we obtained 30 MRI Roadmap studies from the Left Atrium Segmentation Grand Challenge 
organized by King’s College London [57] together with manual segmentations of the left atrium, 

TABLE 6.2
MRI Sequence Details for the 3D Roadmap and 3D LGE MRI Acquisitions.

Sequence ST (mm) FOV (cm) NEX AM RM TR/TE/FA

3D Roadmap   1.6 ×38 38 1 ×256 256 ×512 512   2.3ms/1ms/70°

3D LGE MRI 2 ×38 38 1 ×256 256 ×512 512 5.2ms/2.2ms/20°

ST = reconstructed slice thickness; FOV = field of view; NEX = number of excitations; AM = acquisition matrix; 
RM = reconstruction matrix; TR/TE/FA = repetition time/echo time/flip angle.
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pulmonary veins, and appendages. In these, we further labelled the right and left ventricles, the 
right atrium, the aorta, and the pulmonary artery, to generate 30 whole heart atlases. These 30 MRI 
Roadmap studies were employed only for building an independent multi-atlas dataset, which will then 
be used for segmenting our Roadmap studies that linked with the LGE MRI scans for the AF patients.

Let I be the target image to be segmented, = …a N{( ,   ) 1,   }a aI L  be the set of atlases, where 
=N 30, aI  and aL  are respectively the intensity image and corresponding segmentation label image 

of the a-th atlas. For each atlas, MA-WHS performs an atlas-to-target registration, by maximizing 
the similarity between the images, to derive the set of warped atlases,
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in which Ta is the resulting transformation of the registration, and = …A L a N{( ,  ) 1,    }a a  are respec-
tively the warped atlas intensity image and corresponding segmentation result. Here, we employ 
the hierarchical registration for segmentation propagation, which was specifically designed for the 
whole heart MRI images and consists of three steps, namely the global affine registration for local-
ization of the whole heart, the local affine registration for the initialization of the substructures, and 
the fully deformable registration for local detail refinement [58]. Image similarity metrics evaluate 
how similar the atlas and target image are. In this work we propose to use the spatially encoded 
mutual information (SEMI) method, which has been shown to be robust against intensity non-
uniformity and different intensity contrast [59], that is

 { }( ) = …I S SImageSimilarity ,  , ,a n1 sI  (6.2)

where { }…S S, , n1 s  are the SEMI and computed based on the spatially encoded joint histogram,

 I I∑ ( ) ( )( ) =
∈Ω

H I w I x w x W x,  ( ) ( ) ( ).s a a s

x
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Here, ( )w I x( )1  and ( )w x( )a2 I  are Parzen window estimation and W x( )s  is a weighting function to 
encode the spatial information [59].

After the multi-atlas propagation, a label fusion algorithm is required to generate one final seg-
mentation of the LA from the 30 propagated results,

 ( ){ }( ) ( )= …L A L A LLabelFusion , ,  .I N N1 1  (6.4)

The label fusion decides how to combine the multiple classification results into one labelling 
result. Since the atlases can produce segmentations with dramatically different accuracy at different 
locations, it should evaluate the performance of each atlas locally and assign different weights for 
the atlases at each pixel of the target image in decision fusion.

The recent literatures have many new methods [60]–[67] on improving multi-atlas segmenta-
tion using sophisticatedly designed algorithms, which generally need to evaluate local similarity 
between patches from the atlases and the target image for local weighted label fusion,
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in which lbk  and lla indicate the labels of the background and left atrium, respectively, and the local 
weight ⋅ ∝ ⋅w S( ) ( )a  is determined by the local similarity ⋅S( )  between the target image and the atlas. 
δ a b( , ) is the Kronecker delta function which returns 1 when =a b  and returns 0 otherwise.

For the LA segmentation, we propose to use the multi-scale patch based label fusion (MSP-LF). 
This is because the intensity distribution of the blood pool in the LA is almost identical to that of 
the blood pool in the other chambers and great vessels. The multi-scale space theory can handle 
different level information within a small patch and has been applied to feature extraction/detection 
and image matching [54], [67]–[73]. The patches we compute from different scale spaces can repre-
sent the different levels of structural information, with low scale capturing local fine structure and 
high scale suppressing fine structure but providing global structural information of the image. This 
is different from the conventional patch-based methods, which only compute the local structural 
information within the patch. To avoid increasing the computational complexity, we adopt the multi-
resolution implementation and couple it with the MSP where the high-scale patch can be efficiently 
computed using a low-resolution image space. The local similarity between two images using the 
MSP measure is computed, as follows,

 ∑ ( )( ) =S I A x S I A x, , , ,a
s

a
s

s

msp
( ) ( )

 (6.6)

where = σ( )I I * Gaussian (0, )s
s  is the target image from s scale-space, which is computed from the 

convolution of the target image with Gaussian kernel function with scale s. Here, we compute the 
local similarity in multi-scale image using the conditional probability of the images,
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where = ( )i I x( )x
s  and =j A x( )x a

s( )  and the conditional image probability is obtained from the joint 
and marginal image probability, which can be calculated using the Parzen window estimation [74].

For each patient, the Roadmap dataset was then registered to the LGE MRI dataset using the 
DICOM header data, and then refined by affine and nonrigid registration steps [59]. The resulting 
transformation was applied to the MA-WHS derived cardiac anatomy to define the endocardial LA 
boundary and PV on the LGE MRI dataset for each patient.

6.2.4 image oVer-segmentation using slic suPer-Pixels

We used a Simple Linear Iterative Clustering (SLIC) based super-pixel method [46] to over-segment 
LGE MRI images in order to separate potential enhanced atrial scarring regions from other tissues. 
The SLIC method has been used successfully in many medical image analysis problems [75]–[77]. 
The SLIC super-pixel method, which is an unsupervised learning [78] based method, groups pixels 
into perceptually meaningful patches with similar size, which can be used to replace the regular 
pixel grid. Consequently, the derived super-pixel patches can capture and mitigate image redun-
dancy, and therefore provide a significant primitive from which image features can be calculated 
effectively and efficiently.

In summary, super-pixel methods have been proven to have the following benefits: (1) super-
pixels can adhere well to perceptually meaningful object boundaries in images; (2) super-pixels can 
reduce computational complexity of extracting image features; (3) for segmentation applications, 
super-pixels can improve performance while reducing the computation time [79]. In this study, we 
proposed to use a SLIC based super-pixel method, which has been successfully applied to solve var-
ious medical image analysis problems (e.g., [75], [80]). It has also demonstrated better segmentation 
accuracy and superior adherence to object boundaries, and it is faster and more memory efficient 
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compared to other state-of-the-art super-pixels methods [46]. Based on local k-means clustering, the 
SLIC method iteratively groups pixels into super-pixels. The clustering proximity is estimated in 
both intensity and spatial domains that is
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in which = −d I I( )c j i
2  measures the pixel intensity difference of a gray scale image and 

= − + −d x x y y( ) ( )s j i j i
2 2  describes the spatial distance between each pixel and the geometric 

center of the super-pixel. SLIC is initialized by sampling the target slice of the LGE MRI image into 
a regular grid space with grid interval of S  pixels. To speed up the iteration, SLIC limits the size of 
search region of similar pixels to ×S S2 2  around the super-pixel center (namely, local k-means 
clustering). In addition, parameter m  balances the weighting between intensity similarity dc and 
spatial proximity ds . In this study we initialized S  to 4 pixels that is 2.8×2.8mm2 considering the 
LA wall thickness is approximately 3mm [23], [81], and also take into account that the super-pixel 
size is still large enough to extract statistics of the grouped pixel intensities. In addition, m  was 
chosen by visual inspection of the over-segmented results, and it was fixed when the super-pixel 
results adhered well with the LA wall boundary.

6.2.5 atrial scarring segmentation baseD on suPer-Pixels classification

The LA regions, including LA wall, blood pool and atrial scarring, have been over-segmented into 
super-pixel patches. Next the atrial scarring segmentation will be based on classification of these 
super-pixel patches. This can be categorized as a supervised learning based segmentation method 
(Figure 6.1). First, we need to construct a training dataset with ground truth labelling, that is, each 
super-pixel patch will be labelled as scar or non-scar. Second, we can train our classifier based on 
the paired super-pixel patches and their labels. Finally, the trained model will be used to predict the 
atrial scarring in new input LGE MRI images.

6.2.5.1 Training Data Construction and Ground Truth Definition
In order to train the following classifier, we built a training dataset containing enhanced and non-
enhanced super-pixel patches. This has been done by (1) experienced expert-cardiologists spe-
cialized in cardiac MRI performing manual mouse clicks to select the enhanced scar regions; (2) 
combining the mouse clicks and SLIC segmentation to label the enhanced super-pixels; (3) applying 
morphological dilation (3mm) to the segmented endocardial LA boundary and PV from MA-WHS 
to extract the LA wall and PV; (4) finding the overlapped regions of the LA wall and PV and 

FIGURE 6.1 Whole pipeline of the atrial scarring segmentation workflow.
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the labelled enhanced super-pixels; and (5) labelling the other super-pixels overlapped with LA wall 
and PV as non-enhancement. Details of each step are given as following:

1. Manual mouse clicks: Instead of manually drawing the boundaries of the enhanced atrial 
scarring regions, we asked experienced cardiologists specialized in cardiac MRI to per-
form manual mouse clicks on the LGE MRI images to label the regions that they believed 
to be enhanced (i.e., atrial scarring tissue). This is because manual boundary drawing of 
enhancement on the thin LA wall is a very challenging task and subject to large inter- 
and intra-observer variances. Mouse clicks on the enhancement regions are much easier 
and much more efficient. The manual mouse clicks were done on the original LGE MRI 
images without the super-pixel grid overlaid. This is because: (a) the mouse clicks will not 
be biased by super-pixel patches and (b) the super-pixel grid may reduce the visibility of 
the enhancement on LGE MRI images.

2. The coordinates of the mouse clicks were used to select the enhanced super-pixels. Because 
our cardiologists performed the mouse clicks on the original LGE MRI images without 
having prior knowledge about the super-pixels, we asked them to have relatively dense 
mouse clicks. These mouse clicks will ensure all the enhanced regions can be included, 
but only one mouse click will be taken into account if multiple clicks dwell in the same 
super-pixel.

3. The endocardial LA boundary and PV were extracted using our MA-WHS method. We 
then applied a morphological dilation to extract the LA wall and PV assuming that the 
thickness of LA wall is 3mm. The blood pool regions were extracted by a morphological 
erosion (5mm) from the endocardial LA boundary. And the pixel intensities were normal-
ized according to the mean and standard deviation of the blood pool intensities [39].

4. We masked the selected enhanced super-pixels [derived from step (2)] using the LA wall 
and PV segmentation. Only the super-pixels having a defined overlap with the LA wall and 
PV segmentation were selected as enhancement for building the training data (overlapping 
ratio was set to ≥ 20% ). Other super-pixels (overlapping ratio < 20% ) were discarded as 
they were considered as enhancement from other substructures of the heart (such as the 
mitral valve and aorta) but not enhancement of the LA wall and PV. Although we assumed 
that the LA wall thickness is 3mm, our enhanced super-pixels are not restricted to this wall 
thickness.

5. The other super-pixels overlapped with the LA wall and PV but not selected as enhance-
ment were considered as non-enhancement (overlapping ratio was set to ≥ 20% ).

By performing these five steps, we constructed a training dataset that contains super-pixel 
patches labelled either enhancement or non-enhancement within the LA wall and PV.

In order to form the ground truth of the enhanced atrial scarring on the LGE MRI images, we 
performed the following two further steps:

6. Once we extracted the enhanced super-pixels, they were combined to create a binary image 
for each slice (i.e., 1 for enhanced super-pixels and 0 for unenhanced).

7. The binary image was overlaid on the original LGE MRI images, and our cardiologists 
performed manual corrections to create the final boundaries (ground truth) of the enhanced 
atrial scarring. In so doing, we minimized the bias toward a better performance of the seg-
mentation using classified super-pixels.

6.2.5.2 Deep Learning Using Stacked Sparse Auto-Encoders
The segmentation of the atrial scarring is performed using the classification of the over-segmented 
super-pixels. Conventional classification tasks are normally solved using particular machine 
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learning algorithms. In this use, a machine learning algorithm is often called a classifier. Widely 
used classification methods include quadratic discriminant analysis (QDA) [82], Naïve Bayes 
(NB) [83], k-Nearest Neighbor algorithm (kNN) [84], Support Vector Machines (SVM) [85] [86], 
and shallow Neural Networks (NNW) [87] [88]. A crucial step in the design of such a classifica-
tion framework is the extraction of discriminant features from the images (or over-segmented 
super-pixel patches in our case). This process is normally done by human researchers or a par-
ticular automated filtering pre-processing that is denoted as handcrafted features (Figure 6.2a). 
However, meaningful or task-related handcrafted features are designed mostly by human experts 
on the basis of their domain knowledge, making it hard for non-experts to exploit machine learn-
ing techniques for their own studies. Moreover, filtering based feature engineering methods may 
be biased to the particular pre-defined basis function that is only sensitive to specific features of 
the images.

Recently, deep learning based methods (e.g., Convolutional Neural Networks [CNN] and Deep 
Belief Network [DBN]) are rapidly becoming the state of the art, leading to superior performance 
in different medical image reconstruction, segmentation, and analysis applications [89]–[91]. 
Compared to conventional machine learning based classification methods, deep learning has over-
come the obstacles of handcrafted features by incorporating the feature engineering step into a 
learning step. That is, instead of extracting features manually or using pre-defined filtering, deep 
learning requires only a set of data with minimal preprocessing and discovers the informative 
representations in a self-taught manner [92] (Figure 6.2b). In so doing, the burden of feature engi-
neering has shifted from humans (subjective) to computers (objective), allowing non-experts in 
machine learning to effectively use deep learning for their own applications, especially in medical 
image analysis [92].

In this study, after we obtained the over-segmented super-pixels, the Stacked Sparse Auto-
Encoders (SSAE) [93] were used to perform the classification. The SSAE were initially pre-trained 

FIGURE 6.2 Machine learning and deep learning for classification. (a) Conventional machine learning for a 
general classification task (i.e., machine learning with feature input or feature-based machine learning) in the 
field of medical image analysis. Handcrafted features (e.g., contrast, circularity, and effective diameter) are 
extracted from a segmented lesion or super-pixels in an image. (b) Deep learning based classification: deep 
learning with image input. Thus, one of the major and essential differences between machine learning and 
deep learning is the direct training of pixels in images.
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in an unsupervised manner without using the labels of the super-pixels. An auto-encoder neural net-
work tries to learn an approximation to the identity function to replicate its input at its output using 
a back-propagation algorithm, that is = ≈hX̂ (X) XW,b , in which { }= … ∈ ×x x xX , , , ,  Xm

n m
1 2 R  is a 

matrix storing all the input training vectors ∈xi
nR . Each input vector xi  was formed by: (1) zero-

padding all the super-pixels into a ×20 20  matrix, which is the smallest bounding box for the larg-
est super-pixel dimensions, and (2) vectorizing the ×20 20  matrix into a ×400 1  vector. The cost 
function of this pre-training can be written as
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where m  is the number of input training vectors, k is the number of hidden nodes, λ is the coef-
ficient for the L2 regularization term, β is the weight of sparsity penalty, KL is the Kullback-
Leibler divergence function ρ ρ = ρ + − ρρ
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The unsupervised pre-training is performed one layer at a time by minimizing the error in recon-
structing its input and learning an encoder and a decoder, which yields an optimal set of weights 
W and biases b stored in Wl. If the number of hidden nodes k is less than the number of visible 
input nodes n, then the network is forced to learn a compressed and sparse representation of the 
input [93].

Second, a Softmax layer was added as the activity classification model ( )θh xi  to accomplish 
the super-pixels classification task [93]. In addition, it can be jointly trained with the SSAE during 
fine-tuning of the parameters with labeled instances in a supervised fashion. The weight matrix θ is 
obtained by solving the convex optimization problem as follows.
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where ∈ =c C{1,  2} is the class label, = …x y x y x yX {( , ),( , ), ,( , ),}m m1 1 2 2
  represents a set of labeled 

training instances, and the last term for the L2 regularization.
Finally, fine-tuning was applied to boost the classification performance, and it treats all layers of 

the SSAE and the Softmax layer as a single model and improves all the weights of all layers in the 
network by using the backpropagation technique [93].

6.2.5.3 Hyper-Parameters Settings
Figure 6.3 shows the detailed network architecture of the implemented SSAE. Hyper-parameters 
were not optimized explicitly but were determined via trial and error. Here are the final defined 

FIGURE 6.3 Detailed network architecture of the implemented SSAE.
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hyper-parameters (values) used in this study: maximum epochs of the SSAE (200), maximum 
epochs of the Softmax and fine-tuning (500), hidden layers size of the SSAE (100 and 50), spar-
sity parameter ρ (0.1), sparsity penalty β (5), L2 regularization term λ for the SSAE and the 
Softmax (0.0001).

6.2.6 ValiDation aPProaches

6.2.6.1 Validation for the Whole Heart Segmentation
One experienced cardiologist (>5 years’ experience and specialized in cardiac MRI) manually 
segmented the endocardial LA boundary and labelled the PV slice-by-slice in the LGE MRI 
images for all the patients. A second senior cardiologist (>25 years’ experience and specialized 
in cardiac MRI) confirmed the manual segmentation. The evaluation and validation of our 
MA-WHS has been done against this manual segmentation, which is assumed to be the ground 
truth. We used three metrics: Dice Score [94], [95], Hausdorff Distance (HD) [96] and Average 
Surface Distance (ASD). Dice Score, which is defined as = × ∩

+Dice Score 2 F F
F F

Manual Auto

Manual Auto
 (FManual : 

ground truth segmentation; FAuto: automatic segmentation; • : the number of pixels assigned to 
the segmentation), measures the overlap between two segmentations. The higher the values of 
Dice Score, the better the overall performance of the segmentation will be. HD and ASD  
measure the boundary distance (in mm) between two contours of segmentation, which are 
defined as
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in which { }=P p , ,pManual m1 mn  and { }=P p , ,pAuto a1 an  are two finite point sets of the two seg-
mented contours (using the ground truth segmentation and automatic segmentation), •  denotes L2 
norm, sup denotes supremum and inf  denotes infimum. The lower the values of HD and ASD, the 
better agreement between manual delineation and fully automatic segmentation.

6.2.6.2 Validation for the Atrial Scarring Validation
We evaluated our SSAE based classification by: (i) leave-one-patient-out cross-validation 
(LOO CV) [78], [97], which provides an unbiased predictor and is capable of creating sufficient 
training data for studies with small sample size [98] and (ii) the cross-validated classification 
accuracy, sensitivity, specificity [76], [77], [99], and average area under the receiver operating 
characteristic (ROC) curve (AUC) [88], [100]. For evaluation of the atrial scarring segmentation, 
we used the Dice score.
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6.3 RESULTS

6.3.1 whole heart segmentation

The quantitative evaluations show that the MA-WHS based method achieved 0.90±0.12 Dice score, 
9.53±6.01mm HD, and 1.47±0.89mm ASD (Table 6.3).

6.3.2 atrial scarring segmentation

For the SSAE based super-pixels classification, we obtained LOO CV accuracy of 0.91, sensitivity 
of 0.95, specificity of 0.75, AUC of 0.95, and the Dice score for the final atrial scarring segmentation 
was found to be 0.82±0.05 (Table 6.3).

In addition, for the atrial scarring segmentation, we compared our fully automatic framework 
with existing semi-automatic methods with manually delineated anatomical structure of the LA and 
PVs. The four methods we compared in this study were described in the benchmarking work [39], 
namely simple thresholding (Thr), conventional standard deviation (4 SDs were tested, i.e., SD4), 
k-means clustering (KM), and fuzzy c-means clustering with graph-cuts (FCM+GC). Figure 6.4 
shows that our fully automatic framework obtained more accurate and more consistent results 
across 20 AF patient cases (Figure 6.4, red dots represent outliers).

Figure 6.5 demonstrates that qualitatively our fully automatic atrial scarring segmentation is 
in accordance with the manual segmented results. However, if there are enhancements from the 
nearby mitral valve or blood pool regions, our method may misclassify them as enhanced atrial 
fibrosis that is the major contribution for the false positives.

TABLE 6.3
Quantitative Results of the Whole Heart Segmentation and Atrial Scarring Segmentation.

Tasks Acc. Sens. Spec. AUC Dice HD (mm) ASD (mm)

MM-WHS - - - - 0.90±0.12 9.53±6.01 1.47±0.89

Atrial Scarring Segmentation 0.91 0.95 0.75 0.95 0.82±0.05 - -

FIGURE 6.4 Boxplot for the comparison results of the Dice scores obtained by our fully automatic frame-
work and other four methods (Thr, SD4, KM, and FCM+GC) with manual delineated LA wall and PVs (+M).
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6.4 DISCUSSION

In this study, we developed a novel fully automatic segmentation pipeline to detect enhanced atrial 
scarring in LGE MRI images. The achievements of this work are:

a. MA-WHS of Roadmap MRI for cardiac anatomy segmentation: a MA-WHS segmentation 
method has been proposed with a new MSP-LF scheme to define the LA and PV geometry 
while minimizing the mis-segmentation from confounding tissues of other substructures 
of the heart;

b. Super-pixel classification based method for atrial scar segmentation from LGE MRI: the 
super-pixel classification has two uses. Firstly, it has been used as a by-product tool, which 
can help cardiologists to easily construct a manual ground truth segmentation by indicat-
ing enhanced scarring regions with a number of mouse clicks. This is subject to limited 
manual corrections and is more efficient and reliable than direct manual drawing around 
enhanced region borders, especially when the boundaries are highly irregular and ill-
defined. Secondly, based on the trained classifier, the super-pixel classification allows a 
fully automatic atrial scarring segmentation to be achieved by running super-pixel based 
over-segmentation and classification for the new input LGE MRI data;

c. SSAE based deep learning classifier: the SSAE based classifier has been proposed and imple-
mented that achieved high classification accuracy without any handcrafted features needed;

d. Validation: our developed fully automatic pipeline was tested and validated directly on 
real clinical datasets.

Compared to manual ground truth construction that took 25mins to 50mins per patient case, the SSAE 
based prediction only took 5.8±0.9secs to segment one patient case, while for a single loop of the 
LOO CV, the training on 20 patients took about 20 hours. All the experiments were performed using 
a Windows 7 workstation with 6-cores 1.9GHz Intel® Xeon® E5-2609v3/64 GB RAM and NVIDIA 
GeForce® GTX Titan X with an in-house Matlab implementation. With the proven efficiency and 
efficacy, the application of our method to real clinical problems is straightforward. Overall, results of 
this study offer compelling evidence that our fully automatic pipeline is capable of detecting enhanced 
atrial scarring from LGE MRI images acquired from a longstanding persistent AF cohort.

Segmentation of the atrial scarring from LGE MRI images is very challenging. This is not only 
because the atrial scarring is difficult to distinguish in the thin LA wall but also because the image 
quality can be poor due to motion artefacts, noise contamination, and contrast agent wash-out dur-
ing the long acquisition. Moreover, the enhancement from the surrounding tissues (i.e., other sub-
structures of the heart or non-heart tissues) and enhanced blood flow are confounding issues for 
atrial scarring segmentation and result in increased false positives. For example, the aortic wall is 
generally enhanced and when close to the LA, can be mistaken for atrial scarring and contribute a 

FIGURE 6.5 Final atrial scarring segmentation results (cyan regions) for an example pre-ablation (left) and 
an example post-ablation (right) case compared to the ground truth (yellow regions).
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false positive result. Moreover, false positives can be increased from the misclassification of other 
enhanced regions, for example, other non-heart tissues and other substructures of the heart or fat 
tissues surrounding the LA. However, most of these confounding enhancement regions can be dis-
tinguished subject to accurate heart anatomy delineation using our MA-WHS. Another source of 
artefact originates from the respiratory navigator and results in enhanced signal from blood flow 
in the right pulmonary veins. Recent advances in sequence design have reduced navigator artefacts 
considerably [52], [101]. Due to the subjective understanding of the LGE MRI images, our cardiolo-
gists may also miss labelling some enhanced regions.

In this study, we showed good accuracy for segmenting the LA and proximal PVs. The segmen-
tation accuracy in the more distal veins was less good, but this is not an issue for clinical ablation 
for AF patients as the ablation points or clamps are never placed far away from the LA chamber. In 
addition, the segmentation of the PVs at the more distal regions might just introduce more artefacts 
from the enhanced navigator beam regions without improving the accuracy of the actual atrial scar-
ring segmentation. There are some previous studies that endeavoured to segment the detailed sub-
branches of PVs and especially at the more distal regions (e.g., [42] using MRA). However, this can 
only improve the accuracy of LA+PV delineation against manual delineated ground truth, but may 
not be a benefit for the final atrial scarring segmentation. For the post-ablation cases, the enhance-
ment at or near the PVs can indicate the efficacy of the treatment, for example, identify the gaps 
in the ablation line. Therefore, based on our experiments and observations, a robust segmentation 
method to delineate PV anatomy variations is still in demand, and it is a more important task than 
accurate delineation of the detailed sub-branches of the PVs.

In our study, 2D SLIC was applied instead of using its 3D version. This is because: (1) our 3D 
LGE MRI data are anisotropic with fine in-plane resolution and relatively coarse resolution in the 
third dimension (i.e., 0.75×0.75×2mm3); therefore, 2D SLIC can provide better adherence to the more 
detailed anatomical edges shown in the 2D in-plane slice, which has a higher spatial resolution; 
(2) the clinical image viewing is still a slice-by-slice procedure in 2D, and the 2D SLIC results are 
more intuitive for manual super-pixel labelling by our expert-cardiologists, which is a necessary step 
for atrial scarring ground truth construction; (3) the 2D SLIC processing is efficient (8.6±2.6 seconds 
per 2D slice and ~5mins per patient case) although a slice-by-slice computing was performed. In 
addition, for our application, we did not perform further optimization for the two parameters of the 
SLIC algorithm (i.e., the size of the super-pixels S  and the compactness m ). In our study, the size of 
the super-pixels was restricted by the LA wall thickness and S  was initialized to 4 pixels. The com-
pactness term m  controls the regularity of the super-pixel shapes (i.e., the resulting super-pixels can 
adhere more tightly to object boundaries in the image when m  is small), but these super-pixels have 
less regular shape. We chose =m 4  based on visual inspections of the over-segmentation results.

As is well known, LGE studies are specifically designed to highlight fibrosis and scarring, and to 
null all signal from normal tissue. Although it is possible to see the cardiac anatomy in LGE images, 
the SNR is limited and accurate and automatic segmentation of the LA and PV walls would be very 
difficult. To the best of our knowledge, all previous studies have relied on manual drawing on LGE 
images or have used MRA images or b-SSFP based Roadmap scans for the delineation of the LA 
and PV anatomy. In this current study, we use the 3D Roadmap images to resolve the LA and PV 
anatomy. For each AF patient in our study, the Roadmap data took ~6.5mins to acquire (241 cardiac 
cycles at 800ms per cardiac cycle with a typical respiratory efficiency of 50%). In subsequent work, 
we have reduced the spatial resolution of the 3D Roadmap to 1.8×1.8×1.8mm3, which reduces the 
acquisition duration to ~4mins while preserving good results. In addition, although the requirement 
for a Roadmap acquisition might be a limitation, in practice, many patients have these as part of 
their standard clinical cardiac MRI examination.

The comparison work reported in this study is limited. While we validated our techniques against 
manual segmentation, we also wished to compare our results with other previously published tech-
niques. A number of advanced techniques have been proposed, such as unsupervised learning based 
clustering and graph-cuts based methods [39]. However, implementation of these is difficult as the 
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fine-tuned hyper-parameters used are not always clearly described and the methodologies cannot be 
reproduced exactly. Moreover, our patient cohort is different from that in which these algorithms 
were optimized and tested. In this study, we have therefore only compared our technique against 
the simple thresholding and conventional standard deviation based methods, as these have fully 
standard implementations. When compared to manual segmentation (ground truth) in post-ablation 
scans, these standard techniques gave median DICE of 38–48%, while our fully automatic technique 
achieved a median DICE of 82%. The results that we obtained here with the standard techniques are 
similar to those reported with these same techniques in the benchmarking study described in [39], 
while the latter score is similar to the best-performing methods reported in that same study.

In general, the segmentation algorithms performed better on post-ablation LGE MRI scans com-
pared to the performance on pre-ablation ones. This is likely due to better image quality post-
ablation (when the heart has reverted to sinus rhythm) and to higher levels of fibrosis. For the 
LA+PV segmentation, many of the algorithms previously published rely on manual segmentation. 
In our study, we have compared the efficacy of the atrial scarring segmentation algorithms using 
automatically segmented LA+PV geometry against the same algorithms with manually delineated 
geometry showing very similar results, thus confirming that our fully automatic MA-WHS method 
is capable of accurately defining the relevant cardiac anatomy.

In addition, compared to a method of using multi-atlas segmentation for the four chambers [42], 
our MA-WHS method obtained superior DICE (90% vs. 86% reported by [42]) and ASD (1.5 mm 
vs. 1.8 mm reported by [42]). Even compared with their results obtained after refinement by MRA 
[42], our MA-WHS still has comparable results. For the segmentation of the atrial scarring, in our 
study, the results of the standard segmentation techniques in pre-ablation cases were better than 
those reported by the benchmarking study [39]. This is likely to be due to our patients all having 
longstanding persistent AF and therefore having higher levels of pre-ablation scarring. For the 
post-ablation cases, we have obtained comparable median DICE compared to the best performing 
algorithm [39]. Of note is that in the benchmarking study the variances of all of the techniques 
tested are large, while in our manuscript, the results are more consistent with a relatively small 
variance. This may be due to our patient cohort being more tightly defined, whereas in the previ-
ous study, datasets were analyzed from patients at multiple institutions using a variety of imaging 
protocols. It may also be that our automatic technique is based on supervised learning while previ-
ous methods are unsupervised, and the derived model parameters may not be optimized for all the 
patient cases.

In our study, although techniques like SLIC and super-pixel based classification may be very 
well known and widely used methods [61], [80], [102]–[105], they are reliable algorithms that, when 
uniquely combined in the proposed pipeline, enable fully automatic segmentation and assessment 
of atrial scarring. This is an important advance, as LGE MRI is becoming a preferred method for 
noninvasive imaging of atrial scarring.

One possible limitation of our study is that the SSAE based classifier has many hyper-parame-
ters, which need to be carefully tuned (e.g., maximum epochs of the SSAE, maximum epochs of the 
Softmax and fine-tuning, hidden layers size of the SSAE, sparsity parameter ρ, sparsity penalty β, 
L2 regularization term λ  for the SSAE and the Softmax). Currently these hyper-parameters were 
tuned via trial and error, which may limit the final classification accuracy.

6.5 CONCLUSION

To the best of our knowledge, this is the first study that developed a deep learning based fully 
automatic segmentation pipeline for atrial scarring segmentation with quantitative validation on 
LGE MRI scans. The proposed pipeline has demonstrated an effective and efficient way to objec-
tively segment and assess the atrial scarring. The evaluation has been done on 20 LGE MRI scans 
in longstanding persistent AF patients that contain both pre-ablation and post-ablation cases. The 
validation results have shown that both our MA-WHS and super-pixel classification based atrial 



125Deep Learning Based LA Scar Segmentation

scarring segmentation have obtained satisfactory accuracy. Based on the results, we can envisage a 
straightforward deployment of our framework for clinical usage.
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7.1 INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death in the world. As of 2015, 17.7 million 
people die each year from cardiovascular disease, estimated at 31% of total deaths [1]. Two-thirds 
of all the deaths caused by CVD happened outside the hospital [2], and over 82% of CVD deaths 
took place in low-income and middle-income countries [1]. Many researchers have been working 
to improve the quality of care for patients and to reduce costs through early detection/intervention 
and more effective disease/patient management. This requires more advanced sensing, computing, 
and analysis.

Accompanied by the emergence of a large variety of new technologies, no aspect of human 
life can escape the impact of the information age. Perhaps in no area of life is information more 
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critical than in health and medicine [3]. There is now a consensus that the systematic health 
informatics approach—the acquisition, management, and use of health information—can greatly 
improve the quality and efficiency of health care. Furthermore, advancing health informatics is 
considered to be one of the 14 grand challenges for engineering in the 21st century by the U.S. 
National Academy of Engineering [3]. It is also a reliable method to realizing p-Health tech-
nologies including Predictive, Personalized, Precise, Pervasive, Participatory, and Preemptive 
healthcare [4].

This section focuses on computing in cardiovascular health informatics, which includes sensing 
computing, medical image computing, and information fusion analysis. In the past, doctors and 
researchers collected medical data by sensing and imaging. Limited time and effort can be put 
into the analysis of the data. With the enhancement of computing power and the miniaturization of 
electronic devices, the ideal of continuous unobtrusive sensing becomes reality. It is very desirable 
for us to develop computer-aided diagnosis systems and even fully operative computer diagnosis 
systems when we face big data. An example is given in Figure 7.1, which describes the evolution 
of the electrocardiogram (ECG) device. Electronic devices evolved from water buckets and bulky 
vacuum tubes to discrete transistors-based machines. Their size also evolved from desktop sized 
to small, wearable equipment [5]. A clear trend is that they will become smaller, lighter, and more 
comfortable to wear.

With the exponential increase of data, whether it is sensing data or imaging data, researchers are 
increasingly inclined to use big data technology and artificial intelligence technology for data pro-
cessing, and to dig out the information to help diagnose, or help to understand the pathophysiology 
of disease. These techniques have changed traditional medicine. In the past, enough experience was 
needed for a doctor to extract disease information from medical data. But now, many diseases can 
be automatically identified based on a computer. For example, Figure 7.2 illustrates a myocardial 
infarction area that was predicted by a deep learning method [7]. This example of excellent results 
show the great potential of computing based imaging methods.

FIGURE 7.1 The timelines of medical devices for ECG measurement with the evolution of electronic 
technology.
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The objectives of this chapter are to provide an overview of the state-of-the-art of cardiovascular 
health informatics computing. The development of the field is reviewed from the perspective of 
sensing computing, image computing, and information fusion analysis, respectively.

The rest of this chapter is organized as follows: Section 2 will discuss unobtrusive sensing com-
puting. Section 3 will present the recent advances and core technologies of image computing, and 
will also highlight the recent deep learning model. Section 4 will discuss data fusion analysis, as 
well as the impact of big data in healthcare. Section 5 will give the conclusion.

7.2 UNOBTRUSIVE SENSING COMPUTING

7.2.1  unobtrusiVe sensors for the real-time anD continuous 
acquisition of carDioVascular health information

Unobtrusive sensors can achieve continuous monitoring of physical activities and behaviors, and 
record the physiological signals of the human body and other information, such as electrocardio-
graph (ECG), photoplethysmography (PPG), respiratory rate, heart rate, body temperature, 

FIGURE 7.2 (a-b) MI area (the green zone) predicted by [7] can be a good fit for the ground truth (the yellow 
arrow) (c) MI area (the green zone) predicted by [7] can be a good fit for the ground truth (the yellow dotted line).
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blood oxygen saturation, blood pressure (BP), posture, and physical activities. It does not intrude 
on one’s normal life. In fact, often the user is unaware of the signal while the information is being 
collected via unobtrusive sensors. A sample model of a home setting for ongoing physiological 
monitoring is shown in Figure 7.3.

Generally, unobtrusive sensors can be implemented in two ways: (1) wearable sensors are worn 
by the subject, such as in the form of shoes, eyeglasses, earrings, clothing, gloves, and watches, or 
(2) sensors are embedded into the ambient environment or as smart objects interacting with the sub-
jects, such as a chair [4], car seat [11], mattress [12], mirror [8], steering wheel [14], mouse [15], toilet 
seat [16], and bathroom scale [17]. Figure 7.3 shows several unobtrusive sensors that were developed 
by different groups. We can further divide unobtrusive sensors into two categories, depending on 
whether the source of the signal is passive or active. For example, capacitive-coupling-based ECG 
can be realized by detecting signals from the human body. The active sensing methods send energy 
to the human body and detect the reflected or backscattered energy, such as using radio or radar to 
detect heart rate remotely, or remote infrared temperature measurements.

Acquired physiological health information from unobtrusive sensors can be transmitted to a 
remote control center for storage and analysis based on wireless communication technologies. 
In this way, the patient’s cardiovascular health information can be obtained out-of-hospital in real 
time. Not only can the medical costs caused by frequent visits to the hospital be reduced, but also 
these devices allow for taking preemptive actions in response to acute cardiac cardiovascular dis-
ease events. Sometimes, out-of-hospital measurement results are often more significant than the 
clinical diagnosis. It has been widely recognized that clinical blood pressure measurements may fail 
to reflect true information and may even provide some false clinical diagnostic information, such as 
white-coat hypertension. The experts suggest that patients with known or suspected hypertension 
are more likely to use a home-based blood pressure monitoring method [18]. In addition, it has been 
confirmed that independent risk factors for the prediction of cardiac cardiovascular disease mortal-
ity can be extracted from 24-hour blood pressure measurements, according to some clinical studies. 
The Ohasama clinical study shows that there is a significant linear relationship between relative 
hazard ratios and cardiac cardiovascular disease death [19]. Therefore, the acquisition of cardiovas-
cular health information should not be confined to the hospital or physical examination center, but 
should cover daily life in every moment.

Many unobtrusive monitoring devices in cardiac cardiovascular disease healthcare have 
been developed. Recently, capacitance-coupled technique based dry/noncontact electrodes are 

FIGURE 7.3 Illustration of unobtrusive physiological measurements in a home environment [5].
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embedded in furniture, which can provide unobtrusive sensing for an electrocardiogram. For 
this method, the skin and electrodes form two layers of capacitors. It also avoids direct contact 
with the human body, and prevents skin infection and the signal deterioration caused by the 
adhesive electrode in the long-term monitoring. Table 7.1 summarizes some typical implemen-
tations of capacitive ECG sensing. But there are still some challenges in capacitance-coupled 
technique based sensing. The major problems are modulation of the bioelectric potential signals 
from motion-related source impedance changes and electronic noise when designing these non-
contact electrodes [28]. Some recent works propose to overcome those problems. For instance, 
gradiometer electrodes are adopted to reduce the influence of motion artifacts [34]. The pream-
plifier immediately following the ECG electrode is the major contributor to the overall electronic 
noise level [30] and may be addressed by employing careful preamplifier design. And electronic 
noise may be addressed by employing careful preamplifier design due to the fact that the pre-
amplifier immediately following the ECG electrode is the major contributor to overall electronic 
noise levels [22].

Photoplethysmographic (PPG) is a simple, low-cost technique that can monitor changes in blood 
volume in capillaries. It contains a light source that can emit light into tissue and then a photo-
detector to collect the light reflected from or transmitted through the tissue. Photoplethysmographic 
(PPG) technique based devices are often portable and noninvasive, so they are widely used for 
measurement of many vital signs, such as SpO2, heart rate, respiration rate, and BP. Recent research 
shows that sensors can be integrated into daily living accessories or gadgets such as earrings, gloves, 
and hats, to achieve unobtrusive measurements. Table 7.2 summarizes different applications for 
PPG techniques. Recently, Jae et al. [26] proposed an indirect-contact sensor for PPG measurement 
over clothes. A control circuit was adopted to adaptively adjust the light intensity for various cloth-
ing types. In other research, Poh et al. [27] showed that heart rate and respiration rate can be derived 
from PPG that is remotely captured from a subject’s face using a simple digital camera. However, 
the temporal resolution of the blood volume detected by this method was restricted by the sample 
rate of the camera, thus affecting its accuracy.

The pulse wave propagation based method is a promising technique for continuous and cuffless 
BP measurement. It has been shown that there is a strong correlation between pulse wave velocity 
(PWV) and arterial pressure. Pulse transit time (PTT) is the time that pulse travels from the heart 
to the periphery. Clinically, PTT can be estimated rapidly via ECG and PPG signals. Much recent 
work has proved the feasibility of PTT based BP measuring. According to the experimental results 
from [47][48][49][50][51][52], the error of systolic and diastolic blood pressure between PTT based 
BP and reference are ±0.6 9.8 mmHg  and ±0.9 5.6 mmHg , respectively. Such results basically 

TABLE 7.1
Different Implementations of Capacitive ECG Sensors

Systems Location of ECG electrodes
Measured signals 
and parameters

Bed [23] Bed cushion ECG, PPG, heart rate, BP

Wearable ECG system [26] Cloth and belt ECG

BP monitoring chair [21] Chair pad and arms ECG, PPG, heart rate, BP

Non-contact chair based system [25] Chair back ECG, BCG, heart rate, BP

Aachen Smart Chair [25] Chair backrest and pad ECG

Ambulatory ECG monitoring over cloth [29] Integrated on underwear ECG

Textile integrated long-term ECG monitor [30] Integrated into garment ECG

Non-contact ECG/EEG electrodes [31] Embedded within fabric and clothing ECG

Wireless wearable ECG sensor [32] Integrated into a cotton T-shirt ECG
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meet the accuracy requirements ( ±5 8 mmHg for systolic and diastolic BP estimation) of the 
American Medical Devices Promotion Council (AAMI) [51], as shown in Figure 7.4(a). The hydro-
static pressure approach is adopted to achieve individual calibration by Poon [53]. In this method, 
subjects need to lift their hands to a specific height below the heart. Then, the relationship between 
PTT, BP, and height can be written as follows:

 PTT
| |  

L b
bP h

L
bgh

b P P bP bP

b P P
h

1 exp( ) ; 0

2 ln
exp[ ( )]  exp( ) exp( )

exp[ ( )]+1 1
;   0

i

i h h h

i h

=









ρ
+ =

ρ

− + − − −

− −
≠

 (7.1)

where b is the subject-dependent parameter characterizing the artery properties, L is the distance 
traveled by the pulse, Ph is the hydrostatic pressure ρgh, and Pi is the internal pressure. The param-
eters in the PTT based model are easy to obtain from simple movements. Therefore, the PTT based 
model can be easily implemented into furniture such as a normal chair [25], and a pillow [23] 
among others, as shown in Figure 7.4(b).

In addition to sensing technology, user-friendly design is another important issue in the develop-
ment of unobtrusive devices. In recent years, the technique of intelligent textiles has been greatly 
improved, which provides effective solutions for unobtrusive sensors. Due to the critical features of 
intelligent textiles, such as flexible structure, light weight, and biocompatibility, it is easy to inte-
grate wearable wireless sensors into our clothes [54][55]. Thus, continuous monitoring in daily life 
can be naturally achieved.

Though significant progress has been made in the field of unobtrusive sensing, there are 
still several challenges to overcome. Poon [57] summarizes some key techniques as “MINDS” 
(Miniaturization, Intelligence, Networking, Digitalization, Standardization). In addition, informa-
tion security, energy-efficiency, robustness, and personalization are also proposed by [58], which 
are important for the future development of wearable technologies.

TABLE 7.2
PPG Measuring Devices at Different Sites of the Body

Devices Location of Sensor/Operation mode Measured Parameters 

PPG ring [33] Finger/Reflective Heart rate and its variability, SpO2 

Pulsear [35] External ear cartilage/Reflective Heart rate

Forehead mounted sensor [36] Forehead /Reflective SpO2

e-AR [37] Posterior, inferior and anterior 
auricular /Reflective

Heart rate

IN-MONIT system [18] Auditory canal /Reflective Heart activity and heart rate

Glove and hat based PPG 
sensor [39]

Finger and forehead/Reflective Heart rate and pulse wave transit 
time

Ear-worn monitor [19] Superior Auricular, superior Tragus 
and Posterior Auricular /Reflective

Heart rate

Headset [40] Ear lobe/Transmissive Heart rate

Heartphone [41] Auditory canal /Reflective Heart rate

Magnetic earring sensor [42] Earlobe /Reflective Heart rate

Eyeglasses [43] Nose bridge/Reflective Heart rate and pulse transit time

Ear-worn PPG sensor [44] Ear lobe /Reflective Heart rate

Smartphone [45] Finger /Reflective Heart rate
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7.2.2 high resolution imaging for carDioVascular Disease Diagnosis

Developing high resolution biomedical imaging is crucial for early prevention of CVD. 
Atherosclerosis is the main cause of acute cardiovascular disease [60]. The development of athero-
sclerosis will lead to unstable atherosclerotic plaques or vulnerable plaque, which is characterized 
as active inflammation, a thin fibrous cap with a large lipid core, erosion or fissure of the plaque 
surface, intra-plaque hemorrhage, and superficial calcified nodules [60][61]. Vulnerable plaque will 
narrow blood vessels or even occlude the vessel, resulting in the block of blood flow to vital organs, 
such as the heart and the brain. If the treatment of atherosclerosis is delayed, subsequently the rup-
ture of vulnerable plaque will cause acute coronary death or stroke [60]. In addition, other kinds 
of cardiac diseases, such as myocarditis, electrophysiological disorders, valvular heart disease, and 
other cardiomyopathies (hypertrophic, dilated, or restrictive) are often related to vulnerable myo-
cardium, and vulnerable plaques, which have a high likelihood of thrombotic complications and 
rapid progression, and so should be diagnosed and treated as early as possible [25][10].

(a)

(b)

FIGURE 7.4 Unobtrusive sensing devices with sensors embedded in daily objects, such as: mirror [8], bed 
[28], chair [21], steering wheel [9], and toilet seat [10].
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Both invasive and noninvasive imaging modalities have provided insight into the structure and 
progression of asymptomatic atherosclerosis, vulnerable myocardium and plaque [59,10]. Some 
invasive imaging modalities such as catheterization or mini-invasive tests such as optical coherence 
tomography (OCT) and intravascular ultrasound (IVUS) have been used clinically for evaluating 
the vulnerability of plaque. Photoacoustic imaging technique opens a new area for intravascular 
imaging [62][63]. In comparison with IVUS, photoacoustic imaging techniques with high spatial 
resolution can provide more detailed information about plaques.

Because of the convenience and cost-effectiveness, noninvasive imaging modalities are more 
frequently used for screening subclinical atherosclerosis, high-risk plaque, and myocardium vulner-
ability. Now many well-established risk factors are measured by standard clinical imaging modali-
ties, such as carotid intima-media thickness (CIMT) and ankle brachial index (ABI) captured by 
ultrasound (US) imaging, and the coronary artery calcium score (CACS) calculated by computer-
ized tomography (CT) imaging. These risk factors have been proved to be highly associated with 
the occurrence of fatal events, and are widely used in the clinical guidelines for the assessment of 
cardiovascular risk in asymptomatic adults [64].

Figure 7.5 provides some examples of using noninvasive imaging techniques for identification 
of CVD [10]. Prominently, CT technology can assess plaque composition, level of calcification, and 
coronary stenosis [10]. Magnetic resonance imaging (MRI) can reliably detect and quantify carotid/
aortic plaque components such as lipids, fibro-cellular tissue, calcium, intra-plaque hemorrhage 
[65], atherosclerotic burden, and potentially, plaque perfusion in non-coronary arteries [10]. Several 
promising approaches to improve the MRI resolution have been reported, such as multi-channel 
coil design [66].

FIGURE 7.5 Noninvasive imaging techniques for early identification of cardiovascular disease. Reproduced 
from [10]. a. Example of an image captured by ultrasonography. The arrow indicates plaque burden. b. 
Example of an image captured by CT technology. The arrow shows calcification. c. Example of an image cap-
tured by MRI. The arrow indicates lipid deposit. d. Examples of images captured by PET, CT, and combined 
PET/CT. The visual target outlines the carotid artery.
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Table 7.3 presents the sensitivity and application status of using noninvasive imaging techniques 
for screening atherosclerotic plaque, which was collected by Jan G. Kips, et al. [59]. As can be 
seen from the table, each of the current technologies has one or more limitations upon spatial/axial 
resolutions, penetration depth, and tissue characterizing capability, which will affect detection of 
vulnerable plaques in time [59]. Other limitations, such as the high investment of imaging machines 
(e.g., MRI, Multidetector CT), high expenditure on the tests using these devices, and potential risk 
derived from radiation exposure of CT, SPECT, PET, prevent current imaging modalities from 
being used for conventional examinations in daily clinical practices. In the end, because the move-
ment of the cardiac system, respiratory, swallow, blood flow, and casual body movement will cause 
blurred images, poor contrast ratio, and even failure of the examination, the duration of the 3D 
volume imaging of the heart, especially MRI, should be greatly reduced [67].

Therefore, improving both temporal and spatial resolution of biomedical imaging is crucially 
important for CVD applications. Higher resolution imaging will allow the early screening of vulner-
able plaque and vulnerable myocardium, and early identification of atherosclerosis during clinical 
practices. Grand technical challenges in this area are to develop high-resolution imaging modalities 
with high sensitivity that can be used for the objective evaluation of vulnerable plaque including its 
morphostructure and components, and for the detection of pathological markers.

7.3 MEDICAL IMAGE COMPUTING

Many issues in cardiac image processing and analysis can be summarized as optimization problems. 
Thus optimization techniques become an effective way to provide solutions in that field. Previous 
optimization techniques to address the problems were mainly based on approximation optimization 
techniques and state-space approaches. More recently, deep learning techniques [69, 70] have been 
successfully used to handle the challenges of cardiac image processing and analysis. To date, the 
areas where those optimization techniques are being applied include image segmentation, motion 
and deformation reconstruction, material property estimation, and other tasks. Next, we will detail 
the application of different optimization techniques in the field of cardiac image analysis. And the 
future direction will be pointed out in the end.

7.3.1 aPProximation oPtimization techniques

The gradient descent method [72] is the earliest, simplest, and most commonly used optimization 
method. Its basic idea is to use the negative gradient direction of the current position as the search 
direction. The closer the gradient descent method is to the target, the smaller the step length and 
the slower the progression. Duncan et al. [73] proposed a contour shape descriptors based method 

TABLE 7.3
Noninvasive Imaging for Screening Atherosclerotic Plaque

Resolution (μm)
Fibrous 

cap 
Lipid 
coreTechnology Spatial Axial Penetration Calcium Thrombus Inflammation Status

Ultrasound 600 400 9cm + + + + + Clinically applied

CT 400 400 – ++++ + ++ + + Clinical studies

MRI 250 3000 – ++ ++ +++ ++ +++ Clinical studies

SPECT 10000 – – + + ++ ++ +++ Preclinical studies

PET 4000 – – + + ++ ++ +++ Preclinical studies

–, represents nonapplicable; ++++, sensitivity > 90%; +++, sensitivity 80–90%; ++, sensitivity 50–80%; +, sensitivity <50% 



140 Cardiovascular Imaging and Image Analysis

that successfully measures the non-rigid motion of deformable objects from image sequences via 
a gradient descent algorithm. In such an approach, gradient descent algorithm is used to minimize 
the deformation between the segments using a measure of bending energy. Compared with gradient 
descent algorithm, the conjugate gradient descent method [72] can also be used to solve uncon-
strained optimization problems. In [73,74], B-spline cubic deformable models were introduced for 
analysis of cardiac motion. And model fitting was posed as an energy minimization problem. Fitting 
was performed by optimizing an objective function, which encoded the distance (external energy) 
between isoparametric planes of the model and MRI tag planes. In the end, such an optimization 
problem was numerically solved by an adaptive conjugate gradient descent algorithm.

In a dynamic programming method [75], the multi-stage process is transformed into a series of 
single stage problems, and the relationships among phases are solved one by one. Amini et al. pre-
sented two optimization approaches for active contours based on dynamic programming [76][77]. 
The optimization problem is set up as a discrete multi-stage decision process. And this formulation 
leads to a stable behavior for the active contours over iterations.

The least-squares [78] are important techniques in data fitting. The best fit in the least-squares 
sense minimizes the sum of squared residuals. Declerck et al. [79] have introduced a spatio-temporal 
model to segment the LV and to analyze motion from gated-SPECT sequences. Corresponding 
point pairs in different frames are selected by least squares optimization [80][81][82].

Even if excellent results can be obtained via those approximation optimization techniques, they 
treat the problems as a static process and calculate only after the external force is applied. When the 
noises increase, it can hardly obtain meaningful results.

7.3.2 state-sPace baseD aPProaches

In control engineering, a state-space representation is a mathematical model of a physical system 
as a set of input, output, and state variables related by first-order differential equations. Generally, 
state-space approaches include Kalman filter, unscented Kalman filter, extended Kalman filter, and 
H filter [84]. And they are widely applied concepts in time series analysis used in the field and can 
deliver reliable results efficiently.

Meyer et al. [85] proposed a method to adopt the Kalman filter to estimate myocardial deformation 
and achieve a lower average error. However, the movements of the block between two neighboring 
imaging frames are modeled as a constant process, and this may provide a biased motion of the myo-
cardial surface because of its nonlinear dynamics. In order to properly handle the nonlinear dynamics, 
researchers often built a nonlinear state-space approach based on the nonlinear periodic function [86]
[87], and solve problems by extended Kalman filter [88][89][90] or unscented Kalman filter [91].

The main problem of Kalman filter is under the Gaussian statistics assumptions [84]. However, 
uncertainties, such as image noise, sparse image data, and model uncertainty, often encountered in 
practical cases, might not be Gaussian statistics. Meanwhile, the mini-max strategy does not impose 
such restrictions and only makes assumptions on the finite disturbance energy. It is thus more robust 
and less sensitive to noise variations and modeling assumptions [68]. As a result, Liu et al. [93] 
presented an integrated robust estimation framework for the joint recovery of dense field cardiac 
motion and material parameters, and Gao et al. [95][96] also achieved a robust estimation of carotid 
artery wall motion based on H+ filter.

7.3.3 DeeP learning

Deep learning can imitate the function of human learning by training a multi-layer network. As a 
result, it can perform corresponding tasks as well as the human. The general concept behind deep 
learning is to learn hierarchical feature representations by first inferring simple representations and 
then progressively building up more complex representations from the previous level. The most 
successful type of models for image analysis to date are convolutional neural networks (CNNs). 
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CNNs contain many layers that transform their input with convolution filters of a small extent [70]. 
Besides, recurrent neural networks (RNNs), deep belief networks (DBNs) and their improved mod-
els are also widely used. Figure 7.6 shows the different deep learning models.

Deep learning has been applied to many aspects of cardiac image analysis. Left ventricle seg-
mentation is the most common, but the number of applications is highly diverse: segmentation, 
tracking, slice classification, image quality assessment, automated calcium scoring and coronary 
centerline tracking, and super-resolution.

The work in [97–106] concentrate on left ventricle segmentation. Most of them [97–101] use 
simple CNNs and analyze data slice by slice. DBNs are adopted in [99–105], but they are only used 
to extract features and are integrated in compound segmentation frameworks. As an extension of 
[104], [103] achieves left ventricle tracking. Furthermore, Lessmann et al. [107] and Wolterink et al. 
[108] also use CNNs to detect coronary calcium from gated CT and ungated CT, respectively. And 
Oktay et al. [109] propose a super-resolution method based on CNNs.

Meanwhile, some other papers are exceptional because they combine CNNs with RNNs so that 
they can address more complex tasks. Xu et al. [7] propose an end-to-end deep-learning algorithm 

FIGURE 7.6 A graphic representation of different deep learning models.
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framework to detect the myocardial infarction area. In such a method, Fast R-CNN is used to crop 
the region-of-interest (ROI) sequences; then the local motion features are generated by LSTM-
RNN. In the end, they use SAEs to further learn these features, and identify the infarction by a 
softmax classifier. Kong et al. [111] also proposed a TempReg-Net framework, combining CNNs 
and RNNs, to identify specific frames and a cardiac sequence. Poudel et al. introduced a recurrent 
connection within the U-net architecture to segment the left ventricle slice by slice and learn what 
information to remember from the previous slices when segmenting the next one.

7.4 INFORMATION FUSION ANALYSIS

The development of sensing and imaging technologies increase the sensor’s capability of acquiring 
data, such as physiological monitoring, high resolution imaging, biomarker detection, gene sequenc-
ing and so on. This increase has provided a huge amount of information of the heart, spinning multi-
scales from gene, protein, cell, tissue, organ, to the system [11]. However, it is still a great challenge 
to deal with multi-sensing information fusion and generate a unified paradigm to support clinical 
diagnosis and treatment [113]. To date, several definitions of information fusion have emerged. F. E. 
White [120] proposed a definition of data fusion as a “multi-level, multifaceted process handling the 
automatic detection, association, correlation, estimation, and combination of data and information 
from several sources.” Recently, in [6], information fusion is defined as a means “to develop efficient 
methods for automatically or semi-automatically translating the information from multiple sources 
into a structured representation so that human or automated decisions can be made accurately.” As 
a multi-disciplinary research area, information fusion often can be met by developing model based 
fusion frameworks or technologies to personalize multiphysics models using personal multiscale 
health information obtained by multi-parameter sensing and multimodal imaging techniques. In 
this section, we will discuss multi-sensor fusion methods and the impact of big health data for clini-
cal decision support.

7.4.1 multi-sensor fusion methoDs

In order to achieve early prediction of cardiac cardiovascular disease, many fusion works have been 
proposed in the literature. For instance, in a European Commission funded project, euHeart, a prob-
abilistic fusion framework was developed to assimilate different health data into a multi-physics 
cardiac model by acting on the discrepancy between the measurements and the values derived from 
the computational model across scales (e.g., protein level ion channels flux and whole organ defor-
mation) and functions (e.g., mechanical contraction and electrical activation), and then discover the 
new knowledge using the personalized model after the assimilated process [13]. By integrating con-
tinuous and real-time sensing data from unobtrusive/wearable devices with other health data, the 
real-time prediction of acute events of CVDs may become possible. Zhang’s team has proposed a 
personalized framework for quantitative assessment of the risk of acute cardiovascular events based 
on vulnerable plaque rupturing mechanisms as shown in Figure 7.7. This framework does not only 
take traditional risk factors, sensitive biomarkers, blood biochemistry, vascular morphology, plaque 
information, and functional image information as inputs of the prediction model, but it also gathers 
physiological information continuously from unobtrusive devices and body sensor networks as the 
trigger factors aiming for real-time risk assessment of acute cardiovascular events.

Some other works try to find the cause of cardiac cardiovascular disease. They concentrated on 
simulating the physiology and pathology of the cardiovascular system, and efforts have been spent 
on developing computational models in the field. The capabilities of these models vary significantly 
from simulating the heart function, hemodynamics of the arterial system, to the whole cardiovas-
cular system, including blood circulation [68][115]. So is the complexity of these models, from the 
simple zero-dimensional Windkessel model to complex multi-scale, multi-physics models which 
incorporate cells to systemic circulation [115].
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FIGURE 7.7 The proposed framework for the quantitative assessment of the risk of acute cardiovascular 
events. Reproduced from H. Gao, C. C. Y. Poon (2010).

FIGURE 7.8 Diagram of Cardiac Physiome Project. Reproduced from [68].

One particularly great collaboration should be emphasized here, the Cardiac Physiome Project. 
With an international contribution, this project has made a great progress in developing a multi-
physics model, which has the coupling of metabolic, electrophysiological, and biomechanical pro-
cesses, for integrating the cardiac structure-function relations at multi-scale across from cell, tissue, 
to organ levels as shown in Figure 7.8. In this project, the biomodel-based coupling approaches 
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have been intensely used for combining cardiac continuum tissue mechanics with electrophysiol-
ogy, ventricular blood flow, and coronary hemodynamics in a meaningful physiological sense [117]. 
Another similar multi-scale framework is the Virtual Physiological Rat Project, which develops a 
multi-model platform with a coupling of metabolic and electrophysiological processes [118].

7.4.2 imPact of big health Data

The development of sensing technology has largely increased the sensor’s capability of acquiring 
data, and multiple sensors are expected to provide different viewpoints of the health status of the 
patient. However, multi-sensor data fusion is a great challenge because the heterogeneous data need 
to be processed in order to generate unified and meaningful conclusions for clinical diagnosis and 
treatment [120]. The fusion of sensing data with other health data such as imaging, biomarkers, gene 
sequencing, etc. is even more challenging.

The definitions of data fusion are different in the literature. In [121], data fusion is defined as 
a “multi-level, multifaceted process handling the automatic detection, association, correlation, 
estimation, and combination of data and information from several sources.” A comprehensive 

FIGURE 7.9 The illustration of multi-scale modelling of the cardiovascular system. Reproduced from [119].
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review and discussion of data fusion definitions are presented in [122]. We propose the defini-
tion of data fusion as: “to develop efficient methods for automatically or semi-automatically 
translating the information from multiple sources into a structured representation so that human 
or automated decisions can be made accurately.” Data fusion is definitely a multi-disciplinary 
research area, which has integrated many techniques, such as signal processing, information 
theory, statistical estimation and inference, and artificial intelligence. In this section, we will 
discuss multi-sensor fusion methods and the fusion of sensing data with other types of health 
data for clinical decision support.

Since most health data are accompanied with a large number of noisy, irrelevant and redundant 
information, which may give spurious signals in clinical decision support, it is therefore necessary 
to filter the data before the fusion. To address this issue, ranked lists of events or attributes clearly 
relevant to clinical decision-making should be created [123]. Temporal reasoning method has been 
suggested for detecting associations between clinical entities [124]. More sophisticated methods 
such as contextual filters [125], and statistical shrinkage toward the null hypothesis of no associa-
tion [126] were also proposed. How to filter information that is clinically meaningful would become 
more and more important but challenging due to the ever-increasing data types and volumes.

(a) Smart Shirt (b) EKG Shirt (c) LifeShirt (d) ProTEX 

(e) Wealthy (f) Vtamn (g) h-Shirt

FIGURE 7.10 Various wearable garments for physiological and activity monitoring. (a) The Georgia Tech 
Wearable Motherboard™ (Smart Shirt) for the measurement of ECG, heart rate, body temperature, and res-
piration rate [127]; (b) the EKG Shirt system which used interconnection technology based on embroidery of 
conductive yarn for heart rate [128]; (c) the LifeShirt system for the measurement of ECG, heart rate, posture 
and activity, respiration parameters, BP (peripheral is needed), temperature, SpO2 [129]; (d) the ProTEX gar-
ment for the measurement of heart rate, breathing rate, body temperature, SpO2, position, activity and posture 
[130]; (e) the WEALTHY system with knitted integrated sensors for the measurement of ECG, heart rate, 
respiration, activity monitoring [131]; (f) the VTAMN system for the measurement of heart rate, breathing 
rate, body temperature and activity [132]; (g) the h-Shirt system for the measurement of ECG, PPG, heart rate, 
and BP [133].
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7.5 CONCLUSION

As Eric Topol described in [134]: “By bringing the era of big data and personal technology to the 
clinic, laboratory, and hospital, doctors can see a full, continuously updated picture of each patient 
and treat each individually.” The emerging technologies in cardiovascular health informatics has 
dramatically changed the way we acquire, process, fuse and explain multi-scale and multi-modal 
cardiovascular health information. It provides us with new opportunities to understand the patholo-
gies of CVDs. Furthermore, we can develop personalized, accurate risk assessment tools to screen 
high-risk patients at an early stage, and eventually achieve the goal of early detection, early predic-
tion, early diagnosis, and early treatment of CVDs.

In this chapter, we summarize the development of cardiovascular health informatics from three 
aspects: unobtrusive sensing computing, medical image computing, and information fusion analy-
sis. We introduce development process and the latest research results of each aspect. We can see the 
trend is: Cardiovascular health informatics is not only limited to the hospital, it will be integrated 
into our daily life. Although significant progress for healthcare applications had been made in the 
past decades, issues such as user acceptance, medical costs, real-time imaging, and efficiency of 
computing remain. No matter what technology we focus on, our ultimate goal is to apply possibil-
ity to reality, especially to serve more middle and lower income patients and populations. Another 
important requirement is the generalization of technologies; feasibility and user friendliness play 
an important role in promotion. In the following, we put forward some promising directions on the 
development of cardiovascular health informatics computing for future research:

1. To develop flexible, stretchable, and printable devices for unobtrusive physiological and 
biochemical monitoring. Research on a variety of semiconductor materials, including 
small-molecule organics and polymers, inorganic semiconducting materials. To develop 
flexible and stretchable sensors, which are very comfortable to wear.

2. To develop systematic data fusion framework. Integrate the multi-modal and multi-scale 
big health data from sensing, blood testing, biomarker detection, structural and functional 
imaging for the quantitative risk assessment and the early prediction of chronic diseases.

3. To extract new risk factors based on fusion analysis with both high sensitivity and specific-
ity, and to integrate real-time and continuous physiological information, biomarker infor-
mation and blood biochemistry with high-resolution cardiovascular imaging information 
for screening vulnerable plaque and vulnerable patients.

At the end, we should point out that the prevention of CVD is easier than the cure of CVD. Most 
CVD is preventable by adopting a healthy lifestyle, such as exercise, diet modification, and non-
pharmacological means of blood pressure regulation (reduced salt, etc.).
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8.1 INTRODUCTION

Modern radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) and 
combinations of those techniques with chemotherapy have greatly improved the overall survival 
of cancer patients. However, radiation-induced cardiac side effects, which often manifest years 
after treatment, have been shown to offset this improvement [1–4]. Cardiac toxicity has been 
seen in patients treated for lymphoma, breast cancer, and lung cancer [5–9]. Cardiac exposure 
was shown as a negative prognostic factor for patients with lung cancer after concurrent chemo-
therapy and radiotherapy. In the most recent report of a phase III trial, the volume of the heart 
received as low as 5 Gy negatively impacted on the overall survival [10]. Cardiac injury is not 
limited to the myocardium. Radiation may also damage the vascular endothelium and capillary 
vessels, resulting in peripheral, coronary, and carotid artery disease [11]. Most previous reports 
used the whole heart as a single region of interest; however, the relationship between dose to 
cardiac substructures and subsequent toxicity is of great interest and has not been well defined, 
mainly due to the inconsistency and demand of time in cardiac substructure delineation from 
computed tomography (CT) images [2].

Manual contouring of cardiac substructures from CT images requires clinical knowledge, time, 
and effort. Cardiac substructures are not clearly distinguishable in the noncontrast CT normally 
used for treatment planning. Although cardiac substructures are more visible on magnetic reso-
nance images and contrast CT images, these image modalities are usually unavailable for treatment 
planning. In addition, cardiac and respiratory motions and anatomical variations also present a 
great challenge to defining cardiac substructures. Furthermore, manual contouring of structures 
with inadequate image contrast, like cardiac substructures, can be unreliable because of substantial 
inter-observer variability [12,13].

Although heart dose is an important factor in overall survival, to date substantial variability in 
heart contouring has prevented accurate correlative study of heart dose and cardiac toxicity [10]. 
Heart exposure is associated with a broad spectrum of cardiac toxicity depending on the extent 
of damage to various heart substructures [6]. Determining the relationship between heart dose 
and cardiac toxicity requires ways of consistently and accurately generating contours for cardiac 
substructures. A few studies have been reported on the use of automatic segmentation of cardiac 
substructures [14,15]. Our previous study of using a set of cardiac atlases with multi-atlas segmenta-
tion to automatically contour 15 cardiac substructures revealed that automatic-segmentation con-
touring was within one standard deviation of the variability of manual contouring by experts [16]. 
Auto-segmented contours could still need modification by clinical specialists to conform to the 
corresponding anatomy; however, whether modification is needed when auto-segmented contours 
are used for dosimetric analysis is unknown.

In this chapter, we reported our development of a set of cardiac atlases with well-defined cardiac 
substructure contours for multi-atlas segmentation. We validated the auto-contouring using these 
cardiac atlases by comparing auto-segmentation with manual delineation and inter-observer vari-
ability. We demonstrated that accurate and consistent cardiac contours could be generated with this 
development. In addition, we evaluated the extent of the modification needed for auto-segmented 
cardiac substructures and whether those modifications would influence dosimetric variables in clin-
ical practice.

8.2 METHODS AND MATERIALS

8.2.1 Patient Data

This study was approved by the institutional review board of the MD Anderson Cancer Center. 
First, six patients with malignancies located in the thorax were retrospectively identified as the first 
group of patients for this study. The selection criteria were that they all had both contrast and non-
contrast diagnostic chest CT scans acquired in the same imaging session and the noncontrast 
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CT images could be reconstructed to the same display field of view similar to those used for 
thoracic radiation treatment planning. These six patients were used as the development dataset 
to generate gold standard cardiac atlas. As a regular procedure, the images were acquired while 
the patients held their breath and had their arms above their heads. A pre-contrast CT image was 
acquired first. With the patient still on the table, a post-contrast CT image was acquired about 
3 minutes later. For post-contrast CT image acquisition, systolic- and diastolic-phase images were 
scanned and averaged.

Next, 55 patients with non-small cell lung cancer (NSCLC) treated with definitive chemoradia-
tion with IMRT or passive scattering proton beam therapy to a dose of 74 Gy in 37 fractions in a 
randomized clinical trial were retrospectively identified for this study, and their treatment plans, 
including simulation CT scans and dose distribution, were extracted from an institutional data-
base. They were selected randomly without special restrictions on gender, heart anatomy, or body 
anatomy. As a selection criterion, only those patients receiving substantial heart dose were included. 
Patients with significant lung necrosis or lung collapse were excluded. Treatment simulation was 
performed with the patients’ arms above their heads in the supine position and immobilization 
with custom Vac-Lok cradles (Civco Medical Solutions, Kalona, IA). All 55 patients underwent 
four-dimensional CT (4DCT) for treatment planning, and the averaged 4DCT image was used for 
planning CT, on which the cardiac contours were delineated. All CT images in two groups had an 
in-slice resolution of 1.0 mm and slice spacing of 2.5 mm. The CT image quality is normal in our 
current clinical practice.

8.2.2 carDiac atlas DeVeloPment

In combined previous studies [17–19] and our own experience, we found that a total of 12 atlases 
can be sufficient for obtaining robust multi-atlas segmentation for thoracic CT images. Because of 
the limitation of available contrast CT images, here we developed 12 cardiac atlases in two phases. 
First, contours were drawn manually on the first group of six patients with both contrast and non-
contrast CT images. Because cardiac substructures are almost indistinguishable in noncontrast 
CT images, contrast CT is considered the gold standard for delineation of the heart substructures 
and can help reduce ambiguity in manual contouring. Second, the set of atlases was expanded 
to include a second group of six additional patients. The overall atlas development process was 
described in Figure 8.1.

8.2.2.1 Phase I: Manual Contouring
The diagnostic images of the first group of six patients were imported into the Pinnacle treatment 
planning system (Philips Medical Systems, Fitchburg, WI) for manual contouring. The contrast 
CT image was fused with the noncontrast CT image using rigid-registration in Pinnacle. Manual 
contouring was performed by eight radiation oncologists: two specialists in thoracic cancer radio-
therapy, two specialists in lymphoma radiotherapy, and four radiation oncologists trained outside 
the United States with various levels of experience. Before manual delineation, the eight radiation 
oncologists reviewed the RTOG (Radiation Therapy Oncology Group) 1106 organ-at-risk contour-
ing guideline [20] and a published cardiac atlas consensus contouring guideline [21] as a group. 
Each of the eight oncologists manually and independently delineated 15 cardiac structures on 
noncontrast CT images by referring to the fused contrast CT image and Netter’s Atlas of Human 
Anatomy [22] and by following the aforementioned contouring guidelines. The 15 delineated struc-
tures were the whole heart, the four heart chambers (left atrium, right atrium, left ventricle, and 
right ventricle), four coronary arteries (left main coronary artery, left anterior descending artery, 
left circumflex artery, and right coronary artery), and six great vessels (superior vena cava, inferior 
vena cava, pulmonary artery, pulmonary vein, ascending aorta with the aortic arch, and descending 
aorta). The contours of each structure delineated by the eight radiation oncologists were fused to 
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one using the simultaneous truth and performance level estimation (STAPLE) algorithm for each 
patient [23]. The fused contours were further reviewed and edited by two radiation oncologists to 
ensure consistency across patients.

8.2.2.2 Phase II: Atlas Expansion
The noncontrast CT images of the first group of six patients and the modified contours were 
used in conjunction with the in-house Multi-Atlas Contouring Service (MACS) software (detailed 
in the next section) to automatically delineate the cardiac structures of six patients that were 
randomly selected from the 55 NSCLC patients. The auto-segmented contours for the second 
group of six patients were used as templates for manual contouring, and two radiation oncolo-
gists jointly contoured these six patients on the basis of the templates. Thus, a total of 12 patients, 
including the noncontrast CT images with well-defined contours, served as the final atlases for 
multi-atlas segmentation.

8.2.3 multi-atlas segmentation

The in-house MACS software was used to perform multi-atlas segmentation. MACS has a user 
interface in the Pinnacle treatment planning system. For a new image to be segmented, users can 
submit the request in Pinnacle. MACS processes segmentation on a central server. The aforemen-
tioned 12 cardiac atlases were stored on the server. First, each atlas was separately registered to the 
new image using a dual-force Demons deformable registration algorithm [24]. The resultant defor-
mation vector fields that characterized the individual deformable registration were used to deform 
the contours in each atlas to obtain individual segmentations [25]. Finally, we used the STAPLE 
algorithm with a built-in tissue appearance model [26] to combine the individual segmentations, 
generating a fusion contour that approximated the true segmentation. The contour fusion process 
allowed us to minimize variations among segmentations obtained from different atlases and ran-
dom errors in deformable image registration. The MACS server sends the final fusion contour back 

FIGURE 8.1 The overall framework of the atlas development. Please refer to the text for details.
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to Pinnacle to complete the auto-segmentation. The auto-segmentation in MACS is independent to 
treatment planning systems.

8.2.4 eValuation metrics

Let R and T  represent two binary volumes and R∂  and T∂  represent the surface of these two 
volumes, respectively. The surface was generated from the binary volume using the marching cube 
algorithm from Insight Toolkit software [27] and represented by a triangular mesh with vertices 
resampled to be approximately 3 within 1 mm3 space. We calculated the Dice similarity coefficient 
(DSC) for volumes R and T as:

 ,
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The DSC has a value between 0 and 1, with 1 indicating perfect agreement and 0 indicating no 
overlap. We also calculated the symmetric mean surface distance (MSD) between the two surfaces 

R∂  and T∂  [28]:

 MSD R T
d r t

R

d t r

T
r R t T t T r R∑ ∑( )

( ) ( )
∂ ∂ =

∂
+

∂

















∈∂ ∈∂ ∈∂ ∈∂,
1
2

min , min ,
.  (8.2)

where ( , )d ⋅ ⋅  stands for the Euclidian distance of two points and ⋅  denotes the number of points on 
a surface.

8.2.5 atlas ValiDation

To validate the cardiac atlases we developed in section 2.2, we compared the auto-segmented con-
tours using these atlases with the expert manual contours in terms of the inter-observer variability. 
In addition, we performed leave-one-out tests in using these atlases for auto-segmentation, by com-
paring the auto-segmented contours with the consensus contours generated from experts.

8.2.5.1 Inter-Observer Variability
Inter-observer variability was evaluated by comparing individual expert contours with the 
STAPLE fused contours for the first group of six patients. For each structure in each patient, 
the eight expert contours were compared with the fused contours individually using DSC and 
MSD metrics. For each structure, the mean ( 0DSC  and 0MSD ) and standard deviation ( 0DSCσ  
and 0MSDσ ) of 48 DSC and 48 MSD values were calculated to measure inter-observer variabil-
ity. At the same time, we performed leave-one-out auto-segmentation using the fused contours 
without any modification for the six patients and evaluated the auto-segmented contours against 
the fused contours using DSC and MSD metrics. The mean ( 1DSC  and 1MSD ) and standard 
deviation of DSC and MSD were calculated for the six tests. Auto-segmentation was compared 
with inter-observer variability to evaluate the performance of auto-contouring for each structure 
using the following metric:
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where 1PV <  means that auto-segmentation is within one standard deviation of expert contouring 
variability, indicating that auto-segmentation is comparable with manual contouring.

8.2.5.2 Leave-One-Out Validation
To validate the use of the atlases for auto-contouring, we performed 12 leave-one-out tests for 
the 12 cardiac atlas patients. In each test, one patient served as the test patient and the remaining 
11 patients were used as atlases to auto-contouring the cardiac structures for the test patient using 
multi-atlas segmentation. We compared the auto-segmented contours with the atlas contours in the 
12 tests in terms of DSCs and MSDs. The mean and standard deviation for the 12 tests were calcu-
lated to evaluate agreement for each structure.

8.2.6 auto-contouring ValiDation

The 12 cardiac atlases were used in MACS to delineate 11 cardiac substructures automatically 
for the remaining 49 NSCLC patients in the second patient group. The 11 cardiac substructures 
included the whole heart, the four heart chambers (left atrium, left ventricle, right atrium, and right 
ventricle), and the six great vessels (the ascending aorta, descending aorta, superior vena cava, infe-
rior vena cava, pulmonary artery, and pulmonary vein). The coronary arteries were not included 
because we found that it is not possible to auto-segment them from noncontrast CT images in the 
atlas validation. The auto-segmented contours were then modified jointly by two experienced radia-
tion oncologists who followed the contouring guidelines from RTOG 1106 [20] and a published 
consensus guideline on cardiac atlas contouring [21].

8.2.6.1 Geometric Evaluation
We quantitatively evaluate the geometric agreement between the modified and auto-segmented con-
tours using DSC and MSD described in section 2.4. Previous studies have shown that a DSC > 0.7 
was considered as a good agreement and possibly clinically acceptable [29, 30]. The MSD evaluated 
the distance between two contours and was used with DSC to determine a good geometric agree-
ment or not. A smaller MSD indicates better agreement between two contours.

8.2.6.2 Dosimetric Evaluation
Dose-volume histograms (DVHs) were generated for both the auto-segmented and modified con-
tours for each cardiac substructure. Representative metrics evaluated included the mean dose 
(Dmean) to the heart and its four chambers; the heart V30 (heart volume receiving dose ≥30 Gy); 
and the maximum dose (Dmax) to all six great vessels. We performed hypothesis testing to iden-
tify statistically significant differences between auto-segmented contours and modified contours 
in terms of dosimetric variables. We used paired Student’s t tests for normally distributed data and 
Wilcoxon signed rank tests for non-normally distributed data. All analyses were done with SPSS 
version 17.0 (SPSS, Chicago, IL, USA). P values of <0.05 was considered to indicate statistically 
significant differences.

8.3 RESULTS

8.3.1 carDiac atlases

The final cardiac atlases were composed of 12 patients: the first group of six patients with diagnostic 
CT scans and the second group of six NSCLC patients. The first group included the noncontrast 
CT image and the edited fused contours, while the second group included the averaged 4DCT 
image and the edited auto-segmented contours. The atlases were used together with MACS to 
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automatically delineate cardiac substructures in the Pinnacle treatment planning system. Figure 8.2 
shows one atlas with contours overlaid on the contrast and noncontrast CT images. The average time 
for manually contouring the 15 cardiac substructures was about 40 minutes (range: 35 to 50 min-
utes), with the contrast CT available for reference. The average time for the MACS to automatically 
delineate the 15 cardiac substructures was about 10 minutes per patient, with the MACS running 
on a Microsoft Windows PC with an eight-core CPU (2 Intel Xeon X5472 quad-core processors at 
3GHz) and 8GB of memory.

8.3.2 atlas ValiDation

8.3.2.1 Inter-Observer Variability
Figure 8.3 shows a comparison of inter-observer variability in manual contouring with auto-
segmentation for the first group of six patients. Inter-observer variability was smaller for the 
heart, the four chambers, and the aorta than for other structures that were not clearly distin-
guishable on the CT image, such as the pulmonary vein and coronary arteries. The mean DSCs 
for individual expert contours relative to the fused contours were less than 0.5 for coronary 
arteries and the pulmonary vein, and the mean MSDs were greater than 4.0 mm, indicating a 
very large inter-observer variability. The largest MSD for deviation of expert contours from 

FIGURE 8.2 Atlas contours overlaid on noncontrast (panels A) and contrast (panels B) CT images from 
one patient. LA = left atrium; RA = right atrium; LV = left ventricle; RV = right ventricle; LMCA = left main 
coronary artery; LADA = left anterior descending artery; LCX = left circumflex artery; RCA = right coronary 
artery; SVC = superior vena cava; IVC = inferior vena cava; PA = pulmonary artery; PV = pulmonary vein; 
AA = ascending aorta and aortic arch; DA = descending aorta.
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the fused contours was 5.4 cm for the pulmonary vein. This disagreement is mostly due to the 
complex shape of these structures and their low contrast on the CT images. The interface of 
pulmonary vein to heart chambers has the most disagreement among experts. The mean DSCs 
and mean MSDs of auto-segmented contours were within one standard deviation of the mean 
DSCs and mean MSDs of expert contouring variability for all structures when measured by the 
PV metric defined in Eq. (8.3) (Table 8.1). These findings demonstrated that auto-segmentation 
of most cardiac structures was at least comparable to manual delineation. Figure 8.4 shows 
examples of inter-observer variability for the heart and the four chambers. Contouring variabil-
ity can be clearly seen for different structures. For example, the most variable heart contours 
were in the superior region.

(a)

(b)

FIGURE 8.3 Comparison of inter-observer variability with auto-segmentation using (a) Dice similarity 
coefficient (DSC) and (b) mean surface distance (MSD) metrics. The error bars indicate one standard devia-
tion. For abbreviations, see the legend to Figure 8.2.
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TABLE 8.1
Multi-atlas segmentation results of leave-one-out tests using the fused contours of the first group of 6 patients. The auto-segmented 
contours in each were compared with the fused contours for 15 cardiac structures using Dice similarity coefficient and mean surface 
distance metrics. Auto-segmentation was compared with expert contouring variability using the PV value defined in Eq. (8.3). PV < 1 
indicates that auto-segmentation is comparable with manual contouring.

Patient

Dice similarity coefficient

Heart LA RA LV RV LMCA LADA LCX RCA SVC IVC PA PV AA DA

1 0.96 0.84 0.82 0.92 0.86 0.03 0.04 0.39 0.34 0.82 0.59 0.86 0.54 0.82 0.84
2 0.96 0.89 0.86 0.94 0.89 0.20 0.07 0.25 0.14 0.81 0.75 0.68 0.30 0.74 0.82
3 0.94 0.84 0.72 0.89 0.78 0.45 0.29 0.61 0.00 0.47 0.64 0.88 0.37 0.85 0.90
4 0.94 0.86 0.87 0.94 0.89 0.49 0.17 0.14 0.40 0.80 0.81 0.81 0.38 0.86 0.89
5 0.93 0.83 0.84 0.87 0.87 0.15 0.18 0.29 0.23 0.71 0.70 0.85 0.54 0.86 0.86
6 0.84 0.80 0.45 0.74 0.58 0.12 0.19 0.27 0.00 0.36 0.34 0.83 0.53 0.54 0.73
Mean 0.93 0.84 0.76 0.88 0.81 0.24 0.16 0.33 0.19 0.66 0.64 0.82 0.44 0.78 0.84
SD 0.05 0.03 0.16 0.07 0.12 0.19 0.09 0.16 0.17 0.20 0.17 0.07 0.11 0.12 0.06

Patient
Mean surface distance (mm)

Heart LA RA LV RV LMCA LADA LCX RCA SVC IVC PA PV AA DA
1 1.2 2.2 2.5 1.8 2.4 6.0 5.1 3.7 2.9 1.8 4.0 1.5 2.9 2.5 1.7
2 1.5 1.7 2.1 1.4 2.2 4.1 4.2 4.7 6.3 1.7 2.3 3.6 6.5 3.5 2.0
3 2.2 2.8 3.6 2.3 3.3 2.4 2.6 1.7 14.9 4.4 3.1 1.5 4.6 2.1 1.3
4 2.0 2.0 1.7 1.5 2.1 3.0 5.1 4.0 2.8 1.9 2.0 2.0 6.8 1.8 1.3
5 2.2 3.4 2.6 3.0 2.2 4.8 8.5 4.7 4.1 2.9 2.7 2.0 4.0 2.3 1.9
6 5.5 2.6 7.3 5.0 8.4 3.1 11.3 2.3 29.5 5.5 10.2 1.8 3.5 5.3 5.5
Mean 2.4 2.4 3.3 2.5 3.4 3.9 6.1 3.5 10.1 3.1 4.1 2.1 4.7 2.9 2.3
SD 1.5 0.6 2.1 1.4 2.5 1.3 3.2 1.3 10.5 1.6 3.1 0.8 1.6 1.3 1.6

Comparison of auto-segmentation with expert contouring variability
Heart LA RA LV RV LMCA LADA LCX RCA SVC IVC PA PV AA DA

PV 0.99 0.11 0.85 0.54 0.97 0.45 0.50 0.29 0.94 0.42 0.30 0.12 0.31 0.35 0.15

LA = left atrium; RA = right atrium; LV = left ventricle; RV = right ventricle; LMCA = left main coronary artery; LADA = left anterior descending artery; LCX = left circumflex artery; RCA 
= right coronary artery; SVC = superior vena cava; IVC = inferior vena cava; PA = pulmonary artery; PV = pulmonary vein; AA = ascending aorta and aortic arch; DA = descending aorta; 
SD = standard deviation.
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FIGURE 8.4 Inter-observer variability in manual contouring of the whole heart, left atrium (LA), right 
atrium (RA), left ventricle (LV), and right ventricle (RV). The manual contours delineated by eight radiation 
oncologists are shown in different colors, and the color-wash represents the fused consensus contours.

8.3.2.2 Leave-One-Out Validation
The leave-one-out validation results are shown in Figure 8.5. Good agreement between the auto-
segmented contours and atlas contours was observed for the heart, the chambers, and the great ves-
sels, with the mean DSC greater than 0.7 and mean MSD less than 3 mm, except for the pulmonary 
vein, with DSC = 0.64 ± 0.09 and MSD = 2.6 ± 0.7 mm. Heart segmentation had the best agreement, 
with DSC = 0.95 ± 0.03 and MSD = 1.9 ± 1.1 mm. Coronary arteries were difficult to delineate 
automatically, with the mean DSC below 0.4 for all coronary structures. Figure 8.6 shows some 
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(a)

(b)

FIGURE 8.5 Comparison of auto-segmented contours with atlas contours for the leave-one-out validation 
for 12 atlases using (a) Dice similarity coefficient (DSC) and (b) mean surface distance (MSD) metrics. The 
error bars indicate one standard deviation. For abbreviations, see the legend to Figure 8.2.

comparisons between auto-segmented contours and atlas contours. Good agreement was observed 
for most structures. Detailed leave-one-out results are listed in Table 8.2.

8.3.3 auto-contouring ValiDation

The mean time for the MACS to automatically delineate the 11 cardiac substructures (excluding 
coronary artery structures) was 10 minutes per patient. The time (mean ± SD) to modify the con-
tours of all 11 cardiac substructures was 40.2 ± 4.24 minutes for the first 10 patients and 27.2 ± 3.50 
minutes for the second 10 patients (Figure 8.7); by comparison, contouring from scratch would take 
several hours. The time needed to modify the contours of the various structures declined as the radi-
ation oncologists who were doing the modifying became more familiar with the rules for doing so.
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TABLE 8.2
Multi-atlas segmentation results of leave-one-out tests for the 12 atlases. The auto-segmented contours in each test were compared with 
the atlas contours for 15 cardiac structures using Dice similarity coefficient and mean surface distance.

Atlas

Dice similarity coefficient (%)

Heart LA RA LV RV LMCA LADA LCX RCA SVC IVC PA PV AA DA
1 0.96 0.87 0.85 0.93 0.89 0.41 0.39 0.26 0.09 0.81 0.78 0.85 0.56 0.89 0.87
2 0.95 0.89 0.90 0.93 0.89 0.48 0.29 0.15 0.05 0.84 0.81 0.77 0.53 0.83 0.84
3 0.94 0.89 0.80 0.91 0.80 0.37 0.41 0.38 0.17 0.59 0.62 0.89 0.63 0.88 0.92
4 0.95 0.88 0.89 0.95 0.90 0.28 0.43 0.43 0.43 0.85 0.84 0.81 0.53 0.90 0.92
5 0.93 0.83 0.86 0.88 0.86 0.37 0.45 0.25 0.49 0.87 0.79 0.86 0.64 0.90 0.86
6 0.85 0.81 0.41 0.75 0.59 0.27 0.12 0.32 0.00 0.43 0.19 0.85 0.57 0.62 0.74
7 0.96 0.94 0.92 0.96 0.92 0.56 0.34 0.39 0.19 0.90 0.64 0.88 0.75 0.94 0.95
8 0.97 0.92 0.91 0.95 0.91 0.41 0.45 0.47 0.22 0.89 0.75 0.92 0.76 0.93 0.91
9 0.96 0.84 0.90 0.95 0.93 0.39 0.21 0.43 0.45 0.86 0.84 0.87 0.71 0.91 0.95
10 0.97 0.88 0.87 0.93 0.87 0.52 0.46 0.38 0.12 0.93 0.87 0.84 0.73 0.93 0.90
11 0.98 0.92 0.93 0.94 0.94 0.29 0.43 0.04 0.24 0.91 0.89 0.87 0.72 0.92 0.95
12 0.96 0.84 0.88 0.92 0.84 0.44 0.45 0.38 0.50 0.91 0.88 0.73 0.51 0.84 0.93
Mean 0.95 0.88 0.84 0.92 0.86 0.40 0.37 0.32 0.25 0.82 0.74 0.84 0.64 0.88 0.89
SD 0.03 0.04 0.14 0.06 0.09 0.09 0.11 0.13 0.18 0.15 0.19 0.05 0.09 0.09 0.06

Atlas

Mean surface distance (mm)

Heart LA RA LV RV LMCA LADA LCX RCA SVC IVC PA PV AA DA
1 1.4 1.9 2.1 1.5 1.9 2.4 2.5 3.3 11.4 1.7 2.1 1.8 3.0 1.5 1.4
2 1.7 2.1 1.5 1.5 2.1 1.9 2.8 4.2 15.9 1.4 1.8 2.6 2.6 2.1 2.4
3 1.9 1.9 2.6 2.0 2.9 2.3 2.6 3.5 5.0 4.3 3.5 1.3 2.7 1.8 1.1
4 1.8 1.7 1.4 1.3 2.1 4.2 2.4 2.0 2.8 1.4 1.5 2.0 2.7 1.3 0.9
5 2.4 3.3 2.2 2.7 2.4 2.6 3.0 3.3 3.1 1.3 1.8 1.9 2.8 1.8 2.0
6 5.3 2.5 8.2 5.0 8.1 3.3 10.7 4.6 40.3 4.8 12.6 1.6 3.1 4.1 4.7
7 1.5 1.1 1.2 1.2 1.7 1.6 4.3 2.7 6.1 1.0 3.8 1.7 1.7 1.0 0.7
8 1.2 1.3 1.2 1.0 1.5 2.7 2.6 1.9 4.4 0.8 2.3 0.9 1.5 1.1 1.5
9 1.7 2.4 1.7 1.3 1.6 1.9 3.5 2.4 2.7 1.6 1.7 1.8 2.2 1.4 1.0
10 1.5 2.2 2.2 1.6 2.4 2.2 2.1 2.8 7.3 0.8 1.3 1.8 2.5 1.3 1.2
11 1.0 1.3 1.1 1.5 1.3 2.6 2.8 8.3 10.7 0.9 1.3 1.4 2.1 1.3 0.8
12 1.9 2.1 1.8 1.8 2.7 2.1 2.6 2.6 2.6 0.9 1.3 3.0 4.0 2.2 1.3
Mean 1.9 2.0 2.3 1.9 2.6 2.5 3.5 3.5 9.4 1.7 2.9 1.8 2.6 1.8 1.6
SD 1.1 0.6 1.9 1.1 1.8 0.7 2.4 1.7 10.6 1.4 3.2 0.6 0.7 0.8 1.1

LA = left atrium; RA = right atrium; LV = left ventricle; RV = right ventricle; LMCA = left main coronary artery; LADA = left anterior descending artery; LCX = left circumflex artery; 
RCA = right coronary artery; SVC = superior vena cava; IVC = inferior vena cava; PA = pulmonary artery; PV = pulmonary vein; AA = ascending aorta and aortic arch; DA = descending aorta; 
SD = standard deviation.
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FIGURE 8.6 Comparison of auto-segmented contours with atlas contours for three representative patients 
(a, b, and c). The auto-segmented contours (lines) were compared with the atlas contours (color-wash) in the 
axial, sagittal, and coronal planes for the heart, the chambers, and the great vessels. For abbreviations, see the 
legend to Figure 8.2.

FIGURE 8.7 Average time needed to modify contours of 11 cardiac substructures per patient for the first 
10 patients (clear bars) and for the second 10 patients (solid bars). Error bars represent one standard deviation. 
For abbreviations, see the legend to Figure 8.2.
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TABLE 8.3
Comparability of modified contours versus auto-segmented 
contours of 11 cardiac substructures

Dice Similarity 
Coefficient, Mean ± SD

Mean Surface Distance, 
mm, Mean ± SD

Heart 0.95 ± 0.04 2.1 ± 1.8

Left atrium 0.89 ± 0.05 1.8 ± 0.7

Left ventricle 0.91 ± 0.06 2.2 ± 1.8

Right atrium 0.86 ± 0.12 2.3 ± 2.2

Right ventricle 0.87 ± 0.10 2.7 ± 2.2

Superior vena cava 0.84 ± 0.14 1.7 ± 1.3

Inferior vena cava 0.78 ± 0.15 2.9 ± 5.1

Pulmonary artery 0.86 ± 0.05 2.2 ± 0.7

Pulmonary vein 0.73 ± 0.08 2.0 ± 0.7

Descending aorta 0.92 ± 0.04 1.3 ± 0.6

Ascending aorta 0.92 ± 0.06 1.4 ± 0.8

Abbreviation: SD, standard deviation

8.3.3.1 Geometric Evaluation
Geometric overlap between the modified and the auto-segmented contours for the 49 patients, 
quantified in terms of DSC and MSD, are shown in Table 8.3. Of the 11 structures, the average 
DSC values ranged from 0.73 ± 0.08 to 0.95 ± 0.04, and the average MSD values ranged from 
1.3 ± 0.6 mm to 2.9 ± 5.1 mm for all 49 patients. Overall, the mean DSC for all of these struc-
tures was >0.7, indicating that no substantial modification was needed for the auto-segmented 
contours. Among the 11 structures, the pulmonary vein and inferior vena cava had lower DSC 
values (0.73 ± 0.08 and 0.78 ± 0.15), and higher MSD values (2.0 ± 0.7 mm and 2.9 ± 5.1 mm) 
than other structures, suggesting that contours for these two structures needed more modifica-
tion than did the contours for the other structures.

8.3.3.2 Dosimetric Evaluation
To investigate whether the auto-segmented contours could be used to study the cardiac dose-
response directly in clinical practice, we evaluated dosimetric differences between the modified 
and auto-segmented contours for the 49 patients. The DVH of the 11 cardiac substructures were cal-
culated from the original dose distribution on the clinical treatment plan. Dosimetric variables are 
compared in Table 8.4. For all patients, the heart V30 and mean dose to the entire heart and the four 
heart chambers did not show statistically significant difference for modified versus auto-segmented 
contours. The maximum dose to the great vessels also did not show statistically significant differ-
ence for the modified versus auto-segmented contours, except for the pulmonary vein (modified 
78.11 ± 13.24 Gy, auto-segmented 76.44 ± 14.23 Gy, P = 0.01).

8.4 DISCUSSION

The risk of radiation-related cardiac toxicity is an important issue in radiotherapy for breast can-
cer, Hodgkin lymphoma, and lung cancer, among others. However, little has been reported on the 
relationship between cardiac toxicity and radiation dose-volumes for the heart, and even less for 
the specific cardiac substructures. This probably reflects the inability to delineate those structures 
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efficiently on treatment planning images. In addition, substantial variability in heart contouring has 
been reported in NSCLC [10] and could affect the validity of dosimetric analyses of cardiac toxic-
ity. In this study we developed a set of cardiac atlases to be used with multi-atlas segmentation for 
auto-contouring cardiac substructures. We showed that manual contouring has high inter-observer 
variability, and variability in automatic segmentation was at least comparable to inter-observer vari-
ability in manual delineation of cardiac substructures. We have demonstrated that accurate and 
consistent contours can be automatically delineated for cardiac substructures except for coronary 
arteries. In addition, we further evaluated the dosimetric implications of automatic segmentation 
and found that modification of the auto-segmented contours had little effect on the dose-volume 
response, which suggests that using automatic segmentation may be feasible for dose-volume 
response studies.

Our results have clinically significant implications. First, the cardiac atlases can aid treatment 
planning in radiotherapy and potentially save time for clinicians in cardiac delineation. Our results 

TABLE 8.4
Dosimetric comparability of modified contours versus auto-segmented 
contours

Structures and Dosimetric 
Variables

Modified Contours, 
Mean ± SD

Auto-Segmented 
Contours, Mean ± SD P-Values*

Heart

 Dmean, Gy 10.81 ± 7.78 10.85 ± 7.84 0.86

 V30, % 13 ± 11 14 ± 11 0.89

Left atrium

 Dmean, Gy 20.71 ± 16.21 20.81 ± 16.07 0.66

Left ventricle

 Dmean, Gy 4.02 ± 7.11 4.02 ± 7.12 0.33

Right atrium

 Dmean, Gy 997 ± 1014 10.83 ± 10.58 0.11

Right ventricle

 Dmean, Gy 5.03 ± 6.15 5.02 ± 6.08 0.24

Superior vena cava

 Dmax, Gy 74.04 ± 17.06 74.19 ± 17.04 0.14

Inferior vena cava

 Dmax, Gy 6.97 ± 15.84 7.91 ± 16.74 0.20

Pulmonary artery

 Dmax, Gy 80.75 ± 7.60 80.39 ± 7.47 0.08

Pulmonary vein

 Dmax, Gy 78.11 ± 13.24 76.44 ± 14.23 0.01

Descending aorta

 Dmax, Gy 63.41 ± 21.38 62.41 ± 21.68 0.18

Ascending aorta

 Dmax, Gy 10.81 ± 7.78 10.85 ± 7.84 0.86

Abbreviations: V30, percentage volume receiving dose ≥ 30 Gy; SD, standard deviation

*  From paired Student’s t-tests (normally distributed data) or Wilcoxon signed-rank test (non-normally 
distributed data).
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have shown that auto-segmentation of most cardiac substructures was at least comparable to manual 
delineation. Accurate and consistent contours can also improve heart dose sparing in treatment 
planning and thereby improve treatment outcomes. Second, accurate and consistent cardiac sub-
structure contouring can facilitate volume dose analysis, allowing assessment of radiation doses 
to specific cardiac structures for toxicity analysis to achieve cardiac risk control [2]. Recent efforts 
have shown that with the advances of radiation therapy planning, avoiding heart structures is pos-
sible and desirable, especially for young patients with a high cure rate and long-term survival like 
lymphoma patients [8]. A standard and consistent heart contour is also important to reporting and 
comparison of the heart dose volume histogram and heart toxicities [10].

Validation of auto-segmentation is frequently subject to the impact of inter-observer variabil-
ity when manual contours are used as the ground truth [31–33]. In this study, we performed an 
inter-observer variability analysis, used consensus contours as the ground truth to evaluate auto-
segmented contours, and compared auto-segmentation with inter-observer variability to evaluate 
auto-segmentation. We thereby essentially minimized the impact of human factors in manual con-
touring and evaluated auto-segmentation for practical clinical use as an alternative to traditional 
manual contouring. However, the large inter-observer variability indicates that the manual contours 
were far from perfect. The major cause of the uncertainty in manual contouring may be cardiac 
motion. The contrast CT used in this study had both systolic- and diastolic-phase images, but the 
noncontrast CT did not. In general, cardiac-phase images are not available for treatment planning. 
Due to cardiac motion, fusion of contrast and noncontrast CT images may not be perfect. This 
imperfect fusion may have a considerable effect on contouring of small structures such as coronary 
arteries because a small deviation in fusion may cause a large discrepancy in contouring. On the 
other hand, even with contrast CT, the boundaries of some structures, such as coronary arteries, 
were still not clearly discernible. Contouring those structures still relied a lot on individual judg-
ment, thereby resulting in large inter-observer variability in manual contouring. Accurate anatomi-
cal identification of coronary arteries therefore remains challenging and will be a major barrier for 
auto-contouring.

Image resolution may limit the capability of auto-contouring the small structures as well. 
Coronary arteries may not be discernible in older planning CT scans with a large voxel size. Auto-
contouring is also subject to the effects of inter-patient variation. A tumor close to the heart can 
significantly change the shape and appearance of a cardiac structure in CT images. Our auto-
segmentation relies on accurate matching of the anatomy between atlas images and the new image 
for segmentation. If a large difference exists, the matching is not accurate. We indeed found that 
when a large tumor was near the heart, the accuracy of auto-contouring was low.

The choice of metrics can also affect evaluation results. DSC-based evaluations are known to be 
favorable for large volumes. It is not surprising to see larger DSCs for the heart, chambers, or great 
vessels than for coronary arteries. Therefore, distance-based metrics should also be used. However, 
distance-based metrics are subject to the effect of voxel size. Images with higher resolution (or 
smaller voxel size) tend to produce better distance-based evaluation for auto-segmentation. In our 
study, all images had slice spacing of 2.5 mm, which may limit distance-based assessment. By con-
sidering the limitation of image resolution, our auto-segmentation approach is comparable to state-
of-the-art cardiac segmentation methods [34–36], which were applied to contrast CT images with 
sub-millimeter resolution for diagnosis of cardiovascular diseases. On the other hand, this showed 
that the atlases we developed are useful for auto-contouring the cardiac substructures.

We found good agreement between the modified and auto-segmented contours, implying 
that no substantial modifications were needed for the auto-segmented contours. Among the con-
toured structures we evaluated, the pulmonary vein and inferior vena cava showed less agreement 
than others, mainly because of their relatively small volumes and indistinguishable anatomical 
boundaries on the CT images, and thus modifications are likely to be needed for these types of 
structures. Other studies have shown similar findings [37,38]. In addition, auto-segmenting these 
structures has several specific challenges. First, the junction between the inferior vena cava and 
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the right atrium is difficult to contour because of the lack of distinct contrast between them. In 
our study, modifications had to be made to correct part of the inferior vena cava to be the right 
atrium. Second, the complex anatomic shape of the pulmonary vein makes automatic segmenta-
tion difficult. Third, we noticed that pulmonary veins were susceptible to tumor invasion for some 
patients, which can cause segmentation errors. Therefore, one would expect more modifications 
for these two structures.

Geometric evaluation measured by the DSC or MSD serves directly for the purpose to vali-
date the accuracy of auto-segmentation. However, geometric evaluation is generally not directly 
interpretable in clinical settings. Rather, the dose-volume response is often compared with clinical 
outcomes in analyses of radiation-induced toxicity [39]. Traditionally, the parameters of mean dose 
and the volume receiving a certain amount of dose are used to evaluate the heart and chamber doses, 
and the parameter of maximum dose is used to evaluate the dose to the great vessels. We found no 
statistically significant differences between the modified and the auto-segmented contours, except 
for the pulmonary vein (P = 0.01). This finding implies that small geometric differences between 
auto-segmented and modified contours have negligible effects on dosimetry. On the other hand, 
previous studies have found the whole heart; heart chambers including endocardium, myocardium, 
and epicardium; and coronary arteries to be the most important substructures related to radiation-
induced cardiac toxicity, but the pulmonary vein did not show direct correlation with cardiac toxic-
ity [6, 40]. Thus, our results presumably suggest that auto-segmented contours can be used directly 
for studying cardiac dose-response, although the pulmonary artery or pulmonary vein may need 
some minor modifications for some individuals. Indeed, this auto-segmentation tool can be used to 
quickly evaluate dose-volume response for patients undergoing radiotherapy and would be desirable 
for quality assurance in multi-institutional trials or large population-based dosimetric studies.

8.5 CONCLUSION

To conclude, it is possible to automatically delineate the heart, the heart chambers, and the great 
vessels from noncontrast CT images for radiation oncology applications, especially on clinical tri-
als to evaluate the radiation-induced cardiac toxicities. We found that automatic segmentation of 
cardiac substructures did not require substantial modifications, and dosimetric evaluation showed 
no statistically significant differences between the auto-segmented and modified contours except 
for the pulmonary vein. These findings suggest that using auto-segmented contours to study cardiac 
dose-response is feasible in current clinical practice. However, accurate identification of coronary 
arteries in CT images is difficult and their auto-contouring needs further investigation.
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9.1 INTRODUCTION

The aorta is the largest blood vessel in the human body starting from the left ventricle of the 
heart going down into the abdomen. An aneurysm is an irreversible localized dilatation of a 
vessel [1–2]. Abdominal aortic aneurysm (AAA) is a cardiovascular disease which is identified 
when the abdominal aorta expands, reaching a maximum diameter of 3 cm or larger. AAAs 
with smaller maximum diameter are considered healthy (see Figure 9.1) [3–4]. AAA is asymp-
tomatic in most cases until rupture, or being occasionally discovered when the patient has 
radiologic testing for other purposes [4–6].

Clinical risk factors for the development of AAA include smoking, hypertension, gender, obesity, 
age, genetics, and family history, while smoking remains the most dominant factor. Smoking boosts 
the rupture risk up to seven times the original risk [7–8]. Aging and hypertension lead to a stiffer aorta. 



174 Cardiovascular Imaging and Image Analysis

AAA is more common in males than females. This can be referred to the fact that the number of 
male smokers is much higher than female smokers. Since the number of female smokers is on the 
increase, this factor may not be a valid one in the future.

In this chapter, section 9.2 provides a detailed literature review of existing contributions to seg-
ment the aneurysm and its components. In this review, literature contributions were divided into 
four main categories based on the major algorithm used for the segmentation: deformable models, 
graph, fuzzy c-means, and other contributions in which a sequence or combination of algorithms, 
not covered by the previous three categories, are used to perform the segmentation. Section 9.3 dem-
onstrates the details of a newly proposed aneurysm segmentation method, and section 9.4 suggests 
the usage of a classifier-based approach utilizing the Bayesian classifier to solve the calcification 
detection problem from AAA.

FIGURE 9.1 Examples of healthy and diseased aortas (see [81]).

Surgical intervention occurs when the aneurysm reaches a maximum diameter of 5.5 cm, or 
when a high growth rate is observed. There are two surgical techniques for AAA treatment, which 
are open aneurysm repair (OR) and endovascular aneurysm repair (EVAR) [8–9]. The expanded 
part of the aorta is replaced by graft in OR, while the graft is inserted within the aorta at the aneu-
rysm site in EVAR. OR is riskier in the short term [10], but safer in the long term, while it is the 
opposite for EVAR because the graft may migrate, causing some complications that might require 
careful follow-up later (endoleak or kinking the graft) [11–12].

While the maximum diameter of the AAA is still considered as the primary indicator of 
whether a medical intervention is required or not, some studies [79–80] indicated that biome-
chanical wall stress of the aortic wall can serve as a more accurate predictor of rupture risk than 
the maximum diameter. In most AAA patients, varying amounts of calcification deposits were 
observed. It was reported in [13] that calcification is directly related to increasing AAA rupture 
risk, which clearly calls for the development of an invasive medical tool capable of detecting 
calcification in vivo. This research is expected to lead to better diagnosis, reducing the number 
of fatalities related to this disease, and leading to more consistent diagnosis among radiologists 
and clinicians [14].
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9.2 literature reView

This section reviews the algorithms and techniques used for abdominal aortic aneurysm segmenta-
tion, which are summarized in Figure 9.2. These methods were divided into four main categories, 
deformable model based methods, graph based methods, fuzzy c-means based methods, and others. 
The contributions in the last category use a combination or sequence of image processing algo-
rithms that don’t belong to any of the first three categories to perform the segmentation task.

9.2.1 Deformable moDels

Deformable models (DMs) are curves or surfaces controlled by internal and external forces, which 
maintain the smoothness of the evolving curve or surface, and draw the model to certain features, 
respectively.

9.2.1.1 Parametric Deformable Models

FIGURE 9.2 AAA segmentation methods.

The lumen and thrombus were 3D segmented from CTA images in [15–16] based on deformable mod-
els. Once the operator specifies two points in the lumen, the thrombus is segmented using deformable 
models utilizing the surface resulting from lumen segmentation, which is as well segmented using 
deformable models. The vertices of the mesh evolve through a 3D active object method. In order to 
build the initial tube that segments the lumen, four positions are required, where two of them specify 
the proximal and distal slices, and the other two specify the lumen axis. Bi-level image thresholds are 
required for the deformation process. The area of each face in the mesh must satisfy the provided mesh 
resolution parameter (within a certain tolerance) which adjusts the mesh through consecutive split and 
merge operations. The internal force ensures uniform distribution of the mesh vertices, and controls 
mesh smoothness. The external force may shrink, expand, or stabilize depending on the location of 
the vertex x (i.e., outside, inside, or at the boundary). To determine the location, k-nearest neighbor 
identifies the appropriate class for the pattern taken at the vertex. Difference in volume and total mesh 
displacement were tested as stopping criteria, by comparing them to a predefined threshold value.

Motivated by the work of Huang et al. [17], Demirci et al. [18] developed a hybrid deformable 
model that utilizes both local and global image statistics to semi-automatically segment the throm-
bus from CTA scans. Aortic lumen volume is needed to serve as initialization for the deformable 
model aiming to segment the thrombus. The lumen area was covered by the thrombus mean inten-
sity value, so that the model wouldn’t get drawn to it. The deformation process is led by both local 
and global information, in addition to shape constraints. B-spline surfaces and distance functions 
utilized in this work would prevent the breaching of neighboring regions where the edge is weak.
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Das et al. [19] presented a 2D thrombus segmentation method from CT using an active con-
tour model [20]. In order to remove obstacles that may hinder the snake, streak artifacts are sup-
pressed using morphological closing, bone structures are removed using AutoBone [21], and the 
lumen is filled with the thrombus mean intensity value. Once the snake is manually initialized, 
the introduced objectness property would control the deformation of the snake, while still being 
constrained by a narrow band that limits its movement through iterations. To control snake defor-
mation, pixel objectness is calculated as a subtraction of its probability of being a background 
pixel from the probability of being an object, causing it to expand, shrink, or stand still. A nar-
row band of uniform width prevents the snake from breaching thrombus neighboring structures 
of fuzzy edges. The segmentation result of a slice is passed to the next one to initialize the next 
deformation.

In [22] Disseldorp et al. performed 3D segmentation of the aorta from ultrasound and compared 
it to CT. In order to ensure that the whole AAA volume is acquired, additional proximal and distal 
volumes had to be registered with the whole 3D volume, so that the active contour model suggested 
by Kass et al. [20] would be used next to segment the volume in 3D. The active contour model 
relies on internal and image derived external forces and user constraints to control the deformation 
process. CT volume was segmented using Hemodyn.

9.2.1.2 Geometric Deformable Models
The work developed by Zohiosa et al. [23] is among the first to exploit the level set method (LSM) 
to segment both the thrombus and outer aortic wall boundaries from CTA. The authors state that the 
level set method has been limited for lumen segmentation only because the surrounding structures 
for the thrombus have strong edges and similar intensity values, which may lead the advancing 
front to fall into wrong regions, in addition to the fact that it is computationally expensive. New 
geometrical methods are introduced in this chapter to solve this leakage problem. The proposed 
segmentation method utilizes the presence of calcification for the LSM, and the wall is interpolated 
from neighboring regions in case a source of contrast is not present. The main limitations of this 
work are (1) the presence of calcification is critical for the initialization for this method, (2) the 
calcifications are assumed to be contained within the aortic wall, while it may be present within the 
thrombus, and (3) some calcification is lost due to the high threshold used, to prevent the LSM from 
leaking to the spine.

Subaši ć et al. [24] proposed an AAA segmentation method for the inner and outer aortic 
wall boundaries using CTA that requires minimal user interaction. In order to obtain the inner 
aortic wall boundary, the geometric deformable model is used, followed up by post process-
ing. The outer aortic boundary requires a preprocessing step that assumes an oval shape for 
the aorta before the geometric deformable model (GDM) and the morphological operations are 
applied.

The objective of the study in [26] is the 3D reconstruction of the aorta for aortic stent graft 
implantation. A geometric active contour model that utilizes a Gaussian filter was modified to 
reduce edge blurring while reducing noise in AAA images for better edge detection. In order 
to achieve that, a morphological gradient and a morphological gradient function were used. 
The 3D volume is reconstructed using the Rhinoceros (Robert McNeel and Associates) surface-
rendering tool.

Kim et al. [27] improved the geometric active contour model by adopting a hybrid median filter 
preprocessed morphological gradient edge function instead of Gaussian blurred images to improve 
segmentation accuracy. Minimum distance error and mismatched area of salt-and-pepper noised 
synthetic images suggest improved accuracy, while no quantitative evaluation of the AAA images 
was provided.

Loncaric et al. [28] developed a level set based 3D segmentation method for AAA from CTA 
that could be utilized for accurate stent graft measurements. Level set described in [29] and [30] 
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was the method of choice to extract the 3D model because it is capable of handling bifurcations in 
arteries easily. The 3D surface deforms through a number of iterations, where the motion at a certain 
point is determined by the summation of constant, curvature, and image derived velocities, which 
represent inflation, internal, and external (image gradient) forces, respectively. A sphere is used as 
the initial surface, where the radius and the center are manually specified by the user such that it is 
inside the aorta.

As the authors further discuss their work in [31–33], it was pointed out that the previously 
mentioned method was used for segmenting the inner aortic wall due to the high contrast of the 
lumen to the thrombus and aortic wall because of the contrast agent injected into the patient. To 
segment the outer aortic wall that has a large contact area with other structures of similar intensity 
values, the authors applied 2D level set for each slice, and added an extra stopping criterion that 
assumes the aorta to be smooth and round. A circle is initialized utilizing the surface resulting from 
the inner aortic wall segmentation.

Nakhjavanlo et al. [34] performed 3D segmentation of abdominal and thoracic thrombus from 
CTA. This segmentation method utilized level set along with anisotropic diffusion [35], which 
would suppress noise and maintain sharp edges at the same time. The test set included 2D and 
3D CTA data. Experiments proved that this approach leads to better accuracy and speed than the 
standard implementation of level set.

In [36] Hong et al. relied on deep learning to develop a fully autonomous method for AAA 
segmentation from CT. There are two major steps prior to AAA measurement, which are localiza-
tion of the aneurysm followed by segmentation. Training and testing data were obtained from a 
single patient CT slices. Four classes were used to train the deep belief network, where the fourth 
class represents the aneurysm, and the other three classes represent other structures. Patches with 
more than one circular object or that didn’t satisfy certain conditions were excluded. The procedure 
suggested by Majd et al. [37] was utilized subsequently to segment the aorta. The center of the 
lumen obtained by thresholding would initialize the level set method to extract the outer boundary 
of the aorta.

9.2.1.3 Extensions of Deformable Models
Bruijne et al. [38] suggested a semi-automatic segmentation method for AAA based on Active 
Shape Model (ASM). The contours from previous slices are used to find the contour at a particular 
slice. The contour of the first slice is obtained manually. If the contour for a particular slice is not 
correct, the user can correct it manually. Since AAA doesn’t have a particular shape or intensity, 
the linear model was modified to use maximum intensity correlation from adjacent slices instead 
of the training data.

Bruijne in [39] compared the aorta segmentation results from 3D volume using level set 
and deformable model. The deformable model was implemented in a previous work for the 
authors in [40]. The average in slice plane error (in mm) using deformable models was slightly 
higher than that using level set. At the end of the paper, the authors suggested a better solution, 
which takes the advantages of both methods. This new system initially segments the aorta using 
deformable models, then uses level set to improve the segmentation result. This last system is 
implemented in [41]. This hybrid system has the capability to segment small structures, like 
renal arteries, is more computationally efficient than level set, and most importantly is more 
accurate than [40] and [39].

9.2.2 graPh-baseD segmentation

In a graph, vertices are connected through edges. The main technique used for segmenting the 
AAA in this section is the graph cut method.
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A 3D thrombus segmentation method utilizing 3D multi-detector computed tomography angiog-
raphy (CTA) images is developed in [42]. While the segmentation of aortic lumen is relatively easy 
due to the contrast agents injected into the patient which provides better visibility for the lumen, 
the segmentation of the thrombus is more difficult because the shape of the thrombus is irregular, 
and it can be obscured in some scenarios with the surrounding structures that may have similar 
intensity values to the thrombus. This method starts with a preprocessing step that requires an 
initial approximation of the lumen that is later used for an accurate segmentation of the lumen and 
thrombus using a graph search based on a triangular mesh. Then, the user gets to manually improve 
the segmentation result.

In [43], a semi-automatic graph cut based 3D segmentation method that works both for CT 
and MR was developed. This method segments the lumen and aortic wall, and was tested on 
patients with and without AAA, and synthetic images. This method doesn’t over segment, nor 
does it require prior information on the shape. This segmentation method is based on graph cut, in 
which the graph consists of nodes and undirected edges of weighted capacity, and a source and a 
sink nodes, in order to find the minimum cut. The graph cut method classifies the nodes into two 
subsets that either exist inside or outside the segmented area. The other nodes used to separate 
the two sets represent the edges. The volume consists of L images of N × M pixels each, and the 
user needs to manually initialize the region of interest, which would result in inside, outside, and 
neutral volumes.

Hraiech et al. [44] developed a 3D lumen segmentation method based on graph cut from CTA. In 
graph cut, the image pixels are represented by nodes connected to their neighboring pixels through 
weighted links. Also, each node in the graph is connected to source s and sink t nodes. These two 
types are known as n-link and t-link, respectively. To find the minimal cut, a cut of a certain cost 
that separates the vertices connected to the source and the sink is made. The objective is to keep this 
cost to a minimum. The moving average filter was used for noise reduction, and the user manually 
specifies the seeds of the background and the object to generate a binary image through graph cut, 
followed by a connected component analysis to exclude other irrelevant structures, and Laplacian 
smoothing in each slice before building the surface model.

Freiman et al. [45] aimed to segment the thrombus from CTA using graph-cut constrained 
by a geometric parametric model, so that neighboring tissue won’t be considered as part of 
the thrombus. The lumen volume is segmented as discussed in [46] so that it can be used for 
thrombus segmentation. To reduce user intervention, improve the accuracy, and include shape 
related information of the object to be segmented, a new energy function is iteratively mini-
mized instead of the standard graph cut in [47], such that it incorporates both intensity and shape 
constraint. The labeling map is obtained using graph min-cut, and the method in [48] is used to 
fit an ellipse into the thrombus. This process is repeated until the geometric parametric model 
converges.

Rieke et al. in [49] segmented the aorta relying on graph based and random walks from struc-
ture tensor ultrasound images and intensity ultrasound images. Graph-based methods don’t usually 
produce satisfactory results when applied to ultrasound intensity images, therefore the authors sug-
gested that the pixel context can be more useful to the segmentation process than the intensity value 
alone. Graph cut and random walk were applied to structure tensor ultrasound images, which led to 
a better accuracy than intensity ultrasound images.

9.2.3 fuzzy c-means clustering-baseD segmentation

Fuzzy c-means is a clustering method often used in image segmentation. In this section, we dis-
cuss various contributions to the AAA segmentation problem, including different variations and 
improvements of the originally suggested fuzzy c-means method.

In [50], a method is proposed to segment the lumen and aortic wall from MRI. The method 
requires two steps through which the lumen, thrombus and aortic wall are segmented. The 
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segmentation of the lumen is performed utilizing fuzzy c-means and morphological operations in 
the first step. The result from the first step is used to avoid manual initialization in the second step 
which uses the graph cut method to obtain the aortic wall and thrombus. The main advantage of this 
work is that it is fully automatic, in addition to its computational simplicity.

Pham in [51] proposed an autonomous geostatistically constrained fuzzy c-means method that 
contributes to the AAA segmentation process. The result of this method is compared to Otsu’s 
method, geo-thresholding, and fuzzy c-means. It is observed that these three techniques obtain 
the entire aorta, which contains the lumen, thrombus, and calcification as one region, while the 
proposed geostatistically constrained FCM method labels the lumen and calcification as different 
regions.

Majd et al. [52] suggested an algorithm based on spatial fuzzy c-means that contributes to the 
AAA thrombus and lumen segmentation problem. Spatial fuzzy c-means [53] algorithm is an 
improved version of the c-means clustering method. While c-means only considers the distance 
between cluster centers and the pixels, spatial fuzzy c-means takes into account pixels’ correlation 
at a local neighborhood to improve the clustering result. Once spatial fuzzy c-means is applied to 
the CT image, fuzzy thresholding, morphological erosion and thinning, and global thresholding 
are applied to obtain the final binary CT image. This algorithm led to better results than FCM and 
GCFCM, previously discussed in [51].

9.2.4 other methoDs

In this section, we include contributions that have used a wide range of algorithms and techniques 
to solve the AAA segmentation problem. It consists of machine learning, region growing, and other 
basic image processing operations such as image thresholding and morphological operations. It 
further contains other noteworthy contributions to estimate AAA geometry.

The method proposed in [54] is based on active learning, through which interaction between the 
user and the classifier occurs, for 3D segmentation of the AAA thrombus from CTA images that 
requires minimal user interaction. Random forest classifier is used for feature classification, and the 
classifier is retrained by including uncertain voxels which are manually labeled by the user.

An automatic method that provides fast and reliable patient specific 3D shape reconstruction of 
the AAA from CT, which can be used for biomechanical analysis to predict AAA rupture, is sug-
gested in [55]. Free form deformation (FFD) has limited deformations for low order polynomials, 
and generates many variables for higher order ones. In addition, extended FFD is needed because 
FFD doesn’t produce good results for complex structures as in the case of AAA. Unlike FFD, 
extended free form deformation (EFFD) doesn’t require a 3D parallelepiped lattice. The objective 
of the optimization process is to find lattice parameters that provide minimum distance between the 
manually labeled aorta contours in a CT scan and the 2D contours of the deforming template model 
of the provided healthy aorta, with the aim of producing a patient specific structure. Sequential qua-
dratic programming is used to handle this task. In order to smooth the deformed model geometry, a 
higher order polynomial function is used for EFFD.

Biasi et al. in [56] performed 2D segmentation for AAA using a series of algorithms. The CT 
image is thresholded, and morphological closing is used to improve the result. The initial segmenta-
tion utilizes canny edge detector and watershed algorithm resulting in several segments of inter-
est (SOI). Neural networks with the same number of training data for both classes would classify 
whether an SOI is a lumen or another structure. SOI are then passed to a Region Growing Method 
for a second segmentation stage. After that, extCLP was used to merge different segments that 
belong to the aneurysm. 3D reconstruction is then performed based on the polygon calculated from 
the detected edges using VDRF filter.

Bruijne et al. [57] took the initiative to develop a system that segments aortic endografts from 
CTA. Radiopaque markers of predetermined configuration were utilized to easily identify the 
location of the graft, and provide a priori knowledge in the marker detection process. Platinum 
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cylinders served as markers and were sewn along the Ancure endograft. In the marker detection 
step, the product of eigenvalues of the Hessian matrix is calculated at each voxel to determine 
local minimums, which represent candidate centers of the markers. A voxel (or center of gravity) 
is considered to be a local minimum if voxels in its neighborhood have higher intensity values. 
In order to distinguish between the true markers and other similar structures, a tracking method 
was suggested that starts with a small search space which is enlarged if the smaller one fails to 
find a marker. If the larger search space doesn’t find a successive marker or the tracked mark-
ers from the proximal and distal ends manually initialized by the operator meet, the process 
is terminated. These markers estimate the central axis and boundary location needed for graft 
segmentation.

Feinen et al. [58] developed a 3D registration technique that can be used to compare AAA 
pre and post the operation from CT images. This registration technique requires two main 
steps, lumen segmentation and graph matching. Lumen segmentation is based on the hybrid 
level set segmentation method described in [59], and the skeleton matching adopts the path 
similarity approach in [60], where the skeleton is generated as depicted in [61]. The clustering 
method in [62] is used to segment the kidneys and L4 of the lumbar spine to orient the skeleton 
correctly.

Dehmeshki et al. [63] built a fully automatic system that segments the aorta from CTA images 
and determines whether an aneurysm exists. The lumen is first segmented through thresholding, 
followed by morphological erosion to isolate it from other structures. Then the thin and lengthy 
object at the center of the body is taken to be the lumen. The abdominal section is the part 
bounded by the Celiac Trunk and the Iliac Junction. Once non-aneurysmal structures are identi-
fied, an ellipsoid fitting algorithm is utilized to obtain the aorta. Aorta maximum diameter, lumen 
shape irregularity and displacement are the parameters needed to check for the existence of the 
aneurysm.

Hosseini et al. [64] segmented the lumen and the thrombus based on the information derived 
from the histogram of the CT slice, and assumptions on the shape of the AAA. Contrast enhanced 
and non-contrast enhanced scans are included in this study. First the lumen is segmented. In con-
trast enhanced images, a threshold of 200 is used to remove objects of lower intensity values, then a 
median filter is applied followed by a morphological operation. Then a search method is employed 
to segment the lumen. In case of poor contrast, lumen is identified as the object with circular appear-
ance. In order to extract the thrombus in non-contrast enhanced CTA, the search is HU 950 to 1200. 
Some constraints based on experimental observations are defined to increase the lower limit if 
needed. In contrast enhanced images, the segmentation of the thrombus is guided by the boundary 
of the extracted lumen and the histogram of the scan, the thrombus occupies the range between the 
first two peaks in the histogram.

Rouet et al. [65] suggested a new method for monitoring AAA from 3D ultrasound images. 
This work mainly attempts to solve some limitations usually faced when using 2D ultrasound to 
monitor AAA growth. This method aims to obtain a better reproducibility than that of 2D ultra-
sound measurements for estimating AAA maximum diameter and geometry, and enables 3D cross-
sectional reconstruction for medical experts’ offline reviews in a similar way to CT and MRI. The 
aneurysm is semi-automatically segmented using the method proposed by Mory et al. in [66], and 
the proximal and distal ends are manually specified by the user to generate a referential centerline 
which is needed to obtain 2D contours of cross-sections and measure the volume. Cross-sections 
are described through an elliptic model, instead of circular, to get more accurate measurement for 
the maximum diameter as the aneurysm can have an irregular shape.

Maiora and Graña in [67] semi-automatically segmented the thrombus and lumen of eight 
datasets from CT utilizing random forest classifier [68] and active learning [69]. Active learning 
is needed to select best features for training and keep their number to a minimum, so that the 
classifier would be able to more efficiently classify a new test data. Through active learning, 
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the operator would label pixels that are most ambiguous, so that they would be added to the 
training set. In this paper, the classification result of four classifiers were compared (SVM, 
RBF, MLP, RF), where the random forest (RF) scored highest in terms of sensitivity, specific-
ity, and accuracy. Finally, morphological closing was used to acquire the final segmentation of 
the thrombus.

Almuntashri et al. [70] designed a system to segment aortic lumen from non-contrast enhanced 
2D CT and PC-MR via combining a number of algorithms. A region of interest that contains the 
lumen is specified at first, and the image is cropped. Then the noise would be suppressed via a 
method previously suggested by the authors in [71], where the Laplacian of Gaussian is computed, 
and only pixels whose values are greater or equal to LoG values are kept. After that, the second 
derivative-like measure of enhancements specifies intensity mapping and parameters for anisotro-
pic diffusion and region growing in the next step. The edge detector used was also developed by the 
authors in a previous work [72], through which the logarithmic ratio of two morphological filters 
are used for edge detection. The user should provide an initial point inside the lumen to initialize 
the region growing algorithm for the first image, and the mask centroid is computed, so that it can 
be used for initialization for the next image. The authors also claim that their method is more accu-
rate and computationally more efficient than deformable models, although quantitative evaluation 
wasn’t provided.

Shum et al. in [74] segmented the abdominal aortic wall providing a thorough quantitative 
evaluation. In order to segment the lumen, the user would provide a single click to specify a 
pixel within the lumen, and the lumen boundary is determined by the high gradient from the 
gradient computed image. Each slice is thresholded and the connected region of maximum area 
that contains the selected point is taken as the lumen. The threshold value can be modified by 
the user for a different slice. The user then specifies a threshold value to generate a boundary 
such that it encapsulates the lumen and satisfies some conditions. Manual intervention might 
be needed to correct the result or in case the detection fails. For wall thickness detection, the 
contrast of the image is improved then segmented in parallel, based on histogram and neural 
network, which results into two images with lumen, thrombus, and background. The wall image 
is obtained by subtracting the two images followed by smoothing and interpolation. The wall 
thickness is computed as the shortest distance between corresponding pixels in the inner and 
outer walls of the vessel. Twenty image datasets, half of which are ruptured, were used for 
testing. The lumen error between the averaged manual segmentation of the two surgeons and 
Simpleware is double the error of that when compared to the proposed method. Through wall 
thickness evaluation, it was observed that wall thickness for ruptured cases is greater than 
un-ruptured.

Macía et al. in [75] segmented the lumen and thrombus in 3D from CT. The user needs to specify 
the initial points for the region growing algorithm, followed by morphological closing to segment 
the lumen, so that the lumen centerline would be computed. Centroids of connected components 
in a certain slice is compared to the centroid in the previous slice, and the centroid of minimum 
Euclidean distance is picked as lumen centroid for this slice. The thrombus is represented by radial 
functions in cylindrical coordinates which encapsulate the thrombus, with the centerline as their 
origin. The outer function requires prior knowledge of the thrombus.

Bodur et al. in [76] proposed a segmentation for the outer boundary of the aorta from CTA. The 
user first provides two points that belong to the lumen, and the histogram of neighboring regions 
is calculated, and the intensity of each voxel is checked to determine the probability of it belong-
ing to the lumen. Distance tree in [77] is then utilized to extract the centerline defined as the path 
connecting the two input points, so that the slices orthogonal to it would be computed. The nodes 
where the centerline crosses the new slices are required to detect the aortic border. Afterwards, the 
isoperimetric segmentation method described in [78] was modified such that it enforces circular 
constraints to obtain the outer boundary.
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9.2.5 summary

A summary of section 9.2 quantitative evaluation results is provided in Table 9.1.

9.3 PROPOSED TOPOLOGY PRIOR MODEL BASED AAA SEGMENTATION

In this section, a statistical based method using a topology prior model, integrating both intensity 
and shape information, to segment abdominal aortic aneurysm (AAA) from computed tomography 
angiography (CTA) scans is proposed.

TABLE 9.1
Quantitative comparison of AAA segmentation methods.

Paper Evaluation Metrics Value

[16] Thrombus volume error
Max distance

4.5±5.6%
5.5±3.7 mm

[18] Mean overlap ratio,
sensitivity,
specificity

0.9316
0.9354
0.9837

[19] Disc similarity coefficient 85.08%~93.16%

[20] SI of merged volume
HD of merged volume

0.88
8.4 mm

[22] Outer wall Hausdorff Distance
Outer wall area overlap

4.160±1.096 mm
94.6±1.8%

[31] AAA correlation between proposed and manually corrected
AAA relative error between proposed and manually corrected

0.93
12.35±13.92

[37] AAA average volume overlap
AAA Average relative volume difference

95.8%
1.5%

[38] Average of two mean AAA segmentation errors 0.732 mm

[40] AAA Minimum distance error 0.57 mm

[41] Luminal surface error
Thrombotic surface error

0.99±0.18mm
1.9±0.72mm

[42] Lumen/wall volume overlap in CT
Lumen/wall Hausdorff distance in CT
Max diameter distance in CT

87.69±6.83 90.93±4.90
2.68±1.25 mm 3.09±1.81 mm
2.86±1.77 mm

[44] Thrombus mean absolute volume difference
Thrombus mean volumetric overlap error

8.0%
12.9%

[49] Aortic wall average contour overlapping 79%

[54] Average area error using 15 CT images. less than 5%

[56] Markers detected
Average relative graft volume overlap

262 out of 266
92%

[57] Mean accuracy: correctly matched points 97%

[62] Detection
Mean volume overlap

98%
0.95

[66] AAA dice Similarity measure Above 0.9

[72] Average classification accuracy per scan: accuracy, sensitivity, specificity 97.7%, 91.9%, 98.6%.

[73] Mean relative lumen area error

The mean wall thickness

5.14% for un-ruptured,
2.98% for ruptured
1.78±0.39 mm for ruptured
1.48±0.22 mm for un-ruptured

[75] Auto X/Man Diam and Auto X/Auto Diam 0.342±0.245 cm.
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9.3.1 methoDology

The proposed framework for segmenting the AAA thrombus and the lumen from 3D-CTA data (depicted 
in Figure 9.3) utilizes a label propagation, with topology preservation, scheme using both a patient spe-
cific shape model and first-order adaptive intensity model to overcome the problem of intensity homo-
geneity between thrombus and its adjacent structures. Details of each model component are discussed.

9.3.1.1 Patient-Specific Shape Model
Accurate segmentation of the abdominal aortic aneurysm (AAA) wall is very difficult since the 
intensities/grey levels of the AAA wall are very close to the intensities of other abdominal tissues. 
Thus, inclusion of information on the shape or topology of AAA wall will provide a guiding feature 
during the segmentation process and potentially enhance the segmentation accuracy. The primary 
challenge in creating a prior shape model of the AAA wall is the high intra-patient variability, 
especially due to pathology. To overcome this challenge, we introduced adaptive shape-specific 
model that is based on manual delineation of the inner and outer borders of AAA. Subsequently, 
the appearance and the topology of the manually segmented AAA wall will be used to guide the 
segmentation of the adjacent slice. Each slice segmentation will drive its adjacent one, which can be 
viewed as an adaptive label propagation process (see Figure 9.4).

9.3.1.2 First-Order Adaptive Intensity Model
Unlike traditional shape models that depend only on the mapped voxel location to calculate the 
probabilistic map, our first-order adaptive intensity model ensures that only the visually similar 
voxels will contribute in the probability map calculations for the slice to be segmented to provide 
an accurate segmentation result.

The complete framework proceeds as follows: Starting from the last slice, (1) the lumen and the 
thrombus are manually segmented by the operator, which results in two binary masks, which are sub-
tracted to produce the binary mask representing the thrombotic region in the first slice (see Figure 9.5). 
(2) Then moving backward each slice i is segmented referring to the previously segmented slice 

+ 1i( ). This procedure is performed as follows: at each voxel in the slice i an N N1 2×  window w 
is generated around its counterpart in slice + 1i( ), then voxels in that window whose Hounsfield 
values fall within a predefined tolerance ±  are selected. (3) If no voxels are found, window size 

FIGURE 9.3 Block diagram of the AAA segmentation.

τ
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is increased until such voxel(s) are found, or maximum window size is reached. (4) Then the prob-
ability of each voxel to be part of the thrombus is calculated as the occurrence of positively labeled 
voxels from the total voxels in slice + 1i  which are within the window whose Hounsfield values 
are close to the voxel in slice i. Therefore, if we have k similar voxels within the window, of which 
m are labeled as 1, then the probability of this voxel in slice i to belong to the thrombus is simply 

=p x m k( ) /TH . If p x( ( ) 0.5)TH >  then this voxel x belongs to the thrombus, and background other-
wise. (5) 2D median is then applied for each slice independently to improve the 2D segmentation 
result. (6) 3D-median filter is applied to the whole volume to improve segmentation consistency and 
surface smoothness. The final result is a binary volume that labels the thrombus across the slices.

To further illustrate this, we provide the following simple example. After the lumen and thrombus 
boundaries of slice n (last slice) are labeled to generate the binary mask in Figure 9.5, for each voxel 
in slice n-1, a 3 3×  window in slice n is established as shown in Figure 9.5. If k voxels in slice n are 

FIGURE 9.4 Step-by-step illustration of the guiding shape model.

FIGURE 9.5 The window centered at voxel x location in slice n. The window contains four visually similar 
voxels (highlighted in red), of which three are labeled as 1 resulting in Pth 3/4= .
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ALGORITHM 1 TOPOLOGY BASED SEGMENTATION

 1. Manually label the outer boundaries of the lumen and the thrombus in slice n.
 2. Derive a mask related to the thrombotic region labeled as 1 for thrombotic voxel and 

0 for background.
 3. For each slice i, i=n-1to1
 For each voxel x in slice i

a. Construct a window w around the counterpart of voxel x in slice + 1i
b. Find voxels with Hounsfield values that fall within a predefined tolerance ±τ in w
c. If no voxels are found to satisfy (b), increase size of w until correspondences 

are found or the maximum size allowed for w is reached
d. Calculate the probability p(x) of each voxel belonging to the thrombus based 

on the occurrences of white voxels from the total corresponding voxels 
which satisfy (b) in slice + 1i

e. If > 0.5p (x)( )TH , x is part of the thrombus, background otherwise
 End For
 Apply 2D median filter on the 2D segmented binary image.
 End For
 4. Apply 3D median filter on the reconstructed 3D volume

9.3.2 eValuation

This method has been tested on CT datasets collected from six patients, the region of interest to be seg-
mented appears in eight slices each, who were diagnosed with AAA, which was provided by Limerick 
University. The in-plane voxel spacing ranges from 0.7031 0.7031×  to 0.8984 0.8984× , while the 
slice thickness ranges from 1.25mm to 5mm. Final results obtained are visualized in Figure 9.6. To 
evaluate the accuracy of our method, we have used the Dice similarity coefficient (DC) and Hausdorff 
distance, that characterize the spatial overlap and surface-to-surface distances, in addition to other 
commonly used metrics, for comparison purpose, as illustrated in Table 9.2. An expert-radiologist 
manually labeled the thrombus and the lumen of the aneurysm to acquire the ground truth data to be 
utilized to evaluate the accuracy of our proposed method.

TABLE 9.2
Evaluation of the proposed thrombus segmentation 
method tested on the six patients.

Metric Mean±Std

Dice Coefficient 0.9303±0.0499

Sensitivity 0.9138±0.0621

Specificity 0.9989±0.0005

Volume overlap % 87.350±8.1800

Hausdorff distance (mm) 3.5703±3.1941

Mean absolute surface distance (mm) 0.2578±0.2274

Mean absolute volume difference % 5.3665±2.3786

Mean symmetric absolute surface distance 0.4753±0.4119

similar to voxel x (current voxel in slice n-1) Hounsfield value (within the given tolerance), and m out 
of these k voxels are labeled as 1, then p x m k( ) /TH = . If p x( ) 0.5TH >  then this voxel is thrombotic.

The related algorithm of the procedure can be described in more detail as follows:
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Figure 9.6 shows a 2D axial projection for sample results obtained by our proposed method, 
from different subjects, where the ground truth edges are plotted in red along our segmentation in 
addition to false positive and false negative (in green, yellow, and pink, respectively). It is clear from 
the sample results that our proposed method accurately segments the thrombus from its neighbors 
with little false positive segmentation as a result of high homogeneity of neighboring tissues. This 
proposed method managed to achieve results that are comparable to the best results reported in the 
literature. The mean Dice coefficient obtained was 0.9303±0.0499, and the mean Hausdorff distance 
for the thrombus was 3.5703±3.1941 mm. Our results are summarized in Table 9.2, which also pro-
vides a comparison with the best results from the literature provided in Table 9.3.

TABLE 9.3
Best literature reported thrombus segmentation results.

Ref. Metric Value S/P

19 Dice Coefficient 0.8508 to 0.9316 7/-

18 Sensitivity 0.9354 5/-

18 Specificity 0.9837 5/-

16 Volume overlap% 95±3.30 125/17

43 Outer wall Hausdorff distance (mm) 3.09±1.81 24/-

42 Mean unsigned error for thrombotic surface (mm) 1.9±0.72 1300/9

45 Mean absolute volume difference% 8.0±7.00 -/8

45 Average symmetric surface distance 1.46±0.40 mm -/8

*S/P = Slices/Patients

FIGURE 9.6 Example thrombus segmentation result taken from different patients with color-coded ground 
truth edges, false positive errors, and false negative errors (red, yellow, and pink, respectively).
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The test set used in [18, 19] is very limited. Although the testing was performed on a large dataset 
in [42], it requires several manual initializations and user guidance throughout the segmentation 
process, which explains the high performance obtained. It can be observed that our results surpass 
the best results reported in the literature for some metrics, and produce comparable results for oth-
ers, except for the volume overlap metric where our method is approximately 7.65% less than the 
highest reported value.

9.3.3 summary

In conclusion, this chapter has suggested a new statistical-based method for abdominal aortic aneu-
rysm (AAA) segmentation from 3D-CT, which utilizes topology (both intensity and shape) informa-
tion to perform the segmentation. The results obtained are competitive to the best results reported 
in literature. This makes it a promising robust medical tool to perform aneurysm segmentation to 
reduce the burden on radiologists.

9.4 DETECTION OF CALCIFICATION FROM AAA

Once the thrombus containing calcification deposits has been successfully segmented, the next step 
would be the detection of calcification. We use Bayesian classifier for this task. This can serve as a 
medical tool for detection and quantification of calcification, so that calcification can be included in 
rupture risk models to reduce fatalities and provide more accurate diagnosis.

Upon reviewing the literature, we didn’t find any contributions that attempt to detect calcification 
specifically from AAA. This makes us the first to attempt to detect calcification from AAA.

9.4.1 methoDology

A total of 25 slices and 22 slices were used for testing and training. 4357 and 120473 data sam-
ples were used to train the calcification and thrombus (without the calcification) respectively, and 

TABLE 9.4
Parameter producing best results for each patient.

Patient No. Max Window Size Tolerance

1 15 3

2 19 0

3 17 1

4 17 0

5 5 3

6 15 2

The most important parameters that affect the segmentation result are the tolerance τ, which 
controls the voxels that will contribute in the current voxel probability calculation, and the maxi-
mum window size, which determines the search space for these voxels. Both of N1 and N2 are 
equal, starting with 3 3×  until the maximum window size is reached. Maximum allowable tolerance 
τ has to be specified as well. The Dice similarity coefficient and Hausdorff distance are the most 
important metrics. Varying these two parameters ( =1 2N N , and τ) doesn’t or slightly affects these 
metrics. This means that the performance of the system is stable. Because we are quantitatively 
comparing our work with the best values from the literature, we picked the parameters that would 
produce best results as well. Table 9.4 specifies the parameters used for each patient, which would 
produce the best performance.
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145945 data were used for testing. Hounsfield value was the feature selected to train the two classes, 
because they are visually distinguishable.

Bayesian classification is a probabilistic classification well established in pattern classifications. 
A voxel x is considered part of calcification region if

 p calcification x p thrombus x( \ ) ( \ )>  (9.1)

Using the Bayes theorem we can write the above inequality as

 p calcification p x calcification p x p thrombus p x thrombus p x( ) ( / )/ ( ) ( ) ( / )/ ( )>  (9.2)

Assuming that the prior p(calcification) and p(thrombus) are equal (this is a reasonable assumption 
as nearly all the slices derived from the patients’ scans contain these two regions), we can bring the 
inequality to the following expression

 p x calcification p x thrombus( / ) ( / )>  (9.3)

The class-conditional probabilities densities functions p(x/calcification) and p(x/thrombus) are 
computed using histograms derived from the training data and normalized afterwards. These two 
histograms are illustrated in Figure 9.7 and Figure 9.8, respectively. Now, for a new test data of 
certain Hounsfield value, this value will be compared with the probabilities of the two classes. The 
higher probability value will determine to which class this new test data belongs. Sample segmenta-
tion results are depicted in Figure 9.9.

9.4.2 eValuation

It important to note that due to the fact that calcification deposits have a small area, and in order to 
have a meaningful evaluation, sensitivity and specificity were used to evaluate calcification detec-
tion accuracy. In order to improve calcification detection accuracy, the effect of using the actual 
priori probabilities and morphological closing are studied as well. Bayesian classifier results for 
different scenarios are summarized in Table 9.5.

FIGURE 9.7 Normalized histogram of data used to train the calcification class.



189Detection of Calcification from AAA

FIGURE 9.8 Normalized histogram of data used to train the thrombus class.

FIGURE 9.9 Sample results of detected calcification using Bayesian classifier. Blue pixels are TPs, yellow 
are TNs, green are FNs, reds are FPs.

TABLE 9.5
Calcification evaluation results.

Metric/
Classifier

Bayesian 
(equi-

probable)
p c = 0.1( ) , 
p t = 0.5( )

p c = 0.0349,( )
p t = 0.96509( )
(using actual 

priori 
probabilities)

After 
morphological 

closing 
(equi-probable)

After morphological 
closing

p c = 0.0349,( )
p t = 0.96509( )

Removing 
regions with 

area < 2

p c = 0.0349,( )
p t = 0.96509( )

Sensitivity 0.9580 0.9235 0.8188 0.9626 0.8250 0.8142

Specificity 0.9428 0.9767 0.9937 0.9328 0.9932 0.9960

Accuracy 0.9433 0.9750 0.9880 0.9338 0.9877 0.9900
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The radius used for morphological closing (disk) for the equi-probable case is 1. Increasing this 
radius any further slightly improved sensitivity, but significantly dropped specificity and accuracy. 
0.9630, 0.8965, and 0.8987 were obtained for radius of 2 the three above metrics, respectively. 
Sensitivity of 0.8301, specificity of 0.9922, and accuracy of 0.9869 were obtained using a disc of 
radius 2 with p c( ) 0.0349=  and p t( ) 0.96509= . It should be noted that the result was still visually 
similar to (2) even after applying morphological closing, so connected components with voxels less 
than 2 were removed instead (using the actual priori probabilities). These results are illustrated in 
Figure 9.10.

9.4.3 summary

Good calcification detection results were obtained from segmented abdominal aortic aneurysms 
using Bayesian classifier. Larger training and test sets are to be used next, and other types of classi-
fiers are to be tested to determine which leads to the highest sensitivity and specificity.

9.5 CONCLUSION AND FUTURE RESEARCH

From the literature review, a few conclusions can be drawn. The segmentation of the lumen 
is a straightforward task, and has been successfully performed in multiple ways as illustrated 
earlier. For the more difficult task of thrombus segmentation, further research still can be 
conducted to develop an efficient solution to the leakage problem faced by most of the exist-
ing methods. More importantly, to build a more precise biomechanical model for rupture risk 

FIGURE 9.10 Sample results of detected calcification using Bayesian classifier in case (1) equiprobable classes, 
(2) using the actual priori probabilities, and (3) result of applying morphological closing on (2). (4) Result of 
removing regions less than 2 voxels (2). Blue pixels are TPs, yellow are TNs, green are FNs, reds are FPs.
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prediction, the problems of vessel wall segmentation and calcification detection have to be 
addressed properly by the image processing community. There are four main criteria that have 
to be present in future designed solutions. They need to be highly accurate such that they at 
least produce comparable results to the manual segmentation performed by the medical expert. 
The total volume processing and user interaction time, which guides throughout the segmenta-
tion process, should be a few seconds at maximum, and the manual correction step afterwards 
should be canceled. It is also needless to mention that the developed tool needs to be reliable 
and robust enough to handle different AAA scenarios and variations, and achieve an acceptable 
reproducibility.

In future work, we plan to:

a. Further improve the proposed thrombus segmentation method so that it would score best 
for all evaluation metrics when compared to the literature.

b. Improve methods of automation. This can be done by automatically segmenting the 
lumen in the last slice once the outer boundary of the aneurysm has been labelled by 
the user/operator. Lumen detection can be performed in multiple ways as previously dis-
cussed in the literature.

c. Explore other directions to increase calcification detection accuracy.
d. Perform further testing on a larger test set. We plan to introduce this as a formal dataset 

to provide ground truth data, and our segmented results for comparison purposes.
e. Use this tool to include calcification in RR prediction models to prove that the inclu-

sion of calcification data in the models coupled with the maximum diameter parameters 
would enhance RR prediction methods. Such an approach could lead clinicians to for-
mally adopt and accept this new method for rupture prediction.

f. Introduce a standard online dataset that can be used by other researchers, to have mean-
ingful and fair comparisons between different contributions.
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10.1 INTRODUCTION

Cardiac image analysis has become an important tool for improving medical diagnosis and plan-
ning treatments. It involves volume or still image segmentation and classification of different 
anatomical structures, such as the heart and its cavities as mentioned in the method’s reviews by 
[1, 2, 3], or isolated structures like ventricles as in [4, 5, 6, 7], or different analysis such as heart 
movement measurement [8]. All of these tasks play a critical role in understanding image content 
and facilitating extraction of the anatomical organ or region-of-interest. They may also help towards 
the construction of reliable computer-aided diagnosis systems.

Cardiac segmentation is still a challenging task due to biological aspects that depend on the diverse 
organ anatomy and physical issues that image modalities must face. These include, for example, noise due 
to unwanted movements as well as from the respiratory system, cardiac synchronization, and differences 
in anatomy when a pathology occurs. Defining heart’s edges and structures is of considerable importance 
in medical imaging, and results are not always as expected. If, in addition, we add organ movement, it 
increases the difficulty of the task. Such is the case of the heart and its corresponding expansion and con-
traction. The visualization of human organs also depends on the type of image technology used.

Cardiac computed tomography (CT), nuclear cardiology, echocardiography, cardiovascular mag-
netic resonance (CMR), positron emission computed tomography (PET), and coronary angiography 
are imaging modalities that have been used to measure myocardial perfusion, left ventricular func-
tion, and coronary anatomy for clinical management and research.

The practical clinical application of these modalities depends heavily on their specific inher-
ent strengths and weaknesses. This large variety of imaging techniques has resulted in a lack of 
standardization and has made accurate intra- and cross-modality comparisons for clinical patient 
management and research very difficult.

In the case of left ventricular systolic dysfunction, the most pressing consideration is to deter-
mine if coronary artery disease, valvular disease, or any other etiology is responsible for [9]. If heart 
failure occurs, the heart shows reduced function. This may cause the left ventricle (LV) to lose its 
ability to contract or relax normally. In response, LV compensates for this stress by modifying its 
behavior, which creates hypertrophy that causes enlargement and hardening of the LV muscles and 
progresses to congestive heart failure [10].

Non-invasive imaging evaluations and clinical controls increase the probability of the survival 
of patients. They are also very important in the initial assessment of patients with new-onset heart 
failure [11]. Information about the current condition of the anatomical structures of the heart is 
needed for an early and accurate diagnosis. In the case of suspected heart failure, the most com-
mon image modality is the ultrasound-echocardiography due to its low cost and good spatial reso-
lution. However, the reproducibility of quantitative measurements is user dependent and can be 
variable [9]. Magnetic resonance imaging (MRI) has also been used as a reference method [1]. It 
is useful for scanning and detecting abnormalities in soft organs, and there is no involvement of 
any kind of radiation, yet it is expensive and presents limited availability compared with computed 
tomography (CT) [12]. MR technology offers high resolution and SNR among other characteristics, 
however, it is an expensive alternative that few hospitals can afford.

CT has the advantage of being more accessible. In the X-ray technology, the calibration curves 
needed are well known, while in MR there are large characteristic variations to consider for its pro-
cedures. Most medical segmentation algorithms are created for magnetic resonance images because 
of the good contrast offered by this technology. Although CT imaging does not provide suitable con-
trast resolution in comparison with MRI, it is far more accessible and has enough spatial resolution 
to distinguish adjacent organs [13]. In addition, it is a growing tendency for the cardiac CT studies 
because of its cost [14] and other advantages. However, it is well-known that CT-based heart seg-
mentation is sensitive to initialization, noise, and image characteristics. In the case of heart failure 
along with coronary artery disease, CT imaging provides insights and detailed information of the 
heart that support and tailor treatments. Furthermore, heart examination using CT generates 2D and 
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3D high-resolution images throughout the entire cardiac cycle, which are useful for segmentation 
tasks. In addition, the use of contrast agents can improve endocardial border definition.

Several techniques have been developed for epicardium and endocardium segmentation using the 
short axis view. Petitjean and Dacher [2] presented a review of a large group of automated and semi-
automated segmentation methods. Kang et al. [1] also wrote a review about the most used methods in 
cardiac segmentation. The review includes methods based on atlases, deformable models such as level 
sets (LS), and statistical models with prior knowledge such as active shape models (ASM). However, 
these methods are focused on MRI. Also, some methods mentioned, such as classic active contours 
and level sets, are associated with a minimum functional, which often leads to over-segmentation [15].

Therefore, other studies have suggested that the combination of different techniques may improve 
organ segmentation [16, 17, 18, 19]. For instance, in [6], the authors improved the weighted C-means 
clustering [20] with a fitting model. In [18], Kronman et al. proposed an adjustment to the segmenta-
tion by using active contours based on level sets and a correction of the segmentation leaks using a 
ray casting method. Ma et al. [5] used a Haar classifier to detect the heart area. Then, the segmenta-
tion is performed with an ASM. Dolz et al. [21] showed a hybrid approach combining a watershed 
transformation with graph-cut segmentation in order to delineate organs such as the spinal canal, 
lungs, heart, and pericardium. Antunes et al. [7] used level sets to extract the cardiac surface from 
multi-detector computed tomographic data. The authors coupled a 3D level set with a stopping func-
tion based on a multi-scale second derivative Gaussian filter. The results show that the combination 
of methods outperforms single approaches.

Ultrasound analysis is the standard modality in the evaluation of fetal heart during pregnancy due 
to the low risk that this medical imaging technique represents for the fetus and mother. Ultrasound 
systems are used for the assessment of the cardiac function. For evaluation and diagnoses in fetal 
echocardiography, it is commonly needed to perform quantitative analysis. Some measures that 
can be obtained for this task are stroke volume, ejection fraction, and dimensions of the ventricular 
wall. Motion estimation of the heart cavities can be also performed for heart evaluation. Current 
advances in ultrasound systems allow the acquisition of data in two, three, and four dimensions.

In recent years, different approaches have been proposed to evaluate the cardiac cavities in order 
to detect heart diseases and cardiac defects of the fetuses. Some of them are focused in determining 
the size and dimension of the cavity structures. Normally, these annotations on the fetal heart are 
manually realized by the expert, which is time consuming, tedious, and operator-dependent. For 
this reason, automatic segmentation methods are necessary for fetal assessment. However, this task 
is challenging because of the characteristics of ultrasound images and the changes that might suffer 
the cardiac cavities during gestational ages [22, 23, 24, 25].

Ultrasound data has many limitations for analysis, which result in quality loss, such as low 
contrast, lack of contours, and artefacts. These limitations hinder the examination and diagnostic 
accuracy of the studies. These problems also influence the development and effectiveness of seg-
mentation techniques. Different methods have been proposed to address this. One of the methods 
frequently used in the analysis is a prior knowledge-based technique that uses a training set to code 
the variability of known shapes [26, 27, 28, 29, 30].

On the other hand, methods that resemble the human visual system have increased in popular-
ity because they allow images to expand into a local decomposition that describes intrinsic attri-
butes related to important cues and highlights structures that are useful for segmentation [31]. The 
Hermite transform (HT) [32, 33] has been used successfully as a texture descriptor in [34] and [35]. 
The HT is a special case of the polynomial transform and is based on Gaussian derivatives, thus it 
is possible to compute local orientation analysis.

In this chapter, four approaches are proposed to improve actual segmentation on cardiac studies 
with local analysis.

The segmentation schemes were applied on endocardium and/or epicardium, and are based 
on various active contour and statistical algorithms using steered Hermite coefficients as local 
descriptors.
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10.2 SEGMENTATION METHODS

This section briefly presents the foundations of segmentation models used in this research. As men-
tioned previously, adequate border delineation is highly desirable in many organ structures. Some 
early models used for this objective were the active contours and deformable models, which provide 
powerful advantages to the image analysis field. Segmentation tasks are still challenging because of 
the nature of the organ anatomy, their function and their image characteristics, such as noise, artifacts, 
and acquisition protocols. The most common segmentation techniques can be classified in two sets [1]:

Segmentation techniques without previous knowledge of the segmented object or with 
very little information. They include most of the basic methods based on image informa-
tion or pixel classification. These techniques include algorithms such as thresholding, bor-
der detection, region growing and graph-cuts, as well as basic level sets.

Segmentation techniques with more elaborated previous knowledge, like deformable 
models, active shape models, active appearance models, and atlas based methods. The 
prior knowledge can be a speed restriction, a maximal statistical distance between two or 
more organs, or a shape restriction that modifies the curve evolution.

This chapter’s objective is to show how to improve different schemes of segmentation tech-
niques, such as active contours and deformable models, which belong to the more robust segmenta-
tion category, making use of local analysis methods. These models rely on the idea that a curve from 
a given image, subjected to some constraints, can evolve in order to detect objects and sometimes 
even specific shapes. This chapter is focused on two different models: statistical models and deform-
able models implemented by level sets.

Active shape models (ASM) and active appearance models (AAM) [36], [37] are part of the statisti-
cal deformable models; they can detect objects with specific shape boundaries. Cootes et al. [36], [37] 
argue that a shape model can deform to some extent within a certain variability. Therefore, ASMs and 
AAMs are able to deform their shape so that they resemble the real organ. Other studies such as [38] 
and [4], have applied ASMs to different anatomical organs, such as heart and pediatric cerebellum.

Deformable models and their implementation by level sets proposed in [39] have been widely used 
in medical image segmentation [40]. They deform according to the image features used to handle the 
curve evolution, and they can be categorized as edge based [41], region based [42], [43], and model 
shape based [44], [45]. An extension of the method for vector-value images was proposed by Chan and 
Vese [46] and was applied to color images. Additionally, Paraggios et al. [47] applied it to supervised 
texture segmentation problems. The vector value extension allows for the introduction of different 
kinds of features at the same time without requiring any prior knowledge. For example, Brox et al. [48] 
simultaneously introduced texture features, gray level, and optic flow for the segmentation process.

10.2.1 hermite transform

The Hermite transform is a special case of a polynomial transform that incorporates biological 
properties due to the similarity between Gaussian derivatives and receptive fields in the human 
visual system [49, 32, 33]. The main advantage of this tool is the easy extraction of important details 
as lines, edges, and texture information by applying a decomposition scheme.

The Hermite analysis functions Dn  are a set of polynomials obtained from the product of a Gaussian 
window and the Hermite polynomials Hn, the latter functions are obtained using the Rodrigues’ for-
mula [50]. The value of n indicates the order of analysis and σ  the spread of Gaussian window,
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These functions in Eq. (10.1) are used to expand a signal at every window position providing a 
localized representation. For the two-dimensional case (see Figure 10.1), an image I x y( , ) can be 
projected into the analysis functions since they are spatially separable and rotationally symmetric, 
that is =− −D x y D x D yn m m n m m( , ) ( ) ( ), .
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for n = … ∞0,1, ,  and m n= …0, , .
A steered version of the Hermite transform (SHT) is based on the principle of steerable fil-

ters [51] and implemented by linearly combining the cartesian Hermite coefficients, Eq. (10.3) and 
Eq. (10.4). The steering property is useful to adapt local orientation content according to a criterion 
of maximum oriented energy, then achieving compaction [52].
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where Rn m m ( ), θ−  are known as the cartesian angular functions, which indicate the direction of maxi-
mum oriented energy at all window positions. This energy is preserved in terms of its coefficients 
and can be expressed by the Parseval’s formula:
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An extension to three-dimensional signals is straightforward since the Gaussian function is sepa-
rable. Following the decomposition scheme for the 3D case, the expansion can be performed by 
convolving a volume I x y z( , , ) with the set of Hermite filters in x y,  and z  coordinates.

10.2.2 actiVe aPPearance moDel for fetal ultrasounD left Ventricle

Active appearance models (AAM) are very popular and well-known methods for medical image 
analysis. In cardiac segmentation of ultrasound images, AAM has demonstrated being highly robust 
to typical limitations such as missing edges and low contrast.

FIGURE 10.1 Spatial Hermite filters (left) and their corresponding frequency response (left center). Hermite 
coefficients of a cardiac CT image in the cartesian form (right center) and the steered version (right) from order 
0 up to 3.
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FIGURE 10.2 Example of the shape and texture patch selected from a training sample.

The AAM technique consists of computing a statistical model from a training set, which codes 
the shape and texture changes of the specific structure under analysis. In the AAM scheme, the 
shape and appearance parameters are combined. The statistical model is built from a set of anno-
tated shapes that correspond to the structures of interest. In this way, the point’s information given 
by the landmarks represent the shape and the gray levels corresponding to the texture of the marked 
structures. Initially, a specific number of training samples is selected from the dataset. Therefore, 
the prior knowledge used in this technique is a remarkable advantage when comparing with other 
methods. The standard AAM basically involves three stages. In the first stage, a statistical model is 
built considering the shape of the object. Afterwards, a statistical texture model is obtained using 
the appearance features inside of the marked region. Finally, shape and appearance models are 
combined.

10.2.2.1 Point Distribution Model
The statistical shape model is obtained from a set of N  training images in which manual anno-
tations are realized on the structure of interest. An important aspect of this method is that each 
shape Si  (with i N= …1,2, , ) of the dataset must contain the same quantity of landmarks. Then, 
S F F Fi i i im{ }= …,  ,  , 1 2  where =F x yik i i( , ), k m= …1,2, , . Here, m is the number of landmarks used 
for the shapes, and N  is the number of samples. An alignment process is applied to all shapes 
with the aim of reducing the differences regarding the scale, translation, and rotation [53, 54]. 
Figure 10.2a shows an example of an annotated shape corresponding to the LV.

Principal component analysis is calculated for reducing data dimensionality and determining the 
main variation modes visible in the training set. The shape model associates the mean shape with 
the matrix  which contains the eigenvectors given by PCA. The shape model is obtained by the 
following expression

 S S b= +  (10.6)

where S  represents the mean shape computed from the set of aligned points.   is the eigenvector 
matrix corresponding to the highest eigenvalues sλ  computed through PCA. The shape parameter 
b  varies in the range defined by bs s s− λ ≤ ≤ λ3 3  [12, 13].
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10.2.2.2 Statistical Texture Model
The appearance model is a robust technique that uses texture attributes for analysis and 
image modeling. The texture information is obtained from the intensity levels of the object of 
interest. The patch enclosed by the shape points must be selected. A vector Gi   of gray levels 
is built for each structure of the training set. Then, G g g gi i i ik[ ]= …, ,  ,1 2 , where i N= …1,2, , . 
Here, k  is the number of elements of the vector and gik represents the gray level intensity. An 
example of a texture patch obtained from an annotated echocardiography image is shown in 
Figure 10.2.

An alignment process is performed with a selected reference texture. A normalization process 
is also required [53]. In order to obtain the same number of pixels, an affine transformation [55, 56] 
and triangulation methods are used [57]. Similar to the shape model, the mean texture and PCA are 
found to build a statistical texture model. Therefore, the eigenvector matrix T  corresponding to the 
highest eigenvalues nσ  is used to build the texture model, which is written as

 G G Br= + ,  (10.7)

where r is the parameter that allows deforming the model. This variable is known as the texture 
parameter, and it has a variation range defined by rn n n− σ ≤ ≤ σ3 3 .

10.2.2.3 Statistical Model Combination
As mentioned, AAM is a combination of the texture and shape models. These features allow better 
appearance modeling, which generates a robust method. A concatenation of the shape and texture 
parameters must be performed. Then, the combined model can be defined as
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where the term ρ  is a weight matrix that balances the differences found in the variation range 
between b  and r. This variable is needed because these parameters measure different magnitudes. 
PCA is applied to the combined model h. Finally, the statistical model that incorporates shape and 
texture features is calculated as:

 h Qc= ,  (10.9)

where Q  contains the eigenvectors given by the significant eigenvalues fϑ , and c is the final param-
eter, which deforms the shape and texture model at the same time. The variation range of c is speci-
fied by cf f f− ϑ ≤ ≤ ϑ3 3 . Equations (10.6) and (10.7) are then rewritten as:

 S S Q cS= + ρ−  1

 
(10.10)

 G G BQ cG= + ,  
(10.11)

where QS  is the eigenvector matrix of the shape model, and QG  is the eigenvector matrix found for 
the texture model.
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10.2.2.4 Segmentation Using AAM
The method used to segment new samples computes the smallest difference between the target 
image from the model and a new input image. The difference vector is determined by

 I I Iinput image trained modelδ = −     
(10.12)

During the process, the parameter c  must be calculated iteratively (see Eq. 10.13). For this purpose, 
a regression matrix must be used. This regression matrix is found in the training process and is used 
to code the variation of shape and texture of the structure of interest [36, 53]. The process finishes 
until the parameter does not change its value.

10.2.2.5  AAM Multi-Texture Scheme Based on the Steered Hermite 
Transform Applied to Fetal Echocardiography

Common problems found in ultrasound images can substantially reduce the efficiency of the seg-
mentation methods such as AAM [58, 59]. The problem is more severe when working on fetal 
echocardiography. The image is significantly degraded by the speckle pattern and other artifacts 
that hinder the ability to detect some characteristics such as boundaries and homogeneous regions. 
Many researches have proposed denoising techniques to improve the segmentation performance on 
echocardiography, while other authors consider the speckle pattern to be essential for the analysis 
[60, 61]. Following this assumption, we can use the steered Hermite transform to code the texture 
information. As described, the AAM uses texture patches to build a statistical model. Since the 
Hermite transform is an operator with remarkable abilities for coding texture features, it can be 
combined with AAM.

The method described here uses the steered coefficients of the Hermite transform to build a 
multitexture AAM scheme. This method was proposed by Vargas et al. [62]. Here, coefficients 
Lθ

0,0 , Lθ  1,0  and Lθ
2,0  are used to code the texture features in AAM. These coefficients concentrate the 

maximum energy of the transformation. Figure 10.3 presents an example of the Hermite transform 
and the rotated version applied to a cardiac fetal ultrasound image. Each coefficient is independently 
used to build an AAM. Finally, the three models are combined using a weighted scheme. With these 

a. Cartesian coefficients b. Steered coefficients

FIGURE 10.3 The Hermite transform applied to a cardiac ultrasound image.
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coefficients, we can code intensity, edges and zero-crossing features. The steered coefficients are 
used because they provide directional analysis, which is an important property when working with 
textures.

During the segmentation, an AAM-based search must be performed using the texture Hermite 
coefficients of the input image. Similarly, the differences (Eq. 10.12) and the statistical models for 
each steered coefficient must be found. Then, the optimum parameters  j0 are calculated as

   Bj
It

j
It

j j= − δ−   0 0
1

0 0  
(10.13)

where j0  with j = 0, 1, 2  correspond to the SHT coefficients. Here, j 0 is the regression matrix 
obtained from the training stage and It  is the current iteration. The process requires an initial 
parameter  j0  which is commonly set to zero. Therefore, the texture model is updated using 
Eq. (10.11) for each steered Hermite coefficient. The main objective is to obtain the contour of the 
cardiac structure. A general statistical shape model is obtained by using a weighted combination of 
the three shape models. Then,

 

S a S Q cot

j

j j j j j j
t∑ ( )= + ρ

=

−

0

2

0 0 0
1

0 0

 

(10.14)

where aj  is the weight parameter normalized to aj j 10
2∑ == . Figure 10.4 shows examples of the 

modes of variation captured for a multitexture AAM associated to the steered Hermite coefficients.

10.2.2.6 Segmentation Examples
Figure 10.5 illustrates some examples of the segmentation achieved using the AAM method based on 
the steered Hermite transform. Images correspond to two examples of fetal echocardiography. Each 
row represents a different image. Examples are shown for several iterations. It can be noted how the 
initial contour, shown in Figure 10.5a, is updated until reaching the final segmentation (Figure 10.5d). 
In the last column, both contours, the initial shape (green contour) and the final one (red contour), are 
drawn together with the aim of illustrating the deformation suffered by the initial shape.

FIGURE 10.4 Modes of variation generated using three SHT coefficients.
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In the examples described previously, it was assumed that an initial shape was available, which is 
a requirement for AAM-based methods because they consist of local techniques. Finding an accept-
able initial shape is another challenging problem that must be resolved. Vargas et al. [62] proposed 
an interesting initialization scheme for these types of applications.

The segmentation obtained with this method can be used for computing some clinical measure-
ments that are useful for assessment of the fetal heart. Moreover, the segmentation might contribute 
to evaluating the motion of the LV if performed in all images of an echocardiographic sequence.

10.2.3 actiVe shaPe moDel for ct left Ventricle

In [36], Cootes et al. proposed active shape models (ASM) as a refinement of statistical deformable 
models. As part of the method it trains a known shape, with the final purpose of recognizing it in 
a new image. An ASM creates a point distribution model (PDM) from a certain number of similar 
shapes and from there obtains an average shape X . The goal of the approach is based on the idea 
that it is possible to deform X   to some extent to produce certain variability until the ASM meets the 
boundaries of the object of interest.

The algorithm consists basically of two steps: build a statistical shape and gray model from a set 
of aligned shapes and at the same time compute a gray level appearance model to obtain specific 
characteristics of boundary points; and execute an ASM search, to recognize a similar model shape.

Statistical shape model is obtained by executing a statistical shape and a gray-level profile 
model.

1. A set of M aligned shapes is built. We use manual annotations for each volume to be involved 
in the training phase, delineating contour lines of the shape for each image. An alignment 
is applied to each shape involving translation, rotation, and size transformations. For each 
training shape, a vector of landmarks is obtained S x y x yi n n

T (( ,, ), ,( ,, ))0 0 1 1= …{ } { } { } { }{ } − − . So 
that the average shape is the mean shape, X , is the average of all landmarks X SM k

M
k

1
0
1= ∑ =

− .
2. The variations of the mean shape are obtained by computing principal component analy-

sis [36], [37], and single value decomposition is used to find the point distribution model 
(PDM) parameters [63]. The least significant eigenvalues and eigenvectors are removed to 
avoid singular correlation matrix and data over-fitting [64].

FIGURE 10.5 Segmentation example using the AAM based on the SHT. Each row represents different 
examples. a-d. Iterations of the method until reaching the desired segmentation (red contour).
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The number of training datasets is often (very) small in comparison to the number of landmarks, 
and they can lead to a singular correlation matrix and over-fitting of the training data. To reduce 
such effects, it is necessary to crop the number of eigenvalues, keeping between 90% and 99.5% of 
the variance in the training data. The mean shape is deformed within certain limits to recognize a 
new shape according to X X Pb= +ˆ , where P is the matrix of the t first principal components, b is 
the weight vector, and X̂  is the estimated shape.

The gray-level profile model is also part of the training statistical model construction. Since 
shapes are described by points enclosing a contour, gray-level profiles normal to each landmark 
point are calculated. First and second moments are obtained by calculating the mean and covariance 
matrix from the training set. Either the gray profile or its normalized derivative can be employed.

10.2.3.1 ASM Search

1. In the search phase X  is placed close to the object of interest manually. The mean shape 
is deformed within certain limits to recognize a new shape as follows: X X Pb= +ˆ . Each 
landmark in X  is compared against its corresponding profile, which is a line of pixels that 
is perpendicular to the landmark. Then the landmarks are moved iteratively toward those 
that obtain the lowest distance, using for example the Mahalanobis distance. The new con-

tour coordinates, X̂ , are an estimate of the original contour.
It is possible to generate new shapes by modifying a parameter b within certain limits 

to obtain similar shapes of the object to be recognized [65]. Here, b is constrained to the 
range ± λm i  with m between 2 and 3. This restriction limits shapes within 2 or 3 stan-
dard deviations of the distribution of shapes in the training data.

2. When new positions for the landmarks are found, an aligning process must be computed to 
adjust the shape. Pose parameters are used to calculate final deformations to move the cur-
rent estimate to a new position. The process is iterative and stops when a specific number 
of iterations or a threshold is reached (see Figure 10.6).

It is well-known that ASMs are often limited when dealing with texture segmentation because 
they model contours using only shape. Typically, gray level information is included in the functional 
that drives the fitting of the contour.

FIGURE 10.6 ASM Adjustment of ventricle shape on a CT image.
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The goal of this study is to identify endocardial and epicardial walls that contain myocardium 
with better precision. In the dataset, the endocardium possesses good contrast, while the epicardium 
is not always well-defined. Several attempts to segment such structures have been made, such as the 
ones mentioned in the Introduction, but still better techniques are needed to improve results.

Taking advantage of the SHT, it is feasible to characterize important tissue structures and incor-
porate the information from the Hermite coefficients (HCs) into the ASMs schemes to improve the 
segmentation.

A dataset of 28 annotated tomographic cardiac studies was acquired from healthy subjects with a 
CT Siemens dual source scanner (128 channels) at Centro Médico ABC México. The heart volumes 
were captured in signed 12-bits DICOM format. The age of subjects ranges from 17 to 81 with an 
average age of 55; 16 studies belong to males and 12 studies belong to females. All patients present 
low risk for coronary artery disease and atypical chest pain.

Each study belongs to a single subject and consists of 10 volumes taken at different times dur-
ing the electrocardiography (ECG)-synchronized cardiac cycle. This method is called ECG-gating, 
where a volume is acquired only during certain consecutive periods of the cardiac cycle being ret-
rospectively reconstructed. It covers systolic and diastolic cardiac phases.

The studies start on a final diastolic (relaxing) phase, go throughout the systolic (contrac-
tion) phase, and return to the diastolic phase, providing images at 0%, 10%, 20%, 30%, 40%, 
50%, 60%, 70%, 80%, and 90% of the cardiac cycle. The spatial resolution values range from 
0.302734×0.302735×1.5 [mm] to 0.433593×0.433593×1 [mm]. As a prerequisite for left ventricle 
(LV) visualization, the heart must be oriented in order to obtain a canonical view: horizontal, long, 
and short axis views. The short axis view shows a plane that is perpendicular to the long axis and 
gives a suitable cross-sectional view of both ventricles [66], [67]. On the short axis view, the LV is 
aligned vertically from the base of the heart to the apex (see Figure 10.7).

The first step is to seed a suitable initialization for the ASM algorithms. This is accomplished 
by estimating the position of the centroid of the LV blood pool during the diastole phase using a 
compactness metric similar to Lu et al. [16] . This is a simple yet effective way to compute the initial 
pose. This step is performed on a slice from the mid-third or mid-cavity of the heart volume [3], [68]. 
A limitation of this step is that in the case of failure the LV cavity center must be manually specified.

FIGURE 10.7 CT image of the heart displayed using the short axis view where it is possible to see the right 
and left ventricles. The red ellipse defines the endocardium, whereas the blue ellipse defines epicardium.
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10.2.3.2 Combining Active Shape Models with the SHT Coefficients
In [64], the authors proposed to combine ASMs and local binary patterns by considering only 
landmark profiles. Here, we extend the area of analysis and propose to combine ASMs with HCs to 
improve the segmentation of the LV. In addition, changes are made to the original ASM algorithm 
and three methods are explored: ASM, ASM-Profile with HCs, and ASM-Quadratic with HCs.

For all the cases, the initial parameters are set to: number of landmarks = 70, normal profile 
length = 11, and iterations = 60. These values were chosen based on the results of the experiments. 
Different combinations were evaluated such as the number of landmarks, profile length, and number 
of iterations.

In the ASM/Profile-HC (ASM/PHC) during the training phase, the Hermite coefficients are 
calculated over square regions of 9×9 pixels around every landmark based on the approach pre-
sented in [64]. Then, a histogram that describes the corresponding landmark is constructed for 
each Hermite coefficient, and then the final histogram is obtained by concatenating the four local 
histograms, as shown in Figure 10.8.

The histograms obtained during the recognition phase are compared against the trained model 
histograms of the corresponding landmarks, so that the closest point to the boundary is the one with 
the smallest histogram distance. We used the Chi-square distance. This distance can be used as a 
measure of dissimilarity between distributions, specifically between two histograms. It has also 
been used in applications such as texture and object classification and image retrieval [69].

The final histogram is created by concatenating the histograms of the HCs as follows:

 
)( =  { } { }{ } { } { }p r n ,n ,n ,nkL kL kL kL kLn 0 1 2 3  

(10.15)

where k{ }n  represents a k-bin histogram of the Hermite coefficients kL ,  kL ,  kL ,  kL  0 1 2 3 that cor-
respond to the profile p(r )kLn{ }  is the final histogram of the kLn coefficients that is normalized by the 
size of the image M (rows) and N (cols). Finally, the landmark position is adjusted by computing the 
smallest distance between the training landmark histogram and the profile’s histograms of the new 
image according to the Chi-squared function.

FIGURE 10.8 Histogram concatenation on the Hermite coefficients.
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10.2.3.3 ASM/Quadratic-HC (ASM/QHC)
This proposal computes HCs over four square regions defined by a 7×7 pixel window around the 
landmarks. The quadratic region used in ASM includes the information from the HCs L L L,  ,  ,0 1 2  
and L3 (see Figure 10.9).

A diagram with the description of the general method is shown in Figure 10.10 and 10.11 where 
we have the training and the recognizing phase.

10.2.3.4 Results
The algorithms were validated against manual annotations made by an expert physician and one 
assistant in 28 studies throughout the entire cardiac cycle from healthy subjects. Middle slices of 

FIGURE 10.9 Histogram concatenation on a squared region.

FIGURE 10.10 ASM/Hermite method for the training phase.
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the volumes are used, so that every study is composed of 10 images that cover diastole and systole 
phases. The evaluation started with images at 0% cardiac cycle per subject. The same initialization 
was used throughout the cycle. In order to reduce bias, four-fold cross-validation is used to train the 
ASM. Every fold was chosen randomly. Our experiments were divided into two groups: endocar-
dium and epicardium segmentation.

With respect to the steered Hermite coefficient computation, different window sizes were evalu-
ated. For the Gaussian sigma values, we used different values on endocardium σ = 5 and epicar-
dium σ = 7. A quantitative analysis is performed using two metrics: Hausdorff distance (HD), and 
Dice index (DI).

In general, throughout the cardiac cycle the ASM-based methods show good results, especially 
those methods that include texture information like ASM/QHCs, whereas ASM/HCs achieved the 
poorest results. The average results are summarized in Table 10.1 and Table 10.2.

Consider for instance that Hausdorff distance changes the rank order of the best perform-
ing algorithms ASM/QHCs and ASM, throughout the cardiac cycle in comparison with Dice 
coefficient.

When ASM/QHCs was used for segmenting the epicardium, the results obtained were consistent 
with good scores. Note how ASM decreases its performance in systole, reaching third and fourth 
places in the subsequent phases compared to the initial percentages 0% and 10% of the cardiac 
cycle. The best results were achieved with ASM/QHCs.

Examples of epicardium segmentation is shown in Figure 10.12.

FIGURE 10.11 ASM/Hermite method for the recognition phase.

TABLE 10.1
ASM and ASM/HCs methods comparison for left ventricle segmentation with Dice 
and Hausdorff metrics on 10 percentages of the cardiac cycle for endocardium.

Cardiac cycle 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Dice index ASM 0.935 0.908 0.898 0.802 0.850 0.878 0.901 0.919 0.890 0.922

Dice index ASM/PHC 0.940 0.918 0.874 0.826 0.851 0.875 0.918 0.929 0.928 0.879

Dice index ASM/QHC 0.940 0.921 0.865 0.843 0.831 0.885 0.909 0.937 0.916 0.940
Hausdorff distance ASM [mm2] 2.567 3.162 2.922 4.299 3.794 3.547 3.567 2.928 3.915 2.948

Hausdorff distance ASM/PHC [mm2] 2.426 2.721 3.346 3.856 3.382 3.525 2.914 2.454 2.910 3.870

Hausdorff distance ASM/QHC [mm2] 2.480 2.955 2.892 3.716 4.272 4.178 2.906 2.060 3.133 2.398
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10.2.4 2D leVel set for ct left Ventricle

The role of active contour methods is becoming highly important for applications in image process-
ing because they have been extensively used for many different tasks, especially for segmentation. 
Active contour models are also known as snakes, because they are usually derived by minimizing 
an energy functional, which is related to the deformation of a curve.

The active contour model without edges proposed by Chan and Vese [42] is a successful method 
to segment images based on curve evolution. The goal of this method is to identify different objects 
by dividing the image into distinct regions that share similar information. The main idea of this 
procedure can be explained as follows: An initial contour with characteristics of shape and position 
is defined in the image. The algorithm follows an iterative evolution process that leads the contour 
to capture the shape of the object of interest. The correct initialization of the parameters can help 
reduce the number of iterations needed to achieve the desired final contour.

In general, internal and external forces are used to guide such curve evolution. A comparison 
of variations between the foreground and background for a given closed region allows the contour 
to move into the direction of minimum energy change. The solution of this minimization problem 
determines the convergence by checking whether the contour is not moving too much between two 
consecutive iterations. Finally, this process leads to a stationary solution and a complete image 
segmentation.

Such a method is modeled as a functional that can be solved by the level set (LS) implementa-
tion introduced in [70] due to its ability to capture topological changes in the evolving curve (i.e., 
splitting and merging regions). Furthermore, LS has been proven as an efficient method for moving 
surfaces on a fixed rectangular grid, which contributes to easily performing computations.

TABLE 10.2
ASM and ASM/HCs methods comparison for left ventricle segmentation with Dice and 
Hausdorff metrics on 10 percentages of the cardiac cycle for epicardium.

Cardiac cycle 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Dice index ASM 0.940 0.931 0.892 0.904 0.906 0.913 0.930 0.933 0.926 0.929

Dice index ASM/PHC 0.919 0.916 0.897 0.906 0.906 0.906 0.912 0.912 0.903 0.902

Dice index ASM/QHC 0.928 0.924 0.918 0.932 0.930 0.935 0.936 0.930 0.938 0.936
Hausdorff distance ASM [mm2] 3.083 3.373 5.080 4.369 4.234 4.041 3.312 3.124 3.444 3.645

Hausdorff distance ASM/PHC [mm2] 4.678 4.405 4.705 4.662 4.634 4.725 4.864 5.231 5.382 5.206

Hausdorff distance ASM/QHC [mm2] 4.545 4.195 3.966 3.494 3.409 3.322 3.283 3.732 3.451 3.384

FIGURE 10.12 Segmentation result of the ASM/QHC method for 0%, 30%, 50%, and 90% of cardiac cycle.
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The two-dimensional active contour model based on the Chan-Vese (CV) proposal considers an 
image I  separated by two regions Ω1 y Ω2 with a common boundary ∂Ω, where Ω is a bounded 
open set of 2 . Let C  be an evolving curve in Ω such that  Ω = Ω ΩC1 2, (see Figure 10.13). The 
aim of the formulation of the energy functional is to identify the best partition as follows:
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1 2
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where c1 and c2 represent the two average regions of intensity inside and outside the contour respec-
tively. The parameters λ1  and λ2  in Eq. (10.17) are selected by the user for data fitting, and µ is 
introduced to regularize the surface C . Note that this is a special case of the Mumford-Shah model 
proposed in [71].

The curve C  can be represented via the non-zero level set function φ  that assigns values of 
C x y x y( , ) : ( , ) 0{ }= φ = , x y( , ) 0φ >  inside C  and x y( )φ <, 0  outside C . Therefore, the functional 
can be reformulated in terms of the level set as follows:
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where the Dirac function δ  and the Heaviside function H  are used to represent the level set. In 
numerical implementations, these functions are often regularized in δ  and H  respectively. The 
minimization is solved via the Euler-Lagrange equation for an artificial time t ≤ 0:

 

(10.19)

An extended version was presented in [46] as a multi-valued active contour. This model was intro-
duced to solve an occlusion problem by analyzing different channels of a color image. The assump-
tion is based on detecting relevant information that can be present in at least one of the channels. 

FIGURE 10.13 Contour evolution process for segmentation task. Left: Original image with an irregular 
shape object. Center: Initial contour. Right: Final segmentation result.
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Hence, a single active contour acts over each channel ui  simultaneously. The level set extension to 
the vector case is:
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for = …i N1, ,  channels, where ci
+  and ci

−  are two constant vectors. The non-zero parameters iλ+ and 
iλ−  are weights defined by the user. Following the solution of the single active contour with level set, 

we define the multi-valued iterative procedure (VVCV):
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The aim of the proposed methodology (VVCV/SHT) is to include the Hermite coefficients with 
higher concentration of energy as texture descriptor in the multi-valued active contour:
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where Li
θ
,0 are the image coefficients of the SHT for order i = 0,1,2,3. This approach helps identify 

regions with similar measure of homogeneity and deal with images in the presence of noise.
Approaches based on level set methods employ an initial stage where certain conditions are 

defined by the user for the semiautomatic process of curve evolution. Firstly, a time step t∆  and 
stopping criterion are used to modify the speed and convergence respectively. The number of itera-
tions depends on these quantities. The initialization of the contour is often placed close to the object 
of interest, while the parameters of λ+ −,  assign priority to the measure of uniformity. A relation of 
λ > λ+ − in Eqs. (4,6) and (4,7) improves the delimitation of internal regions because it allows a high 
variance outside the evolving contour. The latter parameter is helpful to distinguish a single organ 
structure among many others in the same image.

In the results presented in this section, the parameters were selected experimentally as follows: 
t 0.1∆ = , µ = 0.5 , iλ =+ 2  and iλ =− 1.5, while the stopping criterion was chosen intuitively as a 

threshold used to detect small energy differences between two consecutive iterations.
In order to validate the proposal, a left ventricle segmentation in heart was carried out [72, 73]. 

We applied the algorithm over a dataset that consists of 11 annotated tomographic cardiac studies 
from healthy subjects. These studies were taken and labeled by a highly trained cardiologist using 
a CT Siemens dual source scanner. Such studies go from the diastolic phase throughout the systolic 
phase and provide a set of 10 images corresponding to the cardiac cycle from 0% up to 90%. The 
experiments were evaluated on mid-third slice. To quantify the accuracy of segmentation, we com-
puted two well-known distances according to the expert annotations.

Dice index ranges between 0 to 1 and computes the intersected area between the expert annota-
tions and the recognized contours divided by the sum of both areas. The closer to one, the higher 
the segmentation accuracy. The Hausdorff distance measures how close the boundaries between 
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the segmentation results and manual annotations are. Results in Table 10.3 show that the perfor-
mance of the algorithms varies with the phase of the cardiac cycle. This can be explained by the 
organ motion and the irregular shape of the contracted ventricle in the change of phase. Texture-
based implementation exhibits better quantitative results than the single active contour algorithm. 
Figure 10.14 shows the segmentation results compared to manual delineations during the cardiac 
cycle. We applied a convex hull operation that helps remove papillary muscles.

TABLE 10.3
Single active contour and texture-based active contour comparison for left ventricle 
segmentation with Dice and Hausdorff metrics.

Cardiac cycle 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Dice index (VVCV/SHT) 0.950 0.941 0.923 0.887 0.832 0.863 0.945 0.952 0.945 0.945
Dice index (CV) 0.885 0.899 0.862 0.872 0.882 0.856 0.940 0.949 0.879 0.881

Hausdorff distance (VVCV/SHT) 7.10 7.19 8.90 11.61 24.07 32.29 6.70 6.07 7.18 7.38
Hausdorff distance (CV) 25.13 16.62 17.55 10.30 11.07 24.58 7.65 6.71 27.04 26.05

FIGURE 10.14 Endocardium segmentation during cardiac cycle from 0% up to 80%. Red line indicates 
manual annotation, and the green line displays the final segmentation result with a convex hull operation.
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10.2.5 3D leVel set for mr left Ventricle

Segmentation of cardiac structures must be performed slice by slice when using 2D algorithms for 
analyzing the entire heart volume. Considering that cardiac cavities are 3D objects, it is of main 
interest for researchers to design 3D algorithms for segmenting the complete volume. Short axis 
view is mainly used for detecting cardiac failures and evaluating the LV cavity in all phases of the 
cardiac cycle. Some clinical indices can be computed from the 3D segmentation of the LV cavity 
and myocardial wall using this specific view, which is commonly obtained for cardiac MR studies. 
In this section, we explore how to use a level set algorithm for 3D LV segmentation. One of the main 
properties of level set techniques is that the extension to higher dimensions is straightforward. We 
also discuss how a tool like the 3D Hermite transform can be embedded into the energy functional 
in order to improve the segmentation performance.

The definition of 3D level set is similar to the bidimensional case, but the working space is now 
defined in 3. The use of algorithms based on surface evolution techniques instead of propagating 
2D contours (applied slice by slice) for segmentation of 3D medical data has been of main con-
cern for many researchers [74, 75, 76]. Since level set techniques do not use parametric schemes, 
the implementation can be easily performed in any dimension. The implicit definition of the level 
set function allows its generalization to higher dimensions. The most challenging task in these 
approaches is to define the velocity field that better describes the segmentation problem. As men-
tioned, this velocity field can be composed of several functions, which may depend on image fea-
tures, or geometrical properties [76]. Texture, intensities, edges, and many other image features 
can be integrated in different ways in these methods. Although many general algorithms have been 
created [42, 47, 77], new frameworks are always needed when working with specific applications 
and objects with well-defined shapes. Nonetheless, initialization schemes also become fundamental 
because solutions found with level set methods are not global.

Figure 10.15 illustrates a general scheme that slightly depicts the deformation of a surface used 
for segmentation. The surface corresponds to a level set function. As known, it requires an initial 
surface whose deformation is guided by the velocity field until reaching the desired segmentation.

Analysis of cardiac volumes with short-axis view are interesting applications where level sets 
methods have gained much relevance. Problems found in these types of images constitute great 
challenges for segmentation algorithms. Inhomogeneities, diffuse edges, lack of information, low 
contrast, and irregularity of shapes are the most typical difficulties to be handled from an image 
processing point of view. Figure 10.16 shows some image examples taken from an MR cardiac 
volume. The MR study was extracted from the database provided by [78], which was shared for 
research purposes. As seen, images present many differences regarding the contrast, quality, and 
variability of shapes, which might affect the performance of the designed methods.

One of the more notorious advantages of level sets approaches is that they allow the combination 
of several energy functions, each one designed to analyze a specific feature. We will describe how to 

FIGURE 10.15 Surface evolution seen at several instants of time.
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build a robust method integrating functions that are able to handle the most typical problems found 
in cardiac MR volumes.

Let S S X X( )= ∈, 3, be an evolving interface used to separate the working space into two 
regions. We will assume that the part inside the interface is the region of interest needed. This inter-
face can be represented using a level set function ϕ, it means S X X( )= φ ={ | 0}. Here, S corresponds 
to the zero level set. The method consists of finding a solution for the motion equation defined as:

 t
F

∂φ
∂

= ∇ϕ ,
 

(10.23)

where F  is the associated velocity field. Defining the F  that better describes the segmentation pro-
cess is the problem to be solved here. The most used strategy consists of proposing energy function-
als, which are then minimized using the calculus of variation. All individual energy functionals are 
combined, and the minimization process leads to Eq. (10.23).

10.2.5.1 Energy Functionals
In most methods based on level sets, it is common to include an energy functional to evaluate the 
intensity values of the input images. The region-based functional proposed by Chan-Vese [42] is 
the most common energy function used for this purpose. It has the advantage of not depending on 
the edges of the object to perform the segmentation. From Figure 10.16, we can see that the LV 
cavity and the myocardial wall present different intensity values in all slices of the cardiac volume, 
which justifies the use of this type of force. The mentioned energy functional can be defined as

 ∫ ∫ ( )( ) ( )( ) ( )= − φ + − − φE V X m H X dX V X m H X dXGR ( ) ( ) ( ) 1 ( ) ,1
2

2
2

 
(10.24)

where m1 and m2 are the average intensity values computed for the regions inside and outside the cur-
rent surface. The objective of this functional is to guide the evolution of the surface using the intensity 
information, which characterizes the object and background. The input cardiac volume is V  and H  is 
the Heaviside function commonly used to regularize the level set variable. Although this energy func-
tional has demonstrated to be very efficient, even for noisy data, it has the problem that images with 
inhomogeneity problems are not processed satisfactorily because it only considers global information.

FIGURE 10.16 Example of cardiac MR volume.
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Boundary-based energy functions might also contribute to the segmentation problem in cardiac 
data. These types of energies are very useful when segmenting images with good contrast and well-
defined edges. Several level sets methods based on edge-based functions have been proposed for 
segmentation of cardiac images [79, 80]. A simple but effective functional to process edge informa-
tion can be written as

 ∫ ( )= φE gH X dXB ( ) ,
 

(10.25)

where g IG
1

1= +  is an asymptotic function that decreases with the image gradient IG . Since the func-
tional only processes edge information, it can be very sensitive to image noise. In this sense, finding 
an operator that efficiently computes the edge map is the great challenge in this energy function. 
The problem is even more complicated if we need to compute the edge map of 3D data.

Considering that cardiac MR volumes might contain many inhomogeneous regions due to dif-
ferent factors, it is recommended to include an energy function dedicated to control this problem. 
Several methods focused on working with inhomogeneous images have been proposed [77, 81]. 
These methods process the intensity levels using local information because near points are more 
prone to having similar level intensities. The inhomogeneity problems of the global energy func-
tional can be easily solved by using a similar region term, but locally applied. Then,

 ∫ ∫ ( )( ) ( ) ( ) ( )= − µ φ + − µ − φE V X X H X dX V X X H X dXLR ( ) ( ) ( ) ( ) ( ) 1 ( ) .1
2

2
2
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Variables µ1  and µ2  are computed in a local region Kw  and they consist of the average intensities 
inside and outside the surface, respectively. Kw  corresponds to a window function, which defines a 
local region around the point X . For 3D data, this window might have spherical, cubic, or Gaussian 
shape. The intensity values are evaluated directly on the input volume V . The size of the window 
must be defined as well. The main problem of this energy function is that it requires the initial shape 
to be near the object of interest.

The described functional are energy terms that depend on the image features of the input volume. 
It is a common practice to include geometrical constraints because they allow to maintain a regular 
deformation of the surface during evolution. The following functional is normally used to preserve 
a smooth surface during the segmentation process

 ∫ ( )= ∇ φE H X dXR ( ) ,
 

(10.27)

with ∇  being the gradient operator.
Objects in medical images can be also modeled using known geometrical shapes. By looking 

at the image examples in Figure 10.16, we can see that the LV cavity and the myocardial wall in 
cardiac volumes with short-axis view are considered to have circular or elliptical shape, seen from 
each slice. This asseveration was also considered in [76, 82]. The following energy functional can 
be used for penalizing the deformation of the level set interface when it is evolving far from a previ-
ously defined shape. It is described as

 ∫ ( ) ( )= φ − φ φE X X H X dXS s( ) ( ) ( )
2

 
(10.28)

where sϕ  is the level set function built from the prior shape considered. If we use moving surfaces 
for 3D segmentation, sϕ  must be built as a 3D shape. Barba-J et at. [76] recently designed a method 
to construct a distance map from estimated ellipses with the aim of representing the LV in cardiac 



219Hermite-Based Image Segmentation

MR volumes. It is based on the idea that the LV can be modeled using elliptical shapes in slices 
obtained from cardiac volumes in short-axis view. The stack of ellipses computed for all slices 
of the volume are used to finally build the level set function. Similar to the last term, this energy 
functional only depends on the geometrical properties of the level set function. Here, an elliptical 
constraint was considered, but it can be generalized to other types of shapes.

10.2.5.2 Combining the Energy Functionals
The complete energy functional is the result of the weighted combination of all the described terms. 
The segmentation is then achieved by solving the equation

 E E E E E EGR B LR R S= α + α + α + α + α   1 2 3 4 5  (10.29)

The weight parameters, α = …k , k 1,2, ,5, control the contribution of the individual energy terms. 
Note that, not all terms might be needed when segmenting a specific volume. The solution of the 
equation can be found by using the calculus of variation and the gradient descent method, which 
leads to the following differential equation
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The implementation is done by discretizing the above equation. A rule for stopping the level set 
evolution must be considered as well. An initial shape is also needed, which implies designing an 
initialization scheme.

Equation (10.30) can be applied to segment both regions, the LV cavity and the myocardial wall. 
Volumes representing different stages of the cardiac phase can be segmented as well. Naturally, not 
all terms contribute significantly in all examples. If we want to inhibit the contribution of a specific 
energy term, its weight value must be set to zero.

10.2.5.3 Using the 3D SHT for Level Set Evolution
The first three energy functionals are computed using different features extracted from the input 
volume. That means some image processing techniques must be previously performed. The SHT 
can be competently employed for this purpose because it provides analysis of the input data by 
extracting different types of features. This transform also has the advantage that the basis func-
tions are separable, which allows its extension to 3D dimensions without major changes. Moreover, 
directional analysis can be addressed, which becomes a fundamental characteristic when working 
with features like edges and texture [83].

The global and local energy terms use an input volume for evaluation of the intensity values. The 
zero-order coefficient of the 3D SHT can be employed as input data in these functionals. Since it 
consists of a smoothed version of the input volume, image noise is significantly reduced.

As mentioned, the boundary-based energy term requires an edge map, which must be obtained 
from the input volume. For this case, the first-order coefficients of the 3D SHT provide the edge 
information of the analyzed volume. One of the most useful advantages of this transformation is that 
coefficients with order larger than one can be steered to perform directional analysis. The steering 
process might be done adaptively for each point by selecting the direction of maximum energy [84]. 
It means that edges are being obtained for any direction. This effective procedure is advantageous 
because the image noise is significantly reduced by the fact that it is not a directional characteristic. 
In addition, the 3D edge map can be competently obtained since several orientations are evaluated.
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In this sense, coefficients of the 3D SHT can be used to guide the evolution of the level set func-
tion because it provides the image features needed during the deformation process. The geometrical 
energy functions are needed to control and maintain a regular deformation of the surface.

10.2.5.4 Segmentation Examples
Figure 10.17 illustrates some volume slices segmented using the described approach. They cor-
respond to data of a cardiac MR volume where the LV cavity and the myocardial wall were seg-
mented. The volume example was selected form the MICCAI MR database [85]. Images show the 
cardiac structures using a short-axis view.

Figure 10.18 shows the surfaces obtained for the LV cavity and the myocardial wall resulted from 
the segmentation of a MR study that was selected from the cardiac MR database shared by [78]. 
Surfaces are illustrated for the end-diastolic and end-systolic phases.

FIGURE 10.17 Segmentation obtained for a MR volume. From left to right and top to bottom, slices show 
the LV at base, middle and apex of the heart.
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FIGURE 10.18 Surfaces of the LV cavity and myocardial wall obtained for a MR volume. The end-diastolic 
and end-systolic phases are evaluated.
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Once the complete volume has been segmented, at least in the diastole and systole phase, several 
clinical indices can be computed. These indices are commonly used by physicians to evaluate the 
behavior of the LV. Two of the most important clinical indices are the ejection fraction (EF) and 
the dimensions of the myocardial wall. The automatic segmentation can significantly contribute to 
provide more objective measurements.

Although the method was described for segmentation of cardiac MR volumes, it can be gener-
alized to other modalities such as CT. The combined energy functions in which different image 
features and geometrical characteristics are processed, allow this method to be configured for other 
applications as well. The most difficult task in the described method is to find the values of the 
weight parameters because the importance of each individual functional depends on the character-
istics of the input data.

10.3 DISCUSSION

Several techniques that have been developed for human organ segmentation include those based 
on atlases, deformable models, pixel classification, region and edge detectors, active shape models, 
active contours and deformable models being some of the most commonly used. However, most of 
these methods are mainly focused on MRI technology. On the other hand, CT has been shown to 
be an affordable technique with good image quality results, despite its lower spatial resolution in 
comparison with MRI. In fetal images, ultrasound analysis is the standard modality because of the 
low risk that it represents for the fetus. Ultrasound and CT technology is being constantly improved 
in order to get better image resolution in time and space.

This chapter presents new advances in image segmentation based on deformable models such as 
active shape models, active appearance models and level sets.

In all cases, the new methods include local textural information given by HCs that is incorpo-
rated in the segmentation algorithms to improve shape fitness to the target objects.

The performance of some methods was tested with commonly used metrics, namely Hausdorff 
distance and Dice index.

The segmentation schemes of the left ventricle presented in this work contribute to the under-
standing of complex heart dynamics. The results obtained, in some sections, resemble manual clini-
cal delineations in CT imaging and prove that the methods proposed here may help reduce bias in 
diagnosis and treatment procedures. The joint approach, that is, combining deformable models with 
HCs, is a reliable option for segmenting the left ventricle, because it is able to differentiate object 
structures. An advantage of the level sets schemes is the fact that they do not need previous training.

Future work must be done for tasks not covered in this study, such as segmentation of cardiac 
cavities with different pathologies.
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11.1 CARDIOVASCULAR IMAGING: AN ENGINEERING PERSPECTIVE

11.1.1 magnetic resonance imaging

11.1.1.1 T1 Mapping
Over the last 10 years, myocardial T1 mapping has been extensively implemented in cardiovascular 
imaging research. It is a measure of the longitudinal or spin-lattice relaxation time of the protons 
in the myocardial tissue. Following an excitation pulse (radiofrequency pulse used to tip the net 
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magnetization M0 in the transverse plane), it is the time required for the z component of M0 to return 
back to 63% of its original value. During T1 relaxation, protons interact with their surrounding 
tissues. The absorbed energy is transferred from the excited protons (spin) to their surroundings 
(lattice), and the T1 recovery time is characteristic for each tissue [1].

Look and Locker demonstrated for the first time a multi-point approach that samples the T1 
relaxation curve multiple times after an initial preparation pulse [2]. Although this was an appro-
priate technique for T1 measurements of the brain [3–5], it was not possible to be implemented for 
cardiac applications, since cardiac motion across the cardiac cycle compromised the pixel-by-pixel 
T1 mapping of the heart. In 2004, Messroghli et al. developed the Modified Look-Locker Inversion 
recovery (MOLLI) pulse sequence (Figure 11.1) [6]. The MOLLI approach introduces two major 
developments to the standard Look and Locker technique: a) uses electrocardiogram (ECG)-gated 
image acquisition at end-diastole and b) merges images from three consecutive inversion recovery 
experiments into one data set. MOLLI T1 mapping was therefore made possible in a single breath 
hold, over 17 successive heartbeats. This method was fully optimized [7] and it has become the most 
popular approach for cardiac T1 mapping.

The Shortened MOLLI (ShMOLLI) approach uses sequential inversion recovery measurements 
in a single breath hold across only nine successive heartbeats (Figure 11.1). ShMOLLI was devel-
oped to minimize MOLLI sensitivity to heart rate [8], as well as breath hold durations, which 
may be important particularly for patients with respiratory function compromise [9]. Other pulse 
sequences for T1 mapping have been developed such as the saturation recovery single shot acquisi-
tion (SASHA) [10] and the saturation pulse prepared heart rate-independent inversion recovery 
(SAPPHIRE) [11], which are also emerging in the clinical setting. A T1 method comparison study 
has recently demonstrated that SASHA and SAPPHIRE reached high accuracy, similar reproduc-
ibility, but less precision versus MOLLI and ShMOLLI, using phantom experiments and data from 
seven healthy volunteers [12].

The signal intensity equation for the MOLLI technique is:

 M t A B
t

T
= − ⋅ −







( ) exp

1
*

 (11.1)

FIGURE 11.1 MOLLI and ShMOLLI pulse sequence schemes shown. The readouts are simplified to a 
single 35° each. For MOLLI, three sets of Look-Locker (LL) experiments are performed successively (LL1 = 
three images, LL2 = three images, LL3 = five images), with increasing inversion time within one breath-hold’s 
time. To select end-diastole, images were acquired using a specific trigger delay. For T1 calculation, images 
are regrouped for post-processing according to their effective inversion time. Similarly, for ShMOLLI, three 
sets of LL experiments are performed successively (LL1 = five images, LL2 = one image, LL3 = one image). 
Modified from [8].
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where A M M T To o= = ⋅ /*
1
*

1, B M M M T To o o= + = ⋅ +(1 / )*
1
*

1  and T1
* is the effective relaxation time 

observed in the MOLLI experiment, which is smaller than T1. A, B, and T1
* can be obtained by a 

three parameter fit. T1 can be calculated from the resulting parameters by applying Eq. 11.2 [13]:

 = ⋅ −( / 1)1 1
*T T B A  (11.2)

Unlike MOLLI, ShMOLLI does not have a dedicated mathematical model for T1 quantification, 
which is calculated using a conditional processing algorithm [8]. This conditional data analysis 
method uses the MOLLI algorithm (Eqs. 11.1–11.2) [6, 7, 13], whilst considering data from the last 
two Look-Locker experiments only if the T1 is short enough, so that near to complete relaxation 
recovery after the second and/or first Look-Locker experiment can be assumed [8].

T1 maps acquired prior to and after gadolinium-based contrast agent injections can be used for 
the calculation of the extravascular-extracellular space (known as ECV or ve) [14]. To quantify ECV 
through T1 mapping, the following equation is implemented:

 ECV hct
T post contrast

T post contrast

T pre contrast

T pre contrast

myo

blood

myo

blood

= − ⋅ −

−

− −

−

(1 )

1
( )

1
( )

1
( )

1
( )

1

1

1

1

 (11.3)

where hct, myo, and blood refer to haematocrit, myocardial tissue, and arterial blood (note that pre-
contrast T1 is the native T1 of the tissue). Based on this method, a range of ECV values of 25.3 ± 3.5% 
have been reported in healthy volunteers at 1.5T [15]. This range of values is in agreement with 
ECV values obtained from studies that performed kinetic modelling analysis from MR perfusion 
data (see subsection 1.1.4) in healthy volunteers, at 1.5T [16] and 3T [17].

Despite technical disparities between pulse sequence and analysis methods, modern T1 mapping 
techniques allow the image-derived characterization of the myocardium. This step has allowed 
non-invasive clinical investigations that were previously possible only through invasive procedures 
[6–12, 18]. T1 mapping is already implemented in the clinical setting and it is therefore considered as 
a valuable tool for the in vivo investigation of numerous cardiovascular diseases, including CAD [14].

11.1.1.2 T2*-, T2-Weighted BOLD Imaging
Myocardial ischaemia initiates when the supply of oxygen (through the blood flow) to the myocar-
dial tissue is not adequate to meet the metabolic oxygen demands of the myocardium. This can be 
caused by (upstream) coronary artery stenosis that reduces blood supply [19]. To assess oxygenation 
levels in the myocardial tissue, an MR imaging technique has been developed to detect the so-called 
BOLD (Blood Oxygen Level Dependence) effect.

BOLD contrast in MRI is designed to reflect the differential deoxyhemoglobin content of blood 
in the myocardial tissue [19, 20]. Deoxygenated blood has higher content of deoxyhemoglobin, 
which is paramagnetic and causes strong field inhomogeneities that lead to evident MR signal loss 
in oxygenation-sensitive T2

*-weighted and T2-weighted images. In contrast, highly oxygenated blood 
is diamagnetic and causes no MR signal loss, hence increasing the signal intensity in oxygenation-
sensitive T2

*-weighted and T2-weighted images [1]. T2 relaxation is known as transverse or spin-spin 
relaxation time and is the time required for the transverse component of M0 to decay to 37% of its 
initial value, due to spin interactions (at the atomic and molecular level). T2

* relaxation is the process 
by which the transverse magnetiation gradually decays due to magnetic field inhomogeneities [1]. 
Their relationship can be expressed as:

 
T T T

1 1 1

2
*

2 2

= + ′
 (11.4)

where T ′2  is the relaxation rate contribution due to magnetic field inhomogeneities.
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One of the first studies showing proof of concept of the BOLD effect in vivo was performed by 
Li et al. [21]. They demonstrated increased T2

* signal changes when dipyridamole versus dobutamine 
were injected in human subjects. Dipyridamole is a coronary vasodilator that induces hyperaemia 
with minimum oxygen consumption. Hence, during hyperaemia, increased oxygen saturation is 
observed in the myocardial venous system [22]. On the other hand, dobutamine induces hyperaemia 
because it increases oxygen consumption in the myocardium, thus oxygen saturation in the venous 
system tends to remain balanced [23].

Several oxygenation-sensitive T2
*-weighted imaging protocols have been implemented to detect 

reduced oxygenation levels in the presence of CAD at 1.5T, showing promising results [24, 25]. To 
benefit from the inherently higher signal-to-noise ratio (SNR) at 3T and therefore to increase signal 
intensity changes between normal and pathologic areas, T2

*-weighted imaging protocols have been 
investigated at 3T [26]. Manka et al. demonstrated promising diagnostic performance for the detec-
tion of myocardial areas with reduced oxygenation through BOLD T2

*-weighted imaging at 3T, in 
the presence of CAD [26]. However, image quality was compromised in a number of subjects due 
to susceptibility artefacts, particularly in the heart-lung interface.

To overcome systematic susceptibility artefacts that are present in T2
* protocols, oxygenation-

sensitive T2-weighted imaging has been optimized [27]. Compared to T2
*-weighted, sensitivity to 

oxygenation with T2-weighted imaging is reduced, but it is considered to be much less prone to 
changes in temperature, haematocrit and susceptibility artefacts [19]. Similarly to T2

*, Dharmakumar 
et al. showed that the sensitivity to detect changes in oxygenation-sensitive T2-weighted imaging 
may increase at 3T, compared to 1.5T [28]. BOLD T2-weighted imaging has been compared versus 
absolute values of myocardial blood flow from dynamic positron emission tomography and MR 
perfusion data in patients with CAD [29–31]. In these studies, BOLD demonstrated interesting 
clinical results and performed high diagnostic performance for the detection of obstructive CAD, 
against invasive reference standard measurements. It was also showed that reduced blood flow may 
not necessarily be associated with decreased levels of oxygenation in the presence of stenotic lesions 
[29, 31], which is an interesting finding that could be evaluated in larger patient cohort studies. In the 
context of oxygenation-sensitive T2-weighted imaging, Tsaftaris et al. showed that signal intensity 
differences between systole (higher oxygenation time frame in healthy subjects) and diastole (lower 
oxygenation time frame compared to systole) were marginalized in the presence of ischaemia even 
at rest (without pharmacological stress), using canines [32].

There is still a debate whether T2
* or T2-weighted protocols can be used to consistently achieve 

efficient, free of artefacts, BOLD sensitivity. T2
* protocols are more sensitive to detect changes but 

are more prone to susceptibility artefacts, which can be evident at 3T. T2-weighted protocols at 3T 
are strong candidates for BOLD imaging, but careful MR shimming and protocol optimization is 
necessary to account for magnetic field inhomogeneities and persistent susceptibility artefacts [31]. 
Further work in the field will potentially lead to oxygenation-sensitive MR imaging method optimi-
zation, which could be a useful step toward establishing robust implementations of cardiac BOLD 
imaging in the clinical setting.

11.1.1.3 Magnetic Resonance Angiography
Magnetic resonance angiography (MRA) was developed as a potentially useful technique for 
the non-invasive assessment of coronary arteries and the detection of atherosclerotic plaques. 
However, long imaging times, lower spatial resolution (compared to computed tomography 
angiography, see subsection 1.2.1), and operator dependency have limited its use in the clinical 
setting [33].

To date, there is limited work describing the implementation of coronary MRA in the setting of 
non-invasive CAD assessment, whilst the majority of studies used relatively small patient cohorts 
[34]. A recent meta-analysis study demonstrated an overall sensitivity and specificity of 89% and 
72%, respectively, across all MR sequences that have been examined [35]. There is an increasing 
clinical demand to develop a non-invasive, no-radiation technique to improve the assessment and 
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management of atherosclerotic plaque [34, 35], which has stimulated further development work in 
coronary MRA imaging.

Various MR imaging techniques have been developed and optimized [33, 35]. The steady state 
free precession (SSFP) sequences benefit from high T2/T1 ratio of the blood, which in turn acts as 
an intrinsic contrast medium in coronary MR angiography [36]. Whole-heart coronary MR angi-
ography by using free-breathing SSFP sequences showed increased performance to image all three 
major epicardial arteries in a single 3D acquisition [37]. Another study, published in 2012, demon-
strated that whole-heart coronary MR angiography using a 32-channel coil and a gradient echo (fast 
low angle shot, FLASH) sequence at 3T, reached high diagnostic performance for the detection of 
obstructive CAD (sensitivity 96%, specificity 89%, in per vessel analysis) [38].

Despite the aforementioned improvements, additional work needs to be done in order to evaluate 
coronary MRA in the clinical setting. Due to the lack of standardized protocols and the limited experi-
ence, coronary MRA imaging and analysis are both operator dependent [33, 34]. Moreover, the avail-
able MRA protocols still vary between vendors, whilst additional clinical assessments are important 
to examine which imaging protocols can increase the MRA diagnostic performance. Standardization 
of MRA protocols and appropriate training for technologists and clinicians are therefore a necessary 
step for the implementation of coronary MRA imaging in the setting of CAD assessments.

11.1.1.4 Dynamic Contrast Enhanced Magnetic Resonance Imaging
Dynamic contrast enhanced (DCE)-MRI has been widely used to perform myocardial perfusion 
imaging [39]. Cardiac DCE-MRI commonly involves the acquisition of dynamic (successive) images 
to rapidly track the passage of a gadolinium-based contrast agent injected through the myocardium. 
Mathematical modelling of cardiac DCE-MRI data can allow myocardial blood flow (MBF) esti-
mations [39], as well as provide additional information about coronary vascularity and permeability 
[16, 17]. Quantitative DCE-MRI techniques have the potential to improve the diagnosis of CAD, the 
assessment of coronary microcirculation, as well as to evaluate perfusion changes during or after 
therapeutic interventions [39, 40] (Figure 11.2).

Saturation recovery pulse sequences for T1-weighted imaging are most commonly used to per-
form DCE-MRI, in which the inherent short echo times involved (for T1-weighted imaging) can 
minimize the effects of myocardial tissue motion and flow [39, 41]. A full coverage of the heart is 
required across all sequential dynamic frames (typically 45–60 dynamic frames to track the wash-
in and wash-out phase of the contrast agent through the tissue), which can be achieved by using a 
minimum of three slices, in order to be able to extract a standardized 16-segment heart model [42]. 
Cardiac DCE-MRI is not yet widely used in the clinical setting, mainly due to the technical chal-
lenges in the data analysis field [39].

The following steps are required to be established in order for perfusion analysis (from DCE-
MRI data) to be considered as a potential setup in the clinical environment.

a. Automatic segmentation techniques have to be developed in order to accurately outline 
myocardial areas in a timely manner (to avoid time-consuming, operator-dependent man-
ual segmentations of large perfusion data sets).

b. A quantifiable, nonlinearity correction relationship between signal intensity and contrast 
agent concentration is needed [39, 41, 43, 44]. This step needs to be optimized based on 
the scanner platform characteristics, such as the MR perfusion sequence used, the contrast 
agent concentration, and the field strength [17, 44].

c. A quantitative analysis approach has to be standardized (which may depend on the scan-
ner platform characteristics), and its diagnostic performance has to be assessed, against 
invasive reference standard measurements.

Automatic segmentation techniques based on convolutional neural network deep learning 
approaches have recently been developed for MR imaging data [45]. Although these techniques 
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have demonstrated high performance, more work needs to be done in order to automatically seg-
ment epicardial regions, as well as the most apical and basal cardiac anatomies, in which inherent 
cardiac motion and lower SNR can compromise method accuracy [45, 46]. Oktay et al. have recently 
developed a new method to incorporate prior knowledge about organ shape and location into convo-
lutional neural networks [47]. Further work on similar approaches can potentially improve further 
the performance of deep learning techniques in the setting of automatic cardiac segmentations and 
can help to optimize these algorithms for cardiac DCE-MRI data.

The nonlinear relationship between signal intensity and gadolinium concentration can be mod-
elled by a signal equation [48]. The signal equation for a saturation recovery T1-weighted pulse 
sequence can typically be:

 S t f R t PD n= Ψ ⋅( ) ( ( ), , )1  (11.6)

where S(t) is the equilibrium signal intensity at time t, Ψ is a calibration constant dependent on 
instrument conditions, PD is the pre-pulse delay, which is the time between saturation pulse and 
the central line of k-space, n is the number of applied pulses of flip angle α. However, signal equa-
tions do not account for signal saturation effects that may be evident in the left ventricle blood pool 
region (used to derive an arterial input function (AIF) for MBF quantification), where the accuracy 
of gadolinium concentration estimation can be compromised [17, 39, 43, 44]. Different methods 
have been proposed to correct signal saturation effects in the AIF, such as the dual bolus [17, 43], 
the dual sequence [49], or retrospective correction using calibration curves [50]. The behavior of 
nonlinearity correction methods may depend considerably on the protocol, field strength, and gado-
linium concentrations used, and careful evaluation is needed prior to method implementation [44].

k) l)

FIGURE 11.2 Cardiac DCE-MR images from a patient with minor CAD (a, b, c) and a patient with 
(1-vessel) coronary artery disease (d, e, f). White arrows show perfusion defect in the inferior and inferoseptal 
myocardial regions, across all three perfusion slices acquired. Basal (a, d), mid-ventricular (b, e) and apical 
slices (c, f) are illustrated. Arterial input functions and model fits on myocardial tissue curves extracted from 
DCE-MRI data. Perfusion curves from a patient with minor (g, i, k) and a patient with 1-vessel (h, j, l) CAD 
are shown. g, h, i, j, k, l show arterial input functions, Fermi modelling, and distributed parameter modeling 
fits, respectively. Gd: gadolinium (modified from [54]).
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In the final step of perfusion analysis, gadolinium concentration curves derived from different 
myocardial tissue areas and the blood pool (AIF) are used to perform model-independent or model-
constrained deconvolution analysis for MBF quantification. The convolution product of two func-
tions is important for the analysis of such a system:

 C t R C tt AIF= τ ⊗ − τ( ) ( ) ( )  (11.7)

where R represents the tissue impulse response if an impulse input of contrast agent is applied at the 
region input, such as a Dirac-delta input function (δ(t)). Ct is the gadolinium concentration derived 
from a myocardial tissue region, and CAIF is the AIF. MBF can then be derived by the initial ampli-
tude of the R, as described by:

 R t MBF= =( 0)  (11.8)

Model-independent approaches are based on imposing smoothness constraints to mathematically 
stabilize the numerical inversion of the deconvolution operation (for the calculation of the tissue 
impulse response from equation 7 and therefore of MBF estimates), with some approaches showing 
higher accuracy versus others [51]. Model-constrained approaches use either an empirical model 
known as the Fermi function [39], or models based on tracer kinetic analysis such as the distributed 
parameter model [16, 17] to describe and estimate R. Although more models based on tracer kinetic 
analysis are recently presented in the literature, the authors here focus on describing some of the 
modelling approaches that have recently demonstrated high diagnostic performance for obstructive 
CAD detection.

In the context of diagnostic investigations, quantitative DCE-MRI studies have demonstrated 
high diagnostic performances by either using model-independent [52], Fermi at 1.5 T [53], or dis-
tributed parameter modelling at 3T [54]. Further analysis using larger patient cohorts and/or in 
multicenter trials are needed to determine which might be the most accurate analysis techniques for 
obstructive CAD assessments. Despite all the technical challenges discussed, cardiac DCE-MRI is 
a promising technique that can provide important physiological and functional information and can 
be clinically useful for assessing blood flow and microvascular characteristic changes, during or 
after revascularization and/or therapy.

11.1.1.5 Cardiac Function Using SSFP Sequences
As mentioned previously, SSFP sequences are using a mixture of T1 and T2-weighted imaging and 
can provide two-, four-chamber, and short axis cardiac view images with optimum signal to noise 
ratio (without using contrast agent injections). For SSFP imaging, ECG gating is used to commonly 
acquire about 25 to 30 short axis (known as cine-images) per heartbeat, across sequential (commonly 
7–12) heartbeats to acquire full cardiac coverage [28, 29]. As much as 175 to 300 cardiac views can 
be acquired on average (depending on the cardiac size of individual patients) with high temporal reso-
lution (typically of about 30 ms) across different cardiac slices. Standard cine SSFP sequences are 
widely routinely acquired during cardiac MR protocols to assess cardiac function. Image analysis of 
cine images using dedicated cardiac software can derive important measurements of cardiac function 
such as ejection fraction, cardiac output, end diastolic, and end systolic volumes, necessary compo-
nent estimations in the setting of standard cardiac assessments as well as clinical trials [28–30].

11.1.2 comPuteD tomograPhy

11.1.2.1 Computed Tomography Angiography
In clinical practice, the new generation of multidetector computed tomography (MDCT) scanners 
have enabled the implementation of coronary CT angiography and perfusion within one cardiac 
imaging protocol [55]. The main advantage of MDCT scanners is the reduction in radiation dose 
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and scan times, whilst they are able to detect highly defined anatomical details of coronary arter-
ies, reducing arrhythmias and respiratory motion artefacts [55, 56]. Furthermore, the application 
of MDCT scanners introduced a different approach to image analysis in which the operator can 
reconstruct and navigate planar images through the use of dedicated software tools [56].

Using modern MDCT imaging technology, recent studies demonstrated that non-invasive CT 
coronary angiography (CTCA) has the potential to exclude significant CAD [57, 58] and can pro-
vide prognostic information in patients with suspected CAD [59]. CTCA can also reach excellent 
sensitivity in detecting significant CAD [60]. However, the specificity of these modern techniques 
is relatively reduced, because they tend to overestimate heavily calcified lesions [61]. Furthermore, 
studies have shown that CT coronary angiography is a poor predictor of reversible myocardial isch-
aemia [62] and that functional information is needed, particularly in patients with moderate to 
severe coronary artery disease [63]. To overcome the limitations of CTCA, additional information 
on the functional significance of coronary artery stenosis is needed from CT scanning. Cardiac CT 
perfusion imaging may provide additional functional information and has the potential to improve 
the diagnostic accuracy of CT angiography for the detection of coronary stenoses, albeit at the cost 
of additional ionizing radiation exposures [63].

In cardiac CT angiography imaging, the high radiation doses involved have raised serious con-
cerns in literature, as the risks of radiation-induced malignancy are not negligible [63, 64], particu-
larly when repetitive scans are needed to assess disease progression or response to therapy. Methods 
to minimize the radiation dose in cardiac CT angiography protocols have been proposed, such as 
using prospective ECG-triggering, with which it is possible to image only specific parts of the car-
diac cycle [63, 64].

11.1.2.2 Computed Tomography (Static) Perfusion
As mentioned in the previous subsection, CT angiography alone has a limited ability to determine 
the functional significance of coronary stenosis, and myocardial perfusion imaging can be included 
in order to provide complementary functional information [62–64]. After contrast agent injection 
(the same bolus injection used for CT angiography), MDCT images may provide qualitative (visual 
estimates) or semi-quantitative information about myocardial perfusion. Short axis views of the left 
ventricle and myocardium can be reconstructed from the MDCT data, and the presence of a myo-
cardial perfusion defect can be detected from a static (or snapshot) image during the arterial phase 
of peak contrast enhancement, using prospective ECG-triggering [63] (Figure 11.3).

CT angiography and perfusion may be performed in a single examination to acquire both ana-
tomical and functional information on modern, advanced wide detector CT systems. Despite the 
introduction of some early dynamic CT perfusion protocols in animal and human studies (these will 

FIGURE 11.3 Short-axis basal, mid and apical images of the left ventricle a) at rest and b) during hyper-
aemia are illustrated, together with 3D representations of the transmural perfusion ratio as well as coronary 
anatomy. Hypoattenuation (represented here with blue color) is seen in myocardial areas during hyperaemia, 
whilst mild hypoattenuation in the RCA territory is also observed on rest imaging (adapted from [70]).
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be discussed in the next subsection), the vast majority of CT perfusion imaging applications in the 
clinical setting is still limited to a static acquisition at the peak of contrast enhancement, in order to 
limit the overall radiation dose exposure (in a dynamic CT perfusion examination).

There are several studies published that have focused on evaluating myocardial perfusion using 
modern techniques in MDCT scanners. For example, spiral CT image acquisition involves transport 
of a patient at a constant speed through the gantry, whilst spiral (also known as helical) CT data are 
simultaneously and continuously acquired over multiple gantry rotations [65]. With the standard 
spiral acquisition mode of conventional (i.e., with narrower detector arrays) MDCT scanners, it 
is feasible to image only an early phase of first pass contrast enhancement [66]. This has allowed 
semi-quantification measurements of myocardial perfusion such as regional signal density ratio 
(i.e., myocardial signal density/left ventricular signal density) [66] and the generation of qualitative 
perfusion maps [67], in canines. Recent studies in human subjects using new generation wide detec-
tor MDCT scanners (such as 64-, 256-, and 320-slice systems), have shown that the diagnostic accu-
racy of CT angiography for the detection of significant coronary artery disease can be improved, 
when combined with static CT perfusion imaging [66, 68]. Static perfusion images can be acquired 
both under vasodilator-induced stress and at rest. These studies showed that CT perfusion imaging 
can detect transmural differences in myocardial perfusion, which can be quantified as the transmu-
ral perfusion ratio (i.e., subendocardial/subepicardial attenuation density) [66].

In a case study using a 320-slice MDCT scanner, perfusion defects have been accurately detected, 
as compared with invasive coronary angiography, with the application of a low radiation dose (snap-
shot) perfusion acquisition protocol [69]. Another study using CTCA/CTP from the same group 
showed strong correlations against 15O-water PET-derived MBF (which is considered as the refer-
ence standard technique for MBF quantification) and comparable diagnostic performance to the 
current invasive reference standard measurements of invasive coronary angiography and fractional 
flow reserve [70].

11.1.2.3 Dynamic Contrast Enhanced Computed Tomography
As discussed in subsections 1.2.1 and 1.2.2, dynamic acquisition of CT perfusion images using 
ECG-gating is restricted due to radiation exposure limitations. Most clinical CT perfusion protocols 
are limited to acquire a static image at the peak of contrast enhancement both during vasodilator-
induced stress and at rest. Despite this, some early dynamic CT perfusion acquisition protocols have 
been introduced, although with limited cardiac coverage and/or temporal resolution and/or time 
frame of contrast enhancement and/or SNR, and absolute myocardial blood flow quantification has 
been made possible.

Wide detector MDCT scanners can potentially provide improved temporal resolution together 
with high spatial resolution while allowing full cardiac coverage using lower radiation doses [71]. 
With the use of modern acquisition techniques in these new generation scanners, it is possible to 
dynamically visualize different phases of first pass myocardial contrast agent kinetics, which are 
needed for absolute myocardial blood flow measurements [71]. Using a 64-slice MDCT scanner, 
dynamic CT perfusion images have been acquired in canines, which allowed absolute myocardial 
blood flow quantification using two-compartmental modelling [72].

Dual energy MDCT imaging has also been used to generate perfusion-maps from snapshot 
images at the peak of contrast enhancement using relatively low radiation doses in patients with 
suspected coronary artery disease [73]. The operation of dual energy MDCT scanners is based on 
the application of two simultaneous X-ray sources with different photon energy, which can acquire 
two data sets with different attenuation levels. Images acquired at two different attenuation levels 
can then be processed with specific software applications, and differences in tissue composition 
can be emphasized [74]. With the implementation of dual energy MDCT scanners, the acquisi-
tion of dynamic ECG-triggered myocardial perfusion images in patients with known or suspected 
coronary artery disease was made possible [75, 76]. However, these dynamic perfusion protocols 
were still unable to cover the entire left ventricle [75]. Model-independent deconvolution analysis 
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of these dynamic CT perfusion data provided absolute myocardial blood flow values in the myo-
cardial areas that were imaged [75]. The previous method has provided accurate myocardial blood 
flow measurements when compared with invasive coronary angiography outcomes from patients 
with suspected coronary artery disease. Kido et al. have reported the use of conventional 16-slice 
MDCT scanners for non-ECG gated dynamic perfusion image acquisition in human subjects [77]. 
Nevertheless, this protocol was unable to cover the entire left ventricle at each dynamic image 
acquisition.

Recently, low-dose dynamic CT perfusion imaging protocols have been developed, and global 
MBF from the myocardium (using two-compartmental modelling) was calculated [78]. In this 
study, regional MBF was not possible to be derived due to the noisy profile of the dynamic curves 
extracted (because of the low-dose, low-SNR dynamic images generated), which caused unsta-
ble model fitting. Another study performed dynamic CT perfusion imaging to derive MBF val-
ues together with CTCA measurements, although the already increased radiation exposure did not 
allow the implementation of dynamic imaging at rest [79]. There is an ongoing research to develop 
a combined protocol of dynamic CT perfusion (for MBF measurements) along with CTCA, in order 
to robustly extract important functional as well as anatomical information of the coronary arteries 
in a single CT examination.

11.1.3 ultrasounD

Echocardiography is a useful medical imaging modality due to its availability, low cost, no radia-
tion exposure, real-time operation, and ease of use. Modern imaging approaches in ultrasounds have 
allowed the extraction of clinically useful parameters of myocardial function and anatomy, such as 
myocardial blood flow velocities and deformation measurements [80].

In conventional b-mode ultrasound imaging, the pixel brightness is determined by the amplitude 
of the returned echo. The detection and estimation of blood flow velocity is based on processing the 
scattered echo from the red blood cells. To detect and quantify blood flow velocity, the frequency 
shift as well as the amplitude of the returned echoes are detected and post-processed [80]. The 
conventional pulsed-wave Tissue Doppler Imaging (TDI) is a technique that was initially used to 
derive myocardial blood flow velocities and deformations (strain and strain rate analysis) [81], [82]. 
However, one of the main limitations of TDI for blood flow velocity assessments is that the informa-
tion is obtained from a single sample volume and, therefore, it is angle dependent [82]. This is also 
a limitation for conventional TDI-derived strain analysis, as prior knowledge is needed with regard 
to the direction of motion of the myocardial tissue, in order to align the tissue beam parallel to the 
vector of contraction in the tissue region of interest [80–82].

The color Doppler flow imaging was developed to overcome the limitations of the conventional 
pulsed-wave TDI technique. It is designed to detect the high velocity/low echo amplitude profile 
of the moving blood [83]. In contrast, the myocardial tissue has a combination of relatively low 
velocity/high echo amplitude profile. In color Doppler imaging, the high velocity/low echo ampli-
tude characteristic profile of the blood can be distinguished from the myocardial signal, through 
the implementation of appropriate thresholds and filters [82, 83]. The development of color Doppler 
imaging performs frequency shift and amplitude detection along a number of acoustic lines, which 
can overcome major angle dependence limitations of the conventional TDI. A 2D image depicting 
flow velocity is finally generated, which in turn is superimposed on the 2D grey-scale conventional 
real-time b-mode image [83, 84]. Although the development of color Doppler imaging improved the 
diagnostic assessments of blood flow velocity and myocardial tissue deformation estimates com-
pared to the conventional Doppler technique, the main limitation of any Doppler technique is still 
the dependency of the measurements on the angle between the ultrasound beam and the direction of 
motion [82–85]. This inherent limitation of the Doppler techniques allows quantitative assessments 
of only the longitudinal function of the heart (see Figure 11.4b) [82].
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A modern echocardiography approach that aims to overcome limitations of previous techniques 
is the 2D-speckle tracking [82]. In the 2D-speckle tracking mode, the reflected echo from the tissue 
results from the interference of numerous reflected wavelets deriving from the inhomogeneous tis-
sue [82, 86]. Some of the interference patterns remain constant throughout parts of the cardiac cycle 
and are tracked by using an algorithm that detects the most similar speckle pattern from one time 
frame to another [86]. Speckle tracking can provide information across the longitudinal, radial, and 
circumferential myocardial function. In addition, through the detection of the spatial movement of 
speckles, it is possible to directly derive Lagrangian strain parameters, with increased lateral resolu-
tion compared to Doppler techniques [82, 85].

The Lagrangian strain ε is defined as the change of the myocardial fiber length during stress at 
end-systole (l), as compared to its original length in the relaxing end-diastolic phase (l0):

 l l

l
ε = − 0

0

 (11.9)

Strain is expressed in (%), whilst the change of strain per unit of time can also be defined, which 
is referred to as strain rate. With speckle imaging, more advanced measurements to assess cardiac 
mechanics can be quantified, such as the left ventricle rotation, twist and torsion [87]. This means that 
by using speckle imaging, a combination of myocardial tissue deformation measures can be extracted 
and can provide complementary information of myocardial function and anatomy. Hence, 2D-speckle 
imaging is considered a valuable tool for assessing left ventricular systolic and diastolic function 
[81, 82, 87], as well as potentially different functional biomarkers that can describe cardiac mechanics.

2D-speckle imaging-derived strain analysis can potentially provide additive functional informa-
tion of cardiac mechanics [81, 82]. However, clinical investigations have showed that there are differ-
ences in the threshold values used to stratify pathological from normal 2D-speckle imaging-derived 
strain analysis measures, across different patient groups [81–84, 87]. Thus, more extensive work is 
needed to further validate these measures in the clinical setting. Some of the current limitations that 
may affect the reproducibility and accuracy of 2D-speckle imaging-derived measurements is that 
they can be compromised by image quality issues, out of plane motion of speckles (that can affect 
strain analysis), whilst thorough technical assessments are often limited by unknown software algo-
rithms (black box operations which may vary across vendors) used to track speckles [82]. Some of 
these limitations can potentially be overcome by the use of 3D-speckle imaging. Although not yet 
fully validated and optimized, 3D-speckle imaging could allow more advanced and less operator 
dependent 3D strain analysis in the clinical setting, by deriving complex strain assessments using a 

a) b)

FIGURE 11.4 a) Graph demonstrating the low velocity/high echo amplitude of the myocardial tissue and 
high velocity/low echo amplitude of the blood. b) The three types of left ventricular wall strains that can be 
derived using 2D-speckle imaging and analysis (a. adapted from [82] and b. from [80]).



238 Cardiovascular Imaging and Image Analysis

single 3D data set [81, 82]. Further evaluations in the context of 2D- and 3D-speckle imaging may 
help to demonstrate the diagnostic credibility of echocardiography-derived measures across various 
applications in the clinical setting.

11.2 CARDIOVASCULAR IMAGING: A CLINICAL PERSPECTIVE

11.2.1 ultrasonograPhy/echocarDiograPhy

Echocardiography (ultrasonography of the heart) is an imaging modality that utilizes ultrasound-
frequency (>20 kHz) waves to generate images of the heart and great vessels. Echocardiography is 
the primary bedside imaging modality used for the evaluation of the cardiovascular (CV) system 
and has a well-established role as an inexpensive, first-line method of early CV disease (CVD) 
assessment. Soundwaves are produced via a transducer and are emitted inside the body of the 
patient being examined; these initial waves are called incident waves. As incident waves travel 
through body tissues, they react differently with each one. Generally, waves of sound behave simi-
larly to those of electromagnetic waves (light). As occurs with electromagnetic waves, the wave-
length of soundwaves is inversely proportional to its frequency and is determined based on the 
formula λ = υ ,f  where λ is the wavelength, ν is the velocity of the wave in the medium it is travers-
ing, and f is the frequency of the wave. As a result, waves with higher frequencies (e.g., ultrasound 
frequencies) have smaller wavelengths. These smaller wavelengths make ultrasound waves capable 
of being reflected by much smaller objects than waves of lower frequencies, which affords ultraso-
nography a good special resolution.

Apart from reflection, other physical phenomena such as refraction and diffraction occur as 
soundwaves travel through the body. Diagnostically, reflection is most informative to the operator 
performing the examination, as reflected soundwaves (echoes) that return to the transducer are digi-
tized and processed to create an image. Wave reflection occurs at the point where different tissues 
intersect. Whether no reflection, a partial reflection, a substantial reflection, or a complete reflection 
of the incident wave will occur, depends on the acoustic properties of the medium the wave is about 
to enter. Namely, depending on the difference of acoustic impedance (i.e., the difference in density 
and wave propagation speed) between the current medium and the one the wave is attempting to 
cross into is minimal, then little or no reflection will occur. Conversely, media with high difference 
in acoustic impedance will reflect most or all of the emitted waves, in the latter case not allowing 
them to traverse the body beyond them. Weaker and stronger echoes help identify different tissues 
in an image and are displayed in a range of colors from black to white, with the extreme of black 
color signifying no reflection and white color signifying complete reflection.

Ultrasonography has been successfully used to identify patients with coronary artery disease 
(CAD) early in the course of its development. A very well-known measurement that has been exten-
sively used for the early identification and risk stratification of patients with CAD is the measure-
ment of the carotid intima-media thickness (CIMT). CIMT measurement with B-Mode ultrasound 
is a non-invasive and sensitive technique that can be used for quantifying and CAD risk [88] [1]. 
CIMT has been demonstrated to be associated with increased risks for CAD and/or myocardial 
infarction (MI) occurrence in a review of various studies [89] [2]. CIMT can additionally reclas-
sify patients at intermediate CVD risk and can discriminate between patients and with and without 
prevalent CVD [88] [1].

Echocardiography, more specifically, also has diverse applications in the evaluation of CAD. 
Perhaps most importantly, stress echocardiography is nowadays an established technique for evalu-
ating CAD, where 2D echocardiography is combined with a cardiac stressor in order to evaluate 
cardiac function during rest and stress, as well as the differences between the two phases. Cardiac 
stress can be evoked by physical exercise, by administration of pharmacologic agents (e.g., dobuta-
mine, dipyridamole, adenosine), or via transcutaneous pacing to the desired heart rate [90] [3]. The 
endpoint of stress echocardiography is the detection of transient changes in regional myocardial 
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function during stress and their comparison to resting conditions; if regional abnormalities are 
identified, these could be indicative of myocardial ischemia among others. Essentially, four pos-
sible patterns can be seen in stress echocardiography: normal, ischemic, viable, and necrotic 
[90, 91] [3], [4]. Under normal conditions, we expect the myocardium to be normokinetic at rest and 
hyperkinetic at stress. When ischemia is present, function worsens during stress due to the unmet 
metabolic demands of the myocardium. Conversely, stunned or hibernating myocardium is usually 
akinetic but “springs to life” when stressed, which is a typical finding for still viable tissue. Finally, 
segments with dysfunction present at both stress and rest are usually necrotic. The addition of coro-
nary flow reserve (CFR) to the examination of segmental myocardial wall motion is of additional 
value in predicting CAD-related mortality [90] [3]. However, this is only limited to the left anterior 
descending artery (LAD), as other coronary arteries are more difficult to visualize. Nevertheless, a 
normal stress echocardiography with normal CFR in the LAD confers an annual risk of death that 
is <1% [92] [5].

Despite the aforementioned benefits of stress echocardiography, it is still an operator dependent 
technique that is primarily based on visual evaluation of wall motions, which can in turn be affected 
by overall cardiac displacement during contraction, or by tethering of adjacent segments that lead to 
mimicry of healthy movements. A potential solution for this dependency is the use of deformation 
imaging in the form of strain/strain rate [91] [4]. These indices are nowadays mostly derived from 
so-called speckle tracking methods, instead of tissue Doppler imaging that was used in previous 
years. Strain measurements can be segmental or global when respective functions are being inves-
tigated. Myocardial strain can be distinguished into longitudinal, radial, and circumferential types 
[see engineering section for more details]. Associations of decreased coronary perfusion with longi-
tudinal strain in particular have been reported in a number of studies [91] [4]. However, evaluation 
of cardiac strain parameters is at the time not extensively used in the clinical setting. This is partly 
due to the fact that no clear normal cut-off values for strain imaging exist, as well as due to large 
differences between vendors and extrapolating software, which also compound the less than perfect 
inter-rater agreement of echocardiography. In addition, strain imaging is susceptible to poor visual 
window and is thus of more limited utility in patients whose heart cannot be completely visualized 
during the entirety of the cardiac cycle.

Here, special mention should be made regarding the right ventricle (RV). All aforementioned 
methods are primarily used for the assessment of the workhorse of the heart, namely the left ven-
tricle. When the right ventricle is affected by CAD, wall motion abnormalities are the most sensitive 
and specific findings seen in echocardiography; these are usually localized in the inferior wall of the 
heart, but may also more rarely manifest in the anterior and/or lateral walls [91] [4]. Impairments 
in RV wall motion may affect RV systolic function indices such as tricuspid annular plane systolic 
excursion (TAPSE), S wave velocity and RV fractional area change [93] [6]. RV deformation analy-
sis using speckle tracking is also a possible way of examining RV function, although again limited 
by visual window, vendor and software differences, and operator dependency. Next to RV dysfunc-
tion, the ventricular cavity may be enlarged, with subsequent RV diastolic dysfunction [93] [6]. This 
in turn leads to enlargement of the inferior vena cava (IVC) and minimization of IVC diameter 
differences between inspiration and expiration.

11.2.2 comPuterizeD tomograPhy

Computerized tomography (CT) is a non-invasive imaging modality that utilizes X-ray wavelength 
photon beams to generate detailed images of human anatomy in slices. These high energy photons 
are produced in an X-ray tube, and as they traverse human tissues, they interact with and are attenu-
ated by them, depending on the density of each tissue [94] [7]. More dense structures like calcium 
in bones and vascular calcifications absorb a greater quantity of high energy photons, while less 
dense materials like air in air-filled structures or blood in vessels absorb far less photons. An X-ray 
detector is placed at a diametrically opposite position from the X-ray photon source. This detector 
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is excited by photons exiting the body at the opposite side of entry. These exiting photons have less 
energy than when they entered the body of the patient, with the remaining energy depending on 
the density of tissues they passed through on their way out (and thus the degree of attenuation). The 
X-ray tube/detector pair rotates around the patient in a helical manner. This allows the detector to 
acquire data on the specific area of interest from different viewpoints, which are then sent to a com-
puter for further processing. The computer by means of an extrapolating algorithm finally creates 
an image based on the available data [94] [7].

Although the role of CT is widely recognized in the evaluation of abdominal and general tho-
racic pathology, cardiac evaluation presented difficulties in the past, as cardiac motion led to the 
generation of imaging artifacts and poorer image quality [95] [8]. The introduction of multislice CT 
scanners (also known as multidetector CT scanners), however, has led to a solution for this issue. 
Multislice CT scanners, in contrast to earlier types of scanners, are equipped with multiple X-ray 
detectors instead of <16 detectors in previous models. This affords them the capability of generating 
multiple slices in one beam emission, which also makes them better suited for use in cardiovascular 
imaging. When combined with electrocardiogram-gating, multislice CT is even better suited for car-
diovascular imaging. Cardiac CT has a much broader role in the evaluation of CAD currently than in 
the past. Some noteworthy applications include the assessment of coronary stenosis, the prediction of 
CAD outcomes, the characterization of atherosclerotic plaques, and the identification of non-stenotic 
plaques that are otherwise undetectable by invasive coronary angiographic procedures [95] [8].

Coronary artery calcium (CAC) is used in the risk evaluation for CAD in healthy patients, as an 
additional index to traditional cardiovascular risk factors. CAC is determined as the area and den-
sity of all identifiable foci of calcification in the coronary arteries, with the sum of area and density 
being used to generate a CAC score, which is a unit-less index of the overall burden of coronary 
calcification [96] [9]. Cardiac atherosclerosis is usually proportional to CAC, which is why these 
measurements provide incremental value to typical cardiovascular risk assessment. CAC has been 
demonstrated to predict CAD occurrence with incremental benefit compared to commonly used 
risk factors. Additionally, large studies have demonstrated that absent CAC is associated with an 
event-free probability of 99% per year [97] [10]. It should nevertheless be kept in mind that CAC is 
also related to demographics (age, race, gender) as well as the presence of other cardiac risk factors.

Coronary plaque characterization is a somewhat less validated technique. In order to character-
ize coronary plaques, an iodine-based vascular contrast agent is used to delineate the lumen of 
coronary vessels. Subsequently, the attenuation of vascular plaques can be compared to that of the 
contrast-enhanced lumen. Based on that comparison, coronary plaques can be categorized as non-
calcified, calcified, and mixed types, as their calcium content will affect attenuation [95] [8]. This 
classification is in turn important for clinical prognostication, as a greater number of mixed plaques 
is associated with major cardiac events and obstructive coronary stenosis. Calcified plaques, on the 
other hand, rarely result in obstructive stenosis, which suggests that plaque composition plays a very 
important role in the development of adverse cardiac events than luminal stenosis by itself [95] [8].

Apart from CAC scoring and plaque evaluation, the primary application of cardiac CT is in the 
evaluation of patients with signs and symptoms suggestive of myocardial ischemia, by following a 
procedure called CT coronary angiography or simply computed tomography angiography (CTA). 
CTA requires the administration of intravenous iodinated contrast agents, and its principles are 
similar to that of invasive coronary angiography. There are however a number of limitations when 
considering CTA for patients. First of all, heart rate should be controlled with beta adrenoreceptor 
blockade before the test, except if newer dual source CT scanners are available [98] [11]. In any case, 
high or abnormal heart rates decrease image quality. Additionally, the patient must be able to col-
laborate with breath-holding instructions during imaging. Morbid obesity and high coronary artery 
calcium contents constitute relative contraindications, as they reduce image quality to increased 
attenuation [99, 100] [12], [13].

Similar to echocardiography, CT can also perform stress perfusion studies by means of pharma-
cologic stress (e.g., dobutamine, adenosine). In this newer approach for CT, myocardial perfusion 
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disturbances are determined as differences between two standardized contrast-enhanced CTAs 
during rest and pharmacologically induced stress, where the first-pass of the contrast agent is used 
for imaging. Although the method has relatively good sensitivity and specificity, it is limited by the 
required radiation dose, which is in the range of nuclear perfusion studies [101] [14]. Another rela-
tively new method is the determination of myocardial fractional flow reserve (FFR); this is currently 
in development, but the technique holds promise in that it does not require a stress phase and can 
simply be extrapolated from a resting CTA [102] [15].

Cardiac CT also has a role in the prognosis of CAD. This has been performed using two distinct 
approaches. One approach has used the number of coronary arteries involved, namely from one to three 
and the left main, while another uses a segment involvement score for atherosclerosis based on the 
number of coronary segments with plaques present and plaque severity. Regardless of which method 
is finally used, more severe scores are associated with worse cardiovascular outcomes. To illustrate 
this further, a study of the CONFIRM registry yielded an annual risk-adjusted hazard ratio of 1.62 for 
non-obstructive CAD compared to normal coronary arteries. Similarly, hazard ratios were higher for 
one vessel-disease (2.00), two-vessel disease (2.92), and three vessel/left main disease (3.70) [103] [16].

Finally, a discussion of cardiac CT would not be complete without mentioning the effects of 
ionizing radiation. X-rays are known to be carcinogenic and, in general, medical practitioners are 
advised to avoid unnecessary CT scans. However, the benefits have to be weighed with regard to 
nuclear imaging modalities and invasive coronary angiography. Arguably, advances in CT technol-
ogy have reduced and continue to reduce radiation doses compared to other modalities. Still, exami-
nations such as CT stress perfusion have a relatively high radiation dose, even comparable to nuclear 
imaging. Furthermore, if a CT examination is not diagnostic, then radiation burden will be even 
greater if invasive coronary angiography or nuclear imaging also has to be performed. Therefore, 
specific indications have to be formulated for when such use is warranted. Additionally, in the era 
of multimodality imaging, the exact niches of echocardiography, CT, magnetic resonance imaging 
and nuclear imaging have not yet been clearly defined; this constitutes an important future goal.

11.2.3 carDioVascular magnetic resonance

Cardiovascular magnetic resonance (CMR) can provide an integrated approach in the evaluation of 
coronary artery disease (CAD) by including coronary arteries, cardiac function and stress myocar-
dial perfusion-fibrosis assessment [104] (1).

11.2.3.1 Evaluation of the Coronary Arteries
The clinical indications of cardiovascular magnetic resonance coronary angiography (CMRA) are 
at the moment limited only to the detection of abnormal origin of coronary arteries, coronary ecta-
sia, and/or aneurysms (class I indication) and coronary bypass grafts (CABG) evaluation (class II 
indication). The routine application of CMRA for diagnosis of CAD is not at the moment part of 
clinical practice [105, 106] (2, 3).

CMRA can precisely assess the abnormal origin of coronary arteries and the location and dimen-
sions of coronary artery aneurysms. This is facilitated by the larger caliber and the proximal loca-
tion of the coronary artery aneurysms (CAA). The most important benefit of CMRA is the absence 
of ionizing radiation, which is of special clinical value for children and women [105, 107] (2, 4). 
Diseases characterized by ectatic or aneurysmatic coronary arteries are Kawasaki disease, autoim-
mune vasculitis, and coronary artery ectasia [108–111] (5–8).

Bypass grafts can be also assessed very well by CMRA, because they are relatively immobile 
and have larger diameter compared to native coronary arteries. Different imaging protocols have 
been already used, including spin echo [112–115] (9–12) and gradient echo techniques. The appli-
cation of contrast agents for better imaging of the blood signal [116, 117] (13, 14) increased the 
sensitivity to 95%. However, metallic clips in grafts constitute the common limitation of coronary 
bypass MRA. CMRA can be used at some special centers to detect lesions in bypass grafts [107] (4).
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CMRA can reliably assess the initial part of the coronary arteries in almost 100% of patients, 
with excellent results acquired for the left anterior descending (LAD) and the right coronary artery 
(RCA); the left circumflex (LCX), due to its peculiar way, is at a increased distance from the cardiac 
coil, and therefore its visualization is usually of inferior quality, compared to the rest of the coronary 
arteries. According to previous studies, the imaged length for LAD is 50 mm, for RCA is 80 mm, 
and for LCX is 40 mm [118–125] (15–22). An excellent agreement between the proximal parts of 
coronary arteries measured by CMRA and X-ray invasive angiography was assessed by previous 
studies [126] (23). Unfortunately, the resolution of CMRA remains lower compared with invasive 
coronary angiography and does not allow the evaluation of stenosis in the mid and peripheral part 
of coronary arteries; however, CMRA was shown to have a high sensitivity (92%) for the detection 
of CAD and its diagnostic performance was further improved. In a subanalysis of left main or three 
vessel disease, a sensitivity of 100% and a negative predictive value of 100% was documented. 
These findings were also supported by smaller single-center studies [118, 125–133] (15, 24–32). A 
meta-analysis compared coronary MRA and multislice computed tomography (CT) for assessment 
of significant CAD (112) (9). CT was more accurate than MRA, and therefore CT was suggested as 
the preferred non-invasive alternative to X-ray coronary angiography. However, the superiority of 
CMRA is that it can offer more data about the patient, including cardiac anatomy, function, inflam-
mation, stress perfusion, and fibrosis evaluation. Recently, a multicenter study showed that whole 
heart CMRA at 1.5 T can detect significant CAD with high sensitivity (88%) and moderate specific-
ity (72%). Additionally, a negative predictive value (NPV) of 88% indicates that this technique can 
effectively be used to exclude the presence of significant CAD [134] (33). We should mention that 
this NPV reported by this trial is identical to the NPV of the CORE-64 CTA multicenter study (135) 
(34). Proving the value of CMRA to rule out CAD in patients with low pre-test probability (<20%) 
[136] (35). Finally, in a direct comparison between CMRA and CTA no significant difference was 
proved for the detection of CAD between 3 T MR and 64-slice CTA [137] (36).

Additionally, there are studies documenting the potential role of coronary vessel wall imaging 
to detect increased vessel wall thickness in type I diabetes with abnormal renal function. It was 
also documented by Jansen et al. (138)(37) that non-contrast enhanced T1-weighted MR visualized 
thrombus in acute myocardial infarction. Currently, new techniques using late gadolinium enhance-
ment (LGE) allowed the direct assessment of inflamed plaques in the coronary arteries. Clinically 
used contrast agents showed non-specific uptake in plaques of patients with chronic angina [139] 
(38), acute coronary syndromes (ACS) (140)(39), and systemic lupus erythematosus [141] (40). The 
contrast enhancement by CMR, assessed in patients with stable angina, was associated with calci-
fied or mixed plaques on MSCT, while in ACS it was transient, probably due to inflammatory pro-
cess. New contrast agents have been already used in animals, and their accumulation in blood was 
associated with increased endothelial permeability and/or increased neovascularization [142] (41). 
Additionally, increased accumulation of iron-oxide particles (USPIO) was indicative of increased 
endothelial permeability and vessel wall inflammation, due to intraplaque macrophages [143, 144] 
(42, 43). Such molecules have been used as targets for new molecular contrast agents that allowed 
the assessment of inflammatory indexes, such as intercellular adhesion molecule-1 (ICAM-1), 
vascular adhesion molecule-1(VCAM-1) or matrix metalloproteinase (MMP) [145, 146] (44, 45). 
Furthermore, thrombi labeling using a fibrin-specific contrast agent [147, 148] (47, 48) and evalu-
ation of extracellular matrix remodelling, using targeting elastin, is a new promising molecular 
imaging technique.

11.2.3.2 Measurement of Volumes: Ejection Fraction
CMR measures ventricular volumes and ejection fraction (EF) non-invasively and without contrast 
agent. Echocardiography is still the everyday, bedside tool for function evaluation, but there is a 
place for CMR due to its excellent reproducibility and capability to perfectly evaluate RV morphol-
ogy and function, which is of special interest in rheumatic diseases [149] (88). In a direct comparison 
of CMR versus echocardiography, it has been shown that for an 80% power and a p value of 0.05, 
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the sample size required would be 505 patients for validation using 2D echo, but only 14 patients for 
CMR [150] (89).

11.2.3.3 Evaluation of Myocardial Perfusion-Fibrosis
11.2.3.3.1 CMR Detection of Ischemia

A. CMR detects ischemia by two different ways: Observation of wall motion abnormalities, 
using the stress factor dobutamine. Compared to stress echo, dobutamine stress CMR has 
better sensitivity (86% vs. 74%) and specificity (86% vs. 70%) [151, 152] (96, 97).

B. Observation of myocardial perfusion using the first pass of a T1-shortening contrast agent 
(first-pass gadolinium) [153, 154] (98, 99). Data acquired during intravenous vasodilator-
stress (most commonly with adenosine) delineate the underperfused regions, due to myo-
cardial ischemia. The spatial resolution of CMR is 2 to 3 mm, greatly superior to nuclear 
techniques, so that subendocardial ischemia can be more reliably identified [153, 154] 
(98, 99). The interpretation is most commonly visual, but quantitative approaches are also 
available [155] (100) and have been validated against X-ray angiography, SPECT, and PET 
[153, 154] (98, 99).

11.2.3.3.2 CMR Detection of Fibrosis
CMR is the most reliable imaging technique for detecting and quantifying scar or fibrotic tissue, due 
to irreversible myocardial damage (viability study). Following acute ischemic injury, the myocardial 
distribution of gadolinium is increased, due to sarcrolemmal rupture and abnormal wash-out kinet-
ics. Imaging within the first few minutes after contrast agent administration is the method of choice 
to delineate microvascular obstruction (MVO), which prevents contrast delivery to the infarct core 
and thus results in low signal on T1-weighted imaging [156] (105). Both acute and old infarctions 
without MVO retain contrast agent and appear bright (bright is dead) [156] (105). The preferred imag-
ing time for scar detection is 10 to 20 minutes after gadolinium administration, when differences 
between scar, normal myocardium, and blood pool are maximal. This method is referred to as late 
gadolinium-enhancement (LGE) and is the gold standard for in vivo assessment of myocardial scar.

Non-invasive methods for assessing myocardial viability include PET, SPECT, and dobutamine 
echocardiography [157] (106). However, they can only interpret myocardial viability as an all-or-none 
phenomenon within a given myocardial region, and none of them assess the transmurality of viabil-
ity. CMR not only detects infarction in as little as 1 cm3 of tissue, substantially less than other in 
vivo methods, but has excellent agreement with histology in animal and human studies [157, 158] 
(106, 107) and was also proved useful in detecting small myocardial scars and diffuse subendocar-
dial fibrosis, missed by other imaging techniques [159].

11.2.3.4 Future Perspectives of CMR in the Early Diagnosis of CAD
Our expectations for the future include:

1. Non-contrast perfusion. The potential to diagnose CAD, as early as possible, without the 
use of contrast agents is a very important query in the CAD evaluation. In this effort, there 
are already studies in patients with well-controlled type 2 diabetes (T2DM). These patients, 
even in the absence of arterial hypertension and significant CAD, exhibit blunted maxi-
mal non-contrast T1 response during adenosine vasodilatory stress, reflecting coronary 
microvascular dysfunction. Adenosine stress and rest T1 mapping can detect subclinical 
abnormalities of the coronary micro-vasculature, without the need for gadolinium contrast 
agents. According to these studies, CMR may identify subclinical cardiac risk markers in 
well-controlled T2DM, offering a great opportunity for early therapeutic intervention [160].

2. Oxygen consumption. Another important parameter is the oxygen consumption. This is 
reduced during myocardial hibernation, a condition in which contractile function is down-
regulated in parallel with chronic hypoperfusion. The importance of myocardial oxygen 
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consumption has also been demonstrated using positron emission tomography (PET) 
based 11C-acetate imaging [161]. Perfusion changes can be assessed based on regional sig-
nal intensity differences during first-pass infusion of gadolinium-based contrast agents. 
Independent of perfusion, CMR can assess myocardial oxygenation consumption via a 
technique termed blood oxygen level–dependent (BOLD) imaging. This technique can be 
performed without the use of contrast agent and is based on the differences in magnetic 
susceptibility between oxyhemoglobin and deoxyhemoglobin. While oxyhemoglobin is 
mildly diagmagnetic, deoxyhemoglobin is paramagnetic, and this latter property produces 
local field gradients between red blood cells and their surroundings. The shift in frequency, 
caused by these gradients, affects transverse (T2) relaxation times, with red blood cell 
deoxygenation (deoxyhemoglobin) causing a decrease to T2. Like the classic perfusion 
evaluation, BOLD imaging can be performed during rest and pharmacological stress to 
assess dynamic changes in myocardial physiology. BOLD imaging has been validated in 
animal models and has been shown to be feasible in human studies [162–164] (10–12). 
However, clinical studies about its utility in CAD are still pending.

3. Non-invasive, non-radiating plaque characterization. CMR can characterize athero-
sclerotic plaque burden and activity including noncontrast and contrast-enhanced vessel 
wall imaging. These approaches have shown great potential to assess various character-
istics of vulnerable plaques, such as inflammation [165](12), necrotic core size [166](6), 
neovascularization [167](13), intraplaque hemorrhage [166](6), and positive vessel wall 
remodeling [168](14).

Kawasaki et al. [169](15) reported the high diagnostic accuracy of hyperintense coronary plaques 
(HIP) with noncontrast enhanced T1-weighted (T1W) coronary CMR (16) for the detection of com-
plicated plaques in the coronary arteries. Given the high diagnostic value of HIP in the carotid 
arteries (sensitivity and specificity of 84%, negative predictive value of 70%, and positive predictive 
value of 93%) and the strong association of HIP with other markers specific for vulnerable plaque, 
noncontrast T1W coronary plaque imaging may have a great potential to assess complex coronary 
lesions in patients with unstable CAD. However, there are no reproducibility and follow-up imaging 
data as well as correlation with clinical endpoints.

In another study, it was shown that not only the presence of HIS, but also the elevated ratio 
between the signal intensities of coronary plaque and cardiac muscle (PMR) itself may be used as 
a quantitative marker of plaque vulnerability in clinical evaluation [170]. Furthermore, Magnetic 
Resonance (MR) defined inflammation using Ultra Small Super-Paramagnetic Iron Oxide (USPIO) 
particles showed that the carotid territory is more likely to take up USPIO if another vascular terri-
tory is symptomatic [171].
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12.1 INTRODUCTION

Echocardiography remains one of the most important tools in cardiology for diagnosis of heart dis-
eases and relies on ultrasonic techniques to generate both single image and image sequences of the 
heart, providing insights into cardiac structures, motion status, and detailed anatomical and func-
tional information. Significantly, echocardiography (or echo) can present the moving heart in real 
time, revealing its health status in vivo while sustaining as a non-invasive, painless, easy to operate, 



254 Cardiovascular Imaging and Image Analysis

(a) A2C
(Apical 2 Chambers)

(b) A3C
(Apical 3 Chambers)

(c) A4C
(Apical 4 Chambers)

(d) A5C
(Apical 5 Chambers)
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(Parasternal Short Axis

of Aorta)

(e) PLA
(Parasternal Long

Axis)

(g) PSAP
(Parasternal Short Axis of

Papillary)

(h) PSAM
(Parasternal Short Axis

of Mitral)

FIGURE 12.1 The illustration of the eight views of echocardiogram videos.

inexpensive, and portable imaging tool. While advanced 4D echocardiography (i.e., 3D heart mov-
ing over time) scanners are available, 3D echo imaging tools remain the most common in clinical 
settings. In order to depict different anatomical sections of the three-dimensional (3D) heart over 
time (1D), there are eight standard view positions in 3D echocardiography whereby each specific 
section of the moving heart with distinguished characteristics can be captured, whereas any other 
viewpoints can either provide complementary views or no clearer pictures at all. Figure 12.1 illus-
trates the exemplar frames acquired at all eight views that an echocardiography can reveal. Usually, 
the acquisition of echo videos is performed by sonographers who will then transfer the acquired 
data to clinicians to make diagnostic decisions upon them. By doing so, clinically, once each view-
point is determined, a number of major anatomical structures, such as left ventricle, can then be 
manually delineated, measured, and analyzed in order to ascertain the status of the functioning 
heart. As presented in Figure 12.1, several images might appear similar (e.g., (g) and (h)), but 3D 
echo videos over time provide different viewpoints to distinguish clearer differences. These images 
in essence capture discriminative information from both spatial and temporal points of view. Hence, 
the determination and classification of the viewpoint upon which the video image under consider-
ation is obtained constitute a crucial first step for the subsequent measurement, analysis, and diag-
nosis as well as the development of computer-aided diagnostic systems [1–4].

This chapter reviews the state-of-the-art echocardiography and the cutting-edge methodologies 
of viewpoint classifications. It is organized in the following structure. Section 2 reviews the prin-
ciples of cardiology imaging tools. Section 3 entails the current approaches applied in classification 
of echo videos. In Section 4, elaboration of three popular approaches advanced in this research is 
provided. Section 5 specifies the implementation details and experimental results. To complete the 
chapter, Section 6 offers the conclusion and discussion.

12.2 CARDIOLOGY IMAGING

Heart disease is one of the leading causes of death in the world in both developed and developing 
countries. In the UK and United States, more than a quarter of deaths is caused by heart failure each 
year [5, 6], whereas in China, about 230 million people have cardiovascular disease. It is predicted 
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that this figure is set to increase by 50% between 2010 and 2030 due to population aging and growth 
alone in China [7]. Therefore, improving the management of cardiovascular diseases is one of the 
greatest challenges faced by healthcare sectors and industries in every country.

To investigate the status of the moving heart in vivo and to make a clinical decision, cardiologists 
mainly rely on cardiologic imaging tools. At present, there are three popular imaging modalities 
utilized in hospitals, which are Magnetic Resonance Imaging (MR), Computed Tomography (CT), 
and Echocardiography (Echo) or Ultrasound. The acquired images can be used to assess cardiac 
structure and function, the presence and severity of dynamic obstruction, the presence of mitral 
valve abnormalities, and the severity of mitral regurgitation, as well as myocardial ischemia, fibro-
sis, and metabolism [8].

Each imaging tool has its own advantages and disadvantages. For example, cardiovascular MR 
imaging is able to produce detailed pictures of the structures within the heart, which allow physi-
cians to evaluate and determine the presence of certain diseases [9], such as regional and global 
functions. However, these images have to be acquired in advance rather than in real time due to the 
presence of the magnetic field of MR. In addition, holding breath briefly during the scanning period 
may pose challenges for some patients. On the other hand, to study suspected cases of aortic dissec-
tion or pulmonary embolism which may have atypical clinical features overlapping with those of 
acute myocardial infarction, a CT imaging of thorax is frequently required. Multi-detector CT can 
provide complementary imaging for MRI, offering a combined morphological and angiographic 
assessment. CT angiography can also be employed to assess ventricular systolic function, both glob-
ally and regionally, and myocardial perfusion. Since CT scanning has radiation, it is not suitable for 
a number of patients who have an allergic reaction to the contrast dye.

While MR and CT can provide valuable information of the heart, they all fall short of being 
portable and convenient due to their sizable tunnel-like volumes for a number of situations (e.g., not 
handy for screening programs in remote regions or in emergency). In addition to the economic con-
cerns, the ability to acquire dynamic information of the moving heart in vivo makes echocardiogra-
phy (echo) imaging the favorite choice of diagnosis. Applying ultrasonic technique, echo imaging, 
one of the most widely applied imaging technologies in medicine [10], has been routinely applied 
in the diagnosis, management, and follow-up of patients with any suspected or known heart dis-
eases. It provides a wealth of useful information, including the size and shape of the heart (internal 
chamber size quantification), pumping capacity, and the location and extent of any tissue damage. 
Furthermore, an echocardiogram can also offer physicians other estimates of heart functions such 
as cardiac output, ejection fraction (EF), and diastolic function.

12.2.1 echocarDiograPhy

Echocardiography is a typical application of ultrasound imaging and is the most widely used tool 
in clinical practice for the evaluation of cardiac function due to its nature of being easy to operate, 
inexpensive, non-invasive, and offering in-vivo observation of the moving heart. In addition, this 
echo imaging tool can be of varying sizes, from a desktop computer size to the size of a mobile 
phone, giving rise to its much wider applications, including in emergency and screening programs. 
As a mature medical technology, at present, one in four diagnostic imaging studies has been carried 
out applying ultrasonic imaging in the world, and the trend continues to increase.

Echocardiography works rather like sonar, whereby sound waves are applied to locate the posi-
tion of an object based on the characteristics of the reflected signals, hence coining the term of 
echo [11]. To acquire a video clip, an echo transducer (or probe) of the size of a computer mouse 
is placed on the chest wall surface (or thorax) of the subject, from which images are taken. This 
procedure is a non-invasive, highly accurate, and fast assessment of the overall health status of the 
heart. A standard echocardiogram is also known as a transthoracic echocardiogram (TTE), or car-
diac ultrasound. It has three basic modes that are used to image the heart: M-mode imaging, two-
dimensional (2D) imaging, and Doppler imaging. The M-mode echo, which supplies a 1D view, is 
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usually employed for fine measurements. 2D mode imaging is the mainstream of echo imaging and 
allows structures to be viewed in vivo in real time for any cross-section of the heart. In 2D mode 
imaging clips, all chambers and valves of the heart as well as the adjacent proximal connections 
of large vessels can be depicted. In this way, the spatial relationships among normal and abnormal 
intra-cardiac structures can be revealed. In addition, the more advanced mode of 4D echo has been 
recently introduced, which in essence comprises the sequence of the 3D structural heart in motion. 
Similarly, 3D echo often refers to the sequence (e.g., video) of 2D frames. Figures 12.2–12.4 dem-
onstrate examples of 1D to 4D echo frames.

Moreover, Doppler ultrasound is set to estimate the velocity of blood flow in the human heart and 
vasculature noninvasively [12] as illustrated in Figure 12.5 where red color indicates the flow com-
ing in the direction towards the viewer and blue away from the viewer. Both videos of Figures 12.3 
and 12.5 are from the same subject at the same viewpoint of PLA.

(a)

(b)

FIGURE 12.2 An example of typical 2D. (a) 2D echo frame; (b) 1D motion over the time along the line on (a).
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FIGURE 12.3 A sequence of 2D echo frames over time, i.e., 3D echo.

FIGURE 12.4 A sequence of 3D moving heart that can be viewed in every angle, i.e., 4D echo.

FIGURE 12.5 Color Doppler mode of Figure 12.3 illustrating blood flows where red is the flow running 
towards the viewer and blue away from.
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12.2.2 basic PrinciPles of ultrasounD

Ultrasound is the term used to describe the frequencies of sound above 20,000 Hertz (Hz), beyond 
the range of human hearing (between 20 to 20K Hz) [13]. Most cardiac applications are performed 
based on frequencies from 2 million to 10 million (M) hertz, or 2 to 10 megahertz (MHz) [14]. 
During the examination, sound travels in mechanical waves with a speed dependent on the density 
and elastic properties of the medium in which they are travelling through [15]. When a sound wave, 
which is generated by electrical stimulation of a piezoelectric crystal in the transducer, is transmit-
ted into heart tissues, it partially echoes back to the transducer from the layers between different 
cardiac tissues and partially scattered from smaller structures. Then the rest travels forward through 
further tissue layers. The amount of reflection depends on the variation of impedance of the two 
adjacent tissues, for example, myocardium and blood.

The amplitude, or strength, of the returning echo wave that is picked up by the transducer is then 
converted into the scale of brightness (whiteness) of an echo pixel. The bright structures are termed 
as hyperechoic, whereas low-amplitude waves are rendered into shades of grey-hypoechoic regions, 
with the structure without reflecting any waves being cast as a black dot (anechoic), constructing an 
echocardiogram as depicted in Figure 12.1. The vertical position of the echo pixel on the screen is 
based on the time delay between the emission and return of the ultrasound beam. On the assump-
tion that velocity is constant within soft tissue, quicker returning echoes are hence regarded as 
superficial structures, whereas slower returning ones are the deeper structures. Horizontal position 
of the echo pixel on the screen is based on the receiving piezoelectric crystal’s location along the 
transducer [16, 17].

12.2.3 View Position anD ViewPoints for acquisition of 3D echocarDiograms

The human heart is a two-stage (systolic and diastolic) electrical pump that circulates blood through-
out the body through the creation of pressure. When in a systolic state, the heart is contracted, dur-
ing which the blood in the chambers is forced onward. Diastole performs the opposite, by which the 
heart is dilated with chambers being filled with blood. As illustrated in Figure 12.6, there are four 
chambers (spaces) inside the heart. Two top chambers are called atriums, while the bottom ones cor-
respond to ventricles. Each side of the heart forms its own pumping systems (i.e., a right heart and 
a left heart), and consists of an atrium and a ventricle. Within these systems, blood always flows in 

FIGURE 12.6 The structure of the heart cross-section where arrows indicating blood flow directions.
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only one direction due to the fact that the valves between atriums and ventricles open in one direc-
tion like trapdoors to let the blood pass through.

As illustrated in Figure 12.7, in order to acquire any view section of the heart, physically, an 
ultrasound transducer is set to posit at three primary positions on the surface of a person’s chest. At 
each position, while rotating angles of the transducer, more sections of the heart can be brought out.

In practice, there are three primary positions that can capture the images of the heart, which are 
parasternal short axis (PSA), parasternal long axis (PLA), and aorta angle (AA). At each position, 
by varying the angles or viewpoints of the transducer, different sections of the heart can be sampled. 
For example, at PSA, the level of the aortic valve (PSAA), level of the mitral valve (PSAM) and 
papillary muscles can be acquired (PSAP). At AA, four sections of the heart can be viewed, includ-
ing apical two chambers (A2C), apical three chambers (A3C), apical four chambers (A4C) and 
apical five chambers (A5C). Clinically, eight viewpoints, including one parasternal long axis (PLA) 
viewpoint, are most commonly applied. While a number of pictures can be acquired at other angle 
positions, they do not depict as clear a picture as at these eight viewpoints. Hence, classification of 
these eight viewpoints will form the focus point of this chapter. Table 12.1 shows the relationship 
between three view positions and the eight viewpoints.

(a) (b) (c) (d)

FIGURE 12.7 The procedure of acquisition of a section of the heart applying echocardiographic imaging. 
(a) The location of the three primary positions on the chest; (b) the planes that the echo beams scan from the 
transducer; (c) cross-section drawn along the echo beams; (d) the reconstructed cardiac image/video display-
ing in the screen.

TABLE 12.1
The list of the three primary positions and eight viewpoints.

Viewpoint Primary View 1 2 3 4 5 6 7 8

Apical Angle (AA) A2C A3C A4C A5C

Parasternal long axis (PLA) PLA

Parasternal short axis (PSA) PSAA PSAM PSAP
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FIGURE 12.8 Video clips for four viewpoints in the primary position of AA. Left: labels. Right: sequential 
frames. (a) A2C; (b) A3C; (c) A4C; (d) A5C.

FIGURE 12.9 Video clip for PLA view position and viewpoint. Left: Labels. Top right: Systole with the MV 
closing, while AoV opening. Bottom right: Diastole with the MV opening while AoV closing.
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Figures 12.8–12.10 demonstrate video clips of primary views of AA, PLA, and PSA in the states 
of both ventricular systole of the heart (contraction, top row) and diastole (relaxing, bottom row) 
together with the labels of regions that can be captured at each viewpoint (left column). The abbre-
viations are the same as those in Figure 12.6.

12.3  THE STATE OF THE ART OF CLASSIFICATION OF ECHOCARDIOGRAMS  
BASED ON VIEWPOINTS

12.3.1 challenges in classification of ViewPoints by comPuters

The resolution of an ultrasonic image is inherently limited due to the loss of proper contact or air 
gaps between the transducer probe and the chest surface [18]. The presence of this kind of speckle 
noise severely degrades the fine details and contrast resolution of the image, bringing up a challenge 
in detecting small and low contrast structures of the heart [19, 20]. In addition, the quality of ultra-
sound imaging is also affected by human factors, including a patient’s physical motion and breath 
motion as well as the skillfulness of an operator. Significantly, the similarities within intra- and 
inter-viewpoints present more difficulties in the classification task. Figure 12.11 exemplifies the sim-
ilarities between frames of intra-viewpoint (Figure 12.11(a)) and inter-viewpoint (Figure 12.11(b)), 

FIGURE 12.10 Sample frames from PSA view. (a) At PSAA viewpoint; (b) At PSAM viewpoint; (c) At 
PSAP viewpoint. Left: labels. Columns 2–3: cardiac systole. Columns 4–6: cardiac diastole.

FIGURE 12.11 Cardiac structures illustrating the variation of intra-viewpoint and inter-viewpoint. (a) The 
aortic root (AO) structure indicated in the left frame fades away in the right one; (b) the similarity between 
viewpoints of PSAM and PSAP where mitral valve (MV) and papillary muscles (PM) appear similar.
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FIGURE 12.12 Sample frames from A5C viewpoint in diastole state with both MV and TV opening and 
AoV closing. The arrow frame demonstrates the resemblance to A4C.

where the aortic root (AO) structure presented on the left frame fades away in the following frame 
(Figure 12.11(a)) and the appearances of PSAM and PSAP (Figure 12.11(b)) appear similar between 
mitral valve (MV) and papillary muscles (PM).

Figures 12.12 and 12.13 further entail the similar intra-viewpoint by showing the sequential 
structure of five chambers (A5C) and four chambers (A4C) of the heart, respectively. Figure 12.12 
depicts diastole state with both MV and TV opening and AoV closing, during which, as pointed 
by an arrow, the image bear similar features to four chambers (A4C class). On the other hand, 
Figure 12.13 exhibits an A4C class where the frame with an arrow on display resembles an appear-
ance of five chambers.

Notably, in this study, the collected video images do not have ECG (electrocardiogram) data that 
record the rhythm and electrical activity of the heart. Therefore, the video images cannot be aligned 
at the same phase of the cardiac (heartbeat) cycle.

Echo videos are usually obtained by sonographers independently in advance, who endeavor 
to acquire as much cross-sections as possible for cardiologists to view, analyze, and diagnose. 
Therefore knowing where those video clips are coming from, or classification of viewpoints, plays 
a crucial part for both computer aided systems and clinicians. As such, a large number of work has 
been conducted to classify viewpoints in an automatic way. Table 12.2 summarizes most of the cur-
rent studies, which will be elaborated in detail below.

Broadly speaking, the classification of echo viewpoints can be categorized into two groups, 
spatial or frame based and spatial-temporal fusion methods, with the former focusing on spatial 
relationship of the heart structures and the latter exploring spatial-temporal relations to combine 
both motion information of echocardiogram sequences with the spatial and contextual information 
on each frame.

12.3.2 frame-baseD methoDs

The frame-based method processes echocardiogram images frame by frame to extract spatial infor-
mation of cardiac structures such as location, gradient, energy, and other statistical characters. 
Approaches in this field pay attention mainly on mining and collecting spatial features or relation-
ships between cardiac structures by representing these features into different forms in order to train 
and test by utilizing classification methods. Because temporal information is disregarded in these 
approaches, the whole echo cardiac video can be processed frame by frame, whereby features and 
spatial relationships are extracted from each image independently. Typical approaches include Scale 

FIGURE 12.13 A sequence of frames corresponding to A4C viewpoint when in systole state with both MV 
and TV closing. The arrow points to the similarity to A5C class that contains five chambers.
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Invariant Feature Transform (SIFT) [36], the Speeded Up Robust Features (SURF) [37], and KAZE 
features [38].

For example, in [34], KAZE features are applied to represent and thereafter to classify echo 
images, whereas in [24], the key points of echo images are detected and described using SURF. 
Towards this end, the input echo images with extracted SURF descriptors need to match those of 
a template image that is calculated in advance for each category. The classification results can then 
be obtained by minimizing the Euclidean distance between the matching points from the template 
and the input image. As a result, the accuracy of recognition is highly dependent on the matching 
degree.

The significant difference between SIFT, SURF, and KAZE is the choice of scale space. The 
former two make use of the Gaussian scale space through the linear diffusion or approximation of 
Gaussian derivatives to detect features, whilst KAZE concentrates on nonlinear diffusion of filter-
ing [39]. In this way, more boundary and detailed information related to cardiac structures can be 
retained while reducing the level of noises. Figure 12.14 manifests the differences where feature 
points are extracted by the application of the three approaches of SIFT, SURF, and KAZE respec-
tively. From the representation of cardiac structure (i.e., boundary) point of view, KAZE appears to 
perform better with more features highlighting the edge of the structure and less scattering.

In addition to these three approaches, many other approaches are also developed to highlight 
cardiac cavity, which are mainly applied to viewpoints of A2C, A3C, A4C, and A5C as applied in 
[21, 22] where the approach of Grey-Level Symmetric Axis Transform (GSAT) has been developed. 
This is based on the assumption that the constellation of chambers in each image is established as 
a relational structure with attributes of location, area, directionality, distance, and angle. The sta-
tistical variations and spatial relationships of this constellation are then encoded by using Markov 
Random Field (MRF) models to obtain the optimal energy. The classification is then conducted by 
applying support vector machine (SVM) in the energy space.

Another approach is to use the shape of a deformation map [24], whereby the standard views of 
echo videos are rendered as a template library by applying multi-resolution spline filters to inten-
sity images. For each unknown sample image, the deformation map and its warped image with 

TABLE 12.2
Summarization of most of the current classification methods in the 
literature. The last three marked with* refer to the work carried out by 
the authors of this chapter.

Method Number of Classes Mean Accuracy(%)

Balaji et al. (2014) [21] 3 94.56

Ebadollahi et al. (2004) [22] 4 67.8

Otey et al. (2006) [23] 4 92.7

Aschkenasy et al. (2006) [24] 4 90

Wu. et al. (2013) [25] 8-way (no A3C, A5C) 98.51

Park et al. (2007) [26] 4 96.3

Zhou et al. (2006) [27] 2 90.2

Roy et al. (2008) [28] 4 97.19

Agarwal et al. (2013) [29] 2 98

Balaji et al. (2015) [30] 4 90.7

Kumar et al. (2009) [31] 4\8 98.4\81

Beymer et al. (2008) [32] 4 87.9

*Qian et al. (2013) [33] 
*Li et al. (2015) [34] 
*Gao et al. (2017) [35]

3\8 
3\8 
3\8

90\72 
97.4\90 
98\92.1
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reference to each template can be procured by matching it against the template library. To classify 
it, both deformation energy and the similarity between the warped image and reference templates 
are employed by applying a linear discriminant classifier. Apparently, the success of this approach 
depends very much on the amount of deformation energy (the smaller the better) and the degree of 
similarity (the more the better).

Similar to SIFT, generalized search tree (GIST) is a widely applied technique to extract echo 
image features [25]. In doing so, an echo image is divided into a set of non-overlapping image 
blocks. Upon each block the spectral energy is computed applying GIST features on the basis 
of multiple oriented Gabor filters of different scales. The global information is then represented 
through the concatenation of all block features and is classified by SVM.

In addition, MLBoost Learning algorithm coupled with multi-object detection can also be imple-
mented for cardiac echo video classification [26] through the application of Haar-wavelet type local 
features or Haar-like local rectangle features [27], mainly for AA classes. According to a multiclass 
classifier, the final classification result can be determined applying the majority voting rule.

On the other hand, Artificial Neural Network (ANN) also remains one of the popular methods 
for classifications, which have been increasingly applied in medical image processing [40–43]. For 
example, to classify heart valve diseases, pre-process medical echocardiography images applying 
Gaussian and Gabor filters takes place first to combine features of intensity histogram and Gray 
Level Co-occurrence Matrix (GLCM). Then these global texture features are fed into an artificial 
neural network for automatic classification based on a back-propagation algorithm [42].

For detection of spatial features of an echo image, statistical histograms are commonly employed. 
For example, a number of histograms can be generated presenting the number of cavities, their 
orientations, and heart muscles in each viewpoint [28]. In addition, the classification of four AA 
viewpoints can be realized by the application of simple gray-scale (intensity) histograms of a region 
of interest (ROI) incorporating a neural network classifier or SVM and Back Propagation Neural 
Network (BPNN) [44]. The approach of Histogram of Oriented Gradients (HOG) is applied to 
depict the spatial arrangement of echo images [29] to capture local structure.

From network design point of view, a hierarchical classification strategy for viewpoint classifica-
tion is implemented in [23], using hierarchical classifiers (one on the top level, two classifiers on the 
second level) to classify all the images by employing the rule of leave-one-out cross-validation. The 
top-level classifier is designed to distinguish between the apical and parasternal views, whereas on 
the second level, each one is applied to distinguish two or four apical chamber viewpoints and to 
parasternal long or short viewpoints respectively, following top-down processes.

FIGURE 12.14 Manifestation of differences between SIFT, SURF, and KAZE on the extraction of feature 
points. From left column to right: original, SIFT (2nd), SURF (3rd), and KAZE (right).
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12.3.3 sPatial-temPoral fusion methoDs

Since the heart cycles periodically, temporal or motion information also plays an important role 
in classification of viewpoints in comparison with image-based methods. The common fusion 
approaches set to distinguish location and global features between temporal and spatial information 
with local motion structures integrated into global dense features as depicted in most image-based 
methods. It is expected that local space-time features capture cardiac characteristic appearance 
and motion information for a local region, which provide a relatively independent representation 
of structures with respect to their spatial-temporal shifts and multiple motions in the scene. Such 
features can be extracted directly from videos.

For instance, based on the optical flow field, the edge-filtered motion maps for echo sequences 
can be produced whereas local spatial-temporal features can then be discerned using SIFT, which 
are subsequently recounted by concatenating location, motion histogram, and intensity histogram 
into a feature vector [31, 45].

The approach of active shape models (ASMs) is also exploited to capture the shape and texture 
information, which are then tracked across the whole video sequence to derive motion informa-
tion [32]. One of the shortcomings of this approach is that the original ASM feature points need 
to be located manually in the training data, which can be not only time consuming, but also 
subjective.

Another research direction is to consolidate 2D frame with 1D time into a 3D space as imple-
mented by Qian et al. [33]. In this method, the space-time interest points of an echo video clip are 
discovered by applying Cuboid detector (including the 2D spatial Gaussian smoothing kernel and 
1D temporal Gabor filter) with each interest point being characterized by a 640-dimension vector 
using a 3D SIFT descriptor. In the training stage, a codebook of echo videos is constructed fol-
lowing the Bag of Word (BoW) paradigm. Then all 3D SIFT features corresponding to space-time 
interest points in each testing video are coded into a feature vector based on the trained codebook. 
Multiclass SVM is applied to complete an eight viewpoints classification of echocardiogram video 
in the final stage.

More recently, Gao et al. [35] took the lead to advance a fused deep learning architecture to 
categorise eight viewpoints by the application of convolutional neural network (CNN) coupled with 
acceleration along the motion space. As a result, their work has achieved state-of-the-art results with 
an accuracy rate of 92.1%.

12.4 METHODOLOGY AND MATERIALS

This section elaborates three popular spatial-temporal approaches for classification, namely, 3D 
SIFT, 3D KAZE, and deep learning, which are implemented in this study, together with motion 
feature descriptors attained in the field of acceleration.

12.4.1 sift DescriPtor in three Dimensions

As a fused approach, the method of 3D SIFT features [46, 33] has been applied in an attempt to 
include temporal information. Figure 12.15 exhibits the three stages that usually take place to treat 
each video as a 3D object with the third dimension being time. First, the detection of spatial- temporal 
interesting points is conducted using a Cuboid detector [47]. Then these points are represented by 
the employment of 3D SIFT descriptors. And finally the construction of a visual vocabulary diction-
ary is coordinated based on the approach of Sparse Coding.

Specifically, as shown in Figure 12.15 (a and b), a 12 × 12 × 12 neighborhood volume around an 
interest point is selected and then divided into 2 × 2 × 2 = 8 sub-volumes. For each sub-volume, the 
gradient magnitude and orientation of each voxel in the sub-volume are calculated by using Haar 
wavelet transform along x, y, and z direction, respectively, whereby the magnitude of the gradient 



266 Cardiovascular Imaging and Image Analysis

(a) An echocardiogram
video sequence

(b) Neighbourhoods of
a space-time interest points

(c) 3D SIFT descriptors (X)
of a space-time interest

points

(d) Histogram of
gradient

orientation

FIGURE 12.15 The process of obtaining 3D SIFT descriptors.

is subsequently accumulated to the corresponding bin of the gradient orientation. The tessellation 
based orientation histogram is then implemented in this study. By using the tessellation technique, 
each bin of 3D gradient orientation is approximated with a mesh of small piece of 3D volume seen 
as a triangle in Figure 12.15(d). The gradient orientations pointing to the same triangle then belong 
to the same bin, as marked by the black points in Figure 12.15(d). The total number of the bins is 
calculated as 20 × (4 ∧ Tessellation level). The tessellation level decides the number of constituting 
triangle surfaces, that is, the number of bins of gradient orientation in 3D space. In this study, the 
tessellation level is set to 1, thus resulting in 80 bins. Each sub-volume is accumulated into its own 
sub-histogram. Subsequently, the 3D SIFT descriptor X of each interest point is of 2 × 2 × 2 × 80 
(= 640) dimensions.

12.4.2 kaze features in 3D

Similar to Section 4.1, 3D KAZE also is formalized in this research. As exemplified in Figure 12.16 
and described in [34], 2D KAZE appears to deliver better performance in the representation of 
feature points for echo videos. This study will extend this technique to 3D to embed temporal 
information. In doing so, the detection of KAZE features undergoes the processes of 3D Gaussian 
smoothness, calculation of conductivity, creation of nonlinear scale spaces, extraction of features, 
and finally coarse-to-fine suppression, as shown in Figure 12.16.

First, each echo video undertakes a pre-processing stage by the application of 3D anisotropic 
Gaussian kernel to de-noise video volume v. Then the calculation of conductivity equation is under-
way using nonlinear partial differential equations (PDEs) as formulated in Eq. (12.1).
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where u0 refers to the original volumetric image, with div and ∇ indicating the divergence and gradi-
ent operators respectively. Furthermore, the diffusion coefficient C can make the filtering adaptive 
to local image structure and is chosen to be able to estimate the gradient as suggested in [48], which 
is given in Eq. (12.2).
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where Gσ τ,  is the spatial-temporal separable Gaussian kernel. As a result, the gradient of spatial-
temporal feature points can be recognized by the application of Eqs. (12.3) and (12.4) to calculate 
gradients at two different levels.
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where K  indicates the contrast parameter to control the smooth level, which can be determined 

automatically to reflect the grey level distribution of images in each video sequences; and ⋅  refers 
to absolute value.

12.4.3 histogram of acceleration (hoa) in acceleration fielD

Since echocardiograms are in a video form, the motion information with reference to time needs to 
be taken into account, which includes velocity and acceleration. To measure velocity, optical flow 
is widely employed using a histogram of flow (HOF) descriptor to encode motion information. For 
an echo video, the motion of the heart is attained from periodic systolic and diastolic functions of 

FIGURE 12.16 The flowchart of echo video classification applying 3D KAZE.
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myocardium and varies in different stages. In a cardiac circle, the myocardium of different struc-
tures has discriminative stress states, which accordingly is reflected as different motion states in 
each echo video.

Acceleration, on the other hand, representing the rate of the change of velocity, reflects the stress 
state of an object. Mathematically, acceleration is defined as the derivative of velocity of v vx y( , ), 
which can be approximated employing discrete difference between two sequential frames in optical 
flow, shown as Eq. (12.5):

 
a x y t

dv

dt
v x y t v x y t( )( ) ( )= = + −, , , , 1 , ,

 
(12.5)

Similar to velocity field, the acceleration field is composed of horizontal and vertical components 
( , )a ax y , which have both magnitude and direction as formulated in Eqs. (12.6) and (12.7), respectively.
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In this work, a new descriptor based on acceleration ( , )a ax y  is developed utilizing a histogram of 
acceleration (HoA) based on magnitude of Eq. (12.6) when implementing 3D KAZE. Figure 12.17 
provides a comparison of velocity and acceleration fields sampled during a cardiac circle in a PSAP 
echo video, in particular in the region of blue boxes.

12.4.4 DeeP learning: conVolutional neural network (cnn)

One important aspect regarding the previously discussed hand-crafted approaches (e.g., 3D SIFT 
and 3D KAZE) is that they are image-dependent, that is, one method that performs excellent on one 
group of images may not work well on several other collections, which prompts the development of 
neural network led deep learning methods to detect salient features automatically.

Acceleration Velocity

FIGURE 12.17 The illustration of acceleration and velocity fields in a frame during a cardiac contraction 
period.



269Viewpoint Classifications of Echo

Deep learning neural networks refer to a class of computing machines that can learn a hierarchy 
of features by establishing high-level features from low-level ones and is pioneered by Fukushima 
[49]. One of these models is the convolutional neural network (CNN) developed by LeCun et al. 
[50]. Consisting of a set of algorithms in machine learning, CNN comprises several (deep) layers 
of processing involving learnable operators (both linear and non-linear), and hence has the ability 
to learn a hierarchy of information by building high-level information from low-level data, thereby 
automating the process of construction of discriminative information [51]. It has demonstrated that, 
when trained with appropriate regularization, CNNs can deliver superior performance on the tasks 
of visual object recognition without relying on hand-crafted features. In addition, CNNs appear 
to be relatively insensitive to certain variations on the inputs due to the fact that a CNN network 
is designed to imitate biological vision processes and implement a feed-forward artificial neural 
network, simulating variations of multilayer perceptrons of the vision system where the individual 
neurons are tiled in such a way that they respond to overlapping regions in the visual field. As a 
direct result, they are widely applied for image and video recognition. Specifically, CNNs have 
been demonstrated as an effective class of models for understanding image content, giving state-
of-the-art results on image recognition, segmentation, detection, and retrieval. In addition, recent 
advances of computer hardware technology (e.g., Graphics Processing Unit (GPU)) have propitiated 
the implementation of CNNs in representing images.

To apply a CNN, mathematically, for a training dataset ( , )( ) ( )x yi i , where image x( )i  is in three-
dimension (with the third dimension being intensity color channels) and y( )i  the indicator vector of class 
of , ( )x i  the weights of feature maps of an image, namely, , ,1 …w wL, will be learned by solving Eq. (12.8).
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where  refers to a suitable loss function (e.g., the hinge or log loss).
To obtain these feature maps v  ij

xy  computationally, 2D convolution is performed at the convolu-
tional layers to extract features from local neighborhood on feature maps acquired in the previous 
layer. Then an additive bias is applied whereby the result is passed through a sigmoid function as 
illustrated in Eq. (12.9) mathematically.
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where the notations of those parameters in Eq. (12.9) are explained in Table 12.3.

TABLE 12.3
Notations of the parameters in Eq. (12.9).

Parameter Notation

(.)tanh hyperbolic tangent function

m index over the set of feature maps in the ( 1)i th−  layer

bij bias for the feature map f  in Eq. (12.1)

wijk
pq value at the position (p, q) of the kernel connected to the kth feature map

( , )p q 2D position of a kernel

Pi, Qi height and width of the kernel
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In the subsampling layers, the resolution of feature maps is reduced by pooling over a local 
neighborhood on the feature maps in the previous layer, thereby increasing invariance to distortions 
on the inputs. As a result, the CNN architecture can be constructed by stacking multiple layers of 
convolution and subsampling in an alternating fashion. The parameters of CNN, such as the bias bij   
and the kernel weight wijk

pq, are usually trained using unsupervised approaches [52], whereby their 
initial values are set up randomly as explained in Table 12.3.

12.4.5 the fuseD architecture of two stranDs of DeeP learning cnn

Figure 12.18 illustrates the integrated architecture of networks implemented in the study in [35]. 
Specifically, two CNN networks are schemed along space and time directions respectively and 
executed individually, whereas the integration of both spatial and temporal information is fused 
upon the final classification scores obtained from both networks. The spatial CNN network 
works upon the original echo video images that are normalized into the size of 227 × 227 × 26 
frames to learn spatial information automatically. Whilst for the temporal CNN network, all 
the images undergo pre-processing in advance before the learning starts. Towards this direc-
tion, they are resized to 175 × 200 × 26 pixels first, which is about half the video spatial size, in 
order to speed up subsequent processing. Then the approach of Optical Flow is applied twice to 
obtain velocity and thereafter acceleration images. Based on both networks, the final classifica-
tion result is consolidated though the linear combination of the classification scores obtained 
from each network using the algorithm of Softmax [53], which tags a probability of belonging 
to each of the eight classes for each image frame in question. As for a video clip with 26 frames 
in the spatial network, a histogram based voting system with eight bins ranks the final score for 
all the frames.

In Figure 12.18, seven layers of operations are performed on each of CNN networks of CNN-1 
(top graph) and CNN-2 (bottom graph).

FIGURE 12.18 The fusion of deep learning networks integrating both spatial and temporal information.
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In each layer, to learn jointly, both forward and backward processing are staged, composed of 
several operators in an end-to-end manner. As such, a forward neural network tends to be the com-
position of a number of functions as formulated in Eq. (12.10) [54].

 
y x x w w w( ) ; ; ;2 1 1 2f f f fL L( )( )( )= = … …

 
(12.10)

Each function fl takes a datum xl  as input that has a size of M N×  pixels × K  channels (default of 
K  being 3 representing R, G, and B color channels) and a parameter vector wl , then produces an 
output datum x 1l+ . The very first input of x x0=  indicates an echo frame for CNN-1 or acceleration 
image for CNN-2, whereas the rest of xl (l > 0) are intermediate feature maps. For each convolu-
tional layer, the initial input filter bank of wi is randomly generated but with pre-defined filter sizes. 
For example, in Figure 12.18 top graph, for Conv-1, the filter size is set as × ×11   11 3, generating 
96 filter banks. The output of the convolution with this bank of filters, y, is assessed in Eq. (12.11).
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where 96k ′ = , k = 3, 11i′ = , and 11j′ =  for the first Conv layer. In other words, each convolu-
tional operator generates K ′ dimensional map of y by Eq. (12.11). For example, for layer 1 where 
x (227, 227, 3)0 =  with the original frame size, feature map x (27, 27, 96)1 =  is generated after 
layer-1 convolutional operator. Since the images are in grey, the third dimension representing RGB 
color channels is ignored, that is, x (227, 227, 3)0 =  being replaced by x (227, 227)0 = . The calcula-
tion of the size of the feature map follows the rule set out in Eq. (12.12).
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Additionally, each component or pixel of a feature map is subject to a non-linear gating process to 
legitimize the processed data. In this study, the simplest approach of rectified linear unit (ReLU) is 
conveyed in Eq. (12.13) that thresholds the data with zero.

 y xmax 0,ijk ijk{ }=  
(12.13)

This operator however does not change the size of each feature map. To downsize the feature map, 
pooling is employed to coalesce nearby feature values into one downsized sampling and reduce the 
influence of noise while operating on each individual feature channel. The most commonly used 
choice of pooling is max-pooling to select the largest component within a neighborhood as shown 
in Eq. (12.14).

 
max : , { }= ≤ ′ < + ≤ ′ < +′ ′y y i i i p j j j qijk i j k  

(12.14)

whereas the downsize rate is controlled by pooling stride (P-Stride).
Another operator remains Dropout to deal with overfitting in the CNN networks. In doing so, 

randomly dropped-out units (along with their connections) from the neural network during the 
training stage are selected and discarded. The dropout rate in this study is set to be 0.5, which is 
half the data unit numbers.

Once each layer of forward processing is completed, backward process proceeds to ensure that 
the parameters of feature maps,   ( , , )1= …w w wL , are learned in such a way that the overall function 
of z x w    ( , )f=  sustains a minimum loss, z z( , ˆ),  where ( , , , )1  =z z zi  corresponds with the output 
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value of xi  and ẑi the ground truth of xi  in the training datasets. Therefore the loss function can be 
determined in Eq. (12.15).
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There exists a number of algorithms for minimizing L. In this research, the approach of gradient 
descent is employed, which quantifies the gradient of L at a current solution wtand then updates t  
along the direction of fastest descent of L as revealed in Eq. (12.16).
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where tη  refers to the learning rate that is usually pre-defined and is within the range of (0, 1). In 
this way, parameters of w can be solved using training datasets.

Substantially, while filter sizes can be of any size within the limit of data size and are chosen 
manually in advance, the dimension of the output layer at the end of CNN architecture must be 
1 × 1 × 8, which reduces the full input image into a single vector of class scores (in our case, class 
number is 8), arranged along the depth dimension, and can be computed using Eq. (12.12) com-
pleted with the values of pooling stride.

In addition, in this investigation, the batch size is set to be 100 (i.e., the system takes 100 images 
in one go to process) whereas GPU is employed. Furthermore, the learning rate is set to be 0.01 with 
initial bias being 0.1. Although the filter size is defined in each layer, the initial values of each filter 
are randomly generated to start the deep learning process in each network. The epoch number of 
the cycles that the network runs is set to be 150 for both CNNs when the error rates change little as 
monitored in Figure 12.19 for CNN-2.

FIGURE 12.19 The training information for CNN-2.
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The final classification result is realized during the fusion stage by the linear integration of both 
class score vectors. Individually, at each network, the classification is performed using Softmax 
classifier that determines a score of normalized class probabilities as mathematically defined in 
Eq. (12.17).
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where the function takes a vector of arbitrary real-valued scores (in z) and compresses it to a vector 
of values between zero and one that sum to one. The obtaining of the class scores f   involves the 
calculation of cross-entropy loss that is formulated in Eq. (12.18).
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where the notation f j refers to the jth element of the vector of class scores f  [53].

12.5 IMPLEMENTATION AND RESULTS

The implementation of a CNN-based approach takes place in this section in comparison with a 
number of hand-crafted methods as described in Section 4.

12.5.1 Datasets

In total, 432 video images of ultrasonic video images of the heart are collected from both Tsinghua 
University Hospital at Beijing and Fuzhou University Hospital at Fuzhou, China. Conforming to 
informed patient consent, these data contain eight view classes and are captured from 93 different 
patients aged between 7 and 85 years old (comprising 35 wall motion abnormalities and 58 nor-
mal cases). All videos are recorded with a duration of ~2 seconds from GE Vivid 7 or E9 and are 
stored in DICOM (Digital Imaging and Communications in Medicine) format with the size of either 

x pixels x frame434   636     26   or x pixels x frames341   415     26  . Each clip belongs to one of the 
eight different views, as detailed in Table 12.4. These ground truth data of eight different view 
 videos are catalogued by clinicians in both hospitals in advance.

12.5.2 results

For CNN-2 of Figure 12.18, the temporal information is learned from acceleration images along 
the time direction of the echo videos, which is extracted applying optical flow twice, following the 
work of variational optical flow [55]. Upon the application to the original echo video with n frames, 

TABLE 12.4
The numbers of videos for each of eight viewpoints in the database and applied for 
training and testing respectively.

View A2C A3C A4C A5C PLA PSAA PSAM PSAP Total

Videos 62 46 58 40 79 57 48 42 432

Training 40 30 38 26 51 37 32 26 280

Testing 22 16 20 14 28 20 16 16 152



274 Cardiovascular Imaging and Image Analysis

the velocity video images are obtained with n-1 frames. Then the video images are obtained when 
optical flow (OF) is applied on the velocity video with n-2 frames. This process is conducted offline 
since it takes time (1 day in our case). Figure 12.20 exhibits the process of obtaining velocity (V) 
frames from image frames 1 (F1), 2 (F2), and 3 (F3), while Figure 12.21 portrays the acceleration 
(A) frame along both x and y directions.

(a) Image frame 1 (F1)

(e) V frame 1,
y-direction (VF1-y).

(f) Image frame (F2)

(i) V frame 2,
x-direction (VF2-x).

(j) V frame 2,
y-direction (VF2-y).

(g) Image frame 3 (F3) (h) OF between F2 and F3

(b) Image frame 2 (F2) (c) OF between F1 and F2 (d) V frame 1,
x-direction (VF1-x).

FIGURE 12.20 Image frames of 1 to 3 ((a), (b), (f), (g)) and their corresponding optical flow (OF) maps ((c), 
(h)) and velocity image frames 1 ((d), (e)) and 2 ((i), (j)).

(a) Superimposing three
images of F1 to F3 in
figure 20.

(b) Acceleration frame along
x-direction generated from
VF1-x and VF2-x.

(c) Acceleration frame along
y-direction generated from
VF2-y and VF2-y.

FIGURE 12.21 Acceleration created from velocity frames 1 and 2 along both x (b) and y (c) directions. 
(a) Superimposed figure of images F1 to F3 in Figure 12.20.
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All the programming work is implemented using Matlab software based on MatConvNet [54], 
in a computer that runs Ubuntu 64-bit operating system with 64 GByte memory and GPU facility. 
For each strand of CNN network in Figure 12.18, it takes about two days processing all 432 video 
images. In addition, the creation of acceleration frames is accomplished offline in advance to expe-
dite the process, which takes another two days.

Table 12.5 presents the final classification results obtained in the form of confusion matrix. The 
second last column shows the result applying two CNN networks proposed in this study integrating 
both spatial and temporal information, whereas the last column supplies the outcome concerning 
only spatial information (i.e., using single CNN network). As a result, the averaged accuracy rate 
(AR) calculated applying Eq. (12.19) from two-strand network is 92.1% in comparison with 89.5% 
from the single CNN network.
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total num this class  
(12.19)

In many published works, presentation based on three primary locations is also emphasized, which 
is provided in Table 12.6, where the overall precision rate of the classification is 98%, which remains 
the same for both two-strand and single-strand CNN network architecture.

TABLE 12.5
Confusion matrix for eight echocardiogram view classification employing both  
two-CNN-network and one-CNN-network (i.e., without Acceleration (A)) architecture.

A2C A3C A4C A5C PLA PSAA PSAM PSAP AR (%) 
2-CNN

AR (%) 
1-CNN

A2C 22 100 100

A3C 16 100 100

A4C 20 100 95

A5C  4 10 71.4 57

PLA 27  1 96.4 100

PSAA  1 19 95 90

PSAM  1  1 12  2 75 68.8

PSAP  2 14 87.5 87.5

Overall AR 92.1 89.5

TABLE 12.6
Confusion matrix for 3 primary view locations.

AA (Apical 
Angle)

PLA (Parasternal 
Long Axis)

PSA (Parasternal 
Short Axis)

Accuracy Rate 
(AR) (%) 2-CNN

AR without 
A (%) 1-CNN

AA 72 100 100

PLA 27  1 96.43 100

PSA  2 50 96.15 94.23

Overall AR 98.02 98.02
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In addition, comparisons with a number of well-known hand-crafted methods are performed, 
including 2D KAZE detector combining with the histogram of optical flow, 2D KAZE, 3D 
KAZE detector with HOA, dense optical flow detecting, and 3D SIFT. For encoding features, 
they are all represented using Fisher vector with K =128. Figures 12.22–12.26 present confu-
sion matrixes respectively with the averaged accuracy rates being 84.3%, 89.4%, 87.9%, 79.4%, 
and 73.8%.

FIGURE 12.22 The confusion matrix of 2DKAZE with optical flow method. The average accuracy is about 
84.3%.

FIGURE 12.23 The confusion matrix of 2D KAZE with the average accuracy of 89.4%.
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Table 12.7 summarizes the results for all the approaches implemented in this study.
As indicated in Table 12.7, the two-network CNN architecture proposed in this paper per-

forms the best. Without the inclusion of acceleration of temporal information, CNN still outper-
forms all the other hand-crafted approaches with 89.5% precision rate. Among those hand-crafted 
approaches, 2D KAZE appears to achieve the best for this group of echo images with the overall 
AR maintaining 89.4%.

FIGURE 12.24 Confusion matrix of 3D KAZE with the average accuracy of 87.9%.

FIGURE 12.25 The confusion matrix of dense optical flow with the average accuracy of 79.4%.
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12.6 CONCLUSION AND DISCUSSION

This chapter reviews the state-of-the-art echocardiography and its viewpoint classifications. In 
particular, three approaches are elaborated, including 3D SIFT, 3D KAZE, and the cutting-edge 
deep learning technique. Specifically, a fused CNN architecture is designed featuring both auto-
matic and selective deep learning networks for the classification of echo videos of eight viewpoint 
classes. Significantly, this CNN architecture with two-strand networks performs the best with clas-
sification results up to 92.1% of accuracy, the best so far in the published work. This implies that 
deep learning led techniques can be implemented onto medical images and have shown potential 
in finding  discriminative features automatically for echo video images. In theory, deep learning 
networks accomplish better with the increase of the number of datasets. In our investigation, the 

FIGURE 12.26 Confusion matrix of 3D SIFT. The average accuracy is about 73.8%.

TABLE 12.7
Comparison results between hand-crafted 
approaches and proposed CNN network.

Methods Average Accuracy

2D space domain
 2D KAZE
 2D SIFT

89.4%
83.8%

Spatial-temporal domain
 2D KAZE + optical flow
 Optical flow
 3D SIFT
 3D KAZE + HoA

84.3%

79.4%

73.8%
87.9%

Deep learning
 CNN 89.5%

Deep learning with two networks
 CNN + Acceleration 92.1%
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total number of the data is just over 400 video clips, which is not significantly large in comparison 
with the  published work built on bench mark datasets [56–58] where each class amasses more 
than 1 million datasets. Still, CNN outperforms all the hand-crafted approaches studied in this 
investigation. Specifically, with the embedding of acceleration information along temporal dimen-
sion, two-strand-networks of CNN achieve significantly better (92.1%) than the single-network of 
CNN without temporal information (89.5%). Interestingly, the performance of the single network 
of CNN is very close to that of 2D KAZE (89.4%), indicating that when the number of datasets are 
in a small quantity, the hand-crafted methods can achieve just as well. It should be noted that in 
this study both 2D hand-crafted approaches appear to function better than their 3D counterparts, 
namely, 2D KAZE (89.4%) vs. 3D KAZE (87.9%) and 2D SIFT (83.8%) vs. 3D SIFT (73.8%), which 
can be explained away by the fact that all these collected echo videos are not normalized. In other 
words, each video can have a different starting point at any phase of the cardiac (heartbeat) cycle. 
As a result, the temporal information is not aligned and may sometimes provide conflicting infor-
mation depending on the features to be explored. In the future, further study will be carried out 
to probe if this phenomenon correlates with video length by acquiring echo clips to contain more 
than one cycle. Furthermore, the dimension along the temporal direction is significantly lower in 
comparison with spatial ones (i.e., 26 vs 341 × 415 or 434 × 636), which might lead to difficulties in 
extraction of distinguishing temporal information. Nevertheless, temporal information constitutes 
an inseparable part of video images and will enhance the classification results if correct features are 
implemented as evidenced in this study where acceleration features are employed.

Importantly, not only does the proposed method of two-strand deep-learning network outperform 
the state-of-the-art hand-crafted approaches, but also it applies to the datasets that are not normalized. 
In other words, any echo videos can be classified without the need of availability of ECG data, which 
will provide significant benefit when it comes to the development of computer-aided diagnostic systems.

Although the temporal information contributes significantly to the final classification results 
(i.e., 92.1% vs. 89.5%), temporal information alone cannot represent echo videos completely with 
only 79.4% accuracy rate when only optical flow is applied.

Furthermore, along the temporal direction, the technique of optical flow is employed to capture 
the motion features of velocity and acceleration of the moving heart, which operates on dense motion 
fields. In the case of an ultrasonic image, echocardiography can only generate a fan-shape view win-
dow, suggesting that each image frame may always introduce new points/objects that are not present 
in the previous frame, leading to a wrong match of brightness-based points to a certain extent as 
depicted in Figure 12.27. Hence the application of acceleration features alone to classify viewpoints 

FIGURE 12.27 The optical flow image without the exclusion of edge points outside of the fan shape.
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is not expected to give better performance. In this study, those points outside of the fan shapes are 
excluded for the subsequent processes and are replaced by the background grey level as shown in 
the flow maps of Figure 12.20 (middle column).

The class of A5C contains the smallest number of datasets (40) and has the worst classification 
rate (71.4%). Therefore, future work is to collect more data.

The output of CNN led architecture is a classification system or a model that bundles up every 
parameter for echocardiography. Although the initial development and training of this system may 
take weeks or months depending on the volume of collected data, the system/model will operate 
in real-time mode once the classifier or classification model is established. In other words, once a 
new video clip is made available and sent to the system, it takes a couple of minutes (depending on 
the length of the video) to give out the classification result of the video. Furthermore, similar to any 
other software systems, updating this classification system or model can be conducted at a regular 
basis whenever new dataset/information/evidence is made available.

To compare with the existing work, it appears that more data does improve the classification rate. 
In [33] where 3D SIFT is employed, the average accuracy rate (AAR) stands at 72% with 219 data-
sets, whereas 73.8% is achieved with 432 data in this study. Similarly, in [34] that applies the same 
2D KAZE features, 81.09% AAR is realized based on a collection of 312 datasets, whereas in our 
study with 432 datasets, a significant increase of accuracy is attained amounting to 89.4%. While 
the accuracy rate is secured at 81% in [31] based on 113 video clips, results may not be comparable 
directly. In their work, their collection of video data has been subjected to a normalization stage (to 
align all the videos to start at the same phase of a cardiac cycle) with the addition of extra informa-
tion extracted from ECG (electrocardiogram) data, whilst ours remain raw video clips. Remarkably, 
this fact further promotes the significance of the applied fused CNN architecture in the classifica-
tion of echo videos, which competes with the best AAR so far at 92.1%.
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13.1 INTRODUCTION

The aortic valve is a heart valve situated between the left ventricle (LV) of the heart and the 
aorta. It functions like a one-way flow controller that allows blood from the LV to be pumped into 
the aorta but prevents the backflow of the blood. Aortic stenosis (AS), which is a narrowing of 
the aortic valve opening, is the most common valvular heart disease in developed countries [1]. 
Advanced age is a major risk factor of the development of AS. Some congenital heart defects, 
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such as a bicuspid aortic valve, can also cause AS. The progression of AS involves a series of 
deteriorations of the cardiac function, including an elevated LV systolic pressure, LV concentric 
hypertrophy, an elevated LV diastolic pressure, and a decreased cardiac output. If untreated, AS 
patients ultimately develop heart failure.

Patients with severe aortic stenosis may be asymptomatic for many years. However, once the 
symptoms appear and are only treated medically, the condition of the symptomatic AS patient 
declines quickly. Mortality rates from the onset of symptoms are approximately 25% at 1 year 
and 50% at 2 years. Aortic valve replacement where the diseased aortic valve is replaced with a 
mechanical or tissue valve during a surgical procedure, is a viable treatment option for symptomatic 
AS patients. Conventional aortic replacement surgery requires sternotomy, cardioplegic arrest, and 
cardiopulmonary bypass. For severe AS patients with inoperable conditions or who are designated 
as high risk for surgery, transcatheter aortic valve replacement (TAVR), also known as transcatheter 
aortic valve implantation (TAVI) or percutaneous aortic valve replacement (PAVR), has been estab-
lished as the treatment of choice. In this procedure, an aortic valve is implanted using a transcath-
eter technique and the sternotomy and cardiopulmonary bypass procedures are avoided.

Paravalvular leak (PVL) is a major complication post-TAVR. Recent studies [2] have reported 
that 26% - 67% of all patients that received TAVR developed a mild or more severe PVL, which is 
higher than the probability of PVL after surgical aortic valve replacement. Multicenter studies [3], 
[4] have shown that moderate-to-severe PVL post-TAVR is an independent risk factor for increased 
short- and long-term mortality. Researchers have proposed a number of PVL predictors that are 
derived from pre-TAVR imaging, for example, CT or echocardiography, to estimate the occurrence 
and severity of PVL post-TAVR. These predictors included the presence of valve under-sizing, 
elliptical annulus, landing-zone calcification, etc. However, the mechanism of the occurrence of 
PVL is complex and multifactorial, which involves the dynamic interaction between the native 
aortic valve, the implanted TAVR valve, and blood flow. It is still difficult to reliably predict the 
occurrence and degree of PVL before the TAVR procedure, and there is no broad consensus on an 
optimal strategy in patient or prosthesis selection to reduce PVL. Computer-based numerical analysis, 
such as finite element analysis, has also been used to quantitatively simulate TAVR implantation [5]. 
However, it remains challenging to numerically simulate the implantation in an environment of 
viscous blood flows and deformable structures, such as the aortic wall and the native valve leaflets, 
that endure large deformation. Spatial and temporal discretization of the numerical domain has to 
be fine enough to ensure model stability, which, however, inevitably leads to very expensive com-
putational costs. For instance, in finite element analysis, the large displacement of the valve leaflets 
makes remeshing the fluid domain prohibitively expensive to compute. Current numerical analysis 
approaches have to simplify the computer simulation by decoupling the fluid and the deformable 
structure under quasi-static conditions or by simply removing the fluid component from the simula-
tion. Furthermore, most numerical methods have to make assumptions about the material properties 
of the aortic tissue and the prosthesis, as well as the contact constraint in between.

3D printing or additive manufacturing (AM) refers to the fabrication of objects layer by layer in an 
additive process from 3D digital models. It has been widely applied in the biomedical field, including 
prosthetics and orthopedic implants [6], [7], and tissue/organ printing [8]. Compared to numerical 
models, the 3D printed phantom provides a more intuitive hands-on experience to the physicians 
performing procedures. Due to the rapid growth of percutaneous treatments for aortic valve disease 
and the inherent complexity of the catheter-based intervention on a beating heart, TAVR has been 
frequently targeted for 3D printing-guided pre-procedural planning. With recent advances in additive 
manufacturing, it is possible to create a patient-specific aortic valve phantom with accurate anatomy 
and comparable mechanical properties. Such phantoms can be used as a pre-procedural planning 
platform for TAVR simulation and a quantitative tool for post-TAVR PVL assessment.

This chapter aims to review the materials and techniques used in fabricating sensor-enabled 
tissue-mimicking valve phantoms and the latest application in pre-procedural simulation of valve 
interventions. In the following sections, we will introduce the two major technical components of 
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the 3D printing-based simulation platform: a novel tissue-mimicking 3D printing technique and an 
in-vitro imaging-based strain quantification technique. To demonstrate the clinical potential of this 
technology, we will also present the framework of 3D printing-based TAVR pre-procedural planning.

13.2 TISSUE-MIMICKING PHANTOMS AND 3D PRINTING TECHNIQUES

13.2.1 tissue-mimicking Phantoms before 3D Printing

Tissue mimicking phantoms were first used for characterization and calibration of medical imaging 
technologies in 1972, when Robinson and Kossoff used water to substitute tissue in medical ultra-
sound measurements and calibrations [9]. Since then, phantoms have been used to compare the 
performance of medical imaging systems, train radiology technicians, validate computer models, 
and assist in the development of new medical imaging techniques. The tissue-mimicking phantoms 
for medical imaging have well-defined attenuation or acoustic impedance, dimensions and internal 
features, thereby simplifying and standardizing the imaging experiments. Before 3D printing was 
broadly used in studying heart valves, many research groups [10]–[13] presented non-patient-specific 
phantoms that mimic the imaging properties of human valves. In these studies, the valve phantoms 
were molded to idealized valve shapes with silicone, agarose, gelatin, PVA cryogel, etc. The phan-
toms were kept stationary in most simulations.

Generic phantoms that mimic the imaging properties of biological tissues have played an impor-
tant role in in-vitro imaging studies, such as X-ray, MRI, and ultrasound. In 1982, Madsen and 
Fullerton proposed an ultrasonically tissue-mimicking material for use in NMR imaging phantoms. 
The material is essentially water-based proteinaceous gels with glycerol and graphite particle addi-
tives for temporal stability and high melting temperature. It was reported that the NMR T1 of this 
material depends primarily on the concentration of glycerol and the NMR T2 depends primarily on 
the graphite particle concentration. In addition, the ranges of T1 and T2 can be tuned with gelatin 
concentration. With these properties, effective contrast-resolution phantoms with stable T1 and T2 
distributions can be produced. Bush and Hill later reported a soft tissue substitute using gelatin and 
alginate, with calcium chloride added to improve thermal stability [14].

This gelatin-alginate phantom was further improved by Bamber and Bush in 1996 to enable 
representation of distinct inner structure [15].

Agarose-based phantom is one of the most widely used substitutes for soft tissues due to its 
well-characterized performance and simple fabrication process. Mitchell et al. reported their study 
of agarose as a phantom material for NMR imaging in 1986 [12]. Agarose is derived from agar, a 
hydrophilic colloid that is extracted from algae. In this recipe, dry agarose is dissolved in a mixture 
of water and propanol. In later versions, other additives, such as evaporated milk [16] or glass beads 
[17] were added to tune attenuation or scattering properties. In 2001, Ramnarine et al. incorporated 
the agar-based technique into vascular phantoms in a European commission project [18]. In this 
material, water and glycerol were mixed with a high-strength agar. Other gradients were also used. 
Benzalkonium chloride was added to control microbial invasion. Al2O3 powder was added to con-
trol attenuation. SiC powder was added to tune backscatter. The high-strength agar was reported to 
provide superior structural rigidity compared with standard agarose-based materials and was well 
suited for vascular flow tests.

Polyvinyl alcohol (PVA)–based materials have been used to make basic vascular phantoms. 
Nadkarni et al. reported that a combination of 10% PVA with 0.75% enamel paint followed by two 
freeze-thaw cycles has properties similar to human vascular tissue [19]. The mechanical properties 
of the phantoms can be tuned by changing the concentrations of PVA.

Latex rubber is another popular material for vascular phantoms. Zhang and Greenleaf fabricated 
a femoral artery phantom using latex rubber tubing and mounted tubing within a gelatin filled frame 
to mimic the adjacent soft tissue [20]. Kawase et al. used a rubber ring with wires attached to the 
outer surface to provide fiducial markers [21].
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Before the introduction of 3D printing, tissue-mimicking phantoms had been extensively studied 
and used in medical imaging. Other than the materials mentioned previously, additional materials 
have been explored, such as polyurethane [22], polyacrylamide gels [23], open cell foam [24, 25], 
and silicone [26]. Those phantom materials often provide a few composition or processing param-
eters as tuning factors for various properties. By changing those factors, researchers can tune the 
imaging properties or mechanical properties of phantoms to mimic the native tissues under differ-
ent circumstances. With the increasing need of biomedical research, other applications of tissue-
mimicking phantoms have also been demonstrated, such as the simulation of electromagnetic 
properties of tissues [27], mechanical property mimicking [28], and focused ultrasound ablation 
[29]. In these applications, phantoms were fabricated as population-averaged idealized models and 
the individual differences among patients were overlooked. In individual cases, the information that 
the population-averaged phantoms can provide is very limited since specific information of each 
patient, such as age, sex, race and medical history, may heavily affect the tissue properties [30]–[32].

13.2.2 3D PrinteD Patient-sPecific Phantoms

Additive manufacturing technologies provide an opportunity towards development of more complex, 
patient-specific phantoms for medical device testing and surgical planning. 3D printing can transform 
any digital 3D model into a real-world 3D object, while medical imaging can provide the digital 3D 
model of the patient’s tissue. Imaging techniques have evolved dramatically in the past few decades. 
Multi-detector-row computed tomography (MDCT) and magnetic resonance imaging (MRI) can pro-
vide high resolution 3D data of the human body. 3D printing technologies have provided a rapid and 
low-cost method to generate patient-specific tissue-mimicking phantoms from the imaging data. A 
3D printed patient-specific phantom has an accurate geometry of the target human organ and also 
could contain the desired patient-specific pathophysiologic information. It has enormous potential in 
many biomedical applications and clinical practices, such as computational model validation, medical 
device testing, surgery planning, medical education, and doctor-patient interaction.

3D printing features a high ability for customization, high geometrical complexity, and cost 
effectiveness in manufacturing cases with low production volume, which is perfectly suited for 
biomedical applications like prosthetics implants [33], orthopedic implants [7], [34], [35], and  
tissue/organ printing [8], [36], [37]. Bose et al. did a comprehensive review of cases where additive 
manufacturing technologies were applied in bone tissue engineering [38]. In some of those cases, 
multiple types of materials, including ceramics and polymers, were used to tune the mechanical 
properties of the printed scaffolds. Biglino et al. demonstrated the fabrication of compliant arterial 
phantoms with PolyJet technology, an additive manufacturing technique that deposits liquid photo-
polymer layer by layer through orifice jetting and then solidifies by UV exposure [39]. A rubber-like 
material named TangoPlus (Stratasys Ltd) was used in this study because its mechanical properties 
are similar to the real tissue. Cloonan et al. did a comparative study on common tissue-mimicking 
materials and 3D printing materials including TangoPlus with the abdominal aortic aneurysm phan-
toms [40]. Their results suggested that TangoPlus was a suitable material for modeling arteries in 
terms of dispensability and it outperformed poly (dimethylsiloxane) (PDMS) Sylgard elastomers 
that were commonly used in the investment casting process in terms of uniaxial tensile properties.

The integration of modern medical imaging techniques and additive manufacturing has enabled 
the production of anatomically accurate medical phantoms. Compliant 3D printing materials are 
the cornerstone of the manufacturing of lifelike 3D printed medical phantoms. However, it is still 
challenging to find materials that perfectly match the mechanical properties of biologic tissues. 
The most commonly used 3D printable biological materials include thermoplastic polymers and 
photopolymers. The mechanical properties of these 3D printable materials are usually tunable with 
content composition, additives, or degrees of polymerization. However, due to the fundamental 
difference between polymeric materials and natural tissues, the dynamic response of a 3D printed 
phantom is usually different from its native counterpart in large strain ranges.
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The post-printing cleaning process of support material is another challenge to the 3D printed 
patient-specific phantoms. The removal of support material usually employs mechanical handling 
methods with tools or water jets. This process can damage the phantom, especially when the phan-
tom has delicate structures such as thin walls (less than 2mm). Some printable material may also 
experience permanent deformation during the cleaning process, which compromises the geometri-
cal accuracy.

Another limitation of 3D printed phantoms is the feature resolution, which is determined by the 
choice of technique. With current 3D printing technologies, the smallest feature size achievable is 
around 20 micrometers in the layer direction and 100 micrometers in plane. If the desired feature 
is smaller than the feature resolution of 3D printing, other techniques, such as nanoimprint, must 
be used.

13.3 DEVELOPMENT OF BIOMECHANICALLY ACCURATE PHANTOMS

13.3.1 Design of metamaterial Phantoms

Although the uniaxial tensile properties of 3D printed materials can be close to biological soft tis-
sues at small strain (<3%) range, the creep tendency, an inherent characteristic of polymers, makes 
them behave quite differently than the soft tissues under larger deformation. For tissue-mimicking 
phantoms, the strain range-of-interest is normally the working strain range of the biological tis-
sue. As illustrated in Figure 13.1, soft tissues typically exhibit a strain-stiffening behavior initially, 
which is represented by a convex stress-strain curve in the initial setting. As the strain increases, 
the curve changes from convex to concave, which indicates yielding of the material [41]. In contrast, 
the stress-strain curve of a polymer material is usually concave from the beginning, indicating a 
strain-softening feature. Even though the initial Young’s modulus of a polymeric phantom can be 
designed to match the Young’s modulus of the real tissue, the mechanical behavior of the phantom 
will deviate from the real tissue at higher strain levels. Such difference prevents the use of polymeric 
phantoms in many biomedical studies that employ simulated working environment of soft tissues. 
For example, current 3D printed aorta models have limitations in pre-operative assessments of 
TAVR. In order to achieve optimal clinical outcomes, an individualized assessment of the interac-
tions between the native aortic tissue, the prosthesis, and the blood flow is critical. The peak strain 
of human aortic tissues is typically larger than 10%, where the mechanical responses of the aortic 
tissue and the 3D printable polymer differ significantly.

Since creep is an intrinsic property of polymeric materials, single-material polymer 3D print-
ing is fundamentally not capable of generating phantoms that are mechanically accurate in the 

FIGURE 13.1 Comparison of mechanical behaviors of soft tissue and polymer. (a) Typical stress-strain 
curves of a soft tissue (dotted line) and a polymer (solid line). Soft tissue: A - toe region, B - elastic region, 
C - plastic region, D - failure region. Polymer: I - primary creep, II - secondary creep, III - tertiary creep; and 
(b) zoomed view of the curves in the strain range-of-interest for most tissue-mimicking phantoms.
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strain range-of-interest. Recent advances in 3D printed metamaterials provide new insight into this 
challenge. Metamaterials were first introduced as novel electromagnetic (EM) materials, and their 
characteristic structural length is one or more orders smaller than the EM wavelengths [42], [43]. 
Since then, the concept of metamaterials has been extended to include any materials whose effec-
tive properties are delivered by its structure rather than the bulk behavior of the materials it is 
composed with [44]. With multi-material 3D printing technologies, the feasibility of designing the 
mechanical properties of metamaterials has been proven [45]. Similarly, if a micro-structured mate-
rial is embedded into a soft polymer, the mechanical properties of the combined material should 
be tunable by adjusting the structural parameters. With this principle in mind, dual-material 3D 
printed metamaterials with micro-structured reinforcement embedded in a soft polymeric matrix 
were developed to mimic the convex stress-strain curve of soft tissues [46].

The passive biomechanical properties of human soft tissues were determined by the microstruc-
ture of the tissues at the cellular level. For instance, the nonlinear behavior of human vessels comes 
from the wavy collagen fibers in the proteoglycan matrix being straightened under tensile loading 
[47], [48]. This observation can be imitated by embedding wavy stiff structures into soft polymeric 
matrix. During elongation, the stiff structures will straighten up and compensate for the creep of the 
matrix polymer. The computer-aided design (CAD) models and pictures of printed samples of three 
such designs are demonstrated in Figure 13.2. The sinusoidal wave (SW) design has often been used 
as an assumption for theoretical analysis or numerical simulation of natural wavy fibrous systems. 
The DH design resembles the microstructure of filament actin (F-actin) strands. The IC design was 
a representative non-continuous fiber structure. Each design is assembled from a soft matrix part file 
and a stiff reinforcing microstructure.

13.3.2 tuning of metamaterial Phantoms

The strain-stiffening behavior of soft tissues comes from the interaction between elastin and colla-
gen [49]. Soft tissues in the human body work like fiber reinforced composite structures, where elas-
tin and proteoglycans are the matrix and collagen fibrils are the reinforcements. Elastin is a protein 
that forms the major constituent of the extracellular matrix of soft tissues. It is usually in the form of 
thin strands that are long and flexible. Elastin molecules build up a 3D rubber-like network, which 
may be stretched to about 250% of the unloaded length. Its mechanical behavior is essentially linear 
elastic with marginal relaxation effects [50]. Collagen is a macromolecular protein with a length of 
about 280nm. Collagen molecules are linked to each other by strong covalent bonds to form col-
lagen fibrils that are much stiffer than the elastin. Depending on the primary function of the tissue 
and its requirement of strength, the diameter of collagen fibrils varies around 1.5nm [51]. The strain-
stiffening effect can be explained by the self-aligning and straightening of collagen fibrils [47], 
[48], [52]. Initially, collagen fibrils are randomly oriented, wavy, and in a relaxed condition when 
the deformation is small. Since the elastin is mainly responsible for load carrying at this stage, the 
stress-strain relation is approximately linear and the modulus is close to that of elastin (0.1–2 MPa). 

(a) (b) (c)

FIGURE 13.2 CAD models and printed samples of three metamaterials: (a) sinusoidal wave design, 
(b) double helix design, and (c) interlocking chain design.
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As the deformation increases, collagen fibers start to align with the direction of tension and carry 
loads. The wavy collagen fibers gradually elongate, and this results in an increasing modulus, hence 
the convex stress-strain curve. After collagen fibers are entirely straightened along the load direc-
tion, the modulus of soft tissue reaches its maximum level and the stress-strain curve becomes 
almost linear again with a slight concave that is caused by relaxation.

Even though it is impossible to print nanoscale fibrils, the self-aligning and straightening pro-
cess of stiff fibers can be imitated at a larger scale by embedding wavy, stiff microstructures into 
the soft polymeric matrix. Theoretically, the stiff structures would straighten up during elongation 
and compensate for the creep of the matrix polymer, or even outweigh the effect of creep, result-
ing in an increasing slope on the stress-strain curve. Indeed, strain-stiffening behaviors at certain 
degrees were observed in some of those designs, for example, the SW design. The degree of this 
strain-stiffening behavior, and the tensile properties in general, can be tuned by the parameters of 
the design. For the SW design, these tuning parameters can be: the wavelength λ; the amplitude, A, 
of the sinusoidal wave; and the radius of fibers rf . To characterize a typical stress-strain curve with 
a stress-stiffening effect within the 0–20% strain range, the initial modulus E( ),0  the modulus at 
20% strain E( ),0.2  the maximum modulus Ei( ), and the strain at the inflection point iε( ) can serve 
as the key specifications.

Wang et al. conducted a series of experiments to investigate the effects of each tuning parameter 
of the SW design on the stress-strain curve [53]. In their study, a Connex350 Polyjet printer (Stratasys, 
Eden Prairie, MN) was used to fabricate variants of dual-material metamaterial coupons. The mate-
rials were commercially available. The base materials used for the stiff fiber and elastic matrix are 
VeroBlackPlus® (RGD875) and TangoPlus® (FullCure 930), respectively. These two materials rep-
resent the two extremes of printable materials with VeroBlackPlus being the stiffest and TangoPlus 
the most elastic. The Connex350 can also mix the two base materials at a certain ratio and print them 
simultaneously to form digital materials that have mechanical properties between the base materials. 
In the present study, only the base materials were used to prepare the samples. It should be noted that 
the material choice could also serve as a tuning factor. The stress-strain curves of the single materials 
are shown in Figure 13.3. Both materials exhibited strain-softening as expected.

The results of tensile tests for the λ-variants of the SW design are presented in Figure 13.4. 
When other design parameters are fixed, as the wavelength increases, the fiber became more 
aligned with the direction of the load. As the stiff fibers with a higher degree of alignment carried 

FIGURE 13.3 Stress-strain curves of pure TangoPlus sample (solid, left y-axis) and VeroBlackPlus sample 
(dotted, right y-axis).
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more load, the initial modulus, E ,0  increased with the wavelength. We noticed that the moduli 
at 20% strain for all five variants were about the same. The reason is that at this strain level, the 
fiber structures in the variants were stretched to their limits where the degree of alignment was 
about 100%. Just like the stretching mechanism of soft tissues, the mechanical behavior became 
linear at 5–15% strain, depending on the initial waviness of the fibers. The five variants entered 
the “linear stage” before the 20% strain, therefore they all had similar E .20  Obviously, fibers with 
larger Aλ /  ratio will reach the straightened state faster. Therefore, variants with a larger wave-
length have the inflection points at smaller strain levels. During the tensile test, it was observed 
that the samples were distorted after the fibers were straightened. This is because the stiff fibers 
had to push the soft material aside to become straight. The degree of distortion was positively 
correlated to the deformation of the fibers from their initial state to the straightened state. Hence, 
the larger Ei of metamaterials with a larger fiber wavelength can be explained by the fact that the 
distortion in those samples was smaller.

The results of the tensile tests for the A-variants of the SW design are presented in Figure 13.5. 
With the wavelength fixed, changing the amplitude allowed us to investigate the other portion of the 

Aλ /  spectrum. Similar to the λ-variants, higher initial modulus and higher maximum modulus were 
observed in variants with larger Aλ /  ratio, that is, smaller A. The location of the inflection point 
also followed the same trend. When the Aλ /  is very large (>20), the fibers are almost straight at the 

FIGURE 13.4 (a) The stress-strain curves of the SW design with different wavelengths; (b) the effect of the 
wavelength on curve specifications.

FIGURE 13.5 (a) The stress-strain curves of the SW design with different amplitudes; (b) the effect of the 
amplitude on curve specifications.
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initial state. No strain-stiffening effect was seen since the fibers carried most of the load from the 
beginning of the tensile tests. Also, the variants with straight or near straight fibers yielded around 
4–5%, which is about the same as the strain of yield for VeroBlackPlus.

The results of tensile tests for the rf -variants of the SW design are presented in Figure 13.6. 
Unlike the wavelength and the amplitude, changing the radius of fiber did not change the Aλ /  ratio. 
It changed the volume fraction of fiber. As expected, increasing values for the initial modulus, maxi-
mum modulus, and the modulus at 20% strain were observed as the radius of fiber increased. The 
existence of a “working window” for the radius of the fiber was also noticed. We observed that if rf  
is too small or too large, the soft TangoPlus or the stiff VeroBlackPlus dominated the mechanical 
behavior of the metamaterial. In either case, the metamaterial did not give the desired strain stiffen-
ing. In this design, the lower limit of this window was between 0.1mm and 0.2mm; the upper limit 
was between 0.3mm and 0.4mm.

As shown in the results, the correlation between the specifications of the stress-strain curve and 
the design parameters is nonlinear and demands further investigation. Nevertheless, there are a few 
general design guidelines observed during the experiments that are summarized below:

1. The volume fraction of stiff fibers needs to be in a moderate range to prevent the mechanical 
behavior from being dominated by either material;

2. The “aspect ratio” a, i.e., Aλ /  for the SW design, can potentially be a good indicator for 
the strain-stiffening effect. E0 and Ei are positively correlated to a, and iε  is negatively 
correlated to a;

3. The radius of the fiber, rf , can be used as a tuning parameter for the overall stiffness of the 
metamaterial.

Although the design space is currently limited by the material options and 3D printing tech-
nologies, this dual-material metamaterial design provides a potential method to bridge the inherent 
difference in mechanical behaviors of soft tissues and polymers. On the other hand, the strain-
stiffening effects exhibited in the proposed designs were much weaker than what human tissues 
have. Great effort needs to be made to simulate real tissue with 3D printed phantoms. With evolving 
additive manufacturing technologies, it will be possible to fabricate “plastic tissues” with accu-
rate mechanical properties that are associated with gender, age, ethnicity, and other physiological/
pathological characteristics of a patient. Being able to represent the biomechanical responses, the 
mechanically accurate, patient-specific, tissue-mimicking phantoms would find more applications 
than the conventional geometric phantoms.

FIGURE 13.6 (a) The stress-strain curves of the SW design with different radii of the fiber; (b) the effect of 
the radius of the fiber on curve specifications.
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13.3.3 Patient-sPecific aortic ValVe Phantom

With the help of CAD and finite element analysis (FEA) tools, it is possible to approximate the 
mechanical properties of any soft tissue. As an example, an SW design with mmλ = 0.8 , A mm= 0.65 , 
and r mmf = 0.1  was used to approximate aortic tissue. The comparison of the real aortic tissue, a 
pure TangoPlus sample, and the metamaterial sample is shown in Figure 13.7. Although the mechan-
ical properties of the metamaterial are still different from those of real tissues, the stress-strain 
curve of the metamaterial followed the trend better than the pure TangoPlus sample did because the 
fibers straightened in the metamaterials, which compensated for the creep of the matrix. The dual-
material 3D printing provided a way to tweak the mechanical behavior of the printed metamaterials.

This metamaterial approach can be integrated into the procedure of fabricating patient-specific 
aortic valve phantoms, during which a pre-procedural contrast-enhanced CT scan can be used to 
generate the 3D model of the aortic valve. The sinusoidal fibers are then embedded into the 3D 
model of the aortic wall to achieve strain-stiffening properties that are comparable to human aortic 
tissues. Finally, the 3D model is converted to the Stereolithography (STL) format and exported to a 
multi-material 3D printer for printing.

13.3.4 Pre-taVr ct imaging

Pre-TAVR contrast-enhanced CT scans are preferable for the 3D modeling of the aortic root. As 
shown in Figure 13.8, such scans are routinely performed on a modern multi-detector-row CT scan-
ner using a standard TAVR CT protocol, which typically consists of a prospectively ECG-gated 
full R-R acquisition from the subclavian to the diaphragm, and an immediately following non-
ECG-gated acquisition of the abdomen and pelvis. The tube voltage is typically set to 100–135 kVp 

FIGURE 13.7 The comparison of stress-strain curves of a typical aortic tissue, a pure TangoPlus sample, 
and a dual-material sample. The dual-material sample used the SW design with mmλ = 0.8 , A mm= 0.65 , 
and r mmf = 0.1 .
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depending on the patient’s size. The tube current could be automatically selected by a modern 
scanner. The detector width of the scanner should be ≤0.65 mm. The gantry rotation time should be 
≤350 ms. Cardiac CT images can be reconstructed with 10% increments starting at 0% of the R-R 
interval using a 0.5 mm slice thickness. The volume of iodinated contrast should be adapted to the 
patient’s size (typical dosage: 80–125 ml) at a flow rate of 4.0–5.0 ml/s.

13.3.5 ct image analysis anD 3D moDeling

The 3D model of the aortic valve should be reconstructed at a late systolic cardiac phase, in 
which the aortic valve has the maximum annular diameter. Therefore, the pre-TAVR CT images 
at peak aortic valve opening are identified and used to produce the 3D model of the aortic root. 
A research software (CT Auto Valve, Siemens Corporate Technology, Princeton, NJ) is used to 
semi-automatically segment the images and produce a single-layer 3D model of the aortic root, 
which consists of the arterial wall and the valvular leaflets, as shown in Figure 13.9. Proprietary 
in-house software has been further developed to refine the 3D model by extending the model into 
the ascending aorta and the left ventricular outflow tract (LVOT). The lowest level of the model was 
empirically set to 10 mm below the aortic valve annulus. In addition, our software empirically adds 
a 2.0-mm wall thickness to the aortic root and a 0.5-mm thickness to the leaflets.

Aortic valve calcification is a common condition in AS patients, in which calcium deposits form 
on the aortic valve, mainly due to aging and inflammation. Valvular calcification is a regulated 
process resembling the osteogenic process (bone formation). Calcified lesions on the aortic valve 
exhibit a rigid material property, which could be reproduced by 3D printing using a rigid print-
ing material. To generate the 3D models of the calcium deposits on the aortic valve, as shown in 
Figure 13.9, the calcified lesions are segmented in 3D using a thresholding method, in which the 

FIGURE 13.8 An example of the 3D contrast-enhanced pre-TAVR CT volume that covers the cardiac region 
(cardiac phase: 37% R-R).
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FIGURE 13.9 The aortic valve model viewing from the side and the LVOT. The aortic wall is depicted in 
yellow. The aortic leaflets are depicted in green. The calcified lesions are depicted in red. Anatomic landmarks 
are depicted in blue.

cut-off is set to the mean plus three standard deviations of the luman attenuation in the aortic root. 
The 3D meshes of the calcified lesions are generated using a marching cubes meshing method [54].

Based on the metamaterial configurations described in the previous section, sinusoidal fibers can 
be created and embedded in the 3D model of the aortic wall to achieve strain-stiffening properties 
that were comparable to human aortic tissues. Briefly, the amplitude, radius, and wavelength of the 
fibers are set to 0.4 mm, 0.5 mm, and 7.0 mm, respectively. As shown in Figure 13.10, the principal 
orientations of the fibers are aligned circumferentially to the aortic root model, while the sinusoidal 
is aligned radially. The fibers are designed to be semi-evenly distributed and adaptive to the model’s 
local curvature, with the spacing approximately set to 2.0 mm. Finally, the 3D models of the aortic 
root, the leaflets, the calcified lesions, and the fibers are converted into the Stereolithography (STL) 
format, and exported to a 3D printer for printing.

13.3.6 3D Printing of the aortic ValVe Phantom

The 3D printing of the metamaterial phantom needs to be performed on a multi-material jetting 
printer, such as a PolyJet 3D printer (Objet 350, Stratasys, Israel). PolyJet 3D printing materials, 
TangoPlus, VeroWhitePlus, and a digital material RGD8525, which is a mix of TangoPlus and 
VeroWhitePlus, are used to print the aortic root soft tissues, the calcified lesions, and the embedded 
fibers, respectively. The 3D printer is able to read in STL files from up to 10 patient data sets in one 
batch, and it takes a total of 9 to 10 hours to print these 10 3D phantoms simultaneously. Post-print 
processing, such as removing the support materials, takes about 15 minutes for each phantom. The 
cost of the printing materials in each phantom is approximately $100 in December 2017.

13.4 DEVELOPMENT OF THE SENSOR-ENABLED 3D PRINTED PHANTOMS

The advantage of using the tissue-mimicking metamaterial technique is that it has greatly improved 
the fidelity of the procedural simulation on the 3D printed phantoms. In Qian et al.’s study [55], the 
same type and size of TAVR valves as in clinical use could be deployed in the tissue-mimicking 
phantoms. During the simulation process, the deployment depth and angle could be easily adjusted, 
and different deployment techniques could be tested. The deformation and interactions of the self-
expanding prosthesis and the passively dilating aortic root could be closely monitored using sensor-
enabled phantoms.
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There are actually a variety of sensors that we could add to the 3D printed phantom for quantita-
tive assessment of the relevant pathophysiological parameters. For example, as shown in Figure 13.11, 
flexible sensors could be directly written or attached onto the surface of the 3D printed phantom. 
They can be used to assess the pressure, temperature, flow velocity, and tissue strain.

Printed electronics by direct-write technologies show promise for use in a wide range of appli-
cations, such as thin film transistors, solar cells, RFIDs, antennas, sensors, and displays [56]–[60]. 
They are affordable, efficient, flexible, and environmentally friendly compared to conventional pho-
tolithographic, electroplating, and etching techniques [61]. The Aerosol Jet Printing (AJP) process 
developed by Optomec (Albuquerque, NM) uses aerodynamic focusing to deposit aerosolized mate-
rials onto planar or non-planar substrates and is capable of fabricating electronic features with sizes 
as small as 10 µm. It provides a viable solution to high resolution conformal printing. Generally, the 
AJP process consists of three stages: ink atomization, aerosol deposition, and post-processing. It has 
been proven to be applicable to print strain sensors directly on the surface of common 3D printed 
parts. A novel silver-carbon nanotube (Ag-CNT) hybrid ink has been developed to achieve high 
flexibility and a large strain sensing capability, as shown in Figure 13.11.

FIGURE 13.10 Computed tomography (CT) cross-sectional views show the ascending aorta (A), the Valsalva 
(B), and the longitudinal view (C). Three-dimensional (3D) computational model viewing shows the ascend-
ing aorta (D), the left ventricular outflow tract (E), and the side (F). The calcifications were drawn in red. The 
embedded fibers were drawn in green. (G to I) Images show the 3D-printed phantom. The calcifications and 
the fibers were printed with VeroBlackPlus for better illustration.
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In addition, imaging landmarks can be attached to the 3D printed phantoms to work with ultra-
sound/CT/MRI to track tissue deformation and assess tissue strain. These measurements can be 
potentially applied to various clinical scenarios in cardiovascular medicine.

Qian et al. developed a CT-based strain quantification technique to quantify the post-TAVR aor-
tic root strain distribution [55]. In this study, radiopaque beads were attached to the surface of the 
phantom circumferentially at the levels of the LVOT, the annulus, the center of the sinus of valsalva, 
the sinotubular junction, and the ascending aorta, as shown in Figure 13.12.

Because of its high spatial resolution and ease of use, CT imaging has been used to quantify the 
strain in vitro. The sensor-enabled phantom underwent two CT scans before and after the installa-
tion of the prosthetic valve in vitro. A modified CT calcium scoring protocol was used to measure 
the displacement of the radiopaque landmarks on the 3D printed phantoms before and after the 
deployment of the prosthesis. The CT images were acquired on a 320-detector row CT scanner 
(Aquilion ONE, Toshiba Medical Systems, Otawara, Japan) using the volumetric acquisition mode. 
The tube voltage was 120 kVp. The tube current was 250 mA. The detector width was 0.5 mm. The 
number of the detectors was 320. The reconstruction slice thickness was 0.5 mm. The threshold for 
detecting the radiopaque landmarks was 5000 HU.

FIGURE 13.11 Examples of the sensor-enabled 3D printed phantoms. (A, B) The sensors are designed 
in-house and directly written onto the surface of the 3D printed phantoms using the AJP process. (C) The 
sensor is a commercial sensor attached to the surface of the phantom.

FIGURE 13.12 The 3D phantom was printed based on the 3D computer model. Then, radiopaque beads were 
manually attached to the surface of the 3D printed phantom to serve as strain landmarks.
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The locations of the landmarks were extracted from the CT scans and the two sets of landmarks 
before and after the valve deployment were co-registered. The circumferential strains in the aortic 
root phantom were calculated by projecting the derivatives of the landmarks’ displacements to the 
circumferential direction. As shown in Figure 13.13 (D-G), circumferential strains were quantified 
at the five levels, and the whole aortic root strain distribution could be obtained via interpolation 
based on the geodesic distance on the 3D model.

13.5 APPLICATION: PREDICTIONS OF POST-TAVR PVL

13.5.1 backgrounD

In 2017, Qian et al. reported a study that aimed to develop a procedure simulation platform for 
TAVR using 3D printed patient-specific aortic valve phantoms [55]. It was a retrospective, single-
center, observational study approved by the Institutional Review Board of Piedmont Healthcare. 
This study included 18 patients who underwent clinically indicated TAVR with a CoreValve system 
(self-expanding valve) (Medtronic, Minneapolis, Minnesota) between April 2014 and September 2015. 
The patients were selected using stratified random sampling, in which seven to eight patients were 
randomly selected in the none, trace-to-mild, and moderate-to-severe groups that constituted a repre-
sentative spectrum of different degrees of post-TAVR PVL. Before the TAVR procedure, all patients 
received a contrast-enhanced cardiac CT scan. Prosthesis size was determined by the CT-derived 
annular diameter as per standard recommendation [62]. During the TAVR procedure, valve implanta-
tion was performed under the guidance of fluoroscopy and transesophageal echocardiography (TEE). 
Even though the initial positioning and anchoring of the self-expanding valve system was optimal 

FIGURE 13.13 (A) The clinical intraprocedural transesophageal echocardiography is shown. Prosthesis 
deployment depth was measured as the distance between the annulus and the ventricular end of the prosthesis 
(red lines). (B) The three-dimensional-printed phantom with the radiopaque landmarks is shown. (C) The 
phantom implanted with the prosthesis, viewed from the aorta, the left ventricular outflow tract (LVOT), and 
the side. (D and E) These images are the three-dimensional reconstructions of the computed tomography 
scans of (B) and (C), respectively. As shown in (C) and (E), the prosthetic valve was implanted to the same 
depth as in (A). The strain distributions of the aortic root (F) and the annulus (G) are shown. L = left coronary 
cusp; N = noncoronary cusp; R = right coronary cusp.
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and successful in all 18 patients, TEE revealed that seven patients had moderate-to-severe PVL after 
the initial valve deployment, which required post-deployment balloon dilation in an attempt to reduce 
PVL. TEE post-balloon dilation showed the PVL in three of these patients was reduced to trace or 
mild, and in the other four, the PVL degrees remained unchanged.

13.5.2 methoDs

Patient-specific 3D printed tissue-mimicking aortic valve phantoms of the 18 patients were fabri-
cated with the procedure as previously described. For each patient, according to the size and model 
used in the clinical procedure, the same self-expanding valve prosthesis was selected and manually 
implanted in the 3D printed phantom in vitro. The prosthetic valve was carefully deployed to the 
same depth as in the clinical procedure and manually adjusted to ensure optimal orientation and 
apposition in the phantom, as shown in Figure 13.13 (C). Because the self-expanding valve is a 
shape memory device made of nitinol, the phantom and the implanted prosthesis were submerged 
in 37°C water to ensure the full expansion of the valve as in the in vivo environment.

The post-TAVR aortic root strain distribution was quantified in the 3D-printed phantom as 
described in the previous section. As shown in Figure 13.14, a bulge detector was designed to detect 
the low-high-low strain pattern along the phantom’s annulus after the in vitro implantation. It was 
formulated to be a Mexican hat wavelet [6], which is a digital filter that has a shape similar to a 
Mexican hat. It is usually used to detect the low-high-low pattern in a series of numbers. It can be 
derived by taking the negative normalized second derivative of a Gaussian function. Based on the 
design of the CoreValve prosthesis, which had 12 or 15 struts at the ventricular end (the CoreValve 
23mm has 12 struts, and all the other sized valves have 15 struts), the width of the detector’s posi-
tive peak was set to equal the circular angle between two adjacent struts at the ventricular end of 
the self-expanding valve. The bulge index was calculated by convolving the annular strain with the 
bulge detector, and in each phantom, the maximum bulge index was reported.

FIGURE 13.14 (A and B) Illustrations of the hypothesis of the paravalvular leak mechanism. Focal strain 
unevenness could be caused by annular anomalies, such as annular calcification. When the scale of the low-
high-low strain pattern was similar to the interstrut circular angle, paravalvular leaking tended to occur. (C) The 
design of the bulge detector is shown. The results are shown as annular strain (D) and bulge index (E) maps.
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13.5.3 results anD Discussion

As shown in Figure 13.15, each phantom’s strain distribution showed a distinctive pattern. At 
the annular level, the maximum, mean, and minimum circumferential strain was 15.7% ± 4.3%, 
8.1% ± 3.6%, 1.3% ± 4.1%, respectively. As shown in Table 13.1, the maximum annular bulge index 
was significantly different among the three PVL subgroups =(p 0.047) immediately after valve 
deployment, with higher bulge index being associated with the higher degree of PVL. Balloon 
expansion was done after initial deployment for >mild PVL in seven patients. Three of these 
patients were reassigned to the trace-mild subgroup. Similar to pre-balloon dilation, the maximum 
annular bulge index was significantly different among the three reclassified subgroups =(p 0.001). 
But, pairwise comparison showed that the bulge index in the moderate-severe PVL group was now 
significantly higher than in the other two subgroups.

Figure 13.16 compared the predictions of the PVL locations using bulge index and the actual 
PVL locations from TEE for 12 patients who had any degree of post-TAVR PVL. The bulge index 
predicted the locations of the dominant PVL in nine patients (accuracy = 75%). In patients #1 and #5, 
who had multiple PVL sites, the second largest bulge index position predicted the dominant PVL 
location, whereas the maximum bulge index predicted a minor PVL site. In patient #6, the annular 
strain distribution showed multiple high bulges (indicated by the warm color) besides the maximum 
bulge site, and only 1 of them predicted PVL.

Table 13.2 compared the power of prediction by the Annular Bulge Index with other known 
predictors. It indicated that Annular Calcification was the best predictor of moderate-to-severe 
PVL (ROC AUC = 83%; 95% confidence interval [CI]: 58% to 96%; p < 0.001) after initial deploy-
ment. Bulge index was a significant but less accurate predictor (AUC = 77%; 95% CI: 51% to 93%; 
p = 0.04). However, no other variables were predictive of PVL. Post-balloon expansion annular 
calcium lost its predictive power. Instead, bulge index became the only significant predictor of 
moderate-to-severe PVL (AUC = 95%; 95% CI: 73% to 99.9%; p < 0.0001), and it achieved a net 
reclassification improvement of 25% over annular calcium.

FIGURE 13.15 Illustrations of the aortic root strain distributions in the 18 patients.
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The comparison showed that the annular bulge index outperformed the other morphologic vari-
ables in predicting PVL post-balloon dilation. A possible explanation for this is that the bulge index 
is a mechanical descriptor of the strain / stress mismatch in the post-TAVR annulus, and therefore it 
is more directly associated with PVL than morphological descriptors, such as the annular calcium 
volume. In addition, balloon dilation likely worked as a fine-tuning tool that smoothed the strain 
mismatch caused by calcium and adjusted the contact between the prosthesis and the aortic root, 
and thus improved the sealing of the annulus.

Furthermore, we found that a bulge detector scale that equaled the inter-strut angle of the 
CoreValve at the ventricular end (24° for valve sizes ≥26mm, and 30° for 23mm valve size) per-
formed the best with regard to the prediction of ≥moderate PVL (Figure 13.17) before and after 
balloon dilation. On the contrary, smaller and larger scale bulge detectors were not as good for 
predicting significant PVL. Perhaps the random distribution of the severity and location of annular 
calcium, which creates various scales of strain unevenness, results in imperfect annular sealing 
and significant PVL. Balloon dilation likely smoothed out these areas of large annular unevenness 
in a global fashion. However, it may not as effectively fix focal PVL that is caused by small scale 
of strain unevenness that extends between two adjacent struts. Thus, annular calcium volume was 
superior to the bulge detector pre-balloon to predict significant PVL. However, if the bulge persists 
between two consecutive struts even after balloon dilation, then there is likely to be significant 
residual PVL. This hypothesis is exemplified by Patient #5 in Figure 13.16 where the pre-balloon 
PVL was located at 12 o’clock within an area of large annular strain but with an angular extent 
that was larger than 24° and, hence, was not seen as a hot area in the bulge index map. This PVL 

TABLE 13.1
Annular bulge index compared with other known predictors of PVL.
ANOVA analysis was performed to test if the variables were significantly different in the three PVL subgroups 
defined as before or after the post-deployment balloon dilation.* indicates that the Levene’s test was positive, 
and the Kruskal-Wallis test was performed.

Immediately after valve deployment and before post-TAVR dilation

 
No PVL

Trace to mild 
PVL

Moderate to 
severe PVL

ANOVA 
p value

 
Total

Annular Bulge Index 3.7% ± 1.2% 5.4% ± 1.7% 7.2% ± 3.2% 0.047 5.6% ± 2.7%

Aortic Calcium Volume* (mm3) 670 ± 653 572 ± 383 707 ± 199 0.79* 657 ± 421

Annular Calcium Volume (mm3) 59 ± 60 74 ± 78 156 ± 69 0.048 101 ± 79

LVOT Calcium Volume* (mm3) 2 ± 3 8 ± 9 37 ± 40 0.13* 17 ± 29

Annular Ellipticity 1.31 ± 0.18 1.27 ± 0.14 1.31 ± 0.07 0.87 1.30 ± 0.09

Prosthesis Diameter to Annular 
Diameter Ratio

1.14 ± 0.08 1.17 ± 0.08 1.17 ± 0.05 0.66 1.16 ± 0.07

After post-TAVR balloon dilation

 
No PVL

Trace to mild 
PVL

Moderate to 
severe PVL

ANOVA 
p value

 
Total

Annular Bulge Index 3.7% ± 1.2% 5.2% ± 1.8% 9.1% ± 2.5% 0.001 5.6% ± 2.7%

Aortic Calcium Volume* (mm3) 670 ± 653 645 ± 347 661 ± 109 0.96* 657 ± 421

Annular Calcium Volume (mm3) 59 ± 60 108 ± 85 149 ± 78 0.20 101 ± 79

LVOT Calcium Volume* (mm3) 2 ± 3 8 ± 10 58 ± 42 0.07* 17 ± 29

Annular Ellipticity 1.31 ± 0.18 1.30 ± 0.12 1.27 ± 0.06 0.90 1.30 ± 0.09

Prosthesis Diameter to Annular 
Diameter Ratio

1.14 ± 0.08 1.17 ± 0.07 1.18 ± 0.02 0.62 1.16 ± 0.07
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FIGURE 13.16 In the bulge index images, green arrows indicate correct predictions of the dominant PVL sites; 
red arrows indicate that the maximum bulge index did not predict the dominant PVL site; yellow arrows indicate 
that a submaximal high bulge index corresponded to the dominant PVL site. In the transesophageal echocardiog-
raphy (TEE) images, white arrows indicate the dominant PVL sites, and yellow arrows indicate minor PVL sites.

FIGURE 13.17 Comparison of the discernibility of PVL subgroups using ANOVA based on the bulge indi-
ces calculated with variant detector scales. Detector scale is defined as the circular angle of the detector’s posi-
tive portion. α is the inter-strut angle of the CoreValve (α = °24  for valve sizes ≥ 26mm, and 30° for CoreValve 
23mm). For each detector scale, ANOVA significant p value or non-significant (ns) is reported.
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TABLE 13.2
MWW-test and ROC analysis of the annular bulge index in predicting dichotomized PVL, 
compared with other known predictors.

Immediately after valve deployment and before post-TAVR dilation

<Moderate 
PVL

≥Moderate 
PVL

MWW-test 
p value

ROC 
AUC

ROC 
p value

ROC 
cutoff

 
Sensitivity

 
Specificity

Annular Bulge Index 4.5% ± 1.6% 7.2% ± 3.2% 0.06 76.6% 0.04     0.056    71.43 81.82

Aortic Calcium Volume 626 ± 524 707 ± 199 0.50 59.7% 0.50 356 100 45.45

Annular Calcium Volume 59 ± 60 156 ± 69 0.02 83.1% 0.0007   83    85.71 72.73

LVOT Calcium Volume 2 ± 3 37 ± 40 0.11 72.7% 0.11     8.6    57.14 90.91

Annular Ellipticity 1.29 ± 0.15 1.31 ± 0.07 0.62 57.1% 0.62     1.25    85.71 54.55

Prosthesis Diameter to 
Annular Diameter Ratio

1.16 ± 0.08 1.17 ± 0.05   0.22   55.8%   0.69     1.14    85.71   54.55

After post-TAVR balloon dilation

<Moderate 
PVL

≥Moderate 
PVL

MWW-test 
p value

ROC 
AUC

ROC 
p value

ROC 
cutoff

 
Sensitivity

 
Specificity

Annular Bulge Index 4.6% ± 1.7% 9.1% ± 2.5% 0.008     94.6% <0.0001     0.056 100    78.57

Aortic Calcium Volume 656 ± 479 661 ± 109 0.92    51.8%    0.90 441 100    50

Annular Calcium Volume 87 ± 77 149 ± 78 0.14    75%    0.07 151 75    78.57

LVOT Calcium Volume 5 ± 8 58 ± 42 0.07    80.4%    0.12   24 75  100

Annular Ellipticity 1.31 ± 0.14 1.27 ± 0.06 0.67    57.1%    0.63     1.33 100    42.86

Prosthesis Diameter to 
Annular Diameter Ratio

1.16 ± 0.08 1.18 ± 0.02   0.92    60.7%    0.42     1.15 100      7.14

disappeared post-balloon as we would expect from the hypothesis that the balloon dilation evens 
out large bulge areas. Additionally, the final residual mild PVL was now located at 5 and 7 o’clock 
positions at the sites of the bulges with angular extents close to 24°.

The annular bulge index in this study was designed to be a novel indicator of the post-TAVR 
annular strain unevenness. It can be quantified by in vitro TAVR simulation on a 3D printed patient-
specific phantom, using unique tissue-mimicking metamaterials. This bulge index outperformed 
established variables and achieved a high degree of accuracy in predicting the occurrence, severity, 
and location of post-TAVR PVL. Thus, it may be feasible to perform procedural simulations on 
a 3D printed phantom for pre-TAVR planning, especially in those who are at high-risk for post-
TAVR PVL. This may refine the current approach for the selection of valve type/size and potentially 
reduce the rate of post-TAVR PVL.

13.5.4 a case reView

Patient #5 was an 84-year-old female. She received a CoreValve Evolut R 29 mm prosthetic valve 
via the subclavian approach. She had moderate PVL after the initial valve deployment, which was 
reduced to the mild level after balloon post-dilation. As shown in Figure 13.18, patient #5 had two 
large calcified lesions on the annulus in the proximity of the non and left aortic valve leaflets (A), 
which caused two areas of relatively high annular strain values between them. The warm-colored 
area between 11 and 2 o’clock (B) had a large patch of high strain between them, where a moderate 
PVL was seen before the balloon dilation (D). However, because of the angular extent of this area 
that was greater than 24°, it was not detected in the bulge index map (C). This PVL disappeared 
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post-balloon (E) as we would expect from the hypothesis that the balloon dilation evens out large 
bulge areas. On the other hand, the warm-colored area between 5 and 7 o’clock had high strain 
values in B, which included two small-scale bulges that were detected at the 5 and 7 o’clock posi-
tions in the bulge index map (C, arrows). The final residual mild PVL was seen at the 5 and 7 o’clock 
positions, which agreed with the bulge index map. However, the position of the highest bulge index 
(5 o’clock) corresponded to a minor PVL location, and the position of the second highest bulge index 
(7 o’clock) corresponded to the major PVL location (E).

13.6 CONCLUSION

In conclusion, 3D printed patient-specific tissue-mimicking phantoms have the potential to play a 
more important role than conventional medical phantoms do in pre-operative assessment. In this 
chapter, their applications in the prediction of PVL post-TAVR have been explored extensively. The 
3D printed phantom potentially provides a practical way to quantitatively assess the distribution of 
post-TAVR annular strain in vitro, which has proven to be closely associated with the occurrence 
and severity of PVL. This may lead to a better understanding of the role of the annular calcifica-
tion in the genesis of PVL, and may be extendable to other transcatheter valve therapies. However, 
the 3D tissue-mimicking technique described in this chapter is still limited by the material print-
ability and the resolution of 3D printing technologies. Great effort needs to be made to improve the 
mechanical or even the bio-fidelity of the tissue-mimicking 3D printed phantoms. Combining with 
the current trend of attachable/printable sensors, such as the flexible electronics, the multifunctional 
“smart phantoms,” which are equipped with tissue-mimicking, sensing, and actuation capabilities, 
might become a trend that may eventually shift the paradigm of future healthcare.
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14.1 INTRODUCTION

14.1.1 carDiac microstructures for Physiological functions

Cardiac fiber is a bundle formed by several cardiomyocytes that functions as a basic structural, 
mechanical, and electrophysiological unit for a beating heart to maintain its diastolic and systolic 
functions [1, 2]. As myocardial mechanical contraction and electrical propagation are mainly along 
fiber directions, cardiac fiber orientations play an important role in determining stress distributions 
within myocardium and determining electrical activation spreading among ventricles. Therefore, 
to efficiently pump blood from ventricles into circulation, cardiac fibers are aligned into a com-
plex architecture to achieve optimal electromechanical functions that allow for more than 2 billion 
heartbeats in a healthy person’s lifetime. This myocardial architecture consists of helical arrange-
ments of cardiac fibers in which their orientations continuously change from the epicardium to the 
endocardium [3]. These transmural changes typically range from −60° at the epicardium to 60° 
at endocardium. Thus, the overall arrangement of fiber orientations can be summarized as: the 
epicardial region has left-handed helical orientations, the middle myocardial region has horizontal 
ones, and the endocardial region has right-handed helical ones. This helical arrangement of cardiac 
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fiber orientations is crucial for cardiac functions. It has been theoretically proved to be energeti-
cally efficient and mechanically uniform for cardiac contraction and relaxation [4, 5]. Moreover, the 
anisotropic cardiac fiber orientations also coordinate the activation and repolarization patterns of 
the heart to keep it rhythmically beating [6, 7].

14.1.2 microstructural abnormality in carDiac Diseases

As cardiac fiber orientations are crucial to determine the electromechanical function of the heart, their 
abnormality directly relates to cardiac dysfunctions (i.e., decreased contractility or arrhythmia) that 
may result in heart failure or even sudden death [1, 8]. For instance, studies have shown that cardiac 
fiber orientations play a key role in the generation and maintenance of reentrant arrhythmia [9]. Thus 
the abnormal fiber orientations could directly decide the activation patterns during the electrical induc-
tion of ventricular fibrillation. More importantly, significant abnormality of cardiac fiber orientations 
usually occurs in ischemic heart disease, the leading cause of death worldwide. This disease causes per-
manent damage to the heart muscles, thus resulting in severe disarray of cardiac fibers in the infarcted 
myocardium. In vivo imaging showed that after injury, the death of cardiomyocytes led to increased 
dispersion and significant reorientation of cardiac fiber architecture in the infarct region [10, 11]. The 
redistribution of fiber orientations decreased the contractility of the heart and increased the risk of 
lethal ventricular tachycardia. Besides acute diseases, the progression of abnormal cardiac fiber ori-
entations can also be found in chronic ventricular remodeling. In the dilated heart failure, an altered 
transmural fiber gradient accompanies a geometry change of local wall thinning in the septum. 
Hypertrophic cardiomyopathy also induces abnormal myocardial laminar orientations compared to the 
healthy group [12]. Specifically, right ventricular hypertrophy induced by pressure loading was found 
not only to increase ventricular weight and myocardium thickness but also to change intramyocardial 
fiber orientations [13], including decreased transmural changes of cardiac fiber orientations in the fail-
ing right ventricle [14]. Recently, considering the importance of cardiac fiber orientations, researchers 
have started to employ them in treatment plans to guide cardiac resynchronization therapy (CRT) [15].

14.2  CURRENT APPROACHES FOR ESTIMATING 
CARDIAC FIBER ORIENTATIONS

Although cardiac fiber orientations are important for researchers to understand both heart physiol-
ogy and pathology, the determination of cardiac fiber orientations is still challenging due to the dif-
ficulty of measuring fiber orientations from heart [16]. To this end, different measurement strategies 
have been proposed.

14.2.1 Direct measurement aPProaches

The initial work is a straightforward approach to directly measure cardiac fiber orientations from 
histological slides of ex vivo hearts [17, 18]. These efforts have been made since 1960s, and they 
conclude that cardiac fibers are arranged helically encircling the ventricles. Among them, an 
impressive work was completed by Nielsen et al [19]. Using customized histological equipment, 
they measured cardiac fiber orientations at a large amount of sites of myocardium and completed 
the relationship between ventricular geometry and fiber orientation. They found that cardiac fiber 
orientations transmurally changed from epicardial to endocardial surfaces with opposite base–apex 
directions and rotated to a circumferential direction in the middle myocardium. However, this histo-
logical measurement has its limitations. The accuracy of the ex vivo results could be affected by the 
histological procedure with tissue fixation and cutting deformation. Additionally, these histological 
procedures require manual operations and significant time consumption.

Recently, magnetic resonance (MR) diffusion tensor imaging (DTI) has been used in measur-
ing fiber structures because it can image the diffusion tensors of the water in biological tissues to 
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indicate the orientations of the fiber structures [20]. Thus, DTI was introduced to measure fiber 
orientations of the heart ex vivo [3, 21–25]. Ex vivo DTI has the advantages of three-dimensional 
(3D) volumetric imaging and high spatial resolutions (100–1000 µm), but also needs a long acquisi-
tion time of several hours. In spite of recent progress in MR sequences [10, 26, 27], applying DTI 
for cardiac imaging in vivo still faces severe artifacts due to the fast heart beating and respiration 
motions. It also requires high short duration pulses supported by high-performance gradients to 
achieve enough diffusion sensitization. Consequently, these issues limit the application of DTI in 
clinics, especially for those patients with pacemakers or irregular heart rates. To address the prob-
lem faced by DTI, Lee et al. recently introduced an alternative approach of ultrasound shear wave 
imaging to measure cardiac fiber orientations. They quantified cardiac fiber orientations from in 
vivo hearts and proved that these measured fiber orientations were consistent with both histological 
and DTI results [28, 29]. However, this is a newly developed procedure and still needs more effort 
to improve their accuracy of 3D fiber orientations in the whole heart.

14.2.2 geometry-baseD estimation aPProaches

Considering current limitations of those direct measurement methods, alternative approaches are 
also developed to estimate fiber orientations from cardiac geometries based on their corresponding 
relationship. First, according to prior knowledge of histological measurements, rule-based methods 
were developed to parameterize helical fiber orientations that were transmurally through differ-
ent layers of ventricular walls [30, 31]. This fiber architecture was defined in the whole ventric-
ular geometry that was measured from cardiac imaging. However, the rule-based method faces 
the problem of oversimplifying regional differences of fiber orientations, especially when regional 
heterogeneous abnormality occurs during ventricular remodeling. Thus, an approach that can com-
prehensively represent these heterogeneous fiber orientations of the whole ventricle is still needed.

To this end, a new pipeline has been proposed similarly based on the relationship between fiber 
orientations and geometry of the heart. But different from the rule-based methods, it uses cardiac fiber 
atlas of ex vivo DTI as the template to provide patient-specific cardiac fiber orientations [25] and has 
been applied in cardiac diagnosis and therapies [32]. Generally, this approach estimates cardiac fiber 
orientations from the template DTI based on geometric similarity between both target and template 
hearts. This similarity is mostly measured by registering both volumetric geometries. Following this 
approach, Helm et al. proposed an algorithm of large deformation diffeomorphic metric mapping 
(LDDMM) to map cardiac fiber orientations from ex vivo DTI data to the target heart. After mapping, 
they further validated the results by comparing with their histological findings [33]. Later, a new reg-
istration approach of elastic registration was proposed to map the DTI template onto a patient- specific 
heart [34]. Similarly, using Demons registration, Zhang et al. provided an atlas-based geometry 
pipeline that could deform DTI data to patient-specific cardiac geometries for constructing three- 
dimensional cubic Hermite finite element meshes of the whole human heart [15]. Moreover, to validate 
the accuracy of this geometry-based approach for electrophysiological simulations, Vadakkumpadan 
et al. used LDDMM to register the MRI geometry of an ex vivo heart atlas to the CT geometry of an in 
vivo target heart and then deformed the diffusion tensors of the atlas as the estimated fiber orientations 
of the patient [25]. Their simulation results demonstrated that the estimated fiber orientations through 
this approach only slightly affected the electrophysiological properties of the target heart.

14.3 ULTRASOUND GEOMETRY-BASED ESTIMATION OF CARDIAC FIBERS

14.3.1 ultrasounD imaging in carDiology

Cardiac ultrasound, one of the most widely used diagnostic tests in clinics, is routinely used in 
the diagnosis, management, and follow-up of suspected or known heart diseases. It is a noninvasive, 
safe, and cost-efficient imaging modality and can provide real-time images and comprehensive 
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FIGURE 14.1 Approach of estimating cardiac fiber orientations from ultrasound geometry based on the 
geometric registrations between target ultrasound and template MRI.

clinical information. Thus, only from 2007 through 2011, there were approximately 34 million car-
diac ultrasound procedures performed on Medicare beneficiaries. This service cost 11% of Medicare 
that were spent on imaging services, spending approximately $1.2 billion. Compared to cardiac 
ultrasound, cardiac MRI only accounts for a small portion of the total expenditures for cardiac 
imaging, which is less than 5%. However, its cost for Medicare average was much higher than car-
diac ultrasound [35]. Thus, to facilitate clinical practice and relieve the current healthcare burden, 
advancing current cardiac ultrasound technology will significantly benefit the patients from cardiac 
examinations, especially for those with severe arrhythmia or pacemakers. It will also directly help 
the early detection of cardiac diseases when performing routine cardiac ultrasound for screening.

Unfortunately, although cardiac ultrasound is a crucial imaging modality for the diagnosis of car-
diac diseases, previous work of estimating personalized cardiac fiber orientations mainly focused 
on cardiac MRI or CT modalities. Only a few efforts were made on investigating the effects of 
myocardium anisotropy on the characteristics of cardiac ultrasound. To meet this need, our recent 
work employed ex vivo DTI atlas to estimate fiber orientation from cardiac ultrasound, especially 
from 3D image volumes. It estimated the cardiac fiber orientations of the target heart by deforming 
the fiber orientations of the template heart. This deformation used the deformation field generated by 
registering the MRI geometry of the template heart to the ultrasound geometry of the target heart [36]. 
The work will not only extend current ultrasound applications in cardiology but also benefit the 
diagnosis and therapy of heart diseases.

14.3.2 ultrasounD geometry-baseD estimation aPProach

In the proposed approach, the volumetric geometry of the target heart is measured from ultrasound 
images of the target heart whereas the fiber orientations and volumetric geometry of the template heart 
are derived from DTI and T1-weighted MR images, respectively. Both target and template hearts are 
from different subjects. The MRI of template heart can achieve high spatial resolutions (∼100 µm) 
through ex vivo imaging. After image processing, ventricular geometries of both hearts are recon-
structed with the segmentation of ultrasound and T1-MRI images, respectively. There are two steps 
to map cardiac fiber orientations from the template heart to the target heart, as shown in Figure 14.1.

The first step is to register the geometry of the template heart to the geometry of the target 
heart measured from ultrasound images. This registration includes both affine and deformable reg-
istrations. The template geometry is first registered to the target geometry by supervised affine 
transformations (translation, rotation, shear, and scaling) to roughly align both geometries. Then a 
deformable registration is used to perform fine registrations. In this step, diffeomorphic transforma-
tion is needed to deform ventricular geometries while the invertible transformation matrix is also 
needed for the following reorientation of template fibers. Here, the diffeomorphic Demons (DD) 
is preferred for the deformable registration because it is diffeomorphic for deformable registration 
and computationally efficient [37]. Both affine and deformable registrations generate deformation 
field between both geometries. Based on this deformation field, the second step is to relocate and 
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reorient the DTI fiber orientations of the template heart as the estimated fiber orientations of the 
target heart. Following the registration-generated deformation field, each voxel containing fiber 
orientation of the template heart is first relocated to the geometry of the target heart. Then, based on 
the same deformation field, the fiber orientation of each relocated voxel is reoriented with a method 
named preservation of principal directions (PPD) [38]. The reoriented results are the estimated fiber 
orientations of the target heart.

14.3.3 eValuation Parameters

After estimating cardiac fiber orientations for the target heart, their accuracies are evaluated by 
comparing with the gold standard that is measured from the DTI of the target heart ex vivo. To fully 
estimate the accuracy of the proposed approach, four different evaluation parameters are presented 
as illustrated in Figure 14.2.

The first parameter is to quantitatively evaluate the accuracy of geometric registrations by com-
paring the registered geometry from the template heart with the corresponding geometry of the 
target heart. The Dice similarity coefficient (DSC) is employed here to assess the similarity score 
between both geometries. Its computational equation is described as follows:

 = ∩
+

( , )
2 ( )

( ) ( )
DSC R S

Volum R S

Volum R Volum S
 (14.1)

Here R and S represent the voxels of both registered geometry and the corresponding target geom-
etry, respectively.

The second parameter to evaluate the accuracy of the geometry registrations is called target 
registration error (TRE). It is calculated by measuring the distance between corresponding markers 

FIGURE 14.2 Evaluation parameters for the accuracy of both geometry and fiber orientation deformations. 
(a) Dice similarity coefficient: 3D geometric overlap ratio between the target (red) and template (yellow) 
hearts. (b) Target registration error: Distance between the corresponding papillary muscle centers of the tem-
plate (red dot) and target (blue dot) hearts, the distance of the white double-head arrow in the amplified image. 
(c) Acute angle α: between both imaged and estimated fiber directions. (d) Inclination angle θ: between the 
tangential directions of the epicardial contour in the short axis plane and the fiber direction projected in the 
epicardial tangential surface.
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of both registered and target geometries. In this approach, the papillary muscles inside the hearts 
are used as the anatomic markers. Thus the distance between both mass centers of the markers is 
considered as the target error.

More importantly, besides the evaluation of geometric registration, the estimated cardiac fiber 
orientations following the proposed approach are needed to be evaluated. The parameter of acute 
angle error (AAE) is used to measure the angular differences between both estimated and ground-
truth orientations of the same fiber. It calculates the absolute of their dot product into an angle 
between 0° and 90° [34, 38]. But this parameter is insufficient for the evaluation of cardiac fiber ori-
entations because it is more important to measure the arrangement of cardiac fibers in myocardium.

Hence, the other parameter called inclination angle error (IAE), typical range between 0° and 180°, 
is used for this evaluation [39]. There are three steps to calculate this parameter. First, the orientation 
of a cardiac fiber is projected onto its nearest tangential plane of epicardium. Then, the inclination 
angle of each voxel is measured as the angle between the projected vector and the tangential vector of 
the epicardial contour in the short axis view. Finally, the absolute difference between both inclination 
angles of estimated and ground-truth fiber orientations is calculated as the IAE.

14.3.4 ValiDation on animal hearts

After setting up the proposed approach, several experiments were performed to validate its feasibil-
ity of estimating cardiac fiber orientations from ultrasound geometries on animal hearts.

First, the accuracy of this approach was validated on rat hearts ex vivo. Three excised rat hearts 
were arrested at diastole. Then they were fixed using 4% phosphate-buffered paraformaldehyde 
(PFA) solution for 14 hours. After that, they were embedded into agarose and imaged by cardiac 
ultrasound with Vevo 2100 ultrasound system (FUJIFILM VisualSonics, Inc., Toronto, Canada) and a 
30 MHz transducer. 3D ultrasound images of the whole were imaged in B-mode short-axis view from 
apex to base. After ultrasound imaging, these hearts were imaged by a high-field Biospec 7 T MRI 
system (Bruker Corporation, Massachusetts, USA) with an RF coil of 30 mm inner diameter. Then 
the cardiac geometries were imaged by T1-weighted anatomical images at a high spatial resolution. 
After that, the cardiac fiber orientations were imaged in 30 directions by the spin echo sequences 
with an isotropic resolution. They were imaged slice by slice in the short-axis view from the apex to 
the base. After DTI data acquisitions, both T1-weighted MRI and ultrasound images were segmented 
by closed splines interpolated from the semi-automatically placed landmark points on both endocar-
dium and epicardium. The 3D geometric volumes of all hearts were reconstructed from both modali-
ties, respectively. Using the segmented cardiac masks, cardiac fiber orientations were reconstructed 
from DTI data by tensor decomposition. Their visualization was tracked following a determinative 
method of fractional anisotropy [40] and performed in 3D by the DSI studio [41]. The accuracies of 
the cardiac fiber orientations estimated from the ultrasound geometries of three rats were all evalu-
ated based on the four evaluation parameters. Following the procedure in Table 14.1, the estimation of 
fiber orientations from ultrasound geometry of each target heart used the MRI data of the other two 
hearts, respectively. The accuracies of both registered cardiac geometry and estimated fiber orienta-
tions for each heart were compared with its corresponding ground truth measured from its own MRI 
data. The final results showed that the average DSC of geometric registrations for the three hearts 
was 95.4%, and their average angle errors were 21.0° in AAE and 19.4° in IAE, respectively [36]. 
Although there were estimation errors in cardiac fiber orientations, previous studies in cardiac elec-
trophysiological modeling proved that there were no significant differences at a clinically observable 
level when the IAE less than 20° between both estimated and acquired fiber orientations [25].

Second, the accuracy of this approach was further validated on large animals of pig hearts ex vivo. 
Four healthy pig hearts were used for this study, where two were in the diastolic phase and two were 
in the systolic phase. All hearts were fixed by neutral buffered 10% formalin. After fixation, they were 
rinsed with PBS and then embedded into a 2% agar gel phantom. Post preprocessing, these hearts 
were imaged by the 7T Bruker Biospec system with an isotropic resolution of 1mm for T1-weighted 
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MRI and 1.5 mm for 30 directions of DTI. Their ultrasound volumes were imaged with a series of short-
axis slices by a BK Flex Focus 400 ultrasound system (Analogic Corp., MA). These ultrasound images 
were acquired with a step size of 0.2 mm. Similarly, these images were semi-manually segmented and 
reconstructed into both geometry and fiber orientations for each heart. As shown in Table 14.2, the 
proposed approach was applied to these four pig hearts that were with maximal ventricular diameters 
of 10 cm and in two different cardiac phases. The average DSC evaluation on the geometric registra-
tions between ultrasound and registered geometries were ±0.819 0.05  [42]. Cardiac fiber orientations 
for each heart were also estimated. For the registrations between two diastolic hearts, the average AAE 
was ° ± °19.96 1.23  whereas the average AAE was ° ± °29.92 1.00  for two systolic hearts. When reg-
istering diastolic hearts to systolic ones and vice versa, the average AAE was ° ± °25.91 5.08 . These 
errors were partially due to the errors derived from segmentation and registration.

Moreover, the feasibility of this approach was also demonstrated on rat heart in vivo. In an in 
vivo experiment of 3D ultrasound imaging, the beating heart of a rat was imaged in vivo by the 
Vevo 2100 ultrasound imaging system with a 21 MHz transducer. Serial B-mode ultrasound images 
of the heart in short-axis view were imaged from base to apex with slice thickness of a 0.2 mm. 

TABLE 14.1
Geometry and fiber orientation errors of rat hearts estimated from cardiac ultrasound.

Target
Template  
(Rat No.)

DSC (%)

AAE (degree) IAE (degree)Geometry Rat No. Affine DD

US 1 3 85.3 96.2 20.2 18.4

US 2 1 82.4 96.9 21.7 20.7

US 3 2 80.1 93.2 21.1 19.2

T1-MRI 1 3 86.5 96.9 17.3 16.7

T1-MRI 2 1 80.9 95.9 20.2 19.1

T1-MRI 3 2 81.5 95.4 19.4 18.5

*  US: ultrasound; DD: diffeomorphic Demons; DSC: Dice similarity coefficient; AA: acute angle error; IAE: inclination 
angle error.

TABLE 14.2
Dice similarity coefficients (DSC) for the geometric registration of pig hearts 
and acute angle error (AAE) for the estimated cardiac fiber orientations.
Template Target DSC (%) AAE (degree)

Pig 1 Pig 2 79.7 25.92

Pig 1 Pig 3 83.4 19.89

Pig 1 Pig 4 79.9 18.73

Pig 2 Pig 1 82.0 33.65

Pig 2 Pig 3 86.9 28.92

Pig 2 Pig 4 82.3 29.77

Pig 3 Pig 1 83.1 28.24

Pig 3 Pig 2 85.3 30.92

Pig 3 Pig 4 86.1 29.87

Pig 4 Pig 1 87.9 21.19

Pig 4 Pig 2 71.1 21.34

Pig 4 Pig 3 74.7 18.61
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FIGURE 14.4 Cardiac modeling to measure the difference of electrical activities between both infarcted and 
normal hearts. This modeling uses imaging-based geometry and microstructure of the heart.

The spatial resolution of the B-mode image was 0.06 mm. In each slice position, dynamic image 
serial was acquired during several beating cycles. Meanwhile, both ECG and respiration signals 
were also recorded. Based on the cardiorespiratory signals, 3D ultrasound volume in the diastole 
phase was selected and reconstructed. Finally, following the proposed approach, the fiber orienta-
tions of the in vivo heart were estimated by using the DTI data of another ex vivo heart as the 
template. The result in Figure 14.3 demonstrated the feasibility of using the proposed approach to 
estimate cardiac fiber orientations from 3D cardiac ultrasound in vivo.

14.3.5 Potential aPPlications

Measuring cardiac fiber orientations has many applications for cardiac research and clinics. Using 
the mapped cardiac fiber orientations, we have explored their potential applications in the electrical 
simulations and cardiac ultrasound properties.

After mapping both ultrasound geometry and fiber orientations of the heart, we could predict car-
diac electricity interventions by assisting the electrophysiological modeling of the cardiac electrical 
propagations [43]. Electrophysiological simulation and prediction are an important issue in clinical 
diagnosis and therapies of arrhythmia [44]. Thus, we mapped the estimated cardiac fiber orientations 
to evaluate the electrical abnormality caused by myocardial infarction and then predict the 3D electro-
physiological properties post CRT intervention. For this purpose, both reconstructed cardiac meshes 
from 3D ultrasound geometry and the mapped cardiac fiber orientations were integrated into an elec-
trophysiological model, where the geometric meshes were generated with software of iso2mesh [45] 
and the cardiac electricity was simulated with a toolbox of Chaste [46]. Figure 14.4 demonstrated the 
electrical differences between a normal and an infarcted heart. When an end of a pacemaker electrode 
was internally connected to the myocardium of the heart apex, the cardiac electricity distributions 
around the 3D geometry were corrected. Figure 14.5 showed that after the impulse of the pacemaker, 
the action potentials at different time points evenly propagated among both ventricles.

FIGURE 14.3 3D ultrasound-based estimation of cardiac fiber orientations for a rat heart in vivo. (a) 3D 
ultrasound volume in vivo. (b) Reconstructed cardiac geometry. (c) Estimated cardiac fiber orientations from 
the geometry.
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In addition, as cardiac fiber orientations directly affect the inhomogeneity of ultrasound intensi-
ties, measuring cardiac fiber orientations can also help investigate the properties of cardiac ultra-
sound. We proposed a method to quantify these ultrasound imaging properties by mapping cardiac 
fiber orientations to the cardiac geometry [47]. Using 3D architectures of both cardiac geometry 
and fiber orientations, this method could simulate the B-mode ultrasound images. These images not 
only maintained the accuracy of cardiac geometry and ultrasound speckle patterns but also gener-
ated the anisotropic intensity distributions that were presented in normal cardiac ultrasound images. 
Specifically, these results were able to represent the abnormal ultrasound images, such as right ven-
tricle heart failure with pulmonary artery hypertension (Figure 14.6). It may reveal the pathological 
remodeling during disease progression.

FIGURE 14.5 Predicting cardiac electricity distributions during cardiac resynchronization therapy based 
on the mapped ultrasound geometry and fiber orientations. (a) The reconstructed mesh volume of ultrasound. 
(b) The mapped cardiac fiber orientations. (c) The cardiac resynchronization therapy (CRT) conducted by an 
internal electrode (red line) from a pacemaker. (d-f) The simulation results of the action potentials at three 
different time points (15 ms, 30 ms, and 45 ms) after the impulse of the pacemaker. The colors indicate the 
action potentials from −90 mV to 40 mV.

FIGURE 14.6 Using mapped cardiac fiber orientations to generate ultrasound image for a diseased rat heart 
with pulmonary artery hypertension. (a) Mapped cardiac fiber orientations. (b) Simulated ultrasound image 
based on both measured geometry and fiber orientations of the heart. (c) Acquired ultrasound image in vivo. 
The red arrows indicate the lower intensity regions of myocardium and the yellow ones indicate the higher 
intensity regions, which are affected by different fiber orientations.
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14.4 SUMMARY

Cardiac fiber orientations play important roles in determining both electrical and mechanical func-
tions of the heart. Their abnormality causes cardiac dysfunction that may results in heart failure or 
sudden death. Thus, the estimation of fiber orientations will be valuable for the clinical diagnosis of 
cardiac diseases. Considering the wide application of ultrasound in cardiology, ultrasound-derived 
cardiac fiber orientations would provide useful information for the diagnosis of cardiac abnormal-
ity. In addition, when the fiber information is combined with electrophysiological modeling it might 
also play a key role in both surgical plans and ablation guidance for the treatment of ventricular 
tachycardia and ventricular arrhythmia. Thus, our proposed method and its future improvements 
will contribute to better understanding of cardiac physiology and also provide a tool for diagnosis 
of heart diseases and prediction of their treatments.

However, the current approach for the estimation of cardiac fiber orientations also has its limi-
tations. Specifically, the estimated accuracy of the current procedure highly relies on the accu-
rate myocardium segmentations on ultrasound images, a challenge in current clinical practice. 
Comparing with the geometry-based registration, an intensity-based registration (e.g., mutual infor-
mation) between both MRI and ultrasound images may provide more accurate and robust registra-
tions. Especially, the inhomogeneous backscatter intensity of cardiac ultrasound has been found 
quantitatively related to the fiber orientations from both in vivo and ex vivo data. It could be an 
additional indicator for the fiber variations between both the template and the target hearts rather 
than only using geometric deformations. Hence, several attempts used the absolute value of the 
anisotropic intensities in ultrasound images to directly estimate cardiac fiber orientations. They 
directly estimated cardiac fiber orientations from the B-mode intensities of short-axis ultrasound 
images [48, 49]. Similarly, fiber orientations were estimated from ultrasound intensities for ultra-
sound simulation purposes [50]. Unfortunately, these results were sensitive to the image noises and 
hardly acquired the complicated 3D architectures. Thus, the integration of both geometry registra-
tion and intensity quantification may provide an ideal approach to accurately estimate cardiac fiber 
orientations from cardiac ultrasound. This might provide valuable information for the diseased 
hearts with large ventricular remodelings, such as hypertension-induced heart remodeling or myo-
cardial hypertrophy, when estimating fiber orientations from a normal heart template.
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15.1 INTRODUCTION

Coronary artery disease (CAD) remains the leading cause of death in industrialized countries [1], 
despite continuous progress in its prevention, diagnosis, and treatment. Invasive X-ray coronary 
angiography, via the radial or femoral artery, is the current reference standard for assessment of 
coronary stenosis. Invasive coronary angiography allows 2D visualization of coronary obstructions 
with high spatial and temporal resolution, with the advantage of potential for therapeutic interven-
tion (such as coronary angioplasty) at the time of the imaging procedure. However, about 30% of 
patients who are currently referred for X-ray angiography for CAD assessment are found to have 
negative stenosis findings [2, 3]; nevertheless, these subjects still experience an invasive, potentially 
risky [4] and costly procedure to achieve a clinical diagnosis [5, 6]. Furthermore, the presence of 
severe luminal narrowing represents a late stage of CAD; in fact, CAD is an extremely heteroge-
neous disease that is characterized by the gradual accumulation of lipid and fibrotic elements in the 
vessel intima causing thickening, stiffening, and loss of elasticity of the coronary wall [7]. As CAD 
progresses, different manifestations of the pathology can be observed (Figure  15.1). The initial 
marker of CAD—arising before any structural change at the level of both the coronary lumen and 
wall become visible—is coronary endothelial dysfunction [8–11]. Endothelial dysfunction mani-
fests itself as a loss in the capability of maintaining homeostasis as well as in the capability of regu-
lating cardiovascular tone in response to vasoactive factors, hormones, and neurotransmitters [12]. 
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In addition, endothelial dysfunction leads to an increase in vascular permeability that gives rise to 
the accumulation of blood-born macromolecules (e.g., LDL) in the vessel wall causing a chronic 
inflammatory response. Endothelial dysfunction is typically followed by the so-called “positive 
vessel wall remodeling” [13], consisting of outward growth of atherosclerotic plaque within the 
coronary vessel wall with preserved lumen size. Ongoing inflammation results in progressive accu-
mulation of inflammatory cells (e.g., macrophages), lipid and matrix proteins that augment lesion 
size. This results in actual narrowing of the coronary lumen that can lead to reduced perfusion 
of the myocardium and predispose to subsequent myocardial infarction. During this pathologi-
cal evolution, the fibrotic cap of the plaque becomes weaker and, as a consequence, can become 
unstable. At these advanced stages, the coronary plaque also may develop intraplaque hemorrhage 
(IPH), thus enhancing its degree of instability [14–16]. Plaque rupture may lead to obstructive intra-
luminal coronary thrombosis; additionally, embolic material following coronary plaque rupture 
and thrombosis can result in microvascular obstruction of the distal vessels (e.g., at the level of the 
carotid arteries, thus causing cerebral stroke) [7]. The presence of CAD can remain unnoticed for a 
prolonged period of time, and often will reveal itself only at advanced stages of disease. Therefore, 
and due to the inhomogeneous nature of CAD manifestation, a non-invasive imaging modality 
for monitoring the progression of CAD would be highly desirable. While X-ray angiography and 
multidetector computed tomography (CT) can image the coronary lumen at high resolution, ICA is 
invasive and both modalities involve the exposure to ionizing radiation, with assessment of athero-
sclerotic plaque characteristics limited to patterns of either calcification or low X-ray attenuation 
(a marker of lipid content within the necrotic core). Recently, coronary magnetic resonance imag-
ing (MRI) has emerged as a promising non-invasive imaging modality for the diagnosis of CAD. 
Even though coronary MRI does not currently achieve the sub-millimeter spatial resolution, it can 
generate different imaging contrasts that hold promise for both the detection and characterization 
of plaque and monitoring of multiple stages of CAD. This chapter reviews the most prominent 
technical challenges as well as the latest developments aimed at addressing those challenges. MRI 
strategies for the assessment of different CAD stages will be described and reviewed; furthermore, 
a brief overview on coronary vein MRI—currently gaining relevance in the field of interventional 
cardiac procedures—will be provided.

15.2 TECHNICAL CHALLENGES IN CORONARY MRI

The unique nature of the coronary arteries challenges MRI acquisition strategies in comparison to 
similar sized vessels elsewhere in the body, as coronary arteries exhibit near-constant motion due 

FIGURE 15.1 Schematic of CAD progression. 1) Normal and healthy coronary artery. 2) Early stages of 
CAD may involve coronary endothelial dysfunction without important structural changes at the level of both 
the coronary lumen and the coronary vessel wall. Initiation of the plaque deposition progress can cause posi-
tive remodelling of the coronary vessel wall, consisting on the outward growth of the vessel wall itself without 
any actual luminal narrowing. 3–5) Progressive luminal narrowing occurs with the development of the pathol-
ogy. During these stages, intraplaque haemorrhage may occur within the atherosclerotic plaque; the plaque 
can therefore become at risk and prone to rupture. Progressive luminal narrowing as well as sudden plaque 
rupture can cause intraluminal thrombosis, one of the main manifestations of acute CAD.



323Advances and Perspectives in Coronary MRI

to both respiration and cardiac contraction. Furthermore, and in addition to their particularly small 
diameter (typically ranging from 3 to 5 mm in the proximal segments and 1 to 2 mm in more distal 
segments), the coronary arteries exhibit complex geometry and follow tortuous paths. Therefore, 
there is the need for both high resolution and adequate volumetric coverage. The acquisition of 
large and high-resolution MR volumetric datasets, however, far exceeds the duration of the typical 
cardiac cycle; therefore, data acquisition is typically performed over multiple consecutive cardiac 
cycles under the assumption that cardiac motion is the same (or nearly the same) between heart-
beats. Moreover, normal breathing during the scan leads to a shift and deformation of the heart 
that differ strongly between different subjects. As such, effective motion suppression strategies 
are required to minimize cardiac and respiratory motion artefacts—image blurring and ghost-
ing—that can affect the diagnostic accuracy of the acquired images. In order to avoid the risk of 
excessively prolonged examination times that would be required to achieve high resolution and 
volumetric coverage, strategies for accelerated data acquisition are currently under investigation. 
Furthermore, and in order to avoid high-signal contribution from the tissues surrounding the coronar-
ies (e.g., myocardium and epicardial fat), specific preparatory radiofrequency (RF) pulses are con-
ventionally utilized. Hereafter, current strategies for compensating cardiac and respiratory motion, 
reducing examination times, and enhancing the signal from the coronary arteries are presented.

15.2.1 carDiac motion

The heart muscle contracts during systole, while myocardial relaxation occurs in diastole. The con-
tinuous and repetitive polarization and de-polarization of the myocardial tissue induces a small 
voltage that can be detected by using an MR compatible electrocardiogram (ECG) device, in order 
to extrapolate an indirect measurement of the cardiac motion. However, vector ECG approaches [17] 
are preferred since the ECG signal in the main magnetic field is distorted by both the magnetohy-
drodynamic effect and by the rapidly switching gradient waveforms. To minimize motion within 
the cardiac cycle, the acquisition of MR data is targeted to periods with minimal cardiac motion [18]. 
It has been shown that minimal motion of both the left ventricle and coronaries typically occurs 
during late-systole or mid-diastole [20–22]. The mid-diastolic rest period is usually preferred 
due to the higher blood flow and longer resting period (∼100 ms in comparison to ∼50 ms for late-
systole). The end-systolic rest period is usually preferred in subjects with high heart rates (thus 
shortened mid-diastolic rest periods), pediatric patients, or in cases of highly variable heart rates. 
The time window of minimal cardiac contraction is subject dependent, and this is conventionally 
identified from a two-dimensional (2D) high-temporal resolution cine MR image acquired prior 
to the acquisition of a high-resolution coronary MR image. Coronary MRI data are then collected 
during such time window with minimal cardiac motion over multiple cardiac cycles, by setting a 
specific trigger delay (time lapsed from the R-wave of the ECG to the beginning of data acquisition) 
(Figure 15.2). These conventional ECG-triggered acquisitions provide a static visualization of the 
heart (either in end-systole or in mid-diastole). Recently, approaches that image the heart at different 
cardiac phases have been developed, thus allowing for the simultaneous assessment of functional 
information and of the coronary anatomy. Dual-phase coronary MRI [24, 25] has been proposed 
to acquire two different three-dimensional (3D) whole-heart volumes in both systole and diastole 
in a single free-breathing examination; this enables quantification of right- and left-ventricular vol-
umes along with the visualization of the coronary arteries (Figure 15.3). More recently, so-called 
free-running acquisitions [19, 20] have been introduced to image the heart and coronary anatomy at 
different points of the cardiac cycle. With these approaches, data acquisition is performed continu-
ously throughout the entire cardiac cycle and retrospective ECG-gating is used to assign the data to 
different cardiac phases. These free-running acquisitions allow for the quantification of functional 
endpoints along with the visualization of the coronary anatomy. A non-rigid motion compensation 
algorithm has been proposed to align the different cardiac phases of a free-running acquisition to 
a reference phase, leading to a single, motion-free, 3D whole-heart volume for the visualization of 
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FIGURE 15.3 Results from a whole-heart dual-phase acquisition in a healthy subject (first column) and in a 
patient with total occlusion of the left coronary artery (second column). Images are displayed for systole (first 
row) and diastole (second row) acquired in the same sequence.

the coronary anatomy [21]; this improves signal and sharpness of the 3D whole-heart volume that 
will be used for coronary assessment, while functional endpoints can be computed from the original 
cardiac-resolved reconstruction.

15.2.2 resPiratory motion

The tidal movement of respiratory structures such as the diaphragm and the chest wall causes a 
respiratory-induced motion of the thoracic and abdominal organs. The respiratory-induced dis-
placement of the heart mostly happens along the superior-inferior (SI) direction but also leads 
to additional 3D affine and non-linear motion components that differ strongly between different 

FIGURE 15.2 Schematic of a typical coronary MRI acquisition sequence. Data acquisition (ACQ) is per-
formed following a subject-specific time delay from the R-wave (trigger delay) in order to minimize cardiac 
motion. Preparatory pulses (PP), such as T2 preparation (T2Prep) and fat saturation (Fatsat), can be exploited 
in order to improve the contrast between the coronary arteries and the surrounding tissues. The use of an 
inversion pulse (IP) can be exploited to generate black-blood contrast; in this case, data acquisition is per-
formed after a pre-determined inversion delay to null the signal from the blood. Motion compensation tech-
niques (NAV) are employed to compensate for respiratory motion.
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subjects [22]. A simple approach to minimize respiratory motion is to perform the acquisition 
under one or multiple breath-holds of about 15 seconds. However, this approach is incompatible 
with clinically preferred high-resolution 3D targeted or 3D whole-heart coronary MRI due to the 
long scan time required to satisfy signal-to-noise and spatial resolution requirements. Respiratory 
motion monitoring can be used in free breathing 3D coronary MRI to combine data from mul-
tiple breathing cycles acquired at a similar respiratory position. The widely employed solution in 
the clinical setting for respiratory motion compensation in 3D whole-heart coronary MRI is the 
use of one-dimensional (1D) diaphragmatic navigator echoes (Figure 15.4). With this approach, 
the respiratory motion of the dome of the diaphragm is monitored by acquiring a fast pre-pulse 
right before or after data acquisition [23–25]. The high contrast between the lung-liver interface 
enables the continuous monitoring of the diaphragmatic SI translation. This signal is used to 
gate the acquisition, that is, data are accepted/acquired only when the respiratory signal is within 
a predefined narrow acceptance window (3–5 mm) of the breathing cycle (typically end-expiration) 
with all other data being rejected. Conversely, data falling outside the acceptance window are 
rejected and need to be re-acquired at subsequent cardiac cycles. Diaphragmatic navigators can 
be also used to correct for residual motion within the gating window, usually referred to as 
tracking [30]. This method assumes that the heart motion is dominated by translation in the 
SI direction, and that this displacement is proportional to that of the diaphragm [22]. The pro-
portional scaling factor between the diaphragmatic and cardiac SI displacements is known as 
the tracking factor and is commonly fixed to the value 0.6 [26]. 1D diaphragmatic navigator 
approaches have shown to considerably reduce motion artefacts when small gating windows are 
employed, however they lead to prolonged scan times since only a portion of the data (typically 
30–50%) is accepted for reconstruction (referred to as scan efficiency). In addition, as respiratory 

FIGURE 15.4 Planning of a 1D navigator-gated coronary MRI acquisition. A “pencil-beam excitation” (a) 
or a two obliquely aligned excitation (90° RF pulse)  and refocusing (180° RF pulse) pulses can be used. This 
allows the tracking of the lung-liver interface along the superior-inferior direction (c). The resulting navigator 
signal allows us to indirectly estimate the respiratory displacement of the heart (dFH) over time (t) (d). Image 
reprinted with permission from Henningsson and Botnar [136].
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FIGURE 15.5 Image-based navigation for coronary MRI. In this approach, a low-resolution image of the 
heart is acquired encoding the start-up pulses of a balance steady state free precession (bSSFP) sequence. 
Such low-resolution images, referred to as image navigators, allows for the detection of the respiratory dis-
placement of the heart along both the superior-inferior and right-left direction (in this case). Acquired data are 
corrected to the same respiratory position prior to image reconstruction. The approach enables data acquisi-
tion at 100% scan efficiency, while examination time is known a priori. Figure  reprinted with permission from 
Henningsson et al. [33].

irregularities in the breathing pattern of the subject may occur, the examination time is unpredict-
able and unknown a priori [27]. Moreover, the diaphragmatic navigator method is limited because 
it infers (rather than measures) the motion of the heart, does not account for the multidimensional 
non-linear motion of the heart or hysteresis effects between inspiration and expiration [20, 35]. 
Several technical developments have been proposed to overcome some of these drawbacks and 
achieve 100% scan efficiency (thus shorter scan times) with none or minimal data rejection. 
Self-navigation (SN) methods have been proposed to derivate the respiratory-induced motion 
of the heart from the acquired data itself without the need of either a 1D diaphragmatic naviga-
tor or a heart-diaphragm tracking factor. Respiratory-induced displacements of the heart can be 
directly estimated from the repetitive acquisition of the central k-space point [28] or the central 
k-space line [29–31], corresponding to zero-dimensional or one-dimensional projections of the 
field of view along the SI direction. SI translational respiratory motion compensation, typically 
to end-expiration, is performed directly in k-space by applying a linear phase shift before image 
reconstruction. More recently it has been shown that iteratively identifying the most frequently 
occurring respiratory phase as reference for motion compensation can lead to improved coro-
nary sharpness [40]. Moreover, multi-dimensional SN approaches, involving the acquisition of 
1D multiple projections oriented along the right-left (RL) and anterior-posterior (AP) direction, 
in addition to SI direction, have been also proposed to improve the accuracy of motion cor-
rection [29, 32]. However, respiratory SN techniques account for translational motion only and 
inaccuracies in motion estimation can be introduced from the contribution of the static tissues 
(such as the chest wall) present in the zero- or one-dimensional projection of the entire imaging 
volume. In order to address this hurdle, the so-called image navigator (iNAV) methods [33–35] 
have been proposed (Figure 15.5). Such approaches aim at spatially isolating the moving heart 
from the surrounding tissues by acquiring a low resolution 2D image [33] or 3D volume [35–37] 
prior to data collection or as part of the acquired data itself. This improves the quality of motion 



327Advances and Perspectives in Coronary MRI

detection not only by eliminating the contribution from the chest wall, but also by enabling 
multiple degrees of freedom for motion correction. iNAVs have been used to extract information 
on the translational motion of the heart in 2D (SI and right left, or RL, directions) [33] and 3D 
(SI, RL, and anterior posterior, or AP, directions) [35–40]. In several approaches, the SI transla-
tional respiratory motion of the heart—estimated either via SN or iNAV strategies—is used to 
bin the imaging data at different respiratory stages or bins [41–47]. Such bin images can be used 
for the estimation of inter-bin non-rigid motion fields, thus allowing for the reconstruction of a 
single, non-rigid motion-corrected, 3D whole-heart volume composed of all the acquired k-space 
data [48] (Figure 15.6). Additionally, the image quality of each individual bin can be augmented 
by exploiting sparsity along the respiratory dimension, obtaining respiratory motion-resolved 
images [49]. These approaches were originally proposed for radial imaging acquisitions, that are 
less sensitive to motion. In order to enable their extension to Cartesian imaging, approaches have 
been introduced that incorporate translational motion information derived from the iNAVs to 
increase the sparsity along the respiratory direction, and thus improve the motion-resolved recon-
structed images [50] (Figure 15.7). Recently, approaches aimed at resolving the motion of the 
heart along both the respiratory and the cardiac dimensions have been introduced, allowing for 
respiratory-resolved images of the heart throughout the entire cardiac cycle for the simultaneous 
respiratory motion-resolved visualization of the coronary anatomy and quantification of cardiac 
function [51]. These novel technical developments are currently mainly in the proof-of-concept 
state and clinical validation is awaited to establish their efficacy.

FIGURE 15.6 Comparison of different respiratory motion correction strategies for 3D whole-heart coro-
nary MR angiography. Reformatted images are shown for conventional diaphragmatic navigator gated and 
tracked acquisition, non-linear motion correction, translation correction only and no motion correction 
in two healthy subjects. Blurring present in the no motion correction images is reduced with translation 
correction and sharpness further increased with the non-linear motion correction approach (boxes), par-
ticularly in the distal part of both the right (RCA) and the left (LAD) coronaries (arrows). The non-linear 
motion correction approach has similar image quality to the conventional navigator gated acquisition, while 
ensuring reduced acquisition time. RCA: right coronary artery, LAD: left anterior descending coronary 
artery, Ao: aorta.
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FIGURE 15.7 Respiratory-resolved reconstructions obtained in two healthy subjects using a Cartesian tra-
jectory integrated with image-based navigation and respiratory-resolved reconstruction. Here, beat-to-beat 
translational motion information derived from the iNAVs are integrated in the respiratory-resolved reconstruc-
tion in order to increase the sparsity in the respiratory dimension. This approach (referred to as XD-ORCCA) 
provides improved right (RCA) and left (LAD) coronary sharpness in comparison to approaches that do not 
account for such information (XD-GRASP). Images are shown for three different respiratory phases, moving 
from end-expiration (right) to end-inspiration (left).

15.2.3 coronary signal enhancement

In order to adequately enhance the signal from the coronary lumen and coronary wall with respect 
to that of the surrounding epicardial fat and myocardial tissue, specific imaging strategies need 
to be adopted (Figure 15.2). As epicardial fat exhibits a lower T1 in comparison to luminal blood, 
frequency selective excitation pulses can be exploited to saturate the signal from the epicardial 
fat, thus enabling the visualization of the underlying coronary arteries [52–54] (Figure 15.8). In 
order to improve blood to myocardium contrast, T2 preparatory pulses are typically used [55–57]. 
T2 preparation is a convenient choice for imaging the coronary arteries, as it suppresses contribu-
tion from both the myocardium and the venous blood. Furthermore, T2 preparatory pulses are 
typically less energy consuming and therefore more widely used. Recently, spatially selective 
T2 preparation pulses have been developed in order to suppress the signal from the static tissues 
outside the heart [58, 59]. The use of gadolinium-based MRI contrast agents can be also exploited 
to improve the contrast between myocardium and blood. Depending on the clinical information 
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requested, extracellular, blood-pool, or albumin-binding contrast agents can be chosen [60–63]. 
The prolonged retention time and the higher relaxivities of albumin-binding contrast agents, for 
instance, makes them an appealing option for combined imaging of coronary arteries and infarcts. 
Prior clinical indication of contrast-enhanced acquisitions, the presence of nephrogenic systemic 
fibrosis in patients with co-existent renal dysfunction needs to be considered [64].

15.2.4 Volumetric coVerage anD acquisition sPeeD

The major coronary arteries, consisting of the right coronary artery (RCA) and the left main (LM) 
coronary artery which branches into the left anterior descending (LAD) artery and the left circum-
flex (LCX) artery, have a proximal normal diameter of 3–5 mm and 1–2 mm in more distal seg-
ments. Moreover, the coronaries exhibit a complex geometry and follow tortuous paths. Therefore, 
large volumetric coverage with isotropic high spatial resolution, ideally below 1 mm, is needed to 
correctly visualize and characterize the coronaries. The first approaches to address this requirement 
for high-resolution volumetric imaging of coronary arteries utilized either a targeted approach [65] 
or a three-point scan tool [66] (Figure 15.9, a and b) based on a preliminary low-resolution image. 
These techniques are highly operator dependent, and several acquisitions are needed to image the 
different coronary segments, thus prolonging the overall scan time. 3D whole-heart acquisition 
approaches have been introduced [67] to allow for the complete volumetric coverage of the heart 
with less operator dependent scans (Figure 15.9c). Multiplanar reformatting to visualize the different 
coronary segments can be obtained from the 3D whole-heart images using dedicated software tools, 

FIGURE 15.8 Impact of imaging preparation pulses in a 3D whole-heart coronary MRI acquisition. When 
imaging preparation is not used (a), the coronary lumen appears undistinguishable from the surrounding myo-
cardium and epicardial fat. The use of both T2 preparation (T2-Prep) and fat saturation (Fat-Sat) enables the 
depiction of the coronary vessels for their entire extension (b).

FIGURE 15.9 Visualization of the right (RCA) and the left (LAD) coronary arteries in targeted acquisitions 
(a, b) and in a 3D whole-heart acquisition (c). LCX: left circumflex, AO: aorta.
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FIGURE 15.10 3D whole-heart coronary MR angiography acquired in a healthy subject using a variable 
density Cartesian trajectory with a 4-fold acceleration factor. The direct zero-filling reconstruction exhibits 
image blurring due to the undersampling. Sharpness is improved with the conventional parallel image recon-
struction (It-SENSE), but a higher level of noise can be observed. Conversely, the noise level decreases in the 
Compressed Sensing reconstruction. The use of a patch-based reconstruction (3D-PROST) eliminated the 
background noise while improving coronary sharpness.

such as the one described in [68]. However, high-resolution whole-heart coronary MRI still requires 
long acquisition times. Several approaches have been proposed to accelerate the acquisition speed 
of coronary MRI including fast trajectories [38, 69, 70], undersampling reconstruction techniques, 
and respiratory motion correction approaches with 100% scan efficiency (described in section 2.2). 
Parallel imaging reconstruction techniques such as SENSE or GRAPPA [73, 74], which exploits 
the sensitivity of phased array coils, have become the standard to reduce the acquisition time in 
coronary MRI by 2 to 3 times while maintaining high image quality. Further acceleration may be 
achieved by combining parallel imaging with compressed sensing (CS) approaches [76, 77] that 
exploit the sparsity of the reconstructed image in a specific transform domain, although the efficacy 
of these approaches in clinical practice has yet to be established. Recent improvements in these types 
of techniques include taking advantage of structural patch-based similarities within the coronary 
arteries [78, 79]. These techniques have been recently combined with motion correction approaches 
with 100% scan efficiency [137] and promise to enable sub-millimeter isotropic resolution (0.9 mm) 
coronary MRI in clinically feasible scan times (Figure 15.10).

15.3  THE ROLE OF MRI TO ASSESS CORONARY 
ARTERY DISEASE PROGRESSION

15.3.1 coronary enDothelial Dysfunction assessment

Coronary endothelial dysfunction has proved to be associated with processes of inflammation as 
well as with clinical events; and it is considered a very early marker of CAD. Detection of coro-
nary endothelial dysfunction is challenging as it does not cause any visible structural change at the 
coronary vessel itself. Coronary vasomotor response has been evaluated in previous studies, where 
the discrimination between normal and abnormal coronary endothelial function could provide an 
early diagnosis of CAD [9, 10, 12, 71]. In a clinical setting, endothelial function may be currently 
assessed by invasive X-ray angiography in combination with Doppler flow measurements. These 
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measurements are associated with an increased radiation exposure, as measurements have to be 
performed prior to and following the administration of pharmacological vasodilation. Recently, the 
feasibility of MRI to detect anomalies in coronary endothelial function has been shown [72–77]. In 
these studies, MR images of the cross-sectional area of the coronary artery were acquired while the 
subjects were performing isometric handgrip exercise, a factor of physical and endothelial depen-
dent stress. When images were compared to those acquired at rest, it has been shown that isometric 
exercise causes significant coronary dilation in healthy subjects, while, in the case of CAD patients, 
there was a significant reduction in luminal area change (Figure 15.11). In a smaller cohort of sub-
jects, nitroglycerine was administered and showed to cause an endothelial-independent relative 
coronary area change in both healthy subjects and CAD patients [72], and thus could not be used to 
distinguish the two populations. One of the main challenges in coronary endothelial function MRI 
is that acquiring data while the subject is under physical stress could have a detrimental effect on the 
quality of the recorded ECG, thus on the quality of cardiac motion compensation and on the final 
image sharpness. Therefore, technical advances in this field aim at the development of strategies 
enabling the estimation of myocardial contraction from the imaging data itself, without the need of an 
external ECG [78, 79]. In addition, and as MRI measurements of cross-sectional coronary area are 
currently limited to 2D acquisitions performed under breath-hold, future studies will reasonably 
aim at the extension of such techniques to achieve higher volumetric coverage under free-breathing.

15.3.2 imaging of PositiVe Vessel wall remoDeling

Positive vessel wall remodeling occurs before any luminal narrowing is detectable. Therefore, the 
presence of positive remodeling cannot be assessed with luminography techniques such as invasive 
X-ray angiography. The rupture of unobstructive plaque (with positive remodeling) can lead to 
acute coronary syndromes in the absence of prior symptoms. Positive vessel wall remodeling can 
be quantified with the assessment of atherosclerotic plaque burden, by measuring the vessel wall 

FIGURE 15.11 MRI-measured response at isometric handgrip exercise in terms of dilation of the right coro-
nary artery (RCA) in healthy subjects and patients. In this study, a preliminary scout scan was acquired (A) in 
order to prescribe the following 2D acquisitions (B, E) in correspondence to the RCA cross-sectional area. In 
healthy subjects, a physiological dilation in the RCA can be appreciated during exercise (D) in comparison to 
rest (C). Differently, in patients the cross-sectional RCA area slightly decreases with stress (G) in comparison 
to rest (F). Figure reprinted with permission from Hays et al. [72].
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thickness (or area) at different locations along the vessel [80]. In a study by Stone et al. [81], per-
formed in 697 patients with coronary syndromes, coronary plaque burden (equal to 70% or greater) 
has shown to be an independent predictor of subsequent coronary events.

Additionally, it has been shown that lipid-lowering therapies using statins result in a reduction of the 
local progression of coronary atherosclerosis quantified by the plaque burden [82]. Intravascular ultra-
sound (IVUS) and optical coherence tomography (OCT) provide high-resolution images of coronary 
plaque, but they are invasive and thus not suitable for screening or follow-up. Black-blood coronary 
MRI [83, 84] allows for high contrast visualization of the coronary vessel wall; this is achieved by sup-
pressing the signal from the flowing blood and by enhancing that of the static tissues. As such, black-blood 
coronary MRI is a potential candidate for non-invasive investigation of the atherosclerotic processes 
occurring in the vessel wall and for the assessment of coronary plaque burden. The first in vivo studies 
on plaque characterization were performed by exploiting the double inversion recovery (DIR) tech-
nique [85, 86]; DIR is a flow-dependent technique that utilizes two separate inversion pulses to (1) non-
selectively invert the signal from static tissues and blood within the imaging volume and (2) selectively 
re-invert the signal of static tissues within a target 2D slice. At the moment of data collection, and within 
the target slice, static tissues will have re-inverted positive magnetization while in-flowing blood will 
have approximately nulled magnetization (Figures 15.12 and 15.13). Initial clinical studies assessed the 
presence of plaques in carotid arteries [87–89]. Imaging the coronary vessel wall is more challenging 
since, as anticipated, the coronaries are small in diameter, exhibit a complex geometry, and are subject 
to cardiac and respiratory motion. DIR for coronary vessel wall MRI has been performed under breath-
hold [86] or during free-breathing [85] in combination with diaphragmatic navigator; ECG-triggering 
has been used to address the presence of cardiac motion. As mentioned, DIR acquisitions are typically 
performed in 2D, however the use of local inversion pulses together with 3D imaging can enable larger 
anatomical coverage that allows for the visualization of the coronary wall along extensive portions 
of the vessel [90]. In one of the initial non-contrast enhanced coronary MRI vessel wall studies, the 
presence of positive remodeling in patients with subclinical coronary atherosclerosis was shown [91] 
(Figure 15.12). In a subsequent multiethnic study, increased coronary vascular remodeling was observed 
in subjects without prior history of CAD [92, 93]. Similarly, a different study showed increased positive 
remodeling of the coronary vessel wall in asymptomatic subjects [94]. Therefore, coronary vessel wall 
MRI holds promise as a screening tool in asymptomatic subjects for detection and quantification of 
positive remodeling and plaque burden. One of the main disadvantages of DIR, however, consists in the 
fact that it requires sophisticated acquisition planning, as data has to be collected during the period of 
optimal blood signal nulling and of minimal cardiac contraction. For these reasons, the reported failure 
rate of DIR acquisitions in clinical studies is particularly high (about 30%) [18, 86, 95].

To address some of these shortcomings, time-resolved techniques have been proposed in order 
to improve the robustness of DIR [96, 97] (Figure 15.14). These techniques enable the retrospective 

FIGURE 15.12 Reformatted 3D coronary MRA (A) and a double-inversion recovery acquisition (B) of the 
right coronary artery (RCA) in one subject. Cross-sectional views are shown at three different levels (I, II, III). 
Figure reprinted with permission from Kim et al. [91].
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FIGURE 15.13 3D cross-sectional coronary vessel wall imaging obtained using a local inversion pre-pulse 
and a stack of spiral trajectory (in-plane spatial resolution of 0.6mm × 0.6mm, slice thickness of 3mm). 
The 3D imaging volume was positioned perpendicular to a relatively linear portion of the proximal-mid right 
coronary artery. Image adapted with permission from Peel et al. [138].

FIGURE 15.14  Coronary vessel wall images reconstructed at different time-points (TD’) within the 
cardiac cycle and with different temporal duration (TW’). This allows to retrospectively identify the image 
that provided the most improved vessel wall delineation. Figure reprinted with permission from Ginami 
et al. [97].



334 Cardiovascular Imaging and Image Analysis

FIGURE 15.15  3D whole-heart acquisition obtained using interleaved T2 preparation for simultaneous 
coronary lumen and vessel wall visualization. Interleaved acquisition and subtraction between two datasets 
acquired with and without T2 preparation allows for blood signal nulling while maintaining the signal from 
the myocardium and the vessel wall (right). Data with T2 preparation provide the visualization of the coronary 
lumen. RCA: right coronary artery, LAD: left anterior descending coronary artery, Ao: aorta.

selection of the cine frame providing the most optimized blood signal suppression and the most 
adequate cardiac motion minimization. A major limitation of all the DIR implementations is their 
intrinsic sensitivity to flow and, as a consequence, its robustness may be compromised by slow 
flowing blood, and whole-heart volumetric coverage is difficult to achieve. For this reason, a 
flow-independent 3D whole-heart coronary vessel wall MRI technique has been introduced [98] 
(Figure 15.15); this approach is based on the weighted subtraction of two differently T2-weighted 
3D volumes to achieve blood signal nulling, thus providing high contrast between the suppressed 
blood signal and the vessel walls. This technique was initially implemented in combination with 
diaphragmatic navigator; more recently, the same approach has been integrated with iNAV and non-
rigid respiratory motion correction [44], thus enabling whole-heart coverage in a predictable exami-
nation time. The use of elastin-specific MRI contrast agents (ESMA) may further improve plaque 
burden quantification. In fact, the high-signal provided by ESMA allows for imaging at particularly 
high spatial resolution [99, 100].

15.3.3 imaging of Plaque inflammation, thrombus, anD intraPlaque hemorrhage

Vascular inflammation during CAD progression can compromise the structural integrity of plaque 
and promote instability by suppressing collagen generation and promoting matrix degradation 
[101, 102]. In this scenario, the plaque becomes unstable and at risk of rupture, which may lead to 
myocardial infarction and stroke [14, 103]. Therefore, imaging plaque inflammation could poten-
tially be used to facilitate the detection of high-risk plaques and guide administration of therapies. 
However, MR imaging of inflammation at the level of the coronary arteries remains challenging due 
to the previously mentioned technical challenges.

Another factor promoting plaque destabilization is the presence of intraplaque hemorrhage (IPH). 
IPH can originate from the rupture of the fibrotic cap and subsequent penetration of blood from 
the coronary lumen [104], as well as from extravasation of blood from the immature vasculature 
within the coronary plaque [105, 106]. Most of the cases of acute coronary syndrome have shown 
to be caused by sudden plaque rupture, that can lead to the formation of intracoronary thrombus, 
causing partial or total occlusion of the vessel [107, 108]. Therefore, an imaging modality for the 
rapid assessment of intraluminal thrombosis in such patients is highly desirable. The administration 
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of gadolinium (Gd)-based contrast agents can lead to an hyperenhancement of the atherosclerotic 
plaque [109]. In preclinical studies, the presence of contrast enhancement in MR images has been 
shown to correlate with the presence of inflammation in the coronary vessel wall [110, 111]. The 
presence of IPH and coronary thrombus can be assessed with non-contrast MRI using T1-weighted 
sequences [112–117]; such approaches rely on the short T1 relaxation time of methemoglobin, a 
component of both acute thrombus and IPH. As such, T1-weighted sequences aim at suppressing 
the signal from both the static tissues and the flowing blood, while providing an enhanced signal 
in the location of IPH and thrombus. These approaches typically acquire a first T1-weighted black-
blood image for hyperenhancement detection and, subsequently, a bright-blood reference image. 
The two images are then co-registered to localize the region of hyperenhancement along the coro-
nary tree (Figures 15.16 and 15.17). As the black-blood T1-weighted and the reference acquisitions 

FIGURE 15.16 High intensity signal on a T1-weighted coronary MRI acquisition (A) positively correlates 
with to the coronary plaque identified by computed tomography angiography (CTA, B). The co-registration (C) 
of the T1-weighted acquisition (A) with a separate bright-blood coronary MRI acquisition allows to anatomi-
cally locate the plaque along the coronary vessel. Figure reprinted with permission from Noguchi et al. [117].

FIGURE 15.17 MRI visualization of coronary thrombus in a 64-year-old man with anterior myocardial 
infarction. Coronary MRI of the lumen (A) shows a reduced vessel lumen size of the LAD (red arrows). 
T1-weighted black-blood imaging (B) shows a region of hyperenhancement at the corresponding location. 
Morphological location of the region of hyperenhancement is better depicted after the fusion of the two images 
in A and B (C). LAD: left anterior descending coronary artery, LCX: left circumflex, IM: ramus intermedium, 
D1: diagonal branch. Figure reprinted with permission from Jansen et al. [115].
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are typically performed in free-breathing, diaphragmatic navigators are used to compensate for 
respiratory motion. Therefore, such approaches entail prolonged and unpredictable examination 
times, while there is the risk of misregistration errors between the black- and the bright-blood 
datasets. To overcome these drawbacks, a 3D whole-heart and respiratory self-navigated sequence, 
called CATCH, has been introduced to acquire a black-blood T1-weighted volume and a bright-
blood reference image in an alternated fashion [118]. An extension of this approach, called BOOST, 
has been recently proposed [119] to acquire two differently weighted bright-blood datasets in an 
interleaved fashion, that are combined in a PSIR reconstruction [120] in post-processing to obtain a 
complementary and fully co-registered black-blood dataset.

15.3.4 imaging of luminal narrowing

Initial studies for imaging the coronary lumen with MRI were performed in the late 1980s and 
early 1990s. However, at that stage the technique was not mature enough to allow for the visu-
alization of actual luminal narrowing. These pioneering studies raised interest in the scientific 
community that started to focus on the technical developments needed to address the challenges 
associated with imaging the coronary lumen. In a study by Jahnke et al. [121], free-breathing 
coronary MR angiography (CMRA) acquired with diaphragmatic navigator showed improved 
accuracy for stenosis detection when compared to previously introduced breath-hold acquisi-
tion. A prospective comparison between free-breathing CMRA and X-ray angiography has been 
performed using a single-vendor technology [55, 66], and in a multicenter study [122], where 
eight international centers were involved. In this study, CMRA showed high sensitivity for CAD 
detection; however, the specificity remained low (about 40%), and about 25% of the acquired 
images provided poor image quality. Nevertheless, CMRA showed a specificity and sensitivity 
of 100% for the detection of stenosis along the left main (LM) and for the detection of triple 
vessel disease. These studies were performed using a volume targeting approach. Subsequently, 
studies exploiting 3D whole-heart acquisitions were carried out. A seven center trial in Japan 
[123] reported a value of specificity of almost 90% for coronary MRI, and a sensitivity value 
of 72%, while the amount of diagnostically interpretable images was of about 92%. CMRA has 
been compared with computed tomography acquisitions as well [124], and it showed lower sen-
sitivity and specificity, but comparable predictive value. Studies have shown that coronary MRI 
can provide reliable depiction of the proximal part of the coronary arteries, including the entire 
left main (LM), the first 80 mm of the RCA, and the first 40 mm of the LCX [25, 55]. Therefore, 
CMRA is nowadays considered a reliable imaging modality for excluding the presence of CAD, 
especially in subjects with low CAD likelihood. More recently, initial clinical studies investi-
gating the feasibility of the latest respiratory motion compensation techniques, such as SN and 
iNAV (section 2.2), have been performed. 1D respiratory SN has been performed in 78 patients 
on a 1.5 Tesla system [125] and on 39 patients on 3 Tesla scanner [130], showing adequate 
diagnostic quality for the main and proximal coronary segments in 92.3% and 92.7% of all the 
acquired images. Sensitivity and specificity in these studies in comparison to X-ray angiography 
amounted to 65% and 85% (1.5 Tesla) and 78.2% and 75% (3 Tesla). A clinical feasibility study 
of iNAV approaches for the detection of coronary stenosis was also carried out on a 1.5 Tesla 
system [126]. The reported diagnostic quality was of 98%, 94%, and 91% for proximal, mid, 
and distal segments, respectively, with a sensitivity and specificity of 86% and 83% in compari-
son to X-ray angiography. Sensitivity and specificity values of both SN and iNAV methods are 
approaching those reported in previous multicenter studies based on diaphragmatic navigator 
acquisitions. However, further work, not yet clinically validated, is ongoing, including non-rigid 
motion compensation and acceleration techniques.

The use of coronary MRI for imaging the coronary lumen has shown promise not only for the 
detection of luminal narrowing, but also for acquisitions in patients with aneurysms (such as those 
caused by Kawasaki disease) [127–129] and for imaging coronary bypass grafts [130, 131].
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15.4 IMAGING OF THE CORONARY VEINS

MRI has been commonly used for the visualization of the coronary artery circulation. Imaging the 
coronary vein circulation is currently gaining interest, especially in the context of resynchroniza-
tion therapies. In fact, in this context, the cannulation of the coronary sinus (CS) is performed in 
order to gain access to the left atrial and the left ventricular epicardium. However, more traditional 
sequences exploiting T2-preparation to improve the contrast between arterial blood and myocar-
dium are not directly applicable in this scenario. In fact, de-oxygenated venous blood is charac-
terized by a very short T2 relaxation time in comparison to arterial blood (35 ms versus 250 ms, 
respectively) [132], and therefore it appears suppressed when such preparatory pulses are used. As 
an alternative to T2-preparation, imaging of the coronary veins can be obtained using an intravascu-
lar contrast agent [132]. Alternatively, magnetization transfer contrast (MTC) has been exploited for 
non-contrast imaging the coronary veins [133–135]. Such sequences have been proposed as volume-
targeted acquisitions [133], or as whole-heart approaches [134], in combination with diaphragmatic 
navigators. With the increasing interest in coronary vein imaging, there is the need of combining 
whole-heart MT-prepared sequences with respiratory SN or iNAV for improved scan efficiency, 
facilitating clinical translation. In this regard, a novel multi-contrast sequence integrating MTC 
within a PSIR framework enables the depiction of the heart anatomy, with equal signal and contrast 
when comparing the arterial and the venous system. The sequence is integrated with image-based 
navigation and non-rigid respiratory motion correction. With respect to T2-prepared acquisitions, 
the use of MTC ensures preserved signal of the venous vessels (Figure 15.18).

15.5 CONCLUSION

Coronary MRI is a promising and non-invasive technique for imaging the progression of CAD. 
With its ability of generating different imaging contrasts, MRI has shown capability of detect-
ing coronary endothelial dysfunction, positive coronary vessel wall remodeling, IPH, inflamma-
tion, and intraluminal thrombosis. Currently, the largest validation of MRI has been carried out 
for the detection of luminal stenosis. Ongoing research efforts aim at addressing the most impor-
tant challenges currently preventing a broader adoption of coronary MRI in the clinical practice. 

FIGURE 15.18 Bright-blood visualization of the cardiac anatomy using a simultaneous bright and black 
blood framework incorporating MTC. With this approach, a bright-blood volume (MTC-IR BOOST) is gener-
ated and ensures the visualization of both the arterial and the venous system with high signal and contrast (a–d). 
Conversely, a T2-prepared configuration of such approach sinus. LAD: left anterior descending coronary 
artery, AIV: anterior interventricular vein.
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Specifically, there is the need to improve the spatial resolution of coronary MRI, while being able 
to perform data acquisition with sufficiently large volumetric coverage and within a reasonable 
acquisition time. Furthermore, the presence of motion remains a major challenge in coronary MRI 
and a topic of ongoing investigation.
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16.1 INTRODUCTION

High blood pressure (hypertension) is a clinical condition in which the pressure and force of the 
blood against the arterial walls is elevated. Blood pressure is often reported as systolic and diastolic 
blood pressures in millimeters of mercury (mmHg), which correspond to the peak aortic pressure 
during ventricular ejection (systolic) and the lowest pressure in the aorta during ventricular relax-
ation (diastolic). The mean arterial pressure (MAP) is the average aortic blood pressure during 
the entire cardiac cycle. A normal blood pressure reading is a systolic measurement of less than 
120 mmHg, a diastolic measurement of less than 80 mmHg, and a MAP of approximately 95 mmHg 
(Table 16.1). Hypertension was traditionally defined as systolic blood pressure >160 mmHg,  diastolic 
blood pressure >100 mmHg, or MAP >120 mmHg.

Hypertension can be classified as primary (or essential or idiopathic), secondary, accelerated, 
hypertension urgency, or as malignant hypertension. Essential hypertension develops over years, 
even decades, with no single identified lifestyle or genetic cause. Approximately 90–95% of patients 
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TABLE 16.1
Blood pressure measurements definitions. [4]
Blood Pressure Measurements Definition

Systolic Blood Pressure (SBP) First Korotkoff sound1

Diastolic Blood Pressure (DBP) Fifth Korotkoff sound

Pulse Pressure (SBP – DBP)

Mean Arterial Pressure (MAP) DBP plus one-third pulse pressure (or) (SBP + 2*DBP)/3

Mid-Blood Pressure (SBP + DBP)/2

1 Korotkoff sounds are the sound that medical specialists hear when they are measuring blood pressure noninvasively.

diagnosed with hypertension are classified as primary hypertension [1]. Secondary hypertension is 
a secondary disease which can develop due to conditions including adrenal and thyroid problems, 
obstructive sleep apnea, drugs and medications, chronic alcohol abuse, etc. [2]. An example of 
secondary hypertension is renal (or renovascular) hypertension, where hormones released by the 
kidneys increase blood pressure throughout the systemic circulation in response to narrowing of 
the arteries that supply blood to the kidneys. Accelerated hypertension (recent significant increase) 
and malignant hypertension are hypertensive emergencies, defined as high blood pressure (typically 
≥180/≥120) with acute impairment of one or more organ systems. Diagnosis of malignant hyperten-
sion requires the presence of papilledema, or in the absence of stage III or IV retinopathy, damage 
to a minimum of three target organs [3]. Hypertensive urgency is severely elevated blood pressure 
with no organ damage.

Hypertension can be a localized condition, such as portal vein hypertension (PVH) or pulmonary 
hypertension (PH). PVH is elevated pressure in the hepatic (liver) portal system caused by problems 
such as cirrhosis (most commonly) or venous thrombosis (a blood clot) in the liver. PH is elevated 
blood pressures in the pulmonary circulation. Discussion for this chapter will focus on systemic (or 
body) hypertension that affects the entire circulatory system and is referred to hereafter as hyperten-
sion. There are variabilities in blood pressure throughout the day due to the circadian (sleep-wake) 
cycle, hormonal changes, activities, meals, etc. [5], which are extraneous to this discussion. This 
chapter will focus on the condition of persistent systemic primary hypertension.

Typically, hypertension is the medical term used to refer to the chronic condition of having persis-
tent elevated blood pressure. In the advanced stages of the disease, some people may experience symp-
toms (e.g., shortness of breath, dizziness, visual changes, flushing, etc.) [6]. However, hypertension is 
often referred to as a “silent killer” because many people will experience no apparent symptoms.

The guideline for diagnosing primary hypertension was recently updated. Previously, hyperten-
sion was diagnosed when a patient had a sustained blood pressure measurement ≥140/90 mmHg. 
The Joint National Committee is a panel of specialists, such as cardiologists, nephrologists, etc., 
from across the United States who determine what guidelines and regulations should be in place for 
diagnosing and treating hypertension. In the 2017 guideline, an update of the 2003 Seventh Report 
of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood 
Pressure (JNC7), categorization for hypertension based upon blood pressure measurements was 
changed to the following recommendations: normal (<120/<80 mmHg), elevated or pre-hypertension 
(120–129/<80 mmHg), hypertension stage 1 (130–139 mmHg systolic or 80–89 diastolic mmHg), 
and hypertension stage 2 (≥140 mmHg systolic or ≥90 diastolic mmHg) [5], [4], (Table 16.2). These 
new guidelines are intended to help patients and physicians address high blood pressure sooner, 
which has been demonstrated to help prevent or slow the rate of organ damage. The reduction of 
blood pressure for the diagnosis of clinical hypertension, and the more precise categorization of 
hypertension diagnoses, is in response to the mounting evidence of the importance of early interven-
tion for improved patient outcomes and reduction of hypertension-related morbidity and mortality.
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The rest of this chapter is organized as follows: Section 16.2 will discuss the importance of studying 
hypertension as one of the risk factors threatening humans’ health nowadays. Section 16.3 will pres-
ent current techniques used in measuring blood pressure invasively and noninvasively. Section 16.4 
will discuss current imaging modalities used to help clinicians to quantify symptoms preceding the 
onset of hypertension and how this would help in preventing or reducing further disease complica-
tions. Sections 16.5 and 16.6 will give a discussion of the current and the emerging trends in quan-
tifying and measuring high blood pressure. The conclusion is then given in section 16.7.

16.2 IMPORTANCE AND RELEVANCE

Elevated blood pressure is associated with increase in cardiovascular disease risk [4]. Table 16.3 
presents the cardiovascular disease risk factors that are common in hypertensive patients. In addi-
tion, hypertension damages small and large blood vessels, including those in the brain. Conditions 
such as vascular dementia (sometimes called vascular neurocognitive disorder) and Alzheimer’s 
disease have been correlated to hypertension induced changes in the cerebral blood vessels. These 
cerebrovascular changes develop long before symptoms appear, and thus significant vascular dam-
age precedes diagnosis of hypertension. Functional reorganization (neuroplasticity) occurs early 
in the disease course, with compensatory changes including the use of more cerebral regions to 
complete tasks [7]. A recent study found that hypertension increases the risk for developing vascular 
dementia by 62% for patients between the ages of 30 and 50 and increases the vascular dementia 
risk by 26% for patients in the age range of 51 to 70 years old. The risk for vascular dementia is 
still reduced when blood pressure is lowered in older patients [8]. The risk for cognitive decline in 
patients with elevated systolic and diastolic blood pressures was reduced by 38% with antihyper-
tensive therapy [9].

TABLE 16.2
Categories of blood pressure in adults.
Category Systolic Blood Pressure Diastolic Blood Pressure

Normal <120 mmHg And <80 mmHg

Elevated 120–129 mmHg And <80 mmHg

Hypertension-Stage I 130–139 mmHg Or 80–89 mmHg

Hypertension-Stage II ≥140 mmHg Or ≥90 mmHg

TABLE 16.3
Risk factors of CVD related to hypertensive patients. [4]
Modifiable1 Relatively Fixed2

Current cigarette smoking, secondhand smoking
Diabetes mellitus
Dyslipidemia/hypercholesterolemia
Overweight/obesity
Physical inactivity/low fitness
Unhealthy diet

Chronic kidney disease
Family history
Increased age
Low socioeconomic/educational status
Male sex
Obstructive sleep apnea
Psychosocial stress

1 Modifiable factors are those that could be changed, and if so, could reduce the CVD risks.
2 Relatively Fixed factors are those that are difficult to change.
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16.3  CURRENT TECHNOLOGIES FOR DIAGNOSING 
PRIMARY HYPERTENSION

The invasive and noninvasive techniques used for measuring blood pressure are presented in the 
following sections.

16.3.1 noninVasiVe blooD Pressure (nibP) measurement techniques

Hypertension can be diagnosed by a clinician through different tests. The most common screening 
method for hypertension is use of the sphygmomanometer, also known as a blood pressure monitor 
or blood pressure meter. This measurement is typically taken by a nurse or clinician at a medical 
care provider’s office or at a hospital. It is noninvasive, inexpensive, and portable. While generally 
accurate as a screening tool, it should be noted that measurements taken with this method could 
include variability due to cuff size as matched—or mismatched—to patient arm circumference, 
machine calibration, patient resting time just prior to taking the reading, etc. Some patients also 
experience anxiety while at a physician’s office which can cause a temporary elevation in blood 
pressure, sometimes referred to as “white coat hypertension.” Therefore, it is recommended that 
the first elevated reading identified at an initial screening be considered as an indication for further 
monitoring, not as a conclusive result for a diagnosis.

Currently, the treating physician obtains additional measurements or ambulatory blood pressure 
monitoring over a 24-hour period to confirm hypertension diagnosis. The patient may be asked to 
return to the medical care provider up to two times, with the visits timed to be at least two days apart, 
for additional pressure measurements. The pressure measurements from the two visits are then aver-
aged to obtain the patient’s blood pressure measurement [5]. In a recent study, average variability of 
at least 5 mmHg was found between automated office blood pressure and daytime ambulatory blood 
pressure monitoring (ABPM) in 90% of participating patients, with a greater degree of underestima-
tion among hypertensive patients [10]. ABPM can be conducted with the use of an automated system. 
A radial pulse wave acquisition device is worn on the wrist and captures and records data wire-
lessly. Measurements are taken automatically, typically every 15 minutes and enables the capture 
of circadian variation of blood pressure. Arm cuff and finger monitors are also options for ABPM. 
The patient returns to the clinician’s office the following day, and the information is downloaded for 
evaluation and diagnosis. Patient self-measurement is sometimes a suitable and practical alternative 
and can in some cases provide a better picture of blood pressure fluctuations in patients who smoke.

Doppler ultrasound, which is usually used for flow measurements, can also be used to mea-
sure blood pressure. A recent comparative study found that arterial tonometry does not provide 
accuracy similar to that of arterial cannulation, especially during movement [11]. However, it was 
also reported that radial artery applanation tonometry (measuring pressure required to keep artery 
flattened) can be used to determine the shape of the aortic waveform to measure the central pulse 
pressure [12].

Lab tests are also an important tool in making or supporting a diagnosis of hypertension. Tests 
that could be related to hypertension include the following: measurement of serum potassium and 
creatinine levels (or estimated glomerular filtration rate), which is an indication of how well the 
patient’s kidneys are functioning; blood glucose and hematocrit; cholesterol profiles and triglyc-
erides. An increase in serum calcium due to increased activity of the parathyroid glands can be 
associated with hypertension. Urine samples can be tested for albumin (microalbumin), a protein, 
and blood urea nitrogen (BUN). Hypertensive retinopathy, diagnosed by fundoscopic examination, 
is an ophthalmologic symptom of chronic hypertension or other cardiovascular diseases [5], [13]. 
Direct ophthalmoscopy, photography, and angiography can also reveal hypertensive choroidopathy 
and hypertensive optic neuropathy. A 12-lead electrocardiogram can detect signs of myocardial 
damage due to hypertension. An echocardiogram can be performed to identify conditions such as 
atherosclerosis, left ventricular hypertrophy, etc., which provide important information that may 



349Hypertension and Correlation to CV Change

support the diagnosis of hypertension. The JNC 7 on High Blood Pressure lists high-sensitivity 
C-reactive protein (HS-CRP), homocysteine, and elevated heart rate as “emerging risk factors” [5].

16.3.2 inVasiVe blooD Pressure measurement techniques

Noninvasive manual aneroid, auscultatory (being phased-out), and oscillometric (transducer and 
sphygmomanometer) blood pressure measurement methods are not as reliable as intra-arterial pres-
sure readings [14], [15]. There is some variability of measurement readings (estimations generated 
by each company’s algorithm) between oscillometric blood pressure measurement devices [16]. 
Sources of error include improper arm cuff fit or placement, inadequate or infrequent device cali-
bration, not waiting for the recommended 5 minutes to have patients in a resting seated position 
prior to taking a measurement, etc. [17], [18], [19].

An intra-arterial catheter is an invasive technique that provides direct, real-time continuous 
monitoring, typically in a hospital setting, and is considered the reference standard for blood pres-
sure measurement. An arterial line is a thin catheter with a pressure transducer that is inserted 
into an artery (femoral, brachial, radial, etc.). A pressurized saline slow infusion system in the 
tubing allows a continuous slow flush through the catheter tip into the bloodstream. Distortion or 
deformation of a dome diaphragm on the pressure transducer varies with the changes in pressure of 
the saline column, which varies with arterial pressure pulsation. The diaphragm distortion causes 
changes in resistance in the transducer electrical circuit [20].

Invasive blood pressure monitoring also offers beat to beat visual display of the arterial wave-
form, which measures the rapid changes in pressure over the measurement epochs. The waveform 
display provides information such as steepness and narrowness of systolic stroke, dicrotic notch, 
and wave reflections. Pulse pressure is the difference between the peak arterial pressure measure-
ment and the diastolic pressure at the trough. MAP is the area under the curve divided by the width 
of a single cardiac cycle. MAP provides a measurement that is less affected by wave reflection than 
the systolic and diastolic readings [14], [21].

Typical risks associated with invasive blood pressure measurement techniques are thrombosis 
and infection. An arterial line is only typically indicated for critical care patients (intra-operatively, 
with use of vasoactive drugs, for intensive care monitoring, etc.), patients with severe extremity 
burns, frequent blood gas sampling, etc.

16.4 CURRENT IMAGING TECHNOLOGIES

Medical imaging techniques enable physicians to capture noninvasive images of structures inside 
the body (e.g., blood vessels, tissue, bones) as well as their function (egg, brain activity). Imaging 
techniques may require the use of contrast agents to highlight or enhance the imaging resolution of 
tissues. These agents can be administered intravenously, orally, rectally, or through inhalation. The 
kidneys and liver filter and excrete these agents from the body.

This section will be a brief overview of current imaging technologies available to physicians, 
clinicians, specialists, and researchers with a greater focus on technologies used for imaging blood 
vessels to evaluate vascular function.

16.4.1 ct anD cta

Tomography is a technique for creating a three-dimensional image using cross-sectional X-ray 
images. X-rays are high-energy short-wavelength electromagnetic waves (high-energy radiation) 
that pass through the body. X-rays readily pass through soft tissues (grey matter), while denser 
anatomical structures (e.g., bones) block X-rays. The X-ray attenuation due to structures in the body 
can be captured using sensors. Computed tomography (CT) or computed axial tomography (CAT) 
scans use cross-sectional X-rays taken from multiple angles to form medical images of the body. 
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The CT scans are typically focused on one area of interest such as the head (Figure 16.1) or the 
chest. CT has been used to detect pulmonary hypertension and mean pulmonary artery pressure 
by measuring and analyzing diameters of pulmonary arteries noninvasively [22]. Electron beam 
CT (Ultrafast CT) has been used to detect coronary artery disease by detecting calcium deposits 
in coronary arteries [23]. Although CT images provide 3-D anatomical information and preserve 
topology, they cause radiation exposure.

Computed tomography angiography (CTA) is an imaging technique that uses an intravenously 
administered iodine-rich contrast agent to capture X-ray images of blood and vasculature. A sample 
of a CTA image is shown in Figure 16.2. It can be used to assess arterial sizes, evaluate blood flows to 
diagnose vascular conditions such as stenosis (narrowing of the blood vessel), embolism (blockage), 
atherosclerosis, etc. Ley et al. used CTA of pulmonary arteries to diagnose patients with chronic 
thromboembolic pulmonary hypertension [25]. CT perfusion imaging enables evaluation of cerebral 
blood flow and perfusion. Multi-detector computed tomography (MDCT) utilizes a two-dimensional 
array of detector elements instead of a linear array of detector elements used in typical and heli-
cal CT scanners [26], which allows for high imaging acquisition speed, high spatial resolution, and 
more coverage of the patient [27]. Flat panel CT (FPCT) offers z-axis imaging in one rotation, which 
offers high spatial resolution images of entire organ systems (e.g., the cerebrovasculature) [28], [29].

16.4.2 nuclear

Nuclear imaging is used to capture physiologic processes such as metabolic rates or blood flow. 
Positron emission tomography (PET) is a nuclear medicine imaging technique that captures gamma 
photons emitted in different directions by a positron-emitting radionucleotide (called a radiotracer), 
which is administered intravenously, orally, or by inhalation [30]. Figure 16.3 shows a schema of 

FIGURE 16.1 Computed Tomography (CT) of human brain from base of the skull to top [24].
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FIGURE 16.2 A sample of CTA image.

FIGURE 16.3 Schema of PET acquisition process [32].
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the acquisition process of PET, and Figure 16.4 shows a sample image of it. Single photon emis-
sion computed tomography (SPECT) directly measures gamma radiation from a (typically injected) 
radiotracer or radiopharmaceutical, and can be used in bone imaging to measure blood flow, deter-
mine organ function such as cardiac efficiency, functional brain imaging (e.g., effects of dementia), 
etc. [30]. SPECT was used to measure cerebral blood flow in a study that was conducted to deter-
mine whether hypertensive patients with acute ischemic strokes should be treated using antihyper-
tensive medication in the immediate post-stroke period [31].

16.4.3 mri, fmri, anD mra

Magnetic resonance imaging (MRI) uses powerful magnets and radio waves as opposed to the ion-
izing radiation used for X-ray imaging. The MRI machine generates a strong magnetic field that 
aligns the spins of protons in the water molecules within the body. A radio frequency generates a 
varying magnetic field whose energy flips the protons’ spins (opposite direction). They return to 
their normal spin (precession, which happens at different rates for different tissues) when the mag-
netic field is turned off, and the scanner captures the radio signal produced during this process to 
produce an image (Figure 16.5).

MRI images capture skeletal structures as well as soft tissues as 2-D cross-section images. 
Because a single image cannot capture the entire brain—which is a 3-D structure—it takes mul-
tiple axial cross-section images (from a perspective looking down at the top of the patient’s head) 
put together to get a complete 3-D image of the entire brain. A brain MRI volume is made of over 
100 2-D images (image volume). MRI is considered the best modality to scan soft tissues such as 
brain tissues and does not have any associated radiation exposure. However, MRI imaging is slow 
and less accurate for bone scanning.

FIGURE 16.4 PET scan of the human brain [32].
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Cardiovascular magnetic resonance (CMR) is used to assess or measure cardiac structure and 
physiology (e.g., biventricular function and volumes, vascular pathology, etc.). CMR has been used 
to measure left ventricular mass, wall thickness, and function. CMR is the preferred technique 
for assessing left ventricular hypertrophy, and provides enough clarity to discern the differences 
between hypertrophic cardiomyopathy and LVH [33].

Patients’ blood and vascular tissues, including cerebrovascular structures (blood vessels in the 
brain), can be best captured using magnetic resonance angiograms (MRAs). An MRA sample image 
is shown in Figure 16.6. MRA images are captured using MRI scanners. MRA is used to image 
arteries and arterial blood flow, while magnetic resonance venography (MRV) is used to assess 
blood flow in veins (e.g., detect deep vein thrombosis). MRA has been used to visualize intracranial 
circulation and extracranial carotid vessels, screening for renovascular hypertension, depiction of 
peripheral arterial occlusive disease, abdominal tumor stating, and the evaluation of abnormalities 
of the central veins of the body [34]. However, detection of cerebrovascular structural changes and 
correlating them to blood pressure using MRA analysis has not been accomplished due to the lack 
of accurate segmentation algorithms that can delineate the smaller blood vessels in the brain from 
the surrounding soft tissue. In contrast enhanced MRA (CE-MRA), a contrast agent is administered 
intravenously. It can be used to image vasculature (including aneurysm, esp. for follow-up), luminal 
surfaces, and arterial plaques and atherosclerosis [28]. There are several MRA techniques that do 
not require the use of a contrast agent. Time-of-flight (TOF) MRA (Figure 16.7) uses the inflow-
enhancement effect, which is an increased signal from the inflow of spins of fully magnetized blood 
flowing into an area of tissues that are less magnetized (saturated) due to repeated exposure to 
radio frequency pulses. Researchers continue to work toward improved options for MRI and MRA 
diagnostic efficacy in the early stages of cerebrovascular-related diseases such as hypertension, 
dementia, Parkinson’s disease, etc. [35].

FIGURE 16.5 A sample of MRI data.
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FIGURE 16.7 A sample of TOF-MRA data.

FIGURE 16.6 A sample of MRA data.
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Phase contrast MRA (PC-MRA) can be used to image moving fluids such as cerebrospinal fluid 
and blood (e.g., MRV, measuring pulmonary artery (PA) flow velocities and pressures, etc.) [21], 
[36], [37]. Velocity data obtained from PC-MRA also allows for determination of shear stresses 
against the inner vessel wall, flow volume, and pressure gradients. Four images are used to measure 
3-D flow, and cardiac gating is used with this procedure [38]. Because blood flows throughout the 
body, conditions in one area of the body can affect other areas, and MRA can provide important 
information regarding both localized and systemic conditions. PC-MRA has been used to quan-
tify intracranial venous resistance to drainage [39]. PC-MRA has been utilized to study the effect 
of elevated blood pressures to study cerebrovascular changes (tortuosity) [40]. PC-MRA has also 
been used in conjunction with other medical procedures such as intraoperative catheterization to 
improve flow measurement accuracy [41]. Renovascular hypertension can be evaluated using 3-D 
gadolinium-enhanced magnetic resonance angiography (MRA) [33].

Arterial spin labeling (ASL) MRI uses pulse inversion to differentiate tissues moving into the 
imaging field from other tissues, which are subtracted (requires acquisition of two images) or 
uses background suppression single-shot ASL [42], [43]. ASL-MRI can be used to quantify blood 
flow using changes in magnetization of blood water to tissues. Functional MRI (fMRI) measures 
changes in blood flow and can be used to identify active areas in the brain. For many years, fMRI 
has been used to investigate correlations between hypertension and cognitive and related functions 
(e.g., working memory) [44]. fMRI is useful in the study of cerebral function and arteriopathies 
(e.g., Lewis bodies, cerebral amyloid angiopathy) to Alzheimer’s, vascular dementia, etc. [45], [46]. 
Blood oxygen level dependent (BOLD) contrast imaging is used in fMRI to observe the active areas 
in the brain and other organs by measurement changes in oxyhemoglobin and deoxyhemoglobin 
(oxygen changes) [35]. Figure 16.8 presents a sample of fMRI data.

16.4.4 ultrasounD

Doppler ultrasonography (handheld, Duplex, Color, and Power) uses high-frequency sound waves 
generated by a transducer to measure blood flow using the Doppler Effect and blood pressure [47]. 
The transducer is pressed externally against the patient’s skin, with gel between the transducer 
head and the patient’s skin to act as a coupler and eliminate air and to reduce static. This painless 
noninvasive procedure is generally performed in a hospital radiology department by a sonographer. 
Intravascular ultrasound is a noninvasive, clean, safe, and inexpensive modality that offers detailed 
imaging of cardiac arteries [48]. However, it is noisy and cannot image gas-filled and bony struc-
tures because they absorb ultrasound waves.

FIGURE 16.8 A sample of fMRI data.
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Recent research suggests that left ventricular diastolic dysfunction may be an early development 
of left ventricular remodeling due to hypertension, and an evaluation can be done using 2-D, 3-D, 
and Doppler ultrasound echocardiography. Blood flow velocities and wall thicknesses can be mea-
sured using these imaging modalities [49].

16.4.5 hybriD imaging techniques

Hybrid imaging techniques use two or more imaging techniques, to provide better detection, resolu-
tion, spatial and functional information, etc. compared to a single imaging technique.

PET-CT scanners can be used to observe metabolic processes and capture 3-D images, and 
have been used to detect cancer, determine blood flow to the heart, evaluate normal and abnormal 
brain structures and function, etc., [30]. SPECT can be used in conjunction with a CT scanner 
(SPECT-CT) to acquire anatomical and functional data, which can correct for errors due to abnor-
mal uptake of the radiotracer [30], [50].

Often, specific radiopharmaceuticals are used with hybrid imaging techniques for specific appli-
cations, such as the use of 18F-FDG-PET-CT (2-deoxy-2-[fluorine-18]fluoro-D-glucose is moved 
into cells and detected by the use of PET with CT scanning) for detecting various cancers and the 
extent of metastasis, infective endocarditis [51], [52], [53], [54].

Gating (or triggering) is the use of an electrocardiograph signal (cardiac), peripheral pulse or 
level of inspiration (respiratory) to select a particular point in the cardiac or respiratory cycle, which 
reduces cardiorespiratory movement artifacts and improves resolution in image acquisition. In ret-
rospective gating, the ECG, pulse, or respiratory levels are recorded during continuous imaging, and 
correlation is performed during post-processing. Two gating methods (e.g., respiratory and cardiac) 
can be used to further improve image quality. Gating can be used to evaluate cardiac and pulmo-
nary structures, such as coronary artery calcification (atherosclerosis) [55], [56]. An example of a 
specific diagnostic application was the recently proposed non-gated CTA method for differentiat-
ing between pulmonary hypertension (affecting the arteries in the lungs) due to heart failure with 
preserved ejection fraction (volume of blood ejected by the heart) and idiopathic pulmonary arterial 
hypertension [57]. Fast spin echo (FSE) MRA uses cardiac gating to capture images during systole, 
when both arteries and veins have high signal values, and during diastole, when arterial signal 
strength falls. Images of the arteries are created by subtracting the systole images from those taken 
during diastole. Another example of the critical importance of gating in acquiring images that are 
extremely sensitive to motion is the application of pulse triggering with diffusion weighted MRI 
(DW-MRI) of the brain (Brownian motion of water molecules) [58].

Consistency and accuracy of imaging data are improved when calculations and measurements 
are performed by automated systems, either online or offline. Parameters important for diagnosis 
and assessment of hypertension and related conditions are blood pressure, blood flow velocities, 
arterial and cardiac wall thicknesses, stenosis and occlusion identification, heart valve function, 
etc. Color Doppler ultrasound can provide important information such as blood flow velocity and 
direction.

16.5 DISCUSSION

Cerebrovascular health and physiological changes, such as vascular remodeling, can provide 
important information about the risk for developing diseases like hypertension and dementia. It is 
estimated that roughly one-third of dementia cases could be prevented by treating the underlying 
cause [59], [60], which is often hypertension. Chronic systemic hypertension can cause temporary 
or permanent disability, especially when left untreated. Hypertension causes damage especially 
to smaller blood vessels, and significantly increases the risk for end-organ damage, with greatest 
concern focused mainly on the heart (e.g., heart failure, LVH), kidneys (e.g., renal failure), eyes 
(visual impairment), brain (e.g., dementia, stroke), and the lungs (pulmonary hypertension). It also 
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contributes to early mortality. The Centers for Disease Control and Prevention (CDC) reports that 
in 2014, hypertension directly or indirectly affected the cause of death for over 400,000 people in 
the U.S. [61].

There are currently invasive and noninvasive methods for diagnosing hypertension and assessing 
its pathophysiological effects. The early stages of hypertension can cause left ventricular wall thick-
ening and cerebrovascular remodeling [62], even while noninvasive blood pressure measurements 
are still within the normal range. However, these cerebrovascular changes are not easily detectible 
as current software programs are only capable of segmenting larger cerebrovascular structures in 
MRAs. A technique has recently been developed that will detect and segment the smaller cerebro-
vascular structures, with extraction and analysis of three relevant features: inner vessel diameter, 
bifurcations, and tortuosity. Cerebrovascular structural changes in blood vessel diameters have been 
reported to be an early indication of vascular dysfunction from in vivo and clinical observations [63]. 
Bifurcations are points where venous and arterial vessels divide into two branches. Tortuosity is a 
term referring to how twisted (or tortuous) the curves and turns of the blood vessels are. It is a 
measure of how sharply a vessel is turning as it is traversing. Increased vascular tortuosity has been 
previously linked to hypertension, genetic defects, aging, atherosclerosis, and diabetes mellitus [64]. 
These cerebrovascular changes can be bellwethers for the development or progression of prob-
lems such as cognitive impairment or memory loss. Early detection and quantification of cerebral 
blood vessel changes (diameters and/or tortuosity) may enable early-stage diagnosis and treatment 
of hypertension prior to disease onset and identify patients at risk of adverse events.

Hypertension is a progressive disease that may take a decade or two before it is discovered or 
diagnosed. Reported correlations between changes in smaller cerebrovascular vessels and hyper-
tension may be used to diagnose hypertension in its early stages, 10 to 15 years before the appear-
ance of symptoms such as cognitive impairment and memory loss. This diagnostic procedure may 
identify and analyze relevant cerebrovascular features related to these changes and track disease 
progression and treatment efficacy. Screening for other problems, such as intracranial hypertension 
(increased pressure inside the skull), could also be accomplished using MRA taken for this proce-
dure since the original image will remain unaltered. Progression of dementia and Alzheimer’s is 
currently measured with diagnostic tools such as the global deterioration scale (GDS), which can 
include error due to differences in interpretation, perspective, and experience between different 
clinicians. Computer aided diagnostic (CAD) systems that utilize MRA to quantify cerebrovascular 
changes by calculating alterations in cerebral vessel features (diameter and tortuosity) [63, 65] may 
enable proactive monitoring and management of hypertension. However, MRA screening for hyper-
tension is expensive and thus patients deemed to be at high risk of developing hypertension due to 
family or medical history would need to be identified by their healthcare providers as candidates 
for this diagnostic procedure.

Screening tests may help physicians open a dialogue regarding the medical consequences of 
resisting a diagnosis and subsequently strengthen the opportunity and commitment for patients to 
engage in their health. Some people do not feel any effects of hypertension, even in more advanced 
stages. It is not uncommon for patients to dismiss high blood pressure readings with rationaliza-
tions such as the high readings being the result of being nervous or stressed. They often do not 
want to accept the diagnosis, nor want to be medicated for hypertension. Because they are often 
asymptomatic, even when prescribed medication patients often do not take the medication properly 
as prescribed. Having quantitative measurements provides physicians with scientific data that helps 
validate a diagnosis and provides patients with numeric information that can be communicated 
to them easily and in a way that it is hoped will help them have better insight and understanding 
of their condition and the need to take action. Proactive and preventive lifestyle changes, especially 
in the very early stages, 10 to 15 years before the symptomatic development of hypertension, will 
often slow the progression of the disease.

Timely information regarding vascular health could improve prognosis and quality of life 
for patients and their families and help to reduce healthcare costs. The Lewy Body Dementia 
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Association reports that costs associated with long-term care (75–84% of total costs of care) for 
patients with dementia account for most of the $157–$215 billion annual cost associated with this 
disease. Many people cannot afford long-term care in a facility, which increases the burden on 
families and friends to provide care and supervision. This can interfere with family members’ jobs, 
income, and stress levels. Caring for a family member who has a dementia-related disease can 
adversely affect caregivers’ health.

The risks must be weighed and discussed between patients and their healthcare providers. 
Aggressive preventive treatment may include prescription medication (e.g., calcium or beta blockers 
typically used to reduce hypertension). False positive results could prompt healthcare providers to 
prescribe medications to treat hypertension. These medications could not only cause the adverse 
effects associated with that medication, but also they could cause imbalance within the body by 
treating for a condition that does not exist. Jaul and Meiron point out that irregular presentation of 
symptoms could lead to misdiagnosis and subsequent treatment (e.g., prescription of antispasmodic 
medication to treat bladder urgency) which could accelerate or allow progression of the patient’s 
underlying hypertensive condition, resulting in the progression of vascular related diseases such as 
dementia, Alzheimer’s, cognitive deterioration, etc. [66]. False negative results would be detrimen-
tal by allowing the condition to progress without proper observation or treatment.

Many of the tests used by mainstream medicine are excellent at detecting disease and are very 
useful for identifying specific disease processes. However, most of them identify disease processes 
at later stages where most of the damage might not be reversed [9]. While antihypertensive treat-
ment can slow the progression of the disease and its effects, detection and efforts to slow or halt 
its development earlier in the disease course are desired to reduce risk and improve patient quality 
of life [9], [67], [68]. Thus, there is a need for automatic computerized systems that are capable of 
providing accurate screening and diagnoses for early detection of prehypertension for prolonging 
life and improving patients’ quality of life. These automatic systems may help identify hypertension 
many years before its onset compared to current testing methods. Screening and early diagnosis 
gives patients, families, and providers the opportunity to take steps to prevent or delay the onset of 
the disease process, or to limit the severity of symptoms and sequelae, improving patient-oriented 
outcomes.

16.6 EMERGING TECHNIQUES AND TRENDS

16.6.1 measuring blooD Pressure

Blood pressure measurement devices continue to be improved and developed. Waveform analysis 
acquired by noninvasive means is becoming increasingly reliable. Studies show that brachial wave-
form measured with a volume-clamp method is a reliable method for continuous blood pressure 
monitoring [20], [69], [70], [71]. Nitzan et al. proposed a photoplethysmography-based systolic blood 
pressure measurement (segmental pressure) technique, which uses an arm pressure cuff in conjunc-
tion with a photoplethysmographic (PPG) fingertip probe [15]. This device and technique is investi-
gational as of July 2017. A giant magneto resistance (GMR) based plethysmograph measures a time 
delay between two sensors placed on the arm to measure pulse wave velocity, which can be used 
to estimate blood pressure. It is sensitive to arterial flow in the magnetic field and does not require 
a wrist cuff or arm band. It can also measure heart rate and respiration rate [72]. While the study 
conducted on this method reported a MAP error as high as ±9 mmHg, it is an example of devices 
pushing for utilization of more technological advances to become more comfortable and even less 
invasive (e.g., cuffless). Researchers continue to work toward reliable noninvasive continuous blood 
pressure measurement techniques that can replace invasive methods due to its inherent risks. And as 
patients become engaged in their health, development of devices that make reliable home monitoring 
and communication with care providers easier will continue to advance technologies that already 
can take accurate measurements with no artifacts from movement and work with mobile apps.
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Currently, intra- and central arterial blood pressure monitoring remain the most reliable mea-
surement methods. As noninvasive technologies (and methodologies related to them) continue to 
improve, it is being questioned whether intra-arterial monitoring can be delayed for some less criti-
cally ill patients and for less critical intra-operative monitoring in favor of continuous noninvasive 
monitoring techniques [18], [73], [74], [75].

16.6.2 imaging

Continuing research and innovations will expand noninvasive evaluation methods and enable cor-
relation of these findings to new and emerging diseases and conditions. This will increase options 
for and improve diagnostic techniques, allowing for early detection of developing conditions and 
preventive treatments. For example, research into the temporal and medicated versus unmedicated 
functional connectivity and changes in resting state (task-free) fMRI using BOLD holds promise in 
diagnosing early stage development of Parkinson’s and other brain diseases [35]. Another example 
is the recent work on a PC-MRA optimization method for measuring cerebral blood flow within the 
entire brain [76].

A recent research project applied calibrated (using ASL and BOLD) fMRI to estimate levels of 
cerebral metabolic rate of oxygen (CMRO2) and correlate these quantifications to early detection of 
Alzheimer’s and other conditions such as Parkinson’s disease [77]. Another study found that ASL 
MRI was less accurate than PDG-PET in diagnosing dementia, but it was noted that research with 
a larger subject group that included use of anatomical MRI had results comparable to FDG-PET 
diagnostic accuracies [78]. Continued research will improve methods using this technology and pro-
vide expanded applications and better diagnostic capabilities. This includes the need for minimiz-
ing variability between manufacturers’ machines, techniques, and procedures such as registration, 
image reconstruction, etc. [79].

Spectral CT, which was approved by the FDA just a few years ago, uses a single-source mul-
tilayer detector that can provide both high and low MonoEnergetic images. It can display iodine 
(a contrast agent) as a different color than calcium, which enables quantification of arterial plaques. 
This differentiation can also provide higher resolution of tumor contours. As techniques with this 
modality continue to be researched, vascular-related applications will surely be developed that 
expand upon current imaging capabilities.

Contrast enhanced ultrasound (CEUS) uses microbubble-based contrast agents, and current tech-
nology offers a sensitivity that can identify a single bubble [80]. Injected microbubbles improve the 
echogenicity of blood. This technique captures the vascular lumen (vessel interior) and vascular 
wall, which improves vascular related diagnostics in the brain as well as other organs. Continuing 
research includes targeted microbubbles with use of ligands [81]. Currently, this technology offers 
visibility in parenchymal microcirculation, which allows characterization of lesions, and research 
has included its use in left ventricular pressure quantification [82]. Some imaging modalities, such 
as CE-MRA, can be used to measure shear stress against the inner vessel walls. Low shear stress 
increases the risk for development of atherosclerotic plaques. In the future, measurement of this 
cerebrovascular condition may also be researched as a correlating marker (esp. in conjunction with 
measurements of tortuosity) in the risk for developing hypertension or vascular dementia.

16.7 CONCLUSION

This chapter presented an overview of hypertension, its causes and effects, and current technolo-
gies used to measure and predict it. Cerebrovascular changes including blood vessel diameters and 
tortuosity occur before the onset of hypertension. Current approaches to use and analyze imaging 
modalities to predict the potential of hypertension are promising. These modalities will help in bet-
ter management of handling pre-hypertension and hypertension patients and reducing or preventing 
any adverse events.
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17.1 INTRODUCTION

Thoracic aortic disease continues to be associated with a significant burden of morbidity and mor-
tality in the general population. Disease of the thoracic aorta is due to aneurysm and/or dissection. 
An aneurysm is by definition an aortic diameter twice the normal size. This can lead to frank rup-
ture or dissection then rupture. A dissection is a tearing of the inner lumen of the aorta such that the 
layers of the media separate and blood flows into a false lumen as well as the true lumen. An aortic 
rupture and an ascending aortic dissection (Type A) are considered surgical emergencies. The mor-
tality is high and generally over 50% are dead without surgical treatment within two weeks. Despite 
improvement in diagnostics and advanced surgical techniques, mortality rates following surgery for 
acute aortic syndromes such as a rupture or type A aortic dissection continue to be associated with 
an overall mortality of 20–25% and significant morbidity such as stroke [1–5]. This high mortality 
following acute life-saving surgery is contrasted by the much lower risk of mortality (1.5–2.5%) 
when the ascending aortic aneurysm is repaired electively [3, 4, 6, 7]. This comparison illustrates 
the critical importance of early detection of individuals at risk for acute aortic syndromes such as 
dissection and rupture. Currently, most aortic aneurysms are detected incidentally when undergoing 
imaging for an unrelated issue, as aortic disease is generally asymptomatic until a first presentation 
of catastrophic dissection or even sudden death [9].

At the present time, aortic size above a certain cut-off is generally the most widely accepted indi-
cation for elective aortic repair to prevent acute aortic syndromes. The latest guidelines published by 
the American Heart Association and affiliates in 2010 recommends that asymptomatic patients with 
a degenerative thoracic aortic aneurysm with an ascending thoracic aorta or aortic sinus diameter 
of 5.5 cm or greater should be evaluated for surgical repair [10]. This is based on epidemiological 
studies of the natural history of aortic aneurysms that illustrated a sharp “hinge point” at 6 cm at 
which the probability of complications from the ascending aortic aneurysm increase dramatically 
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FIGURE 17.1 Increased risk of complications with increasing ascending aorta size with “hinge point” at 
6 cm (from Coady et al., The Journal of Thoracic Cardiovascular Surgery 1997) [11].

(Figure 17.1) [11]. In addition, follow-up studies did demonstrate very high wall tension in enlarged 
aortas (more than 6 cm) during episodes of moderate hypertension [12].

While the current recommendations provide an easy to follow and readily obtainable cut-off, 
aortic size by itself fails to address a few important points: 1) Size per se does not necessarily pro-
vide information on the integrity of the aortic wall. Although wall tension increases with diameter 
according to Laplace’s Law, rupture and dissection occur probably related to an imbalance between 
the wall tension, blood pressure, and the histopathologic function of the aortic wall. Essentially, 
it is the biomechanics of the aortic wall that will determine the risk for each patient. 2). Although 
size is associated with risk, not all large aneurysms will rupture but many smaller aortas will dis-
sect. It has been shown in the International Registry of Acute Aortic Dissections that the majority 
of patients with acute type A dissection had an ascending aorta diameter smaller than 5.5 cm. 
Nearly 60% of aortic dissection would not be prevented by current guidelines employed today. 
However, simply decreasing the cut-off for intervention and employing more aggressive criteria, for 
example less than 5 cm, would fail to prevent 40% of ascending aortic dissections (Figure 17.2) [1], 
and potentially expose a segment of patients to surgical harm needlessly. Additionally, aortic wall 
dilatation is only one of many consequences of the various etiologies that cause aortic wall disease. 
Considering how imprecise size is in predicting risk, there is a need for a methodology that provides 
better risk assessment.

The capacity to assess the biomechanics of the aorta in vivo prior to surgery has become a 
focus of active research and study. Cardiovascular imaging, particularly using echocardiography 
and ultrasound (US), provides a non-invasive approach and has shown promise in evaluating the 
biomechanics of the aorta. This chapter will review the use of ultrasound and its capacity to help cli-
nicians understand the nature of aortic disease and more importantly, provide information regard-
ing the timing of surgery.
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17.2 STRUCTURAL PROPERTIES OF THE AORTA

The aortic wall is composed of three layers: the intima, media, and adventitia. These layers serve 
different biochemical and biomechanical functions. These functions dictate the size and structure 
of each layer. The intima is essentially a monolayer of endothelial cells adherent to a basement 
membrane [13], which serves as a barrier between the circulating blood and the thrombogenic 
media [14]. In the ascending aorta, intimal thickening is minimal but does present in athero-
sclerotic lesions. The biological structure of the media is critically important to the mechanical 
function of the aortic wall and progression of aneurysms, which will be discussed further in the 
following. Lastly, the adventitia is composed of thick bundles of collagen fibrils, vasa vasorum, 
and loose connective tissues. It provides the aorta with stiffness and support at higher levels of 
mechanical stress [15].

FIGURE 17.2 Distribution of aortic size at time of presentation with acute type A aortic dissection. 
Bars in black indicate individuals with diameter less than 5.5 cm (adapted from Pape et al., Circulation 
2007) [1]).
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The media is the layer that contributes the most to the mechanical properties of elastic arteries [14]. 
It contains a complex network of bundles of collagen, elastin, and smooth muscle cells [14, 16]. 
In the media of the aorta, these components are organized into lamellar units about 10 micrometers 
thick on average [17].

17.3  EXTRACELLULAR MATRIX AND PROTEINS, 
AND VASCULAR SMOOTH MUSCLE CELLS

Collagen is the most abundant protein in mammals, and it is essential for most mechanically functional 
tissues in the human body such as bones, muscles, ligaments, and blood vessels [18]. Collagen bundles 
in arteries are generally aligned in a circumferential pattern, which facilitates increased circumferen-
tial strain resistance [19]. Collagen bundles are anisotropic, and have low extensibility (about 13%). It 
has a stiffness modulus approximately 1000 times greater than that of elastin. Collagen bundles are 
only engaged mechanically at moderate to high levels of strain to prevent vessel failure [19–21].

Various changes to collagen’s quantity and structure take place during the aging process. The 
increased content of collagen in the aging aortic wall has been well-established [22–25]. Faber and 
Moller-Hou found that collagen content (as percentage of dry weight of aortic tissue) increases from 
20% at the age of 20 to 30.5% at the age of 70 years [26].

Elastin is the functional protein of biological elastic fibers [27], which are the dominant com-
ponent of the aortic wall extra-cellular matrix at 42% of its dry weight [28]. It exhibits reversible 
deformation with very high resilience, with maximal extension of more than 100%. Elastin also has 
low stiffness but high strain. These mechanical properties make elastin an efficient elastic-energy 
storage component [20]. These same properties are essential to the role of elastic fibers in initial 
compliance at lower and mid-level strain in elastic blood vessels [19, 21]. These elastic fibers are 
anisotropic [19] and organized into circumferential lamellae [22].

Elastin’s concentration in the human ascending thoracic aorta decreases by 33% (of tissue dry 
weight) between the second and ninth decades of life [29]. However, the total content remained 
unchanged [30]. This is likely due to an increase in other components, especially collagen [22–25].

Vascular smooth muscle cells (VSMCs) are specialized cells that carry out multiple functions in 
the aortic wall, performed by distinct differentiated phenotypes, namely contractile and synthetic [31]. 
In healthy vessels, they’re predominantly located in the media [32], with thin layers of fibers inter-
posed between the cells [33, 34]. VSMCs are also generally circumferentially oriented [16], which 
adds to vessels’ anisotropy passively [19].

The quantity of VSMCs decreases in aging vessels and in individuals with hypertension [22–25, 35]. 
However, human and animal studies have shown that the phenotypic transition of VSMCs from 
contractile to synthetic could be of greater importance than their absolute quantity; as synthetic 
VSMCs production of metalloproteinases could tip the balance of the extracellular matrix into a 
proteolytic state [36, 37].

17.4 MECHANICAL FUNCTION OF THE NORMAL AORTIC WALL

The mechanical function of the aorta is largely defined by extracellular components of the medial 
layer. A normal aorta is defined by alternating concentric layers of elastic sheets and smooth muscle 
cells with little dispersed collagen [38]. A mechanically normal aorta serves as an elastic capacitor, 
storing energy during systolic expansion and releasing energy in diastolic recoil. This property is 
known as the Windkessel function and is central in maintaining systemic circulation during diastole 
as well as a healthy pulse pressure [39].

It is the multi-component nature of the vessel wall that defines the elastic properties of the 
aorta. Mechanically, the aorta is characterized by a hyperelastic and viscoelastic stress-strain rela-
tion. Notably, stress (σ) is the amount of force in a given area of tissue (i.e., Force/Area) and, 
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physiologically, is generated by blood flow, residual tissue strain, and the motion of the heart. 
Strain (ε) is the relative deformation of the aortic wall, ε = L/L0, where L0  is a segment length 
in a reference position (typically the zero-stress state) and L is the current segment length. The 
stress-strain relationship around (circumferential) and along (longitudinal) the aorta determines its 
Windkessel function.

Hyperelasticity is defined by increased compliance at low strain and increased stiffness at high 
strain and therefore results in a nonlinear J-shaped stress-strain relation (Figure 17.3). This is attrib-
uted to the relative differences in stiffness of elastic fibers and collagen fibrils, respectively, as they 
become mechanically engaged at different levels of tissue strain [19]. Several tensile parameters 
can be used to describe the material properties of vascular tissues. The first, stiffness, is the tissue’s 
resistance to deformation and is defined as the slope of a line tangent to the stress-strain curve. As 
the stress-strain curve is nonlinear, it must be defined at a fixed strain (or stress) value; in this con-
text, is called the incremental (or apparent) elastic modulus. The second parameter, tensile strength, 
is the absolute value of stress the tissue can withstand before tearing and can only be determined 
by destructive testing.

Viscoelasticity is a characteristic of materials that exhibit both elastic and viscous properties. A 
purely elastic material can recover all stored elastic energy when it is relaxed. Conversely, viscoelastic 
materials dissipate a fraction of the elastic energy through viscous shearing (i.e., internal friction). 
This dampening results in hysteresis in the stress-strain relation where the curve follows two dis-
tinct paths between loading (increasing tension) and unloading (decreasing tension) (Figure 17.4). The 
energy loss parameter is a measure of the relative degree of hysteresis over a testing cycle and has been 
used to describe aortic tissues [40].

FIGURE 17.3 Mechanical behavior of the aorta. Schematic of an ascending aortic segment and the cor-
responding principle axes of stress (σ) and strain (ε). Typical hyperelastic circumferential aortic stress-strain 
curve. Elastin contributes to low-strain stiffness (slope of red line), while collagen contributes to high-strain 
stiffness. Hysteresis caused by tissue viscoelasticity is apparent by distinct loading (→) and unloading (←) 
paths. Note, CIRC-circumferential, LONG-longitudinal, BP-blood pressure.
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FIGURE 17.4 Representative medial histological sections and stress-strain curves from normal (left) and 
diseased (right) ascending aorta. Elastin is stained in black, collagen in yellow, and smooth muscle cells in red 
in Movat-stained histological sections. Stress-strain curves represent relative differences in stiffness by the 
apparent elastic modulus and energy loss by differences in hysteresis. The modulus in both graphs is measured 
at the same strain.

17.5 MECHANICAL FUNCTION OF THE DISEASED AORTIC WALL

In the formation of aortic aneurysms with various etiologies such as aging, hypertension, con-
nective tissue disorders, and atherosclerosis, the organization and relative quantities of the aortic 
wall’s structural components are disturbed. A shared endpoint of these etiologies is exaggerated 
extracellular matrix degradation leading to progressive aortic dilatation and eventual dissection or 
rupture [41, 42]. Features of medial disruption include the fragmentation of the elastic structure, exces-
sive deposition of collagen and, occasionally, pooling of glycosaminoglycans [13] (Figure 17.4). Severe 
pathological medial remodeling can also include smooth muscle cell dropout [13]. Generally, aortic 
aneurysms are the result of an unproductive tissue remodeling that degenerates the medial layer 
structure. As the aneurysm grows, degradation of the ECM occurs and new tissue is synthesized, 
helping the vessel wall to maintain its thickness as the diameter grows [38].

The material properties of the aorta in persons with aortopathy and/or advanced age are mark-
edly different from those measured in healthy individuals. For instance, ex vivo studies on resected 
ascending aortic tissue from patients receiving corrective aortic replacement have revealed that 
aneurysmal tissue is stiffer [43, 44], and has greater energy loss [40, 45] and lower tensile strength [43] 
than in persons with non-dilated ascending aortas. The magnitude of these parameters have been 
directly correlated with the medial expression of collagen and elastin [46, 47]. A more exhaustive 
comparison between diseased and normal aortas from ex vivo mechanical testing is reviewed in 
Emmott et al. [38]. Figure 17.4 presents the typical histological profile and stress-strain behavior 
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of normal and diseased ascending aorta. In this figure, differences in stiffness and energy loss are 
observed by the apparent modulus (slope of red tangent line) and increase in the hysteresis area, 
respectively.

In a clinical context, without access to a tissue biopsy, mechanical assessment is confined to an 
in situ analysis of the passive vessel deformation in response to the blood pressure waveform of 
the cardiac cycle. Tensile strength and other yielding properties cannot be measured under these 
conditions, and therefore stiffness, or its approximation, has been used as the surrogate measure of 
the mechanical properties of the vessel wall. As we explore, medical imaging modalities including 
ultrasound can be adapted for these in situ measurements on the aorta.

17.6 ULTRASOUND IMAGING

Ultrasound imaging utilizes the principle that sonic energy travels uniformly in a homogeneous 
medium, but when met with a structural interface with a different acoustic impedance a portion of 
that sonic energy is reflected back. This reflected energy is used to construct an image after pro-
cessing the materials’ density and distance [48]. Echocardiography is the application of ultrasound 
imaging to the heart and great vessels, including the thoracic aorta. Depending on the plane-of-view 
required by the clinician, the sonographer images through the chest (transthoracic, TTE) or the 
esophagus (transesophageal, TEE). TTE is non-invasive and is frequently used to capture a para-
sternal long-axis view of the heart or vessels and is often used to assess left ventricle function. TEE, 
in contrast, places the probe closer to the imaging plane by insertion within the esophagus and, in 
some cases, into the stomach. As a result, patients require sedation or, if used peri-operatively, a 
general anaesthetic.

Owing to the required focal depth of each modality (TEE, low depth, proximal; TTE, high 
depth, distal), TTE uses low ultrasonic frequency transducers of 2–5 MHz, while TEE uses high 
frequency transducers of 3.5–7 MHz. Physically, this is described by the attenuation ( af x= 2A [ ]), 
which is the product of the pulse frequency ( f ), the distance from the transducer to the image 
plane (x), and the attenuation coefficient (a) of the transmitting material (soft tissue, blood, bone, 
etc.) [49, 50]. As a result, the attenuation per unit depth is proportional to the transducer frequency. 
Because TEE is performed proximal to the thoracic aorta, one can compromise on increased signal 
attenuation for superior axial (parallel to the beam) and lateral resolution (orthogonal to the beam) 
as both increase with transducer frequency.

Ultrasound is emerging as a valuable instrument for the measurement of aortic in vivo stiffness 
(Table 17.1). It is readily available at the majority of hospitals and research centers. It is also portable, 
does not employ ionizing radiation, and is not as time-consuming as other comparable instruments 
(e.g., MRI). Furthermore, ultrasound assessment of biomechanics requires no assumption of models 
of circulation (Windkessel, propagative), as ultrasound-obtained measurements are used to assess 
local vascular stiffness directly from the change in volume driven by the change in pressure [51]. 
These measurements are taken from two standard ultrasound imaging modes. The first, M-mode 
(motion mode), is used to capture a single dimension (1D) ultrasound image, for instance the aortic 
cross-section showing opposite walls, over a period of time with very high temporal resolution. The 
second, B-mode (brightness mode), is used to capture a two-dimensional (2D) ultrasound image 
along the beam’s axial and lateral axes. These images can be acquired in a cine loop to create a real-
time moving image of the aortic cross-section or longitudinal structure.

However, the quality of the images obtained are patient and operator dependent [51]. Ultrasound 
images inherently provide poor lateral spatial resolution, and limited precision, as it’s based on 
video-image analysis, that is, high-quality images involving the whole structure of interest are 
required for accurate assessment [51–53]. Additionally, most of the analysis is performed on two-
dimensional images, which might present some limitations in fully assessing a three-dimensional 
structure. Another inherent limitation is that blind spots cause local anatomic constraints, such 
as structures behind ribs, the aortic arch, and the distal ascending aorta [54]. However, the use of 
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TABLE 17.1
2D STE: Two-dimensional speckle-tracking echocardiography. 2D VVI: Two-dimensional velocity vector imaging. β1: Stiffness index 
obtained via M-Mode. β2: Stiffness index obtained via speckle-tracking. LVEF: Left ventricular ejection fraction. Zva: Valvulo-Arterial 
Impedance. SVR: Systemic vascular resistance. CCPM: Cardiac Cycle Pressure Modulus. CCSM: Cardiac Cycle Stress Modulus.

Author Year Region of Interest Vascular Indices (Methodology) Findings

Oishi et al.57 2008 Abdominal Aorta β1 (M-Mode)
β2 (2D STE)
Peak Circumferential Strain (2D STE)
Peak Circumferential Strain Rate (2D STE)
Time to Peak Strain (2D STE)

• First study to use 2D STE to measure aortic biomechanics
• β1 and β2 were correlated with age, especially β2
•  Peak circumferential strain, strain rate, and time to peak strain were 

correlated negatively with age-correlation of strain and strain rate was 
closer than β1’s correlation

Kim et al.72 2009 Descending Thoracic Aorta Peak Circumferential Strain (VVI)
Fractional Shortening (M-Mode)
Fractional Area Change (M-Mode, VVI)

•  Fractional Shortening (FS) and Fractional Area Change (FAC) (VVI) 
were significantly associated/negatively correlated with heart-
femoral/brachial ankle PWV

•  Peak Circumferential Strain (PCS) and FAC by VVI were 
significantly negatively correlated with aging

Petrini et al.97 2010 Descending Thoracic Aorta Stiffness Index (β1, β2) (M-Mode, VVI)
Distensibility (M-Mode, VVI)
Peak Circumferential Strain (VVI)

•  Patients with Aortic Regurgitation (RA) had higher VVI strain than 
patients with Aortic Stenosis (AS)

•  Patients with AS were older and had higher aortic stiffness (VVI and 
M-Mode) compared with those with AR

•  VVI-derived strain, distensibility, and stiffness had strong correlation 
with the corresponding M-mode–derived parameters (despite 
systematic differences: VVI stiffness higher, VVI distensibility lower)

•  No significant difference in VVI strain between the proximal and 
distal levels of descending aorta

Oishi et al.98 2011 Abdominal Aorta β1 (M-Mode)
β2 (2D STE)

•  Significant positive correlation β1, β2 with age (especially β2) in 
clinically normal individuals and individuals with cardiovascular risk 
factors without clinical disease

•  β1, β2 were similar between males and females
•  β1, β2 was significantly greater (abrupt and non-linear increase) in 

individuals over age 50 year than those less than 50 year
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Oishi et al.99 2013 Abdominal Aorta (AA), 
Common Carotid 
Artery (CCA)

Peak Circumferential Strain AA (2D STE)
Peak Circumferential Strain CCA (2D STE)
β2 AA (2D STE)
β2 CCA (2D STE)

•  Mean CCA and AA strains were significantly greater in individuals 
less than 50 year compared with individuals 50 years and over

•  CCA and AA strains decreased with age with a more negative slope 
in individuals aged less than 50 years

•  Mean CCA strain in lower than AA strain at all ages
•  Mean CCA stiffness is greater than of AA stiffness at all ages
•  Mean CCA and AA stiffness were significantly increased non-linearly 

with age
•  AA and CCA stiffness steeply increased after the age of 50 years 

(especially AA)

Oishi et al.73 2013 Abdominal Aorta β2 (2D STE) •  An increase in aortic stiffness was associated with increased LA 
stiffness and impaired LV relaxation in individuals with 
cardiovascular risk factors

Teixeira et al.100 2013 Ascending Thoracic Aorta β1 (M-Mode)
β2 (2D STE)
Circumferential Ascending Aortic Stain 
(CAAS) (2D STE)

•  Global CAAS predicted low flow more accurately than LVEF, Zva, 
and SVR

•  β2 was significantly associated with a higher pulse pressure and 
lower stroke volume index

Gregory et al.74 2013 Ascending Thoracic Aorta Aortic Compliance (2D STE) •  Aortic compliance is associated with diastolic function; as much as 
25% of the variation of myocardial diastolic velocity being attributed 
to aortic compliance

Petrini et al.101 2014 Descending Thoracic Aorta Stiffness index (β1, β2) (M-Mode, VVI)
Aortic Distensibility (M-Mode, VVI)
Peak Circumferential Strain (VVI)

•  In AR: Bicuspid Aortic Valve (BAV) morphology is associated with 
lower regional strain and distensibility

•  In AS: Only distensibility was related to valve morphology
•  BAV was not associated with altered stiffness of the descending aorta 

in patient with severe AR or As

Teixeira et al.75 2015 Ascending Thoracic Aorta β1 (M-Mode)
Global Circumferential Ascending Aortic 
Strain Rate
(CAASR) (2D STE)

•  Stiffness index was independently associated associated with CAASR
•  CAASR was noted to be long-term prognostic marker

Leite et al.76 2016 Ascending Thoracic Aorta CAASR (2D STE)
CAAS (2D STE)
β1 (M-Mode)
β2 (2D STE)

•  CAASR was significantly lower in patients with severe AR as 
opposed to moderate AR

•  Lower CAAS, Corrected CAAS and CAASR noted in patients with 
AS (Age and gender matched)

•  Lower values of global CAAS, Corrected CAAS, and Global CAASR 
was signigicantly associated with higher global mortality and 
cardiovascular death

(Continued)
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TABLE 17.1 (Continued)
Author Year Region of Interest Vascular Indices (Methodology) Findings

Longobardo et al.102 2017 Ascending Thoracic Aorta β1 (M-Mode)
Aortic Strain (M-Mode)
Longitudinal Strain (LS) (2D STE)

•  Significant reduction of LS of the ascending arorta of BAV patients
•  Patients with heterozygous elastin polymorphism have increased 

aortic stiffness and decreased LS. And homozygous patients have 
more reduced strain than heterozygous patients

•  In BAV patients; those with a dilated ascending aorta had 
significantly decreased LS and greater stiffness when compared with 
BAV patients without dilatation

Teixeira et al.103 2017 Descending Thoracic Aorta β1 (M-Mode)
CAAS (2D STE)
CAASR (2D STE)

•  Evaluation of aortic mechanics using speckle-tracking in patients 
with non-valvular AF was feasible

•  Patients with history of stroke had aortas with significantly reduced 
strain and strain rate values

•  Higher risk of stroke (as per CHA2DS2-VASc) was associated with 
reduced values of strain and strain rate of the descending aorta

Bieseviciene et al.104 2017 Ascending Thoracic Aorta Peak Longitudinal Strain (2D STE)
Longitudinal Velocity (VL) (2D STE)
Longitudinal Displacement (LD) (2D STE)
Transverse displacement (2D STE)
Distensibility (2D STE)
Elastic modulus (2D STE)
β2 (2D STE)

•  The most marked biomechanics parameters (increased stiffness, 
decreased elasticity) were seen in patients with an ascending aorta 
diameter >45 mm.

•  Longitudinal wall mechanics (LD and VL) was most prominently 
impaired in patient with aortas >45 mm

Alreshidan et al.77 2017 Ascending Thoracic Aorta β2 (2D STE)
Apparent Stiffness (ex vivo)

•  Compared ex vivo measured stiffness to in vivo calculated stiffness of 
the same aortic tissue

•  Mean steffness values obtained in vivo were similar to those 
measured ex vivo

•  In vivo stiffness index showed a significant difference between 
anterior, inner curvature, and posterior wall; ex vivo calculations 
showed a similar but non-significant trend.

Emmott et al.78 2018 Ascending Thoracic Aorta CCPM (2D STE)
CCSM (2D STE)
Apparent Stiffness (ex vivo)

•  Both CCPM and CCSM were predictive of the ex vivo Mechanical 
properties (CCSM had stronger correlation)

•  Both the CCSM and CCPM correlated strongly with the collagen/
elastin ration of the ascending aorta
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transesophageal echocardiography to complement transthoracic echocardiography alleviates most 
of the aforementioned anatomical limitations with the added risk (albeit low) of sedation and the 
invasive probe introduction [55, 56].

Ultrasound imaging’s primary use in the field of vascular biomechanics is the determination 
of the local stiffness of a segment of a vessel [51]. This is carried out by measuring the change in 
volume (strain) driven by the change in local pressure (contributing to wall stress) between systole 
and diastole [51]. The measurement of the changes in volume are performed on the two-dimensional 
images obtained of a longitudinal or cross-section view of the vessel of interest. These measure-
ments can be obtained directly from the M-mode images taken or using speckle-tracking imaging 
employing post-processing software [8].

Lastly, Doppler ultrasound technology has also been employed to assess tissue strain. 
Traditionally, Doppler ultrasound is used to determine the velocity and direction of blood flow by 
measuring changes in frequency of sound wave reflection off of red blood cells [48]. This same prin-
ciple was applied to cardiac tissue; most commonly to assess ventricular function by measuring the 
velocity of the mitral annulus by analyzing the sound waves reflected off of the annulus itself [48]. 
More recently, aortic wall tissue mechanics were studied using Doppler technology to measure its 
velocity and direction to estimate the aortic systolic radial strain [57]. Doppler ultrasound technol-
ogy is highly angle dependent [48], which limits its use only to specific areas of the arterial tree.

17.7 SPECKLE TRACKING ECHOCARDIOGRAPHY

Two-dimensional (2D) speckle-tracking echocardiography (STE) is an imaging modality that 
exploits the presence of natural acoustic markers (i.e., “speckles”) from standard B-mode (bright-
ness mode) ultrasound images. Speckles are both stable and evenly distributed within the area of 
the imaged tissue [58]. As a result, speckles can be tracked within a time-series of B-mode images 
allowing for the measurement of tissue velocity (Figure 17.5). Strain (ε) can be obtained from STE 
by measuring the deformation between adjacent speckles: ε = δ / L ,0  where L0 is the original 
length between the two speckles, and δ is the change in length (i.e., δ = −L L0) [59]. This process 
can be scaled and applied to larger segmentations of a tissue; for instance, a quadrant of the circum-
ference of the aortic wall. And unlike Doppler technology, it uses 2D grayscale images and thus is 
angle independent (i.e., it is not necessary for the main motion vector to be parallel to the ultrasound 
beam vector, which also renders it independent from cardiac translational movement) [53, 60–63].

Depending on the angle at which the beam intersects the tissue, different planes-of-view 
corresponding to different axes of strain can be imaged for various cardiovascular structures. 

FIGURE 17.5 Speckle-Tracking Echocardiography for myocardial circumferential strain analysis post-
processing views. Left: the area of interest delineated in a dotted colored line. Middle: Graphical representa-
tion of the speckles being analyzed. Right: The resultant strain curves. (Adapted from Mondillo et al., Journal 
of Ultrasound in Medicine 2011 [60]).
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For the ascending aorta, two standard TEE views are available with the probe at the level of the 
mid-esophagus. The first is the short-axis (SAX) view that captures a transverse cross-section of the 
ascending aorta. A SAX view allows for the measurement of circumferential (εCIRC) and radial strain 
(εRAD). The second is the long-axis (LAX) view that captures a longitudinal view of the inner and 
outer curvature of the aorta. A LAX view allows for the measurement of longitudinal strain (εLONG) 
as well as radial strain and 2D diameter change, although both are limited to the intersecting plane.

In the last decade 2D STE gained exponential increase in interest in the literature [60]. 2D STE 
is traditionally used to assess left ventricular function and mechanics [60, 61]. It is a relatively new 
technology in the field of echocardiography that provides objective and quantitative global and 
regional myocardial function evaluation [60]. This type of tissue analysis was only feasible using 
MRI before the emergence of this technology; and cardiac magnetic resonance imaging (CMRI) is 
still the reference for this field of study. However, high expense, limited access, relative complexity 
of image acquisition, and the time-consuming nature of image analysis make CMRI less attractive 
than 2D STE for clinical application [60, 64, 65].

After image acquisition, image analysis is often carried out offline on a dedicated workstation 
equipped with the appropriate software suite. This is a semi-automated process that provides good 
inter- and intra-observer reliability [66]. The major manufacturers have proprietary software and 
non-standardized routines. With the GE VividTM EchoPACTM software the internal surface of the 
tissue segment of interest is traced manually in a point and click fashion. Then the external surface 
tracing is automatically generated to create the area (myocardium, vessel wall) to be analyzed. This 
can be manually tweaked and adjusted. The software then divides the traced area into six segments 
and scores the tracking quality; with the possibility of further adjustment. Regions with sub-optimal 
scores will be rejected by the software and excluded from the analysis. Afterwards, strain curves are 
generated for each of the segments, and peak and time to peak strain values can be calculated. From 
these values, the function and mechanics of the segment could be inferred [60, 61].

In terms of validation, longitudinal strain of the left ventricle has been noted to correlate well 
with left ventricular ejection fraction (LVEF) [67, 68], and it also allowed for early detection of 
systolic dysfunction in patients with preserved LVEF (by assessing different myocardial regions 
quantitatively) [69]. Global longitudinal strain was also noted to be a superior outcome predictor 
when compared to LVEF and wall motion score index [70].

The study by Oishi et al. was the first to demonstrate the feasibility of studying aortic biomechan-
ics using 2D STE in a clinical setting. Oishi et al. were able to demonstrate that speckle-tracking-
derived strain parameters of the abdominal aorta were significantly negatively correlated with age, 
and both conventional M-mode-derived stiffness index and 2D STE-derived stiffness index were 
associated with age (Figure 17.6) [8]. Interestingly, the 2D STE-derived parameters had stronger 
correlation with age. Another study aiming to validate that speckle-tracking-derived strain param-
eters of the aorta was carried out by Kim et al., in which these parameters correlated significantly 
with pulse-wave velocity, which is considered the gold standard of in vivo stiffness assessment [71].

A follow-up study by Oishi et al. demonstrated the association between the increased 2D STE-
derived aortic stiffness, increased left atrial stiffness, and impaired left ventricular relaxation [72]. 
Another related study revealed the correlation between aortic compliance and left ventricular dia-
stolic function [73]. Both of these studies hint at the interaction between the left heart chambers and 
aortic biomechanics, or a related underlying disease process. Moreover, the two studies by Teixeira 
et al. [74] and Leite et al. [75] demonstrated the prognostic potential of 2D STE-derived ascending 
aorta strain parameters.

More recently, two studies revealed a significant correlation between in vivo stiffness parameters 
measured using 2D STE and ex vivo measured parameters [76, 77]. And in addition to that, the latest 
study by Emmott et al. showed an additional significant correlation between 2D STE-derived param-
eters and histopathology of patients undergoing ascending thoracic aortic aneurysm replacement [77].

Two-dimensional speckle-tracking echocardiography is not without its limitations. Assessment 
of individuals with non-sinus heart rhythm can be challenging (early aorta biomechanics 
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speckle-tracking studies excluded patients with atrial fibrillation [8, 72]). Furthermore, high-quality 
images including the area of interest wholly (the whole ventricle or vessel) for correct border delin-
eation are necessary for accurate assessment [60]. It is also affected by the frame rate of the image 
loop, and comparatively poor lateral resolution might cause lateral dropout [53]. Lastly, the mea-
surements depend on the specific make of the ultrasound machine, as they’re not interchangeable 
between manufacturers [60].

17.8 IN VIVO MECHANICAL INDICES

In a clinical context, without access to a tissue biopsy, mechanical assessment is confined to an 
in situ analysis of the passive vessel deformation in response to the blood pressure waveform of 
the cardiac cycle. Tensile strength and other yielding properties cannot be measured under these 
conditions and therefore stiffness, or its approximation, has been used as the surrogate measure 
of the mechanical properties of the vessel wall. Several stiffness parameters have been developed 
previously that use one or more of the blood pressure waveform, the systolic (PS

) and diastolic (PD) 
pressures, and the vessel geometry by echo-measured deformation:

1. The Stiffness Index (β) [52, 78]: β = −ln(P /P )/([D D ]/D ),S D max min min  unitless
Where Dmin and Dmax

 correspond to the minimum and maximum vessel diameters, 
respectively.

FIGURE 17.6 Assessment of aortic biomechanics of the abdominal aorta using M-mode ultrasonography.  
Dmin = minimal aortic diameter. Dmax = maximal aortic diameter. (Adapted from Oishi et al., Echocardiography 
2008) [8]
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The stiffness index of the aorta has been shown to have a strong positive correlation 
with a multitude of cardiovascular conditions. It was found to be positively associated with 
age and as a marker of vascular degeneration [8].

2. Elastic Modulus (E) [52, 78]: Ε = − × −(P P ) D /(D D ),S D min max min  units of force/area
The elastic modulus is the pressure change required for a theoretic 100% stretching of 

a material from resting diameter [78, 79].
3. Pulse Wave Velocity (PWV) [52, 78]: PWV d / t ,P1 P2 P1 P2= ∆− −  units of length/time

Where −dP1 P2  is the arterial distance between two measurement points along an arte-
rial branch and ∆ −tP1 P2  is the time for the pressure wave to travel between these points. 
According to the Moens-Korteweg equation, PWV is proportional to E ,Y  where EY is 
the Young’s modulus of the vessel wall.

In other words, PWV is the speed of the pulse generated by the ventricular systolic 
stroke along an arterial segment (based on the propagative model of circulation), or the 
distance between two points in the travel of the pulse divided by the delay between those 
two points [78].

The waveforms of the pulse are typically acquired transcutaneously (using tonometry, 
mechanotransducers or ultrasound) at two pre-determined points on the body, then the 
transit time (time delay) is calculated between the two wave feet (foot-to-foot method). 
Afterwards the distance between the two surface sites of wave acquisition is used in the 
calculation as a surrogate distance [51]. PWV can be measured over various points in the 
body, with the carotid-femoral PWV being one of the more commonly used. It stands for 
the aortic trunk stiffness [78]. And being based on the propagative wave model, stiffer ves-
sels convey a faster PWV [51].

PWV is considered the gold standard of stiffness assessment [51, 57]. This is because 
PWV is simple, non-invasive, and reproducible [51], and has been shown as a predictor of 
clinical outcomes in a plethora of studies [80–90].

4. Cardiac Cycle Moduli (CCPM/CCSM): Units of Force/Area
Slope of a linear fit through the blood pressure-strain (CCPM) or stress-strain (CCSM) 

loops. CCPM uses blood pressure and global circumferential strain values obtained from 
an invasive pressure catheter and the strain imaging of the aortic short axis, respectively.

CCSM is a correction of the CCPM by the formula = × τCCSM CCPM D/(2 ),  
where D is the maximum aortic diameter and τ is the aortic wall thickness. This defini-
tion uses a Laplace Law approximation between pressure (P) and circumferential stress 
(i.e.,  σ = × τP D/(2 )CIRC ).

In a recent study by Emmott et al. [77], the CCPM and CCSM measured on the ascend-
ing aorta at the time of surgery were correlated with the ex vivo stiffness and energy loss 
measured on the resected aortic tissue. Both CCPM and CCSM were predictive of the 
ex vivo mechanical properties. However, the CCSM had stronger correlations, likely owing 
to the effect of tissue thickness on calculating stiffness. Similar to the approach used by 
Pagani et al. [91] and Lang et al. [92], the CCPM and CCSM are stiffness calculations that 
account for the full blood pressure and strain profile over a cardiac cycle and not simply a 
two-point measure like the β  stiffness index and peak strain. Furthermore, it was demon-
strated that both the CCPM and CCSM were more predictive of ex vivo mechanical indices 
(higher coefficient of variance, R2) than both the aortic diameter and the β  stiffness index. 
Since aortic diameter is used as the standard to evaluate whether or not a surgical inter-
vention is necessary, adding biomechanics-based criteria may provide crucial information 
when identifying at-risk patients who don’t meet size criteria.

5. Strain and Strain Rate
Strain is the deformation of a material in response to applied stress [93]. Interest in 

these parameters in the field of aortic biomechanics has seen a significant increase in the 
last 10 years (Table 17.1). This is possibly spurred on by the innovative application of 
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speckle-tracking imaging to measure vascular biomechanics, which rendered obtaining 
these parameters accessible and reliable for various vascular segments (e.g. ascending, 
descending, and abdominal aorta, common carotid arteries).

It has been shown that these parameters have significant correlation with multiple dis-
ease states [57], such as the correlation between the common carotid arteries circumferen-
tial strain and strain rate with coronary artery disease [94].

Each of these parameters has its advantages and limitations. The advantage of parameters 1–3 
is the availability and simplicity of the measured inputs. However, their primary limitation is that 
there is no accounting for the tissue thickness. As a result, this simplification requires a substitution 
of pressure, acting normal to the vessel wall, for stresses within the wall.

When full-cycle measurements of blood pressure and strain are obtained for the aorta 
(e.g. CCPM), they are temporally related to each other by end-diastolic gating using the patient’s 
electrocardiogram. Due to procedural restrictions/conventions, it is not always possible to place 
the pressure catheter at the site of imaging. In fact, it’s common to obtain the blood pressure trace 
from an invasive catheter in a peripheral artery (e.g., radial artery). As a result of a temporal shift 
in pressure between central and peripheral arteries, the pressure waveform needs to be corrected 
to temporally align with the change in aortic strain. In addition, due to wave reflection there is an 
increase in systolic pressure in peripheral arteries compared to the aorta. However, this difference 
becomes attenuated with increasing age [52].

For the parameters that rely on diameter changes (stiffness index, elastic modulus, CCPM, 
CCSM, strain and strain rate), the diameter being studied is assumed to be uniform around the cir-
cumference of that vessel, which is also a simplification of the non-uniform geometry of that vessel. 
It is worth noting that obtaining strain and strain rate curves, CCPM, and CCSM is relatively time 
consuming and requires specialized software for image post-processing [57, 77].

Traditionally, PWV has only been used over longer arterial segments, as its accuracy deteriorates 
over shorter segments [52]. PWV also requires high-fidelity instruments for accurate, precise readings 
of the waveforms [51]. Other caveats to consider are that the femoral waveform is difficult to record 
in obese individuals, and in the presence of peripheral vascular disease or tortuous vessels [79, 95]. 
Also, the presence of central obesity or a large chest size could complicate distance measurement [95]. 
Additionally, investigators studying central inaccessible vessels might be forced to compromise by 
using the nearest superficial artery to measure a surrogate waveform [52].

All the above parameters do not account for the local anatomy (e.g., trachea, spine) supporting 
certain segments of the aortic wall. These global parameters also do not account for heterogeneity 
within the aortic wall. They provide obtainable estimates of in vivo biomechanical function, but 
cannot identify local tissue failure that occurs with dissection and rupture.

17.9 FUTURE CONSIDERATIONS

It is clear that measurements of aortic biomechanics using non-invasive imaging modalities will 
prove to be a valuable tool to aid clinical decision making. However, significant challenges still 
remain to be tackled. Heterogeneity of the data remains an issue; different investigators use different 
protocols to collect data using different scales and units. This makes comparing data complicated 
and difficult, which limits the progression of the field. Multiple bodies are attempting to tackle this 
issue by releasing consensus documents to unify the language, methodology, and units used [51, 93].

Currently, aortic aneurysm size is the main criterion used in guidelines that aid clinicians in 
deciding when to intervene to prevent dissection or rupture. But as discussed in this chapter, using 
size alone as a guide would fail to prevent 60% of aortic dissections. Hence the need for more robust 
parameters to inform intervention guidelines in addition to aneurysm size.

A fundamental requirement to advance biomechanical aortic wall studies from research dis-
course into clinical application lies in linking population-based ex vivo mechanics to clinical 
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imaging modalities to distinguish between stable and unstable aortic disease. With this in 
mind, we believe that image-based in vivo strain assessment, when well validated with histo-
pathologic and ex vivo mechanical data, will help in stratification of patients for thoracic aortic 
intervention [38].
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18.1 INTRODUCTION

Automatic segmentation of the whole heart from cardiovascular volumes, such as CT and MR, is an 
indispensable technique in interpreting the morphological and pathological information of the heart 
and therefore in facilitating plenty of associated applications [1], [2], such as the visualization of 
3D  cardiac anatomy, finite element method (FEM) based functionality simulation, quantitative 
analysis of blood ejection fraction, atrial fibrillation ablation [3], and cardiovascular surgical planning 
for congenital heart disease. However, manually delineating the boundary for the whole volume 
data is expert-dependent, time-consuming, and with low reproducibility [4].

Developing automatic cardiac image segmentation methods presents to be a challenging task [5], not 
only because of the large variations in heart scale, shape, and pose across different subjects, the vary-
ing spatial relationship between substructures, but also the boundary ambiguity caused by low contrast 
of anatomy against surroundings and the deficient boundary caused by shadow and noise. Depending 
on rough boundary and gradient information in image, early automatic segmentation solutions resort 
to active contours [6], [7] and level sets promoted variants [8] to fit the boundary. To reduce unreason-
able boundary prediction, statistical shape models [9]–[11] and appearance models [12] incorporating 
explicit 2D or 3D shape and texture prior knowledge of heart and vessels become the frequent choices 
for cardiac image segmentation. Conveying appearance and shape constraints, atlas based segmenta-
tion is another popular stream, which propagates the class labels of annotated cardiac atlas images to 
unseen cases utilizing image registration and label fusion techniques [13], [14]. However, the carefully 
handcrafted local descriptors for boundary description and sensitivities to initializations set perfor-
mance bottlenecks on aforementioned attempts. Machine learning based segmentation methods rapidly 
emerge as viable alternatives in the field. For quantitative functional analysis of the heart, Zheng et al. 
explores marginal space learning to localize key anatomical landmarks, which consequently guides 
a 3D shape model to delineate the boundary of multiple chambers [15]. Based on learned compact 
features, [16] proposes to establish a direct regression relationship between image appearance and four-
chamber volume segmentation.

Recently, the resurgance of deep neural networks (DNNs) profoundly promotes the image segmen-
tation performance over traditional machine learning based methods. Interleaving convolution layer, 
pooling layer, and nonlinearity layer in a bionic connection fashion, DNNs discard traditional hand-
crafted features and seamlessly learn the hierarchical features of an image with the training of the clas-
sifier. As popular variants of DNNs for image segmentation, convolutional neural networks (CNNs) [17], 
especially the fully convolutional networks (FCNs) [18], are remarkable for left ventricle (LV) and 
right ventricle (RV) image segmentation [19], [20]. We refer readers to [21] for a comprehensive review 
of deep learning based medical image analysis. Whereas, as shown in Figure 18.1, general designs of 
deep neural networks will be degraded when we come to the task of whole heart segmentation and the 
more complicated multiple substructure segmentation. In this chapter, we will introduce our recent 
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efforts in modifying the design of DNNs, especially FCNs, for the whole heart segmentation. We 
concentrate on five problems that prove to be closely related to the network performance.

• 3D Convolution. How to digest the volumetric input can fundamentally affect the segmen-
tation performance. With our work, we prove that DNNs can benefit more from the spatial 
information that is inherently contained in the volume by upgrading all the 2D operators in 
DNNs with the more intuitive 3D format. However, since 3D DNNs have orders of magni-
tude parameters than the 2D version, 3D DNNs are potentially suffering from low training 
efficacy and low computation efficiency. We will introduce associated strategies to further 
solve these problems. (Refer to Sections II and III.)

• Stratified Deep Supervision. The learning process of DNNs depends on the gradient 
based update. However, gradient vanishing or explosion often corrupts the learning. This 
problem becomes more severe in 3D DNNs where more parameters need to be tuned. 
Enhancing the gradient flow and exposing shallow layers to the composite supervision 
of multiple loss signals from different semantic levels, denoted as deep supervision, is 
adopted in our work. Deep supervision mechanism is straightforward and proves to be 
effective in greatly promoting the training procedure. (Refer to Section II.)

• Modified Layout. Classic DNN architectures are originally designed with plain and 
straight layer connections to tackle classification or segmentation problems for images 
with plausible visual quality, such as natural and handwritten images. We need to modify 
these designs to fit the need in cardiovascular volumes. In Section III, we will introduce 
a multi-scale, fractal connection fashion that is suitable for branchy and details-required 
segmentation, such as the great vessel and touching boundary. We further adopt a dense 
connection scheme to reuse feature maps in previous layers and blend information from 
multi-scales, and therefore alleviate the heavy computation burden in 3D DNNs.

• Transfer Learning for 3D DNNs. Proper initialization and training data in large scale are 
critical for the training of DNNs. Transfer learning, which transfers the generic knowledge 
from well-trained models to task-specific DNNs, proves to be a valuable strategy in simul-
taneously combating the improper initialization and the absence of abundant training data. 
However, the prevailing well-trained models are designed for 2D applications and thus 

FIGURE 18.1 From left to right: cardiovascular volumetric scanning, including MR and CT, segmentation 
of blood pool and myocardium, segmentation of seven substructures of the heart.
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cannot be used for 3D application. In Section IV-D, we will introduce the details of how to 
transfer the spatial-temporal knowledge from the model trained on videos to initialize our 
3D DNNs for volumetric segmentation.

• Class-balanced Loss Function. Training DNNs is mainly realized by minimizing the 
pre-defined loss function. Thus, the inherent properties, including preference, of loss func-
tion can potentially affect the training. We find that this impact will be magnified in simul-
taneously segmenting seven substructures where obvious class imbalance in topology and 
volume size is inevitable. In Section IV-E, to leverage the strengths and suppress the bias 
of different loss functions, we propose a hybrid loss function to address the class imbal-
ance and generate segmentation results, which preserves abundant branchy details while 
correctly differentiating the substructures in a compact format.

Figure 18.1 defines the tasks covered by this chapter. Our modified designs are firstly dedicated 
to the whole heart segmentation tasks across different modalities, including CT and MR. The supe-
riority of our proposed designs are not only verified in segmenting the blood pool and myocardium 
of heart, but also on the more challenging task as simultaneously partitioning the whole heart into 
seven fine-grained substructures. We will first elaborate the details about 3D convolution and strati-
fied deep supervision in Section II with the improvement on whole heart segmentation in MR scan-
nings. In Section III, fractal and dense connection designs are adopted to promote the performance 
and efficiency of DNNs. Transfer learning for 3D DNNs and class-balanced hybrid loss function are 
proposed and verified for multiple substructures segmentation in Section IV-E for both CT and MR 
modalities. To contribute to the field, all the implementations and models are online and available 
with the link in each section.

18.2 VOLUMETRIC FASHION AND DEEP SUPERVISION

In this section, we will first go through the design of 3D operator based convolutional network. 
Then, we will further introduce the stratified deep supervision mechanism to combat the potential 
gradient vanishing problem.

18.2.1 3D conVolutional network

Considering that extracting representations across three-dimensional anatomical context is vitally 
important for volumetric medical image segmentation, we first implement a 3D CNN. Compared 
with its 2D counterparts, the 3D CNN is capable of encoding representations from volumetric recep-
tive fields, and therefore extracting more discriminative features via richer 3D spatial information. 
The main components of the 3D CNN are the 3D convolutional layers and 3D sub-sampling 
(i.e., max-pooling) layers, which are successively stacked as a hierarchical architecture.

To generate a new feature volume in a convolutional layer, we establish a set of 3D kernels 
sweeping over the inputs, sum up the activations from these kernels, add a bias term, and finally 
apply a non-linear activation function. The neurons have sparse interactions, and the kernel weights 
are spatially shared, which can greatly reduce the number of parameters and hence alleviate the 
computational workload of the model. 3D kernels are learned via the stochastic gradient descent 
in a data-driven manner, which is the key advancement of convolutional networks compared with 
traditional pre-defining transformations of hand-crafted features.

In a sub-sampling layer, the output responses from a convolutional layer are further modified by 
computing the summary statistic of nearby neurons. In our 3D max-pooling function, the maximum 
response within a small cubic neighborhood is selected out and proceeded to subsequent computa-
tions. After the pooling operation, the resolution of feature volumes are reduced corresponding to the 
pooling kernel size. Theoretically, the pooling contributes to make the learned features become invari-
ant to local translations in 3D space, which is a very useful characteristic for image processing [22].
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18.2.2 3D enD-to-enD learning for Volumetric segmentation

We cast the fully connected layer at the end of CNN into convolutional layer by reorganizing the 
parameter weight matrix into high-dimensional convolution kernels [18]. In this case, the entire 
network forms a fully convolutional network (FCN), where all layers are either convolutional or 
pooling, and both have no restriction on fixed-sized input. In other words, the network is able to 
input volumetric images with arbitrary sizes, and output spatially arranged classification probability 
volumes for the entire input images. Therefore, the fully convolutional network successfully elimi-
nates the redundant computations due to overlappings in the patch-based methods.

While the fully convolutional architecture can predict score volumes for arbitrary-sized inputs, 
the outputs are usually quite coarse with reduced dimensions compared with the original input 
image due to successive pooling layers. In this case, the image voxels receive predictions at a stride 
corresponding to the setting of pooling layers in the network. However, the segmentation tasks 
require very dense predictions where each single voxel should obtain a class label. One straight-
forward way to achieve this is to interpolate the coarse score volumes into full-sized segmentation 
masks. But an obvious disadvantage of this approach is that it is difficult to determine the inter-
polation weights and inappropriate weights would introduce imprecise results, especially for the 
boundary regions.

We alternatively solve this problem using an effective and efficient method. We develop 3D 
deconvolutional layers to transform the coarse feature volumes into the dense probability predic-
tions. Specifically, we iteratively conduct a series of × ×3 3 3 convolutions with a backward strided 
output (e.g., stride of 2 for double size up-scaling). This deconvolution operation can be regarded 
as a reverse procedure of the convolutions in the forward pass with a corresponding stride. This 
strategy is quite effective to reconstruct representations from nearby neighborhoods and to up-scale 
feature volumes to the resolution of original input volumes. Furthermore, these deconvolutional 
kernels are built in-network and also trainable during the learning process.

18.2.3 3D DeeP suPerVision mechanism

To segment the organ or structures from the complicated anatomical environments in volumetric 
cardiovascular images, we usually need relatively deep models to encode highly representative fea-
tures. However, training a deep network is broadly recognized as a difficult task. One notorious 
problem is the presence of gradients vanishing or exploding, which would make the loss back-
propagation ineffective and hamper the convergence of the training process [23]. Particularly, [24] 
found that the back-propagated gradients would become smaller as they move from the output layer 
towards the input layer during the training. This would make different layers in the network receive 
gradients with very different magnitudes, leading to ill-conditioning and slower training. The train-
ing challenges could be more severe in our volumetric cardiovascular image segmentation task due 
to the low inter-class voxel variations, the larger amount of parameters in 3D networks compared 
with 2D counterparts, and the limited annotated training volumes.

In order to counteract the adverse effects of unstable gradients changes, we propose to exploit 
explicit supervision to the training of hidden layers in our 3D fully convolutional network. 
Specifically, we first up-scale some lower-level and middle-level feature volumes using additional 
deconvolutional layers. Then, we employ the softmax function on these full-sized feature volumes 
and obtain extra dense predictions. For these branched prediction results, we calculate their clas-
sification errors (i.e., negative log-likelihood) with regard to the ground truth segmentation masks. 
These auxiliary losses together with the loss from the last output layer are integrated to energize the 
back-propagation of gradients for more effective parameter updating in each iteration.

We call the layers whose feature volumes are directly path-connected to the last output layer 
as the mainstream network. Let wl be the weights in the l th ( = 1,2, , )…l L  layer of the main-
stream network. We denote the set of weights in the mainstream network by = ( , , , )1 2 …W w w wL . 
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With  p t x Wi i( ; ) representing the probability prediction of a voxel xi after the softmax function in 
the last output layer, the negative-log likelihood loss can be formulated as:

 ∑ ( )= −
∈

W p t x Wi i

xi

L X
X

( ; ) log ; ,  (18.1)

where   represents the training database, and ti is the target class label corresponding to the voxel 
∈xi .

On the other hand, we call the layers that produce auxiliary dense predictions as the branch 
networks. The deep supervision is exactly introduced via these branch networks. To introduce deep 
supervision from the d th hidden layer, we denote the weights of the first d layers in the mainstream 
network by = ( , , , )1 2 …W w w wd

d  and use wdˆ  to represent the weights that bridge the dth layer feature 
volumes to dense predictions, and then the auxiliary loss for deep supervision can be formulated as:

 ∑ ( )−
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Finally, we learn the weights W and all wdˆ  using the back-propagation algorithm [25] by minimizing 
the following overall objective function:
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where ηd is the balancing weight of d, which is decayed during learning, and  is the set of 
indexes of all the hidden layers that are equipped with the deep supervision. The first term cor-
responds to the output predictions in the last output layer. The second term is from the deep super-
vision. The third term is the weight decay regularizations, and λ is the trade-off hyperparameter. 
In each training iteration, the inputs to the network are large volumetric data, and the error back-
propagations from these different loss components are simultaneously conducted.

The effectiveness of the proposed deep supervision mechanism can be justified from the follow-
ing two complementary perspectives. First, according to [26], who first proposed to improve the 
convergence rate and discrimination capability of CNNs for image classification by supervising 
the training of hidden layers, the deep supervision can directly drive the low- and mid-level hidden 
layers to favor highly discriminative features towards explicit predictions. In addition, decomposed 
from these hidden layer features, representations in upper layers can more easily gain superior 
determinativeness and therefore further boost its generalization capability. Second, introducing 
such a deep supervision mechanism into a CNN can be considered as adding a kind of shortcut con-
nections [27], [28] established from the loss to the weights in hidden layers to a CNN, viewing the 
deconvolutional layers as transformations. Such shortcut connections can improve the prorogation 
of gradient flows within the network so that the gradient vanishing problem can be greatly allevi-
ated, and therefore obviously enhance the discrimination capability of the networks [29]–[31].

18.2.4 contour refinement with conDitional ranDom fielD

For segmentation, the contour of ambiguous regions can sometimes be imprecise if we only uti-
lize probability thresholding on the score volumes obtained from the 3D deeply supervised FCN. 
To improve the accuracy of the segmentation results at these regions, we propose to employ a 
conditional random field (CRF) model [32] to refine the segmentation masks. The model solves 
the energy function Σ − + Σ φE y p y x f y y x xi i i i j i j i j( ) = log ˆ( ) ( , ) ( , ),,  where the first term is the unary 
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potential indicating the distribution over label assignment yi at a voxel xi. To aggregate multi-scale 
information, the p y xi iˆ( ) is initialized as the linear combination of the last output layer and the 
branch network predictions obtained from the 3D deeply supervised FCN:

 ∑ ∑ ( )( ) ( )− τ
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The second term in E y( ) is the pairwise potential, where =f y yi j( , ) 1 if ≠y yi j , and 0 otherwise; the 
φ x xi j( , ) incorporates the local appearance and smoothness by employing the gray-scale value Ii  
and I j and bilateral position si and s j of the voxel xi and x j , as follows:
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The constant weights τd in the unary potential and parameters µ µ θ θ θα β γ, , , ,1 2  in the pairwise 
potential were optimized using a grid search on the training set.

18.2.5 exPeriments

18.2.5.1 Heart Segmentation Dataset
To validate our proposed design for whole heart segmentation, we employed the dataset of MICCAI 
2016 Challenge on Whole-Heart and Great Vessel Segmentation from 3D Cardiovascular MRI 
in Congenital Heart Disease, for short, the HVSMR Challenge. The dataset overall consisted of 
20 axial, cropped images with 10 training and 10 testing. The cardiovascular MR images were 
acquired in an axial view on a 1.5T scanner without contrast agent using a steady-state free pre-
cession pulse sequence. The image dimension and spacing varied across subjects with an average 
of × ×390 390 165 and × × mm0.90 0.90 0.85 , respectively. All the MR images were normalized 
to have zero mean and unit variance. We utilized data augmentations including random rotations 
of [90 ,180 ,270 ]° ° °  and flipping along the axial plane. Some subjects had congenital heart defects, 
and some had undergone interventions. The task of the challenge was to segment the blood pool 
and myocardium from the cardiovascular MR volume. The blood pool class included the left and 
right atria, left and right ventricles, aorta, pulmonary veins, pulmonary arteries, and the superior 
and inferior vena cava. Vessels (except the aorta) were extended only a few centimeters past their 
origin. The segmentations of the blood pool and ventricular myocardium were manually delineated 
by a trained rater, and validated by two clinical experts. The ground truths of the training set were 
released to competitors, and those of the testing are held out by the challenge organizers for inde-
pendent evaluation.

18.2.5.2 Network Architecture and Training Settings
Specifically, we constructed a 14-layer fully convolutional network, stacking 7 convolutional 
layers, 3 max-pooling layers, 3 deconvolutional layers, and one softmax output layer in the 
mainstream network. The detailed down-sampling path was input-conv1a-pool1-conv2a-conv2b- 
pool2-conv3a-conv3b-pool3-conv4a-conv4b.

All the convolutional layers employed small kernels of × ×3 3 3, considering the small structures 
of myocardium. For the number of feature volumes, conv1a had 32 kernels; conv2a and conv2b had 
64 kernels; conv3a and conv3b had 128 kernels; conv4a and conv4b had 256 kernels. In order to form 
a competent receptive field for the blood pool, we utilized 3 max-pooling layers with a down-sampling 
stride of 2. In the upsampling path, we employed 3 deconvolutional layers to learn the dense predictions. 
To perform 3D deep supervision, we connected the layers of conv2b and conv3b to auxiliary classifiers.
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The network was trained from scratch with weights initialized from Gaussian distribution 
µ = σ =( 0, 0.01). Considering the large variance of the heart segmentation dataset, we utilized 

batch normalization ([33]) to reduce the internal covariance shift within the network’s hidden neurons. 
The learning rate was initialized as 0.01 and decayed using the “poly” learning rate policy [34]. 
The deep supervision balancing weights were initialized as 0.2 and 0.4 and decayed during train-
ing procedure. We cropped patches of size × ×64 64 64 as input to the network, considering con-
sumption of the GPU memory, and the training was stopped when the validation accuracy did not 
increase anymore. Code for the implementation is publicly available now.1

18.2.5.3 Segmentation Evaluation Metrics
The HVSMR Challenge adopted seven evaluation criteria including the Dice coefficient (Dice), 
Jaccard coefficient (Jac), positive predictive value (PPV), sensitivity (Sens), specificity (Spec), 
average distance of boundaries (Adb[mm]) and Hausdorff distance of boundaries (Hdb[mm]), 
which are calculated for the structures of blood pool and myocardium, respectively. Specifically, 
the Dice, Jaccard, average distance of boundaries, and Hausdorff distance of boundaries are 
defined as follows:
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where S and G are algorithm segmentation and ground truth, respectively. ⋅| |  is the volume 
counter. eG is the surface of ground truth segmentation, vi is the vertex on the surface, dist v vi j( , ) 
is the Euclidean distance between vertex vi and v j. Larger values of the Dice and Jaccard coef-
ficients indicate higher segmentation accuracy. In addition, three more ratios (i.e., PPV, Sens, 
and Spec) also belong to the volume based measurements. The PPV is the ratio of true posi-
tives to true positives plus false positives. The sensitivity represents the ratio of true positives 
to true positives plus false negatives. The specificity denotes the ratio of true negatives to true 
negatives plus false positives. For these three ratios, higher values indicate better segmentation 
performance.

As shown in Eqs. 18.8 and 18.9, the measure Adb[mm] symmetrically calculates the average sur-
face distance of segmentation results and ground truth surfaces. The measure Hdb[mm] counts the 
maximum distance between the results and ground truth surfaces. For both Adb[mm] and Hdb[mm], 
the lower the distance values, the better the segmentation performance.

1 https://github.com/yulequan/HeartSeg

https://github.com/
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TABLE 18.1
Comparison with different approaches on whole heart segmentation task. The evaluations 
of blood pool and myocardium are listed in top and bottom, respectively.

Methods Dice Jac PPV Sens Spec Adb [mm] Hdb [mm]

[35] 0.885±0.028 0.795±0.044 0.907±0.052 0.867±0.046 0.984±0.008 1.553±0.376 9.408±3.059

[36] 0.926±0.018 0.863±0.030 0.951±0.024 0.905±0.047 0.992±0.004 0.885±0.223 7.069±2.857

[37] 0.867±0.047 0.768±0.068 0.861±0.062 0.889±0.108 0.972±0.014 2.157±0.503 19.723±4.078

[38] 0.794±0.053 0.661±0.071 0.964±0.035 0.680±0.081 0.996±0.004 2.550±0.996 14.634±8.200

3D U-Net ([39]) 0.926±0.016 0.863±0.028 0.940±0.028 0.916±0.048 0.989±0.005 0.940±0.193 8.628±3.390

Ours 0.928±0.014 0.865±0.023 0.934±0.024 0.924±0.039 0.988±0.003 1.017±0.181 7.704±2.892

[35] 0.747±0.075 0.602±0.094 0.767±0.054 0.734±0.108 0.989±0.004 1.099±0.204 5.091±1.658

[36] 0.802±0.060 0.673±0.084 0.802±0.065 0.805±0.076 0.990±0.004 0.957±0.302 6.126±3.565

[37] 0.612±0.153 0.457±0.149 0.666±0.164 0.571±0.150 0.985±0.008 2.041±1.022 13.199±6.025

[38] 0.495±0.126 0.338±0.110 0.546±0.134 0.462±0.142 0.980±0.007 2.596±1.358 12.796±4.435

3D U-Net ([39]) 0.694±0.076 0.536±0.089 0.798±0.076 0.618±0.092 0.992±0.004 1.461±0.397 10.221±4.339

Ours 0.739±0.072 0.591±0.090 0.856±0.054 0.653±0.089 0.994±0.002 1.035±0.240 5.248±1.332

18.2.6 segmentation results

Table 18.1 presents the heart segmentation results on the MICCAI 2016 HVSMR testing dataset. 
The top part lists results of the blood pool segmentation, and the bottom part shows the results of the 
myocardium segmentation. We compared our method with representative approaches from other 
participating teams in the challenge, which employed either traditional segmentation methods or 
machine learning based methods. Specifically, [35] developed an automated algorithm by combin-
ing multi-atlases and level-sets; [37] utilized a 3D Markov random field model combined with sub-
structures tracking. The other two belong to machine learning based methods with [38] leveraging 
random forest variants and the [36] utilizing 2D dilated convolutional networks [40]. In addition, 
we conducted comparison experiments using the 3D U-Net [39], which also employs the 3D fully 
convolutional network. Specifically, we implemented the 3D U-Net architecture and obtained opti-
mal segmentation results by carefully tuning the model on our HVSMR dataset. We submitted the 
results to the Challenge evaluation system to get the scores listed in Table 18.1.

In the blood pool segmentation task, our method achieved Dice of 0.928 and Jaccard of 0.865, 
outperforming the other participating teams. The average distance of boundaries and Hausdorff 
distance of our method were also quite competitive, approaching the highest performance from 
the [36]. For the results of myocardium segmentation, our method presented the best performance 
on positive predictive value and specificity, with promising performance on average distance and 
Hausdorff distance of boundaries. When comparing with 3D U-Net, our proposed method achieved 
a higher performance on segmentation of both the myocardium and blood pool. Nevertheless, the 
3D U-Net results of the blood pool are quite close to ours, while better than most of other base-
line approaches. This observation can validate the effectiveness of 3D FCN on volumetric medical 
image segmentations. For time performance, our method takes around 1 minute to handle a MR 
volume.

Figure 18.2 presents some typical heart segmentation results on the testing dataset, from top 
to down are views from the sagittal plane, transverse plane, and coronal plane, respectively. For 
each subject, the left column are raw image data and the right are our segmentation results. We 
can observe that our method successfully delineated the anatomical structures of myocardium 
and blood pool. Note that there exists a large variation in the testing dataset. For example, the 
case of Figure 18.2 (c) comes with an inverse orientation from other cases. Under this challenging 
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FIGURE 18.2 Typical heart segmentation results using our method. We present three view directions, with 
sagittal, transverse, and coronal planes listed from top to down. The white and gray regions denote segmenta-
tions for blood pool and myocardium, respectively.

situation, our method can still discriminate the characteristics of both anatomical structures and 
produce accurate segmentation masks, with blood pool Dice of 0.903 and myocardium Dice of 
0.646. Meanwhile, as reported in Table 18.1, the standard deviations of our method are usually 
smaller than those of other approaches, somehow demonstrating the stability and generalization 
capability of our model.

18.2.7 qualitatiVe comParison of heart segmentation results

Finally, we qualitatively evaluate the efficacy of the 3D deep supervision mechanism on the heart 
segmentation task. Figure 18.3 visually compares the segmentation results obtained from the 
3D deeply supervised FCN and pure end-to-end 3D CNN. The first three rows present results from 
three view directions (sagittal plane, transverse plane, and coronal plane from top to down); and the 
last row presents 3D reconstructions of the volumetric results. The first column is the raw cardiac 
MR image; the second and third columns are results from 3D CNN and 3D deeply supervised FCN, 
respectively; the fourth column shows the ground truth segmentation mask. It is observed that the 
3D CNN is able to produce acceptable results which can already delineate general boundaries for 
the great vessels of the heart, indicating the effectiveness of the 3D fully convolutional architecture. 
By leveraging deep supervision, the 3D deeply supervised FCN can generate more precise bound-
aries for the blood pool (see the yellow arrows in Figure 18.3). In addition, the 3D deeply super-
vised FCN demonstrates sensible superior performance when segmenting the myocardium regions, 
which is the most challenging element in this application. For example, observing the first column, 
the contours of 3D deeply supervised FCN results (blue lines) are much closer to the ground truth 
(magenta lines) than contours of the pure 3D CNN results (cyan lines). In addition, viewing the 
3D reconstruction results, the 3D deeply supervised FCN presents more accurate segmentations for 
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FIGURE 18.3 Qualitative comparison of heart segmentation results with and without 3D deep supervision. 
Columns from left to right are the raw MR images, pure 3D CNN results, 3D deeply supervised FCN results, 
and the ground truth masks. The white and gray regions denote structures of the blood pool and myocardium, 
respectively. In the first column, we overlay the contours of myocardium with the pure 3D CNN results, 
3D deeply supervised FCN results, and the ground truth masks indicated in cyan, blue, and magenta colors, 
respectively. The last row presents 3D reconstructions of the data and segmentations with red for blood pool 
and green for myocardium.
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the myocardium, which coincide well with the ground truth, whereas the pure 3D CNN misclassify 
some myocardium tissues as blood pool or background.

18.3 REFINED NETWORK STRUCTURE DESIGN

With the powerful hierarchical feature learning capability, the above 3D deeply supervised FCN can 
achieve decent performance in automatic whole heart and great vessel segmentation task via captur-
ing 3D spatial contextual information of the input volumes. However, 3D FCNs are still difficult 
to train with the limited annotated cardiovascular images. In this section, we present two refined 
convolutional network (ConvNet) structures: 3D fractal network (3D FractalNet) and densely con-
nected volumetric convolutional network (DenseVoxNet) for better performance and computation 
efficiency.

18.3.1 3D fractalnet

One of the refined architectures is the deeply supervised 3D fractal network (3D FractalNet) [41]. 
Based on fully convolutional architecture, the 3D FractalNet can efficiently map a whole volumet-
ric data to its volume-wise label directly within a single forward process. Notably, multi-paths with 
various receptive fields in the network are organized in a self-similar fractal scheme to capture 
the multiscale hierarchical features of myocardium and vessels. Additionally, the 3D FractalNet 
also utilizes the deep supervision strategy proposed in Section II to attack the vanishing gradient 
problem of training process and thus boost the training efficiency. Figure 18.4 demonstrates the 
architecture of the proposed deeply supervised 3D FractalNet for dense volumetric whole heart 
and great vessel segmentation. It adopts 3D fully convolutional architecture and is organized in a 
self-similar fractal scheme. In this section, we first elaborate the formulation of fractal network, 
and then we will present the network architecture of 3D FractalNet. Finally, we will introduce the 
details of deep supervision strategy used to tackle potential optimization difficulties in training 
3D FractalNet.

FIGURE 18.4 Illustration of our proposed deeply supervised 3D FractalNet architecture. Digits represent 
the number of feature volumes in each layer.
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18.3.1.1 Fractal Networks
Fractal networks are constructed by repeatedly applying an expansion rule from a base case [42]. 
Let C denote the index of a truncated fractal ⋅fC ( ) (i.e., the network’s structure, connections, and 
layer types) and the base case of a truncated fractal (Figure 18.5(a)) is a single convolutional layer:

 ( ) conv( ).1 =f z z  (18.10)

Then the successive fractals (Figure 18.5(b)) can be defined recursively according to the expansion 
rule:

 

conv( ),

( ) conv[conv( ) ( )]1

′

′ ⊕ ′+

=

=

z z

f z z f zC C  (18.11)

where ⊕ is a join operation and ⋅conv( ) is a convolution operator by a single convolutional layer. 
The join operation ⊕ merges two blobs, which are the extracted feature volumes (i.e., 4D matrices 
if the input are 3D volumetric data) resulting from convolutional layers and fractal operator ⋅fC ( ) 
respectively. Because these two blobs contain features from different visual levels, joining them can 
enhance the discrimination capability of networks. Generally, the join operator can be summation, 
maximization, and concatenation.

In order to further harness multi-scale features, we add down-sampling and up-sampling opera-
tors in the above expansion rule, as shown in Figure 18.5(c). Specifically, we add a max-pooling 
layer (with a stride 2) before the fractal ⋅fC ( ) and a deconvolutional layer (with stride 2) after the 
fractal ⋅fC ( ). The receptive field of a fractal thus becomes broader after the down-sample operation. 
When combining different receptive fields through the join operation, the network can harness 
multi-scale visual cues and promote itself in discriminating.

18.3.1.2 3D FractalNet
After recursively expanding the base case with the above expansion rule for three times, we obtained 
the 3D FractalNet used in this study, as shown in Figure 18.4. The join operation of fractal expan-
sion in our 3D FractalNet is summation, computing the element-wise sum of two blobs. Same as 
introduced in Section II, the building blocks of our network, such as the convolutional, max-pooling, 
and deconvolutional layers, are all implemented with a 3D manner, thus the network can fully 

FIGURE 18.5 An illustration of the expansion rule in our fractal architecture. We add down-sampling 
and up-sampling operators in the expansion rule to further utilize multi-scale feature and avoid computation 
bottlenecks.
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preserve and exploit the 3D spatial information of the input volumetric data. Note that our network 
adopts the fully convolutional architecture, and hence can take arbitrary-sized volumetric data as 
input and output corresponding sized predictions within a single forward process, which is very 
efficient in handling large MRI dataset.

Previous studies [43] have shown that small convolutional kernels are more efficient in network 
design. The effective receptive field size of stacked small kernels is equivalent to that of one large 
kernel (the effective receptive field of three × ×3 3 3 kernels is the same as one × ×7 7 7 kernel), while 
giving lower computation cost. Therefore, we adopt small convolution kernels with size of × ×3 3 3 
in convolutional layers. Each convolutional layer is followed by a rectified linear unit (ReLU) as the 
activation function. Note that we also employ batch normalization layer (BN) before each ReLU 
layer to accelerate the training process. At the end of the network, we add a × ×1 1 1 convolutional 
layer as a main classifier to generate the segmentation results and further get the segmentation prob-
ability map after passing the softmax layer.

18.3.1.3 Deeply Supervised 3D FractalNet
Similar to in discussion in Section II, directly training such a deep 3D fractal network is also chal-
lenging due to the issue of vanishing gradients [23], which makes the back-propagation ineffective 
for early layers. Following previous studies on training deep neural networks with deep supervision 
[44], [45], we proposed the customized deeply supervised 3D FractalNet by injecting direct super-
vision into the hidden layers of the network. Specifically, we added M auxiliary classifiers (con-
volutional layers with size of × ×1 1 1) following some hidden layers of the network, and employed 
deconvolutional layers to upsample the output of auxiliary classifiers. This scheme can effectively 
alleviate the vanishing gradients problem and assist the training process with direct supervision on 
the hidden layers.

Specifically, let W be the weights of main network and = ( , , , )1 2 …w w w wM  be the weights of 
auxiliary classifiers. Then the cross-entropy loss function of the main classifier is

 ∑ ( )( )−
∈

W p y x x W
xi

i i iL X
X

( ; ) = log = ; ,  (18.12)

where   represents the training samples and p y x x Wi i i( = ( ) ; )  is the probability of target class 
label  xi( ) corresponding to sample ∈xi . Similarly, the loss function of the mth auxiliary clas-
sifier is

 ∑ ( )( ) ( )−
∈

W w p y x x W wm
m

xi

i i i
m

L X
X

; , = log = ; , .  (18.13)

Therefore, the total loss function of our deeply supervised 3D FractalNet is:

 ∑ ( )+ α + λψW w W W w W
m

M

m m
mL X L X L X( ; , ) = ( ; ) ; , ( ),

=1

 (18.14)

where the first two terms are the classifier loss, and the last part is the regularization term (L2 norm 
in our experiments); αm is the weight of different auxiliary classifiers.

18.3.1.4 Training Procedure
The proposed method was implemented with C++ and Matlab under the open source deep learning 
library of Caffe [46], using a standard PC with a 2.60GHz Intel(R) Xeon(R) E5-2650 CPU and a 
NVIDIA TITAN X GPU. The weights of networks were initialized from the Gaussian distribution 
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µ σ( = 0, = 0.01) and updated using stochastic gradient descend (SGD) method (batch size = 4, 
momentum = 0.9, weight decay = 0.0005). The learning rate was set as 0.002 initially and divided 
by 10 every 3000 iterations. The network was trained for up to 10000 iterations. We added two 
auxiliary classifiers, and the weights αm are 0.33 and 0.67, respectively. We randomly cropped a 

× ×64 64 64 sub-volume from each sample in every iteration for the input when training our net-
work, and therefore we totally extracted 40000 patches in training. We used an overlap-tiling strat-
egy to generate the whole volume probability map by stitching sub-volume predictions. We also 
employed some morphology operations including removing small isolated components and filling 
holes to process the prediction. Generally, it took about 12 seconds to process one volume with size 
of × ×200 140 120 using the above configuration.

18.3.2 DenseVoxnet

The previous network architectures and other 3D ConvNets (e.g., 3D U-Net [47], VoxResNet [48]) 
usually generate a large number of feature channels in each layer, and they have plenty of param-
eters to be tuned during training. Although these networks introduce different skip connections to 
ease the training, the training of an effective model with the limited MR images for heart segmen-
tation is still very challenging. In order to ease the training of 3D ConvNets with limited data and 
thus improve the segmentation performance, we propose a novel densely connected volumetric 
convolutional network, namely DenseVoxNet [49], to segment the cardiac and vascular structures 
in cardiac MR images. The DenseVoxNet adopts 3D fully convolutional architecture, and thus can 
fully incorporate the 3D image and geometric cues for effective volume-to-volume prediction. More 
importantly, the DenseVoxNet incorporates the concept of dense connectivity [50] and enjoys two 
advantages from the learning perspective:

• It implements direct connections from a layer to all its subsequent layers. Each layer can 
thus receive additional supervision from the loss function through the shorter skip connec-
tions, and thus make the network much easier to train.

• The DenseVoxNet has fewer parameters than the other 3D ConvNets. Since layers can 
access feature maps from all of its preceding layers, the learning of redundant feature maps 
can be possibly avoided. Therefore, the DenseVoxNet has fewer feature maps in each layer, 
which is essential in training convolutional networks with limited images as it has less 
chance to encounter the overfitting problem.

18.3.2.1 Dense Connection

In a convolutional network, we denote x


 as the output of the th layer, x


 can be computed by a 
transformation (x)Hl  from the output of the previous layer, x 1−  as:

 x = x ,1( )−H
  

 (18.15)

where (x)H


 can be a composite of operations such as convolution (Conv), pooling, batch nor-
malization (BN) or rectified linear unit (ReLU), etc. To boost the training against the vanishing 
gradients, ResNet [29] introduces a kind of skip connection, which integrates the response of 

(x)H


 with the identity mapping of the features from the previous layer to augment the informa-
tion propagation as:

 x = x x .1 1( ) +− −H
     (18.16)

However, the identity function and the output of 


H  are combined by summation, which may impede 
the information flow in the network.
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FIGURE 18.6 The architecture of our DenseVoxNet. It consists of two DenseBlocks, and all operations are 
implemented in a 3D manner.

To further improve the information flow within the network, the dense connectivity [50] exer-
cises the idea of skip connections to the extreme by implementing the connections from a layer to 
all its subsequent layers. Specifically, the x



 is defined as:

 …x = x ,x , ,x ,0 1 1( ) −H
  

 (18.17)

where [ ]…  refers to the concatenation operation. The dense connectivity, as illustrated in Figure 18.7, 
makes all layers receive direct supervision signal. More importantly, such a mechanism can encour-
age the reuse of features among all these connected layers. Suppose that if the output of each layer 
has k feature maps, then the k, referred as growth rate, can be set to a small number to reduce the 
number of parameters as there is no need to re-learn redundant feature maps. This characteristic is 

FIGURE 18.7 Illustration of the dense connectivity scheme taking a five-layer DenseBlock as an example.
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quite compelling to medical image analysis tasks, where it is usually difficult to train an effective 
network with a lot of parameters with limited training data.

18.3.2.2 The Architecture of DenseVoxNet
Figure 18.6 illustrates the architecture of our proposed DenseVoxNet. It adopts the 3D fully con-
volutional network architecture [44], [47], [48] and has the down- and up-sampling components 
to achieve end-to-end training. Note that Eq. 18.17 is not applicable when the feature maps have 
different sizes; on the other hand, we need to reduce the feature map size for better efficiency of 
memory space and increase the receptive field to enclose more information when prediction. We, 
therefore, divide the down-sampling components into two densely connected blocks, referred as 
DenseBlock, and each DenseBlock is comprised of 12 transformation layers with dense connections 
(only draw three layers in the figure for simplicity). Each transformation layer is sequentially com-
posed of a BN, a ReLU, and a × ×3 3 3 Conv and the growth rate, k, of our DenseVoxNet is 12. The 
first DenseBlock is prefixed with a Conv with 16 output channels and stride of 2 to learn primitive 
features. In-between the two DenseBlocks is the transition block, which consists of a BN, a ReLU, 
a × ×1 1 1 Conv, and a × ×2 2 2 max pooling layers.

The up-sampling component is composed of a BN, a ReLU, a × ×1 1 1 Conv, and two × ×2 2 2 
deconvolutional (Deconv) layers to ensure the sizes of segmentation prediction map consistent 
with the size of input images. The serial layers of BN, ReLU, and Conv perform the nonlinear 
reasoning, whereas the two Deconv layers aim to restore the original image dimensionality. The 
up-sampling component is then followed with a × ×1 1 1 Conv layer and softmax layer to generate 
the final label map of the segmentation. To equip the DenseVoxNet with the robustness against 
the overfitting problem, the dropout layer is implemented following each Conv layer with the 
dropout rate of 0.2.

To further boost the information flow within the network, we implement a kind of long skip 
connection to connect the transition layer to the output layer with a × ×2 2 2 Deconv layer. This 
skip connection shares the similar idea of deep supervision [44], as introduced in Section II, to 
strengthen the gradient propagation and stabilize the learning process. In addition, this long skip 
connection may further tap the potential of the limited training data to learn more discriminative 
features. Our DenseVoxNet has about 1.8M parameters in total, which is much fewer than other 
3D ConvNets, for example, 3D U-Net [47] with 19.0M parameters and VoxResNet [48] with 
4.0M parameters.

18.3.2.3 Training Procedure
The proposed network is implemented with Caffe [46]. The network weights were randomly 
initialized with a Gaussian distribution µ = σ =( 0,  0.01). The optimization is realized with the 
stochastic gradient descend algorithm (batch size = 3, weight decay = 0.0005, momentum = 0.9). 
The initial learning rate was set to 0.05. We use the “poly” learning rate policy (i.e., the learning 
rate is multiplied by − iter

max iter
power(1 )_ ) for the decay of learning rate along the training iteration. 

The power variable was set to 0.9, and maximum iteration number (max_iter) was set as 15000. 
To fit the limited GPU memory, the input of our DenseVoxNet are sub-volumes with size of 

× ×64 64 64 voxels, which were randomly cropped from the training images. The final segmenta-
tion results were obtained with the major voting strategy [51] from the predictions of the over-
lapped sub-volumes.

18.3.3 exPeriments

We also use the MICCAI 2016 HVSMR dataset to validate the efficiency of our proposed 3D 
FractalNet and DenseVoxNet. We report the experiment results of 3D FractalNet and DenseVoxNet 
on phase 2 (cropped axial images) of the Challenge dataset. As for the 3D FractalNet, we also report 
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the experimental results on phase 3 (cropped short-axial images). Note that we adopted the same 
pre-processing and data augmentation operations as Section II.

18.3.3.1 Qualitative Results
To explicitly visualize the difference between the 3D FractalNet segmentation results and the 
ground truth, we illustrate six surface-to-surface comparison examples of training dataset using 
cross-validation in Figure 18.8. We can observe that our segmentation results coincide well with 
ground truth. Benefiting from the multi-scale features, our network can tackle the large varia-
tion of blood pool and myocardium and effectively separate the touching boundaries of vessel. 
Also, the proposed method can even present more complete vessel segmentation comparing to the 
ground truth.

To better show the detailed difference between segmentation results and annotated ground truth, 
we demonstrate four typical DenseVoxNet segmentation results on training slices (the first two sam-
ples, via cross-validation) and testing slices (the last two samples) in Figure 18.8. The four slices are 
from different subjects but with the same coronal plane view. The blue and purple color denotes our 
segmentation results for blood pool and myocardium, respectively, and segmentation ground truth 
is also presented in white and gray regions in the first two samples. As can be observed, there exists 
large variation of cardiac structures among different subjects in both training and testing images. 
Our method can still successfully demarcate myocardium and blood pool from the low-intensity 
contrast cardiac MR images, demonstrating the effectiveness of the proposed DenseVoxNet.

18.3.3.2 Quantitative Results of 3D FractalNet
The main evaluation criteria in the Challenge include Dice coefficient (Dice), Hausdorff Distance 
of Boundaries (Hdb[mm]) and Average Distance of Boundaries (Adb[mm]) (please refer to II-E3 
for detailed formulation of these criteria). Auxiliary metrics, such as Jaccard index, Cohen’s Kappa, 
Sensitivity, and Specificity are also considered. For distance related metrics, lower values indi-
cate better performance. We report two types of result: testing dataset result and leave-one-out 

FIGURE 18.8 Explicit surface-to-surface comparison of our segmentation results (blue) with ground truth (red).
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cross-validation result of training dataset on phase 2 and 3. On the Challenge website, these results 
are reported from our teams CUMED2 (cross-validation) and CUMED1 (testing).2 Tables 18.2 and 18.3 
illustrate the automated segmentation results under the main metrics on testing dataset and cross-
validation of training dataset, respectively.

2 http://segchd.csail.mit.edu/

FIGURE 18.9 Segmentation results on training images (the first two) and testing images (the last two). The 
blue and purple color denotes our segmentation results for blood pool and myocardium, respectively, and seg-
mentation ground truth is also presented in white and gray regions in the first two samples.

TABLE 18.2
Quantitative evaluation results on testing dataset

Sample Phase 2 Phase 3

Adb1 Adb2 Dice1 Dice2 Hdb1 Hdb2 Adb1 Adb2 Dice1 Dice2 Hdb1 Hdb2

volume 10 1.120 0.843 0.727 0.939 7.640 6.508 1.228 0.643 0.671 0.948 5.820 3.713

volume 11 1.010 1.137 0.831 0.921 8.842 8.553 2.518 1.040 0.719 0.929 30.204 13.579

volume 12 0.784 0.682 0.848 0.940 5.701 7.318 0.590 0.810 0.862 0.940 2.840 9.245

volume 13 0.971 0.980 0.836 0.936 6.467 10.860 0.949 0.854 0.824 0.940 4.275 8.677

volume 14 0.872 0.916 0.762 0.926 3.951 3.877 1.043 0.983 0.690 0.920 5.372 4.292

volume 15 1.705 0.842 0.648 0.915 9.675 4.229 1.111 1.022 0.664 0.896 6.563 6.399

volume 16 0.639 1.224 0.796 0.899 3.877 12.903 0.746 0.731 0.717 0.913 3.622 7.230

volume 17 0.950 0.555 0.803 0.954 6.528 3.408 0.847 0.697 0.789 0.948 4.516 7.874

volume 18 0.504 0.588 0.851 0.948 2.032 3.771 0.513 0.695 0.819 0.937 2.089 4.100

volume 19 1.410 0.914 0.762 0.935 9.474 8.703 1.296 0.814 0.700 0.939 8.064 5.141

Average 0.997 0.868 0.786 0.931 6.419 7.013 1.084 0.829 0.746 0.931 7.336 7.025 

Note: class 1: myocardium; class 2: blood pool.

http://segchd.csail.mit.edu/
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TABLE 18.3
Quantitative evaluation results of cross-validation on training dataset

Sample Phase 2 Phase 3

Adb1 Adb2 Dice1 Dice2 Hdb1 Hdb2 Adb1 Adb2 Dice1 Dice2 Hdb1 Hdb2

volume 0 0.420 0.641 0.888 0.950 1.982 2.938 0.353 0.502 0.898 0.952 1.536 1.255 

volume 1 0.681 0.636 0.868 0.943 5.388 4.324 0.992 0.555 0.858 0.947 8.577 4.314 

volume 2 0.758 0.725 0.825 0.940 3.198 4.162 0.695 0.642 0.844 0.944 2.813 4.058 

volume 3 0.669 0.650 0.849 0.940 2.570 4.297 0.600 0.531 0.857 0.942 3.625 2.562 

volume 4 0.399 0.682 0.898 0.909 1.979 5.002 0.697 0.749 0.838 0.900 4.717 5.015 

volume 5 0.485 0.544 0.876 0.921 3.053 4.016 0.304 0.729 0.920 0.903 1.674 6.544 

volume 6 0.938 0.927 0.762 0.902 4.559 6.266 0.849 0.740 0.790 0.915 3.969 5.977 

volume 7 1.331 0.418 0.818 0.954 13.752 1.635 0.734 0.397 0.822 0.954 5.942 2.312 

volume 8 0.317 0.847 0.888 0.926 1.536 6.271 0.485 0.651 0.852 0.941 2.662 5.681 

volume 9 0.748 0.866 0.844 0.917 4.776 7.515 0.549 0.651 0.861 0.934 3.192 4.609 

Average 0.675 0.694 0.852 0.930 4.279 4.643 0.626 0.615 0.854 0.933 3.871 4.233 

18.3.3.3 Comparison with Other Methods
The quantitative comparison between 3D FractalNet, DenseVoxNet, and four other approaches 
from the participating teams in this challenge is shown in Table 18.4. According to the rules of the 
Challenge, methods were ranked based on Dice coefficient (Dice). Meanwhile, other ancillary mea-
sures like average distance of boundary (Adb[mm]) and symmetric Hausdorff distance of bound-
ary (Hdb[mm]) are also computed for reference. Higher Dice values suggest a higher agreement 
between segmentation results and ground truth, while lower Adb and Hdb values indicate higher 
boundary similarity. Three of the six approaches employed traditional methods based on hand-
crafted features, including Random Forest [52], 3D Markov Random Field and substructure track-
ing [53] and level-set method driven by multiple atlases [54]. The other three methods, including 
ours, are based on convolutional network. Wolterink et al. [55] employed 2D dilated convolutional 
network to segment the myocardium and blood pool, while our 3D FractalNet and DenseVoxNet 
utilized 3D ConvNets.

Table 18.4 reports the results of different methods. It can be observed that the ConvNet-based 
methods (the last three rows) can generally achieve better performance than the other methods 
do, suggesting that ConvNets can generate more discriminative features in a data-driven man-
ner to better tackle the large anatomical variability of patients. Regarding the segmentation of 

TABLE 18.4
Comparison with different approaches on HVSMR2016 dataset

  Myocardium Blood Pool

Method Dice Adb [mm] Hdb [mm] Dice Adb [mm] Hdb [mm]

Mukhopadhyay [52] 0.495±0.126 2.596±1.358 12.796±4.435 0.794±0.053 2.550±0.996 14.634±8.200 

Tziritas [53] 0.612±0.153 2.041±1.022 13.199±6.025 0.867±0.047 2.157±0.503 19.723±4.078 

Shahzad et al. [54] 0.747±0.075 1.099±0.204 5.091±1.658 0.885±0.028 1.553±0.376 9.408±3.059 

Wolterink et al. [55] 0.802±0.060 0.957±0.302 6.126±3.565 0.926±0.018 0.885±0.223 7.069±2.857 

D FractalNet [41] 0.786±0.064 0.997±0.353 6.419±2.574 0.931±0.016 0.868±0.218 7.013±3.269 

DenseVoxNet 0.821±0.041 0.964±0.292 7.294±3.340 0.931±0.011 0.938±0.224 9.533±4.194 
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myocardium, DenseVoxNet achieves the best performance with the Dice, that is, the ranking 
metric in the Challenge, of ±0.821 0.041 and outperforms the second one by around 2%. For 
the segmentation of blood pool, DenseVoxNet and 3D FractalNet achieve the best Dice score of 

± ±0.931 0.011 0.931 0.018. The 3D FractalNet achieves the best Adb and Hdb scores, suggest-
ing the efficiency of fractal scheme. It is worth noting that the dice scores of myocardium in all 
methods are lower than the Dice scores of blood pool, suggesting that the segmentation of myo-
cardium is relatively more challenging due to the ambiguous borders of the myocardium in the 
low-resolution MR images. While the other two ConvNet-based approaches achieve quite close 
Dice scores to our DenseVoxNet in blood pool segmentation, DenseVoxNet is obviously better 
than these two methods in the Dice scores of the myocardium, demonstrating our densely con-
nected network with auxiliary long side paths has the capability to tackle the hard myocardium 
segmentation problem.

We further implement two other state-of-the-art 3D ConvNets—3D U-Net [47] and VoxResNet 
[48]—for comparison. We also perform an ablation experiment to compare the performance of the 
proposed DenseVoxNet with and without auxiliary side paths. We follow the same training procedure 
for all networks. The quantitative comparison can be found in Table 18.5, where “DenseVoxNet-A” 
denotes the DenseVoxNet without the auxiliary side paths. As can be observed, our DenseVoxNet 
achieves much better performance than the other two 3D ConvNets in both myocardium and blood 
pool segmentation. It suggests that our DenseVoxNet can benefit from the improved information 
flow throughout the network with the dense connections. In addition, our method achieves better 
performance with much fewer parameters than our competitors, corroborating the effectiveness 
of the feature map reusing mechanism encoded in the densely connected architecture, which is 
quite important to enhance the capability of ConvNet models under limited training data. It is also 
observed that the auxiliary side path can further improve the segmentation performance, especially 
for the myocardium.

18.4 IMPROVED INITIALIZATION AND LOSS FUNCTION

18.4.1 backgrounD

The designs introduced in Sections II and III are general for blood pool and ventricular structures 
segmentation in volumetric images. However, the scenario becomes more challenging for network 
design when we come to consider further differentiating the whole heart into multiple fine-grained 
substructures, as shown in Figure 18.10, extracting the whole heart from volumetric scanning and 
simultaneously partitioning it into seven substructures, including the myocardium of the left ven-
tricle (MLV), left atrium blood cavity (LABC), left ventricle blood cavity (LVBC), right atrium 
blood cavity (RABC), right ventricle blood cavity (RVBC), ascending aorta (ASA), and pulmonary 
artery (PUA) [56].

TABLE 18.5
Quantitative analysis of our network

  Myocardium Blood Pool

Method Parameters Dice Adb [mm] Hdb [mm] Dice Adb [mm] Hdb [mm]

3D U-Net [47] 19.0M 0.694±0.076 1.461±0.397 10.221±4.339 0.926±0.016 0.940±0.192 8.628±3.390

VoxResNet [48] 4.0M 0.774±0.067 1.026±0.400 6.572±3.551 0.929±0.013 0.981±0.186 9.966±3.021

DenseVoxNet-A 1.7M 0.787±0.042 1.811±0.752 17.534±7.838 0.917±0.018 1.451±0.537 15.892±6.772

DenseVoxNet 1.8M 0.821±0.041 0.964±0.292 7.294±3.340 0.931±0.011 0.938±0.224 9.533±4.194
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Parsing the whole heart into the well-defined substructures opens great opportunities for radiolo-
gists to analyze the functionalities of the heart in a more precise manner. The geometry information, 
such as landmarks, represented by segmentation can significantly facilitate the image registration. 
Detailed segmentation can also provide subtle and accurate guidance for computer aided interven-
tion, such as surgical planning for congenital heart disease and radio-frequency ablation. When 
combined with real-time analysis, the extracted volumes can be applied to quantify the functional 
indices of the heart, such as the ejection fraction and myocardial mass [1]–[3].

Compared to the 2-class segmentation tasks in Section II and III, simultaneously differentiat-
ing seven classes intensifies two problems which should be tackled more seriously. The first is the 
network initialization. Deep neural networks need proper initialization to avoid being trapped in 
local minima when fitting the more complicated latent loss function in learning to recognize more 
classes. Also, good initialization can help the network to learn to collect contextual information 
from neighboring classes to support the local classification. Pre-training, or transfer learning, is 
a popular strategy to provide proper initialization, and we will elaborate our specialized transfer 
learning for 3D convolutional networks in Section IV-D. Another problem is the class imbalance, 
which can potentially bias the networks to sacrifice some minor classes or abundant details. As 
illustrated in Figure 18.10, the class imbalance mainly concerns the difference in topology (branchy 
versus compact) and volume size between different classes. We will explain the class imbalance 
in detail in Section IV-E and propose to alleviate it by introducing a novel, hybrid loss function to 
guide the training of deep networks [57].

18.4.2 methoD

Figure 18.11 is the schematic illustration of our proposed framework. Following the spirit of 
utilizing 3D convolutions to fully explore the volumetric contextual information, all the opera-
tors in our network are also in 3D fashion. Without any auxiliary heart localization module, 
our system takes the original whole volume as the raw input. There is a preprocessing module 

FIGURE 18.10 Illustration of the seven substructures of whole heart. Obvious topological difference in 
anatomy can be observed.
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to conduct intensity calibration. Our tailored 3D fully convolutional network originates from 
the famous U-net [58] design. Long skip connections bridging down-sampling and up-sampling 
path are critical for our network to recognize possible boundary details in volumes. The down-
sampling path benefits from transfer learning strategy. The proposed hybrid loss functions are 
adopted in a stratified deep supervision manner. Limited by GPU memory, the actual input to 
our network are cropped sub-volumes. All the training samples are normalized as zero mean 
and unit variance. The output of our framework is the volume-wise labeling result for seven 
substructures of the heart. The detailed parameter configuration for our network are shown in 
Table 18.6.

FIGURE 18.11 Schematic view of our proposed framework. Digits represent the number of feature volumes 
in each layer. Blue volume with dotted line is for concatenation.

TABLE 18.6
Configuration of our customized 3D fully convolutional network. Layers in bold are 
initialized with transfer learning. Stars denote layers where the deep supervision with 
auxiliary loss functions inject.

Layer Kernel Size Output Size Layer Kernel Size Output Size

Conv 1: 3 × 3 × 3 64 × 64 × 64 × 64 DeConv 1: 4 × 4 × 4 8 × 8 × 8 × 512

Pooling 1: 2 × 2 × 2 32 × 32 × 32 × 64 Concat 1: – 8 × 8 × 8 × 1024

Conv 2: 3 × 3 × 3 32 × 32 × 32 × 128 *Conv 6: 3 × 3 × 3 8 × 8 × 8 × 256

Pooling 2: 2 × 2 × 2 16 × 16 × 16 × 128 DeConv 2: 4 × 4 × 4 16 × 16 × 16 × 256 

Conv 3a: 3 × 3 × 3 16 × 16 × 16 × 256 Concat 2: – 16 × 16 × 16 × 512

Conv 3b: 3 × 3 × 3 16 × 16 × 16 × 256 *Conv 7: 3 × 3 × 3 16 × 16 × 16 × 128

Pooling 3: 2 × 2 × 2 8 × 8 × 8 × 256 DeConv 3: 4 × 4 × 4 32 × 32 × 32 × 128

Conv 4a: 3 × 3 × 3 8 × 8 × 8 × 512 Concat 3: – 32 × 32 × 32 × 256

Conv 4b: 3 × 3 × 3 8 × 8 × 8 × 512 *Conv 8: 3 × 3 × 3 32 × 32 × 32 × 64

Pooling 3: 2 × 2 × 2 4 × 4 × 4 × 512 DeConv 4: 4 × 4 × 4 64 × 64 × 64 × 64

Conv 5a: 3 × 3 × 3 4 × 4 × 4 × 512 Concat 4: – 64 × 64 × 64 × 128

Conv 5b: 3 × 3 × 3 4 × 4 × 4 × 512 Conv 9: 3 × 3 × 3 64 × 64 × 64 × 32

– – – Conv 10: 3 × 3 × 3 64 × 64 × 64 × 7
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18.4.3 Datasets anD PreProcessing

In this work, we are using the MM-WHS 2017 (Multi-Modality Whole Heart Segmentation) 
Challenge dataset,3 which is the most recent and largest dataset in the field and mainly contributed 
by Fudan University and Imperial College London. It contains two modalities, CT and MR. For 
each modality, there are 20 training volumes and 40 testing volumes with high-quality annota-
tions. The ground truth for the testing data are held by the Challenge organizers. Each team can 
only submit one time to get their testing evaluation result. The volumes are with varying dimen-
sions and spacings. Because the Challenge datasets are collected from different subjects in differ-
ent sites, the image quality vary greatly subject to imaging parameters and machines. Low contrast 
and inhomogeneity are common around the volumes. So, we adopt the Contrast Limited Adaptive 
Histogram Equalization (CLAHE) technique [59] to enhance the local contrast and reduce the 
inhomogeneity. Specifically, we apply CLAHE with a slice-wise manner and set the block size as 

×8 8. As shown in Figure 18.12, slices in CT and MR get significant visual quality improvement 
after applying the CLAHE.

18.4.4 transfer learning from ViDeo recognition

Proper initialization is important for the training of deep neural networks, especially in facing 
the limited training data and the complex scenario containing multiple classes. Equipped with 3D 
operators, our 3D FCN contains orders of magnitude parameters than 2D networks, which further 
increases the risk and asks for more tricky initialization. For vision tasks, the features learned by 
shallow layers in deep neural networks can be generic across different tasks. Sharing parameters, 
or knowledge, with models that are well-trained on large-scale datasets, denoted as transfer learn-
ing, proves to be beneficial in avoiding improper initialization and combating overfitting for better 
generalization ability, even the pre-trained model is generated in a different domain [60]. However, 
some popular models, like ImageNet [61] and VGG16 [43], are originally designed to interpret 2D 
spatial information, and thus are unable to be transferred to 3D applications.

Recently, the C3D architecture introduced in [62] sheds light on the transfer learning for 3D deep 
neural networks. Trained on large-scale video datasets, C3D discards 2D convolutions and directly 
utilizes 3D convolutions to simultaneously extract spatial and temporal abstract across consecutive 
frames and achieves high performance on video action recognition. By adapting spatial-temporal 
3D convolutions to volumetric data, C3D model can be transferred to initialize our network and 
thus promote the volumetric segmentation tasks. Specifically, we initialize the shallow layers conv1, 
conv2, conv3a, conv3b, conv4a, and conv4b in our down-sampling path with the layers from the 
C3D model (denoted in Figure 18.11 and Table 18.6). During fine-tuning, we set small learning rates 

3 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/index.html

(a) (b)

FIGURE 18.12 Intensity calibration with CLAHE. (a) CT slice before and after CLAHE, (b) MR slice 
before and after CLAHE.

http://www.sdspeople.fudan.edu.cn/
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for these transferred layers to avoid being overtuned. Configuration of our up-sampling path is sym-
metric with the down-sampling path, but initialized from uniform distribution.

18.4.5 hybriD loss guiDeD class-BalanceD segmentation

Loss function defines the latent mapping and the functionality that deep neural network needs to fit 
and can finally achieve. Therefore, the choice of loss function is vital in guiding the training of deep 
networks. Considering the feasibility in differentiable optimization for training, the popular choice for 
loss function is the classical cross-entropy, which has the basic formulation as shown in Eq. 18.18.   
represents the training samples, and p y x x Wi i i( = ( ) ; )  is the probability of target class label  xi( )  
corresponding to sample ∈xi . However, cross-entropy is not perfect in classification or segmentation 
occasions where classes present inevitable class imbalance [45]. This problem becomes more obvious 
in whole heart partition. First, different substructures present disparate topologies, like the branchy 
pulmonary artery, tube-like ascending aorta, and sphere-like left atrium blood cavity. Second, different 
structures often have different volume sizes. As illustrated in Figure 18.13, as one kind of the point-wise 
loss functions, cross-entropy counters each voxel equally and summarizes the prediction error on each 
voxel without counting the significance of each class, which will lead the network to oversee minor 
classes and only focus on major ones. The situation gets worse when the network only takes cropped 
sub-volume as input in which the difference in volume size are magnified. Motivated by [45], [63], in 
this work, we conduct an investigation on different loss functions in balancing different classes and 
preserving segmentation details, and finally propose a hybrid loss function as a decent choice [57].

18.4.5.1 Volume Size Weighted Cross-Entropy
As proposed in [45] for rare edge extraction, weighting the cross-entropy loss for different classes is 
helpful in addressing the class imbalance. In this work, we extend the formulation in [45], and pro-
pose a volume-size weighted cross-entropy (denoted as wCross). Mathematically, the formulation 
of wCross is shown as Eq. 18.19. xi ( )  is the volume size of class  xi( ) in patch   derived from the 
annotation patch. With the formulation, classes with smaller volume sizes can get larger weight 
with η

 xi( ) and avoid being ignored by taking larger proportions in wCross .

 ∑ ( )( )
∈

W p y x x WwCross

xi

i i iL X
X

( ; ) = log = ;  (18.18)

 ∑ ( )( )− η η −
∈

W p y x x WwCross

xi

xi i i i xi

xi



 



L X
X

X
X

( ; ) = log = ; , = 1( ) ( )

( )

 (18.19)

FIGURE 18.13 From left to right: a slice from CT volume, segmentation ground truth provided by experts 
and algorithm segmentation. Point-wise loss functions focus on comparing the labeling difference on each 
voxel (denoted with blue dotted line), while the shape-wise loss function focuses on comparing the global 
shape similarity (denoted with red dotted line).
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18.4.5.2 Multi-Class Dice Similarity Coefficient
Dice similarity coefficient (DSC) based loss function is another novel attempt to alleviate class 
imbalance [63]. DSC is originally a metric designed to evaluate the conformity between two shapes [64], 
as shown in Eq. 18.20, where S is the area or volume of an object:

 ∩ +DSC S S S SA B A B= 2( ) / ( )  (18.20)

As illustrated in Figure 18.13, different from the point-wise loss, DSC based loss function focuses 
on the global shape similarity. Thus the cost for each class is volume size-independent and self-
normalized before being equally counted into the total loss. We extend the loss in [63] and propose 
a differentiable multi-class Dice similarity coefficient (mDSC) based loss function to balance the 
training for multiple classes. Given the segmentation ground truth × ×Gw h d, we first encode it into a 
one-hot format for C classes × × ×C w h d, C = 7 for our task. With probability volumes × × ×C w h d ,  our 
proposed mDSC can be written as:

 ∑ ∑
∑ ∑

−
+∈
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,  (18.21)

where × ×N w h d= , c
i and c

i are the ith voxel of cth volume in   and . The N1 /  in denominator 
is empirically introduced to suppress prediction noise. Improvement caused by mDSC is illustrated 
in Section IV-G. As illustrated in Section IV-G, both wCross and mDSC can reduce class imbal-
ance. wCross often guides networks to preserve complex details of branchy structures but brings 
about many false alarms, while mDSC tends to generate more compact and clear predictions, but 
runs at the sacrifice of losing extending details. Therefore, we propose to blend these two kinds of 
complementary loss functions as a hybrid, shown as Eq. 18.22, so as to get segmentation results in 
a compact but detail-enhanced format. Because mDSC loss is no larger than 1.0 and much smaller 
than the wCross loss, we adopt a coefficient α, and we empirically set the α to 100.0 to balance the 
conflict between mDSC and wCross loss functions.

 + α  hybrid wCross mDSC=  (18.22)

18.4.6 imPlementation Details

Based on the cropped training samples, we further augment the training dataset with 30% rotated 
samples to combat the pose variation of the heart. We trained two networks to segment the CT 
and MR volumes independently. We implemented our 3D FCN in Tensorflow, using two NVIDIA 
GeForce GTX TITAN X GPUs. The code is publicly available now.4 Given the limited memory of 
one GPU, we assign the down- and up-sampling paths to different GPUs. We update the weights of 
network with a Adam optimizer (batch size = 1, initial learning rate is set to 0.001). With 30000 train-
ing epochs, it takes hours to train our network. Following the stratified deep supervision mechanism, 
we totally attached three side-paths to the up-sampling branch and set β = β = β =0.2, 0.4, 0.80 1 2  
for feature volumes from coarse to fine scales. Randomly cropped × ×96 96 96 sub-volumes serve 
as input to train our network. To avoid shallow layers being over-tuned during fine-tuning, we set 

4 https://github.com/xy0806/miccai17-mmwhs-hybrid

https://github.com/
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smaller initial learning rate for conv1, conv2, conv3a, conv3b, conv4a, and conv4b as 1e-6, 1e-6, 
1e-5, 1e-5, 1e-4, and 1e-4. We adopt the sliding window with high overlapping ratio and overlap-
tiling stitching strategies introduced in [51] to generate predictions for the whole volume, and fur-
ther remove the small and unreasonable isolated connected components in the final labeling result. 
The testing time for one volume is about 2 minutes.

18.4.7 quantitatiVe anD qualitatiVe analysis

We use three metrics to evaluate the proposed framework on segmentation, including DSC, Jaccard, 
and Average Distance of Boundaries (Adb). Transfer learning (TL) and deep supervision (DS) are 
configured for both compared methods. We conduct experiments to compare the model driven by 
classical cross-entropy (denoted as DS+TL+Cross), mDSC (denoted as DS+TL+mDSC), and hybrid 
loss function (denoted as DS+TL+hybrid). Because the ground truth of testing dataset is held out by 
the organizer for independent evaluation, we get our current evaluation results by taking 10 volumes 
from training dataset to train and another 10 volumes as testing.

In Figure 18.14, we show the improvement of probability maps for CT segmentation when 
we change from cross-entropy based loss function to mDSC and hybrid loss functions. For 
each row, the warmer the color, the higher the prediction probability. As we can observe, the 
prediction maps obtained from cross-entropy and weighted cross-entropy are more noisy than 
that obtained from mDSC, but this also means more possible details are preserved. When we 
compare the cross-entropy and weighted cross-entropy, we can see that the probability maps 
from the latter present higher contrast between the foreground and background. mDSC drives 
the network to output much more compact and clean predictions and thus enlarges the intra-
class gaps. As a combination of weighted cross-entropy and mDSC, we can see that the predic-
tion maps from hybrid loss function get higher foreground-background contrast and preserve 
necessary details.

FIGURE 18.14 From left to right: probability map of background, myocardium of the left ventricle, left 
atrium blood cavity, left ventricle blood cavity, right atrium blood cavity, and right ventricle blood cav-
ity. From top to bottom: training with classical cross-entropy, weighted cross-entropy, mDSC and hybrid 
loss functions.
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Quantitative evaluation results are shown in Tables 18.7 and 18.8. We can observe that both 
DS+TL+Cross and DS+TL+mDSC cannot get satisfying results for all substructures and emphasize 
the different structures. There can be about 14% difference between LVBC and PUA in DSC metric 
in DS+TL+Cross, while DS+TL+mDSC slightly alleviates the problem and gets obvious improve-
ment on ADB metric. With the hybrid loss function, for both CT and MR, our proposed method 
DS+TL+hybrid significantly balances all classes with evenly distributed performance and gets 
superior improvement on DSC and Jaccard metrics, especially in classes which DS+TL+mDSC 
fails. These quantitative results verifies the impact of loss functions and the efficacy of our proposed 
hybrid loss function.

In Figure 18.15, we visualize the segmentation results in CT and MR volumes. Our proposed 
method conquers complex variance of the heart and achieves promising performance in two modal-
ities. There are more rich details in the segmentation from CT volumes, since the structural infor-
mation are clearer in CT volumes than in MR, while CT is more radiation-intensive than MR. 
In Figure 18.16, with the segmentation results from the same CT volumes, we provide explicit 
proof about how the wCross based model can preserve more branchy details, and how the hybrid 
based model gets the compromise. wCross can guide the network to preserve more branchy details 
(denoted with green circle) because wCross focuses on each voxel, while it also brings about severe 
false alarms (denoted with blue circle). The hybrid loss function then drives the network to get a 

TABLE 18.7
Quantitative evaluation for whole heart segmentation in CT volumes

Method Metric Substructures of Heart

MLV LABC LVBC RABC RVBC ASA PUA mean 

DS+TL+Cross DSC[%] 81.31 79.07 90.86 85.39 81.61 71.71 76.38 80.90 

Jaccard[%] 69.58 71.02 83.50 75.10 70.03 62.45 63.03 70.67 

Adb[voxel] 2.954 29.01 3.345 6.178 7.371 3.509 5.378 8.249 

DS+TL+mDSC DSC[%] 68.97 90.00 83.42 84.36 62.50 91.51 80.84 80.22 

Jaccard[%] 55.67 82.19 73.33 74.05 49.31 85.03 68.87 69.78 

Adb[voxel] 3.185 5.415 5.666 5.875 8.245 2.692 3.875 4.993 

DS+TL+hybrid DSC[%] 81.86 84.54 87.76 81.53 77.80 94.12 82.62 84.32 

Jaccard[%] 69.93 76.12 78.66 70.28 65.90 89.20 71.13 74.46 

Adb[voxel] 2.987 22.67 4.609 6.502 8.609 2.237 5.086 7.529 

TABLE 18.8
Quantitative evaluation for whole heart segmentation in MR volumes

Method Metric Substructures of Heart

MLV LABC LVBC RABC RVBC ASA PUA mean 

DS+TL+Cross DSC[%] 71.98 76.96 87.05 78.60 73.38 63.50 70.85 74.62 

Jaccard[%] 58.06 65.98 78.34 68.44 62.94 50.20 58.92 63.27 

Adb[voxel]) 1.323 1.679 1.587 2.062 5.901 2.075 1.781 2.344 

DS+TL+mDSC DSC[%] 66.54 74.62 86.80 86.16 71.43 71.24 70.19 75.28 

Jaccard[%] 52.07 64.23 77.71 75.97 60.59 58.13 57.88 63.80 

Adb[voxel] 1.509 1.761 1.646 1.773 3.300 1.560 1.587 1.864 

DS+TL+hybrid DSC[%] 74.17 78.66 85.83 81.99 81.91 72.60 69.83 77.86 

Jaccard[%] 60.27 67.53 76.59 71.89 71.27 58.43 55.17 65.88 

Adb[voxel] 1.404 1.950 2.045 2.733 4.483 3.346 4.367 2.904 
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FIGURE 18.15 Visualization of segmentation results generated by hybrid loss guided models. From top 
to bottom: segmentation results from CT volumes and MR volumes. The color reference can be found in 
Figure 18.10.

FIGURE 18.16 Compare substructure segmentation results. From top to bottom: segmentation results of the 
same CT volumes generated by wCross based model and hybrid loss based model. Green circles denote the 
branchy details enhanced by wCross, while blue circles denote the flaws caused by wCross.

proper balance. In Figure 18.17, we show an example of the Hausdorff distance (the unit is [mm]) 
between the substructure segmentations obtained from DS+TL+hybrid and the ground truth. It can 
be observed that our segmentation results are accurate with small Hausdorff distances for most 
voxels. Large displacement often happens around the branchy locations.
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18.5 DISCUSSION AND CONCLUSION

With this chapter, we present our investigation about network designs to improve the perfor-
mance for whole heart segmentation. Upgrading key operators in convolutional network into 3D 
version promotes the capability of deep network to fully exploit spatial context for volumetric 
segmentation. The stratified deep supervision with auxiliary loss functions is beneficial in boost-
ing the training efficacy. To promote the segmentation for branchy details and reduce compu-
tation burden from a network design perspective, fractal connection and dense connection are 
independently explored. Transfer learning customized for 3D deep network is adopted for better 
initialization and generalization ability. Hybrid loss function to leverage the strengths of different 
loss functions is proposed to combat class imbalance. All these modified designs stem from the 
practical needs in the cardiovascular volume segmentation, and can be general for many other 
segmentation tasks.

Although the automated segmentation performance presented in this chapter is promising, 
there still exist many challenging problems for cardiovascular volume segmentation. First, from 
the varying image quality of HVSMR 2016 and MM-WHS 2017 Challenges, we can see that the 
image quality of CT scanning is much better than that in MR, which consequently results in bet-
ter segmentation performance (see Tables 18.7 and 18.8). However, CT is more radiation-intensive 
than MR. So, in the future, improving the segmentation performance for MR modality is the main 
challenge. Leveraging the multi-modality image transformation to transform the MR image into 
a CT-like image to improve segmentation is a possible research direction [65]. Second, although 
the deep learning based method is becoming more and more popular in image processing, it still 
has limited capacity in encoding global shape constraints, which will hamper the segmentation in 
boundary-ambiguous areas. So, incorporating the shape prior represented by classic shape model 
with the superior nonlinear mapping capability of DNNs will be an interesting research direction. 
Third, as pointed out in Section III, currently 3D DNNs implementation are computationally expen-
sive. Given the limited GPU memory, reducing the footprint of network is beneficial for network to 
receive input with larger size, which in turn increases the chance of network to collect more context 
information for better segmentation.

FIGURE 18.17 Illustration of the Hausdorff distance between the segmentation surface and the 
ground truth.
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Chung-Noble’s model (CN)

estimated distribution of segmentation in 79
Levy inter-distribution distance with 76
other models compared to 82
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segmentation accuracy validating with special 
phantoms for 79–82, 81, 82

segmentation before and after connectivity filter in 81
total errors per slice for 82
Wilson-Noble model segmentation comparison with 

80, 81
CIMT see carotid intima-media thickness
CKD see chronic kidney disease
CLAHE technique see Contrast Limited Adaptive 

Histogram Equalization technique
class-balanced loss function 388
classification methods 118
CLAWS respiratory motion control, MA-WHS using 113
CMR see cardiovascular magnetic resonance
CMRA see cardiovascular magnetic resonance coronary 

angiography
CMRO2 see cerebral metabolic rate of oxygen
CN see Chung-Noble’s model
CNN see convolutional neural network
collagen 288, 368
computed tomography (CT)

AAA detection with 176–181, 182, 185, 187
advantages and disadvantages of 255
ASM adjustment of ventricle shape on 207
atlas contours in 159
average execution time per slice for 53
brain study with 96
CAD early detection with 233–236, 235, 239–241
cardiac atlas development in 155–156
cardiac substructure images from 154
clinical perspective on 239–241
cross-sectional views of ascending aorta 295
CVD identification with 138, 138, 139
dynamic contrast enhanced 235–236
engineering perspective on 233–236, 235
flat panel 350
fuzzy c-means clustering-based segmentation 

with 179
heart image in 208
hypertension imaging with 349–350
ionizing radiation effects with 241
MRI integrated with 97
MRI’s noninvasive quality as advantage over 97
multidetector 233–236, 286, 350
myocardial perfusion measured with 198
perfusion 234–235, 235
phantom segmentation validation table for 52
pre-TAVR with tissue-mimicking phantoms and 

292–293, 293
stress perfusion studies with 240–241
3D-CT 187
3D modeling of tissue-mimicking phantoms for 

293–294, 294, 295
thrombus segmentation method from 176
vascular tree segmentation techniques tested on 

53, 53
computed tomography angiography (CTA)

AAA detection with 175–183, 187
blood vessels in 24
carotid stenosis diagnosis with 96
engineering perspective on 233–234
extraction of aorta images from 58–60, 59, 60, 61
geometric deformable models with 176–177
graph-based segmentation with 178

hypertension imaging with 349–350, 350, 351
parametric deformable models with 175
3D-CTA 183
topology prior model with 182, 187
vessel contrast. for vascular structures in 44

computer-aided design (CAD) 288
computer aided diagnostic (CAD) 357
conditional random field (CRF) model 390
confusion matrix 275, 275–276, 276, 277, 278
Connex350 Polyjet printer 289
constriction, blood velocities influenced by 26, 26
contour evolution 213
contour refinement with conditional random field 

390–391
contour shape descriptors based method 139–140
contrast enhanced MRA (CE-MRA) 353
contrast enhanced ultrasound (CEUS) 359
Contrast Limited Adaptive Histogram Equalization 

(CLAHE) technique 408, 408
convolutional neural network (CNN)

algorithms in machine learning in 269
biological vision processes with 269
classification system with 280
confusion matrix with 275, 275, 277
connected layer into convolutional layer with 289
deep learning architecture with 118, 140–142, 265, 

268–269, 269
Dropout to deal with overfitting in 271
echocardiogram view classification with 275
echocardiography with 268–273, 269, 270, 272, 275, 

277, 278, 280
error rates with 272, 272
Fast R 142
feature maps with 269
filter banks for 271
fused architecture of two strands of deep learning with 

269–273, 270, 272
fused architecture with 278, 280
hand-crafted approaches comparison with 278, 279
heart segmentation comparison with 394, 395
image classification with 290
implementation of 273
math of training dataset with 269
notations of parameters for 269
seven layers of operations are performed on 270, 270
super-resolution method based on 141
3D 288, 394, 395
training information for 272
two-network architecture with 277
two-strand and single-strand 275

CoreValve prosthesis 297, 298, 300, 301, 302
coronary angiography, myocardial perfusion measured 

with 198
coronary artery calcium (CAC) 240
coronary artery calcium score (CACS) 138
coronary artery disease (CAD)

as cause of death in industrialized countries 321
clinical perspective on cardiovascular imaging for 

238–244
CMR for early detection of 241–244
coronary MRI for assessment of progression with 

321–335, 330–337, 337
CT for early detection of 233–236, 235, 239–241
early detection of 227–244, 228, 233, 235, 237
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engineering perspective on cardiovascular imaging for 
227–238, 228, 233, 235, 237

inhomogeneous manifestation nature of 322
monitoring multiple stages of 322
MRI for early detection of 227–233, 228, 233
pathology with 321, 322
progression schematic of 322
ultrasound for early detection of 236–239, 237

coronary bypass grafts (CABG) 241
coronary flow reserve (CFR) 239
coronary MRI

advances and perspectives in 321–337, 
322, 324–335, 337

black-blood 332, 332, 335
cardiac motion with 323–324, 324
conclusion to 337–338
contrast agents for 334–335
coronary artery disease progression assess with 

321–335, 330–337, 337
coronary endothelial dysfunction assessment with 

330–331, 331
coronary signal enhancement with 328–329, 329
coronary thrombus imaging with 334–336, 335
coronary veins imaging with 337, 337
data acquisition in 324
heart-diaphragm tracking factor for 326
iNAV methods for 326–327, 328, 334, 336, 337
intraplaque hemorrhage imaging with 334–336, 335
introduction to 321–322, 322
left anterior descending artery in 327, 328, 329, 329
left circumflex artery in 329, 329
luminal narrowing imaging with 336
motion correction strategies for 327
pencil-beam excitation with 325
plaque inflammation imaging with 334–336, 335
positive vessel wall remodeling imaging with 331–334, 

332, 333, 334
preparatory pulses in 324
respiratory motion with 324–327, 325, 326, 327, 328
respiratory-resolved reconstructions with 327
right coronary artery in 327, 328, 329, 329, 332
schematic of 324
self-navigation methods for 326
technical challenges in 322, 322–330, 324–330
volumetric coverage and acquisition speed with 329, 

329–330, 330
coronary plaque characterization 240
coronary thrombus, coronary MRI of 334–336, 335
coronary veins, coronary MRI of 337, 337
Corpus Callosum 62
CPP see cerebrovascular perfusion pressure
CRF model see conditional random field model
cross-entropy loss 273
cross-entropy loss function 398
CSF see cerebrospinal fluid
CT see computed tomography
CTA see computed tomography angiography
CT coronary angiography (CTCA) 234–236
cumulative distribution function (CDF)

cerebrovascular changes in 3, 7
MAP correlation with 9, 11
temporal changes in sample patient 9

CVD see cardiovascular disease
CV proposal see Chan-Vese proposal

cylinder matching, accurate unsupervised 3D 
segmentation with 72

D

data consistency coefficient 51–52
data fusion 144–145
DBN see Deep Belief Network
DBP see diastolic blood pressure
DCE-MRI see dynamic contrast enhanced magnetic 

resonance imaging
Deep Belief Network (DBN) 118
deep convolutional networks

DenseVoxNet with refined structure design for 
399–401, 400, 401

experiments for refined structure design for 401–404, 
402, 403, 403–405

improved initialization and loss function with 
405–414, 406–409, 407, 411, 412, 413, 414

introduction to cardiovascular image segmentation 
with 386–388, 387

network architecture and training settings with 
391–392

network performance problems with 387–388
refined network structure design with 396, 396–404, 

400–403, 403–405
3D FractalNet with refined structure design for 396, 

396–399
volumetric fashion and deep supervision with 388–396, 

393, 394, 395
deep learning

CNN with 118, 140–142, 265, 268–269, 269
cost function of pre-training for 119
fused architecture of two strands of 270, 

270–273, 272
graphic representation of models for 141
with image input 118
medical image computing with 140–142, 141
methods based on 118
stacked sparse auto-encoders used for 117–119, 118
weight matrix for 119

deep neural networks (DNNs) 386–387
class-balanced loss function with 388
network performance problems with 387–388
transfer learning for 387–388

deep supervision
auxiliary loss for 390
stratified 387
3D FractalNet 398–399

deformable models; see also Hermite-based deformable 
models

accurate unsupervised 3D segmentation with 72
extensions of 175, 177
geometric 175, 176–177
gradient-based 34, 82
literature review for 174, 175, 175–177
parametric 175, 175–176
scale-space filtering compared to 72

DenseVoxNet
architecture of 400, 401
dense connection with 399–401, 400
training procedure for 401

descending aorta, multi-atlas segmentation with 
161, 163
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DG see discrete Gaussians
DH design 288
diabetic macular edema 12, 35, 62, 83
diabetic retinopathy (DR) 12, 35, 62, 83
diameter ratio 300
diaphragmatic navigator method 326
diastolic blood pressure (DBP) 346
Dice index

ASM and ASM/HCs methods with 211, 212
2D level set with ranges for 214
VVCV/SHT with 215

Dice Score 120
Dice similarity coefficient (DSC) 157

auto-segmented contours with atlas contours 
using 163

equation 311
estimated cardiac fiber orientations with 313
HVSMR Challenge evaluation criteria with 392
inter-observer variability with auto-segmentation using 

160, 160
multi-atlas segmentation with 161, 163
multi-class 410

DICOM (Digital Imaging and Communications 
in Medicine) format 208, 273

diffusion weighted MRI (DW-MRI) 356
Digital Imaging and Communications in Medicine format 

see DICOM format
Dirac function 213
DIR technique see double inversion recovery 

technique
discrete Gaussians (DG); see also linear combination of 

discrete Gaussians
adaptive model of multi-modal MRA with 

28, 29, 30
defined for LCDG models 74
marginal distribution approximated with 13

DMG see gradient-based deformable model
DNNs see deep neural networks
dose-volume histograms (DVHs) 158
dosimetric evaluation 158, 166, 167
double inversion recovery (DIR) technique

coronary vessel wall in 332
inversion pulses used in 332
limitation of 334
right coronary artery in 332

DR see diabetic retinopathy
Dropout 271
DSC see Dice similarity coefficient
DTI see MR diffusion tensor imaging
DVHs see dose-volume histograms
DW-MRI see diffusion weighted MRI
dynamic contrast enhanced magnetic resonance imaging 

(DCE-MRI)
automatic segmentation techniques for 231–232
CAD patient images from 233
diagnostic investigations with 232–233
myocardial perfusion imaging with 231
perfusion analysis with 232
saturation recovery pulse sequences used 

to perform 231
signal equation for saturation recovery with 232
steps required for perfusion analysis with 231

dynamic programming method 140
dyslexia 35

accurate unsupervised 3D segmentation in detection 
of 83

vascular tree segmentation applied to 62

E

E see elastic modulus
EAM see electro-anatomical mapping
ear-worn monitor 136
ear-worn PPG sensor 136
ECG see electrocardiogram
echocardiography

CAD early detection with 236, 238–239
cardiology imaging with 254–261, 256–260, 259
challenges in classification by computers for 261, 

261–262, 262, 263
classification based on viewpoints of 261, 261–265, 

262, 263, 264
clinical perspective on 238–239
CNN with 268–273, 269, 270, 272, 275, 277, 278, 280
conclusion and discussion for 278–280
datasets with 273, 273
Doppler imaging 255–256, 257
eight views of 254
engineering perspective on 236
frame-based methods in 262–264, 264
histogram of acceleration with 267–268, 268
implementation of 273, 273–278, 274, 275, 

276–279, 278
introduction to 253–254, 254
KAZE features with 263, 264, 266–267, 267, 278, 

279, 280
methodology and materials for 264, 265–273, 266, 267, 

268, 269, 270, 272
M-mode imaging 255–256
modes used to image heart 255
myocardial perfusion measured with 198
real time moving heart in 253
results with 273, 273–278, 274, 275, 276–279, 278
SIFT with 262–266, 264, 266, 278, 278, 279, 280
spatial-temporal fusion methods in 265
speckle-tracking 372–374, 375, 375–377, 377
two-dimensional imaging, and Doppler imaging 

255–256, 256, 257
viewpoint classifications of 253–280, 254, 256–262, 

259, 263, 264, 266–268, 269, 270, 272, 273, 
274, 275, 276–279, 278

view position for acquisition of 3D 258–260, 
258–261, 259

EchoPAC™ software 376
EF see ejection fraction
EFFD see extended free form deformation
ejection fraction (EF) 221

CMR in measurement of 242–243
EKG Shirt system 145
elastic modulus (E) 378
elastin 288, 368, 370
elastin-specific MRI contrast agents (ESMA) 334
electro-anatomical mapping (EAM)

atrial scarring assessment with 110
correlation between atrial scarring identified by LGE 

MRI and 111
electrocardiogram (ECG)

capacitive sensor implementations for 135



426 Index

cardiovascular health informatics with 132, 132–135, 
135, 145

evolution of 132, 132
myocardial tissue voltage detected by 323
unobtrusive sensing computing with 133–135, 135
wearable garments with 145

electromagnetic (EM) materials 288
EM algorithm see Expectation-Maximization algorithm
embolic stroke 95
EM materials see electromagnetic materials
endovascular aneurysm repair (EVAR) 174
ESMA see elastin-specific MRI contrast agents
essential hypertension 345
Euler-Lagrange equation 213
EVAR see endovascular aneurysm repair
evolutionary surface model

data consistency coefficient hi (I ) 51–52
direction of front propagation in 50
PDE system in 51

Expectation-Maximization (EM) algorithm
accurate unsupervised 3D segmentation with 72
adaptive model of multi-modal MRA with 29
block relaxation converging in 48
initialization sequentially using 13, 84
LCDG model with 4, 6, 84–85
for LCGs 47–49
modified 13–14, 47–49, 72, 84–85
refining LCDGS using modified 13–14, 84–85
sensitivity to initial parameters for modified 47
sequential initialization with 49–50
unsupervised parametric mixture model using 99

extended free form deformation (EFFD) 179
extracellular matrix

aorta biomechanics with 368
degradation 370
elastin with 288, 368
evaluation of remodeling for 242

F

F-actin see filament actin
fast low angle shot (FLASH) 231
Fast R-CNN 142
fast spin echo MRA (FSE-MRA) 356
FCNs see fully convolutional networks
FEA tools see finite element analysis tools
feature maps 269
FEM see finite element method
FFD see free form deformation
fibrosis

CMR in detection of 243
myocardial perfusion-fibrosis evaluation with 243

filament actin (F-actin) 288
finite element analysis (FEA) tools 292
finite element method (FEM) 386
first-order adaptive intensity model 183–185
FLASH see fast low angle shot
flat panel CT (FPCT) 350
fMRI see functional MRI
forehead mounted sensor 136
four-dimensional CT (4DCT) 155
FPCT see flat panel CT
frame-based methods 262–264, 264
free form deformation (FFD) 179

FSE-MRA see fast spin echo MRA
FullCure 930 see TangoPlus®
fully convolutional networks (FCNs) 386–387
functional MRI (fMRI), hypertension imaging with 355, 355
fuzzy c-means clustering-based segmentation

CT image with 179
literature review for 175, 178–179
MRI in lumen and aortic wall 178

G

Gaussian kernel 267
Gaussian mixture model 99

deviations between empirical distribution and 103
GC see generalized cylinder
GDM see geometric deformable model
GDS see global deterioration scale
generalized autocalibrating partially parallel acquisition 

(GRAPPA), MRI of atrial scarring using 113
generalized cylinder (GC), region-based deformable 

model 25
generalized search tree (GIST) 264
geometric deformable model (GDM) 175

CTA images with 176–177
LSM with 176

geometric evaluation 158, 166, 166
Georgia Tech Wearable Motherboard™ (Smart Shirt) 145
GE Vivid™ software 376
giant magneto resistance (GMR) 358
Gibbs-Markov random field model (GMRF)

image refinement using 99
spatial interaction model refined with 100
unsupervised parametric mixture model with 99–102

Gibbs random field model 73
GIST see generalized search tree
glaucoma 12, 35, 62, 83
GLCM see Gray Level Co-occurrence Matrix
global deterioration scale (GDS) 357
glove and hat based PPG sensor 136
GMR see giant magneto resistance
GMRF see Gibbs-Markov random field model
gradient-based deformable model (DMG)

other models compared to 34, 82
segmentation errors, and standard deviations with 

34, 82
gradient descent 272
gradient descent method 139
gradient vector flow (GVF)

other models compared to 34, 82
segmentation errors, and standard deviations with 

34, 82
snake boundary with 24

graph-based segmentation
CTA images used in 178
literature review for 175, 177–178

graph cut method 178
GRAPPA see generalized autocalibrating partially parallel 

acquisition
Gray Level Co-occurrence Matrix (GLCM) 264
gray-level profile model 206–207
Grey-Level Symmetric Axis Transform (GSAT) 263
ground truth definition 116–117
GSAT see Grey-Level Symmetric Axis Transform
GVF see gradient vector flow
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H

Hausdorff Distance (HD) 120
ASM and ASM/HCs methods with 211, 212
HVSMR Challenge evaluation criteria with 392
2D level set with measures for 214–215
VVCV/SHT with 215

HBP see high blood pressure
HCs see Hermite coefficients
HD see Hausdorff Distance
heart cross-section 258
heart disease, death caused by 254
heart rate, unobtrusive sensing of 133
Heaviside function 213
hemorrhagic stroke 95
Hermite analysis functions 200
Hermite-based deformable models

AAM for fetal ultrasound left ventricle in 201–206, 
202, 204, 205, 206

ASM for CT left ventricle in 206–211, 207–212, 
211, 212

discussion on 221
Hermite transform for 200–201, 201
introduction to 197–199
segmentation methods for 199–221, 201, 202, 204–213, 

215, 215–217, 220
3D level set for MR left ventricle in 216, 216–221, 

217, 220
2D level set for CT left ventricle in 212–215, 213, 215, 

215
Hermite coefficients (HCs)

active shape models with 208–211, 209–212, 211, 212
ASM/profile-HC 209, 211
ASM/quadratic-HC 210, 210, 211, 212

Hermite polynomials 200
Hermite transform 200–201, 201

cardiac ultrasound image with 204
hierarchical classification strategy 264
high blood pressure (HBP)

causes for 1
incidence of 1
mortality caused by 1
sphygmomanometer in diagnosis of 2

high-sensitivity C-reactive protein (HS-CRP) 349
hinge point 365, 366
HIP see hyperintense coronary plaques
histogram of acceleration (HoA) 267–268, 268
histogram of flow (HOF) 267
Histogram of Oriented Gradients (HOG) 264
HoA see histogram of acceleration
HOF see histogram of flow
HOG see Histogram of Oriented Gradients
HS-CRP see high-sensitivity C-reactive protein
h-Shirt system 145
HVSMR Challenge

comparison with different approaches on 404
design validation with 391
efficiency of FractalNet validated by dataset 

from 401
evaluation criteria adopted by 392
image quality from 414
testing dataset results from 393

hybrid imaging techniques 355–356
hybrid loss functions 407

hybrid loss guided class-balanced segmentation 409
implementation details for 410–411
multi-class Dice similarity coefficient for 410
volume size weighted cross-entropy with 409–410

hyperelasticity 369
hyperintense coronary plaques (HIP) 244
hypertension

AAA risk with 173
accelerated 345–346
advanced stage symptoms of 346
Alzheimer’s disease correlated to 347
CDC report on 357
classification of 345
conclusion to cerebrovascular change correlation 

with 359
CT and CTA for 349–350, 350, 351
current imaging technologies for 349–356, 350–355
current technologies for diagnosing primary 348–349
diagnosis guideline for 346
discussion of cerebrovascular change correlation with 

356–358
emerging techniques and trends with 358–359
essential 345
hybrid imaging techniques for 355–356
idiopathic 345
importance and relevance cerebrovascular change 

correlation with 347, 347
introduction to cerebrovascular change correlation 

with 345–347, 346, 347
invasive BP measurement techniques for 349
lab tests in diagnosis of 348
as localized condition 346
MRI, fMRI, and MRA for 352–355, 353, 354, 355
noninvasive BP measurement techniques for 348–349
nuclear imaging for 350–352, 351, 352
portal vein 346
primary 345, 348–349
pulmonary 346
risk factors of CVD related to 347
secondary 345–346
trends for measuring blood pressure 358–359
trends in imaging for 359
ultrasound for 355–356

I

IAE see inclination angle error
IC design 288
idiopathic hypertension 345
image navigator (iNAV) methods

clinical feasibility study of 336
coronary vein imaging with 337
motion detection quality improvement with 326–327, 

328, 334, 336, 337
respiratory motion compensation with 336
sensitivity and specificity values of 336
translational motion information derived from 

327, 328
whole-heart coronary vessel wall MRI technique 

with 334
image thresholding, accurate unsupervised 3D 

segmentation with 73
iNAV methods image navigator methods
inclination angle error (IAE) 312
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inferior vena cava (IVC)
enlargement of 239
multi-atlas segmentation with 161, 163

information fusion analysis 142–144, 143, 144
cardiac cardiovascular disease prediction with 142
data fusion in 144–145
impact of big health data on 144–145, 145

in vivo mechanical indices
cardiac cycle moduli 378
elastic modulus 378
pulse wave velocity 378, 379
stiffness index 377–378
strain and strain rate 378–379

IN-MONIT system 136
Institutional Review Board (IRB), cerebrovascular 

MRA-based change detection framework 
approved by 2

intensity-modulated radiation therapy (IMRT) 154
NSCLC treatment with 155

International Registry of Acute Aortic Dissections 366
inter-observer variability, atlas validation with 157–160, 

160, 161, 162
intima of aorta 367
intraplaque hemorrhage, coronary MRI of 334–336, 335
intravascular ultrasound (IVUS)

coronary plaque images with 332
vulnerability of plaque evaluation with 138

IRB see Institutional Review Board
ischemia, CMR in detection of 243
ischemic stroke, cause of 96
iterative thresholding (IT) 34
IVC see inferior vena cava
IVUS see intravascular ultrasound

J

Jaccard coefficient, HVSMR Challenge evaluation criteria 
with 392

K

Kalman filter, myocardial deformation estimate 
with 140

KAZE features
average accuracy rate with 280
CNN network proposed with 278, 279
confusion matrix of 2D 276
confusion matrix of 3D 277
difference between SIFT, SURF, and 263, 264
flowchart of echo video classification applying 267
histogram of optical flow with 276
3D features in 266–267, 267
2D versus 3D for 279

K-modal probability model 5
LCDG model with 74

k-Nearest Neighbor algorithm (kNN) 118
Kullback-Leibler divergence function 119

L

label fusion algorithm, MA-WHS using 114
LAD see left anterior descending artery
Lagrangian strain 237
Laplace’s Law 366

large deformation diffeomorphic metric mapping 
(LDDMM) 309

late gadolinium enhancement (LGE)
atrial scarring identified by 111
myocardial scar tissue detecting with 110
slice-by-slice images labeled for 120

LAX view see long-axis view
LCDG see linear combination of discrete Gaussians
LCG see linear combination of Gaussians
LCX see left circumflex artery
LDDMM see large deformation diffeomorphic metric 

mapping
least-squares technique 140
leave-one-out validation, atlas validation with 158, 

162–163, 163, 164
leave-one-patient-out cross-validation (LOO CV) 120, 122
left anterior descending artery (LAD) 239

CMRA in assessment of 242
coronary MRI of 327, 328, 329, 329
multi-atlas segmentation with 161, 163

left atrial scarring segmentation
accuracy for 123
achievements of 122
atrial scarring segmentation based on super-pixels 

classification in 116, 116
atrial scarring validation in study of 120
background with 110–111
conclusion to study of 124–125
contributions to 112
deep learning using stacked sparse auto-encoders in 

study of 117–119, 118
from delayed-enhancement cardiac MRI images 

109–125, 112, 113, 116, 118, 119, 121, 121, 122
discussion for study of 122–124
ground truth definition in study of 116–117
hyper-parameters settings in study of 119, 119–120
image over-segmentation using SLIC super-pixels in 

115–116
limitation with 124
MA-WHS in study of 113–115
methods in study of 112–120, 113, 116, 118, 119
MRI protocol in study of 113, 113
pipeline of workflow for 116
previous studies on 113
related work to 111–112, 112
results in study of 121, 121, 121–122, 122
step in constructing training dataset for 117
study population in study of 112–113
training data construction for 116–117
validation approaches in study of 120
whole heart segmentation validation in study of 120

left atrium, multi-atlas segmentation with 161, 163
Left Atrium Segmentation Grand Challenge 113
left atrium wall segmentation study 112
left circumflex artery (LCX)

CMRA in assessment of 242
coronary MRI of 329, 329
multi-atlas segmentation with 161, 163

left main coronary artery (LMCA)
coronary MRI of 329, 329
multi-atlas segmentation with 161, 163

left ventricle 283–284
ASM for CT of 206–211, 207–212, 211, 212
fetal ultrasound of 201–206, 202, 204, 205, 206



429Index

in heart cross-section 258
multi-atlas segmentation with 161, 163
3D level set for MR study of 216, 216–221, 217, 220
2D level set for CT of 212–215, 213, 215, 215

left ventricular ejection fraction (LVEF) 372–374, 376
left ventricular outflow tract (LVOT) 293, 294, 296
level set method (LSM), geometric deformable models 

with 176
level set techniques 44

surface modeling by 45–46
visualization of evolution of 53

LGE see late gadolinium enhancement
LifeShirt system 145
linear combination of discrete Gaussians (LCDG) 3

adaptive model of multi-modal MRA with 28
automatic segmentation in 4–5
DG defined for 74
EM algorithm in refinement of 13–14
EM based technique adapted to 4, 6
K-modal probability model with 74
modified EM algorithm for refining 84–85
PDF in 6
segmentation algorithm for 74–75
sequential EM-based initialization in 84
slice-wise segmentation with 73–75
TOF- and PC-MRA image distribution with 78

linear combination of Gaussians (LCG) 45
approximation of mixed density for 58
bones, brain tissues, and blood vessels and fat in 55
final parameters of dominant component of 57
initial parameters of dominant component of 54
model P 50
modified EM algorithm for 47–49
positive and negative components of 46
probability densities forming subset of 48
statistical gray level distribution model with 46–49
vascular tree segmentation with 54, 54, 55

LMCA see left main coronary artery
long-axis (LAX) view 376
LOO CV see leave-one-patient-out cross-validation
LSM see level set method
lumen, segmentation of 178
lung abnormalities 62

accurate unsupervised 3D segmentation in detection 
of 83

promising area of research on 35
lung cancer, cardiac toxicity with 154
LVEF see left ventricular ejection fraction
LVOT see left ventricular outflow tract
LVOT calcium volume 300
lymphoma, cardiac toxicity with 154

M

machine learning
classification tasks solved using 117–118
left atrial scarring segmentation classification 

using 118
MACS see Multi-Atlas Contouring Service
macular degeneration. 12, 35, 62
magnetic earring sensor 136
Magnetic Resonance Angiography (MRA)

accurate 3D segmentation of blood vessels with 71–85, 
76–82, 82

adaptive model of multi-modal 28
blood vessel segmentation using 23–35, 26, 27, 29, 30, 

31, 32, 33, 34
CAD early detection with 230–231
cerebral aneurysms diagnosis with 96
cerebrovascular change detection using 1–14, 3, 6, 7, 8, 

8, 9, 9, 10
engineering perspective on 230–231
fast spin echo 356
hypertension imaging with 352–355, 354
regions-of-interest in 28
signal intensity and flow velocity with 43
techniques commonly used with 97

Magnetic Resonance Imaging (MRI) 2; see also coronary 
MRI

acquisition parameters used in atrial scarring study 
with 113

advantages and disadvantages of 255
atrial scarring identified by LGE 111
atrial scarring segmentation study protocol for 

113, 113
brain study with 96
CAD early detection with 227–233, 228, 233
cardiac function using SSFP sequences 233
CT integrated with 97
diffusion weighted 356
dynamic contrast enhanced 231–233, 233
engineering perspective on 227–233, 228, 233
fuzzy c-means clustering-based segmentation 

with 178
GRAPPA used in atrial scarring study with 113
hypertension imaging with 352–355, 353
left atrial scarring segmentation from delayed-

enhancement cardiac 109–125, 112, 113, 116, 
118, 119, 121, 121, 122

lumen and aortic wall segmentation in 178
noninvasive quality as advantage over CT 97
other modalities compared to 97
phantoms with imaging from 285
T1 mapping in 227–229, 228
T2*-, T2-weighted BOLD imaging with 229–230
vascular imaging with 43
versatility of 97

magnetic resonance venography (MRV) 353
magnetization transfer contrast (MTC) 337
MAP see mean arterial pressure
marching cubes technique 73
Markov random field (MRF) theory 99, 263; see also 3D 

Markov random field model
MA-WHS see multi-atlas whole heart segmentation
maximum intensity projection (MIP) 72
MBF see myocardial blood flow
MBF quantification 232
MDCT see multidetector computed tomography
mean arterial pressure (MAP) 2

aortic blood pressure during cardiac cycle as 354
blood pressure measurements definitions with 346
CDF correlation with 9, 11
mean vessel diameter’s inverse relationship with 8
non-invasive mean PDF correlation with 10
systolic and diastolic readings affecting 349

mean surface distance (MSD) 157
atlas contours with 159
auto-segmented contours with atlas contours using 163



430 Index

inter-observer variability with auto-segmentation using 
160, 160

multi-atlas segmentation with 161, 163
media of aorta 367–368
medical image computing

approximation optimization techniques in 139–140
contour shape descriptors based method in 139–140
deep learning in 140–142, 141
dynamic programming method in 140
gradient descent method in 139
least-squares technique in 140
state-space based approaches in 140

metamaterial phantoms
design guidelines for 291
design of 287, 287–288, 288
tensile tests for 289–291
tuning of 288–291, 289, 290, 291

MGRF models, unsupervised parametric mixture model 
with 101–102, 106

mid-blood pressure 346
MINDS (Miniaturization, Intelligence, Networking, 

Digitalization, Standardization) technique 
136

MIP see maximum intensity projection
mitral valve, in heart cross-section 258
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