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Preface
This book covers novel strategies of the state-of-the-art approaches for automated noninvasive 
systems for early prostate cancer diagnostics. Prostate cancer is the most frequently diagnosed malig-
nancy after skin cancer and the second leading cause of male cancer-related deaths in the United 
States after lung cancer. However, early detection of prostate cancer increases chances of patients’ 
survival. Generally, CAD systems analyze the prostate images in three steps: (i) prostate segmenta-
tion; (ii) prostate description or feature extraction, and (iii) classification of the prostate status.

Current diagnosing of prostate carcinoma combines digital rectal examination (DRE), prostate-
specific antigen (PSA) blood test, and needle biopsy. Each of these techniques have their own short-
comings. The biopsy is the most precise, but is a highly invasive, expensive, and painful method for 
detecting prostate cancer and determining its aggressiveness. Therefore accurate, highly sensitive 
and specific, but noninvasive diagnostic techniques are in significant demand. Today’s CAD sys-
tems analyze images from various modalities, such as ultrasound, computed tomography (CT), and 
MRI, to detect and localize prostate cancer, as well as evaluate its size and extent.

The main aim of this book is to help advance scientific research within the broad field of early 
detection of prostate cancer. This book focuses on major trends and challenges in this area, and it 
presents work aimed at identifying new techniques and their use in biomedical image analysis.

Ayman El-Baz
Gyan Pareek
Jasjit S. Suri
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1

1 History of Imaging for 
Prostate Cancer

Sutchin R. Patel

The detection of prostate cancer has primarily been based on the use of serum prostate-specific 
antigen (PSA) along with a digital rectal exam (DRE). Prior to the introduction of transrectal ultra-
sound, digital guidance was used for the performance of prostate biopsies. The improvements in 
medical imaging have allowed for the ability to detect clinically significant lesions as well as the 
extent of disease (1).

THE HISTORY OF ULTRASONOGRAPHY

Studies during the nineteenth century into the measurement of the speed of sound in water paved 
the way for the development of SONAR (SOund Navigation And Ranging) (2). Jean-Daniel 
Colladon, a Swiss physicist, in 1826 performed an experiment where he struck an underwater bell 
in Lake Geneva and simultaneously ignited gunpowder. The flash of the gunpowder was observed 
by Colladon 10 miles away and he heard the sound of the bell with an underwater trumpet. By mea-
suring the time interval between these two events, Colladon was able to calculate the speed of sound 
in a body of water (Lake Geneva) (3). This experiment has been seen as the birth of underwater 
acoustics. John William Strutt (also known as Lord Rayleigh) was a physicist, who won the Nobel 
Prize in Physics in 1904 for discovering the element Argon. He predicted the existence of surface 
acoustic waves that travel on the surface of solids (called Rayleigh waves) and, in 1877, published 
The Theory of Sound, which became the foundation for the science of ultrasound (4) (Figure 1.1).

In 1880, Pierre and Jacques Curie made an important discovery that eventually led to the devel-
opment of the modern-day ultrasound transducer. The Curie brothers observed that when pressure 
was applied to crystals of quartz an electric charge was generated (3). The charge was directly pro-
portional to the force applied to it and the phenomenon was called “piezoelectricity” from the Greek 
word meaning “to press.” Current ultrasound transducers contain piezoelectric crystals.

On April 15, 1912, the Titanic sank in the North Atlantic after striking an iceberg, and the ensuing 
public outcry led to significant interest in the development of a device to detect underwater objects 
(2). Constantin Chilowsky, a Russian expatriate living in Switzerland, was an electrical engineer who 
became interested in echo ranging because of the sinking of the Titanic. German U-boat attacks on 
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2 Prostate Cancer Imaging

Allied shipping heightened his interest in developing SONAR (5). In 1915, Chilowsky developed a 
working hydrophone in conjunction with Paul Langevin, an eminent French physicist. Their work 
contributed much to the knowledge of generating and receiving ultrasound waves, which was an 
important part of the pulse echo principle of SONAR. Funding for research was exhausted at the end 
of World War I and the efforts shifted toward measuring the depth of the ocean floor. The quest for 
naval superiority and the submarine versus antisubmarine battles of World War II renewed interest 
in SONAR development (2).

An understanding of the historical milestones of ultrasound require knowledge of transmission 
and pulse reflection methods, as well as A, B, and M modes of ultrasound. Early ultrasound used 
the transmission method where ultrasound measured the ultrasonic waves that passed through a 
specimen (6). The amount of sound waves not absorbed from the intervening tissue was recorded. 
The pulse reflection method placed the receiver and transmitter on the same side of the specimen 
and the amount of sound reflected was then recorded. Amplitude or A-mode was a one-dimensional 
image that displayed the amplitude or strength of a wave along the vertical axis and time on the 
horizontal axis (2). Brightness or B-mode, which is commonly used today, is a two-dimensional 
characterization of tissue where each dot or pixel on the screen represents an individual amplitude 
spike. In currently used models, amplitudes of varying intensity are assigned shades from black to 
white. M-motion or motion mode ultrasound relates the amplitude of the ultrasound wave to the 
imaging of moving structures (such as cardiac muscle).

DEVELOPMENT OF MEDICAL ULTRASONOGRAPHY

George Ludwig and Francis Struthers, working at the Naval Medical Research Institute in Bethesda, 
Maryland, were among the first to use echo technique in biologic tissue. Because they were employed 
by the military their work was considered restricted information and was not published in medical 
journals (2).

John Julian Wild was an English-trained surgeon who immigrated to the United States after World 
War II (Figure 1.2). Working in Owen Wangensteen’s laboratory at the University of Minnesota, 
using A-mode imaging and a 15 MHz transducer, Wild measured the thickness of the bowel wall in 
a large water tank (7). Ahead of his time, Wild felt that “it should be possible to detect tumors of the 
accessible portions of the gastroenterological tract both by density changes and also in all probabil-
ity of the tumor tissue to fail to contract” (2). Wild managed to develop a scanning device that was 

FIGURE 1.1 John William Strutt, 3rd Baron Rayleigh (1842–1919).
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used to screen patients for breast cancer and also developed transrectal and transvaginal transducers 
(2,8). With this instrument he imaged a brain tumor in a pathology specimen and localized a brain 
tumor in a patient after a craniotomy (2).

Douglass Howry played an important role in the development of ultrasound and ultrasonic 
devices in the 1940s. Unlike Wild, Howry worked more on the development of the equipment and 
the applied theory of ultrasound rather than on its clinical application. Howry’s goal was to produce 
an instrument that was “in a manner comparable to the actual gross sectioning of structures in the 
pathological laboratory” (9). Working with W. Roderic Bliss, an electrical engineer, Howry built 
the first B-mode scanner in 1949. In the late 1950s, Howry and colleagues developed an ultrasound 
scanner with a semicircular pan containing a plastic window that was later developed into a direct-
contact scanner. In 1961,  Ralph Meyerdirk and William Wright produced the prototype for the first 
handheld contact scanner in the United States (10). Ian Donald at the University of Glasgow used an 
A-mode ultrasound machine to differentiate various types of tissues in recently excised fibroids and 
ovarian cysts. Donald and his colleagues in Glasgow contributed significant research in regard to 
ultrasonography in the field of obstetrics and gynecology. He incidentally discovered that a full uri-
nary bladder provided a natural acoustic window for the transmission of ultrasound waves through 
the pelvis, thus allowing pelvic structures to be imaged more clearly (2,11).

TRANSRECTAL ULTRASONOGRAPHY

Anatomic ultrasound imaging is the oldest and most widely used technique to image the prostate. 
Watanabe et al. were the first to describe the use of transrectal ultrasound (TRUS) imaging of the 
prostate with a 3.5 MHz transducer in 1974 (12,13). Prostate cancer lesions have been classically 
described as hypoechoic lesions on TRUS imaging (14,15). However, the low specificity and posi-
tive predictive value (PPV) of TRUS imaging was a clear limitation as other conditions such as 
 prostatitis or focal infarcts could also show hypoechoic characteristics. Lee et al. showed that the 
positive predictive value of TRUS by itself was 41%, the PPV dropped to 24% if the DRE was nor-
mal, 12% if the PSA was normal, and only 5% if both the DRE and PSA levels were normal (16). 

FIGURE 1.2 John Julian Wild (1914–2009).
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In 1989, Hodge et al. explored the utility of adding lesion-directed biopsies to specific hypoechoic 
areas found on ultrasound compared to the standard non-targeted TRUS-guided systematic pros-
tate biopsy. In 136 men with abnormal prostates on DRE, they found that directed biopsies toward 
hypoechoic areas within the prostate added very little yield since in 80/83 patients, prostate can-
cer was detected by the non-targeted systematic biopsies. The addition of TRUS-guided cores to 
hypoechoic lesions increased the yield by only 5% (17). Thus TRUS imaging by itself has been 
inadequate for the diagnosis, characterization, and targeting of prostate cancer due to poor resolu-
tion, low specificity, and its negative predictive value. The main concerns of the technique include 
failure to detect prostate cancer (due to poor spatial resolution of lesions), inaccurate risk stratifica-
tion (from under sampling in cases of small volume disease, transition zone or anteriorly located 
tumors) and high detection rate of small clinically insignificant prostate cancer (18–20). Most pros-
tate cancer tissue is known to be harder or stiffer than normal prostate tissue (the digital rectal exam 
is predicated on the physician detecting harder or abnormal lumps of cancer tissue). With real-time 
elastography imaging tissue, the physician induces a mechanical excitation in the prostate tissue and 
then images the response using real-time ultrasound (21). Techniques include strain elastography, 
acoustic radiation force impulse imaging, and shear wave elastography. Despite some promising 
results, an absolute quantitative threshold to distinguish benign from malignant tissue still remains 
to be determined. Thus transrectal ultrasound guidance continues to be used principally to guide 
systematic 12-core biopsies of the prostate.

HISTORY OF MAGNETIC RESONANCE IMAGING

Nikola Tesla discovered the rotating magnetic field in 1882. In 1937, Columbia University Professor 
Isidor Rabi, working at the Pupin Physics Laboratory in New York City, recognized that the atomic 
nuclei show their presence by absorbing or emitting radio waves when exposed to a magnetic field 
and this quantum effect was then called nuclear magnetic resonance (NMR) (Figure 1.3). Rabi won 
the 1944 Nobel Prize in Physics for his “resonance method for recording the magnetic properties of 
atomic nuclei” (22).

Felix Bloch and Edward Purcell, in 1946, independently discovered the magnetic resonance phe-
nomena when they studied the magnetic resonance properties of atoms and molecules in solids and 
liquids (compared to the study of individual atoms or molecules by Rabi using a molecular beam 
method). They were both awarded the Nobel Prize in 1952 for their work (23). The famous physicist 
Niels Bohr described the principles of NMR when he stated, “You know, what these people do is 
really clever. They put little spies into the molecules and send radio signals to them and they have to 
radio back what they are seeing” (24).

It was not until the 1970s that NMR went beyond application as a research tool in chemical and 
physical analysis and was applied to medicine. In 1971, Raymond Damadian, a physician working at 
Brooklyn’s Downstate Medical Center, showed that nuclear magnetic relaxation of times of healthy 
tissues and cancerous tissue differed due to water content (25). Damadian would apply for a patent for 
an “apparatus and method for detecting cancer in tissue” in 1972 and his patent would be approved 
in 1974 (26). In 1973, Paul C. Lauterbur, a chemist at the State University of New York, Stony Brook, 
produced the first NMR image of a test tube filled with water. Raymond Damadian would then, in 
1977, build the first MRI scanner assisted by his two postdoctoral students Michael Goldsmith and 
Larry Minkoff at the Downstate Medical Center. Dr. Damadian initially volunteered his own body 
for the first MRI scan but it was unsuccessful. His associates told him he was too obese and thus 
Dr. Minkoff’s skinnier torso was used to create the first human MRI scan on July 3, 1977 (24,26).

Sir Peter Mansfield improved the mathematics behind MRI when he suggested gradients as 
a way to spatially localize NMR signals, and developed the echo-planar technique that allowed 
images to be produced in seconds and later become the basis for fast magnetic resonance imag-
ing (24). He shared the 2003 Nobel Prize in Physiology or Medicine with Paul Lauterbur “for their 
discoveries concerning magnetic resonance imaging.”
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In 1956, the “Tesla” unit (T) was introduced as a derived unit of the strength of a magnetic field 
by the International Electrotechnical Commission Committee of Action in Munich, Germany. MRI 
machines are calibrated in Tesla units. The stronger the magnetic field, the stronger the amount of radio 
signals that can be elicited of the body’s atoms and therefore the higher quality of the MRI image.

CONVENTIONAL MRI

Conventional magnetic resonance imaging is composed of a T1-weighted (T1W) and T2-weighted 
(T2W) spin echo imaging. T1W imaging offers little benefit to prostate cancer tumor detection 
and characterization but it does have value in detecting post-biopsy hemorrhage, which appears 
hyperintense on T1W imaging. T2W imaging is the main sequence used for prostate MR imaging. 
It has high spatial resolution and allows for clear visualization of prostatic zonal anatomy and the 
capsule. T2W imaging for prostate cancer detection is non-specific as a region of low signal inten-
sity can also be seen by prostatitis, atrophy, scar tissue, and hemorrhage (27). T2W MRI, which 
was generally performed with lower magnet field strengths, was limited due to poor specificity and 
high inter- and intraobserver variability, partially due to the lack of standardization in reporting of 
prostate MRI (28).

MULTIPARAMETRIC MRI

Multiparametric MRI (mpMRI) has been promising when used for localization and targeting of sus-
picious prostate lesions. Using a 1.5 Tesla (T) or 3.0T MR scanner with a pelvic phased-array sur-
face coil in combination with an endorectal coil (ERC). A higher magnet strength (3T) can increase 

FIGURE 1.3 Isidor Rabi (1898–1988; right) with fellow Nobel Prize winners Ernest O. Lawrence (left) and 
Enrico Fermi (center).
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signal-to-noise ratio to provide increased resolution so that an ERC may not be needed (29,30). The 
use of an ERC along with a pelvic phased-array coil has been shown to enhance visualization of sur-
rounding pelvic tissue, which can help identify the presence of extraprostatic extension and seminal 
vesicle invasion as well as an increase in the sensitivity for detecting prostate cancer (31).

MR spectroscopy that quantified relative levels of metabolites, such as choline, citrate, creatine, 
and polyamines, was utilized for enhanced prostate cancer detection but has been phased out as a 
sequence in mpMRI (32). A combination of functional and anatomical sequences (such as T1W, 
T2W, diffusion-weighted imaging, and dynamic contrast-enhanced MRI) allow for localization 
and characterization (prostate imaging-reporting and data system, PI-RADS) of prostate lesions. 
Increasing suspicion (PI-RADS ≥4) has been shown to correlate with a higher risk of prostate can-
cer on fusion biopsy (33). MRI fusion biopsies have seen an increase in use with reproducible results 
outside of academic centers (34). Prostate fusion biopsy combines the strength of MRI imaging with 
the easy applicability of the TRUS imaging/biopsy platform that is very familiar to urologists using 
office-based platforms (Artemis [Eigen], UroNav [Invivo/Philips], Urostation [Koelis], etc.) to allow 
the onlay of pre-procedure MRI to guide prostate biopsy in real time. Software-based platforms 
(Artemis, UroNav, Koelis, etc.) incorporate complex algorithms to register and co-display MR and 
TRUS images for guidance during biopsy (35). The benefit of prostate fusion biopsy has been docu-
mented in men with prior negative prostate biopsy, men with cancer located outside of the standard 
12-core biopsy pattern, and in men diagnosed with low-risk prostate cancer (36,37).

IMAGING FOR PROSTATE CANCER STAGING

Computed tomography and MRI in conjunction with whole-body bone scintigraphy have formed 
the basis for accurate staging for prostate cancer and the detection of metastatic lesions. Prostate 
cancer staging involves assessment of extraprostatic extension, seminal vesicle involvement, and 
lymph node and bone involvement. MpMRI has been studied as a tool to predict organ-confined 
prostate cancer on final pathology but has shown poor sensitivity (47%) for pathological extrapros-
tatic extension (38,39).

The current standard imaging test for bone metastasis is whole-body bone scintigraphy. A bone 
scan is indicated per NCCN (National Comprehensive Cancer Network) guidelines in patients who 
initially present with high-risk prostate cancer (T1 disease with a PSA ≥ 20 ng/mL, T2 disease with 
a PSA ≥ 10 ng/mL, Gleason score ≥8 or T3/T4 disease), any stage of disease with symptoms of 
bone metastasis, biochemical recurrence post radical prostatectomy, or increasing PSA or abnormal 
DRE after radiotherapy (40).

Single-photon scintigraphic imaging is performed using a bone-seeking radiopharmaceutical 
99mTc-methylene disphosphonate (99mTc-MDP). This radiotracer mimics high metabolic states of 
fast-growing cancer cells align the nuclear camera to quantify these areas using a bone scan index. 
Bone scintigraphy, however, has relatively poor specificity (42%) for osteoblastic bone metastasis 
(41). False positive findings attributed to the poor specificity for bone scan can occur with Paget’s 
disease, prior trauma, infections, or metabolic disorders such as hyperparathyroidism.

Prostacint (Cytogen, Princeton NJ), In-111 capromab pendetide, is a radiolabeled antibody targeted 
to the prostate-specific membrane antigen (PSMA), which is a glycoprotein expressed in both benign 
and neoplastic prostatic epithelial cells applied clinically in 1996 following FDA approval. It is up-
regulated in hormone-resistant states and in metastatic disease (42,43). Unfortunately, Prostacint has 
limited predictive value in imaging the prostate fossa, particularly following radiation therapy, has 
low sensitivity for detecting osseous metastasis, and is technically demanding, thus it was not widely 
adopted (44,45). Novel small molecule imaging PSMA ligands have been developed to attempt to 
address these limitations. Molecular imaging strategies for evaluating prostate cancer try to capital-
ize on the increased metabolic needs of cancer cells, tumor-specific expression of androgen receptor 
membrane proteins, or the osteoblastic reaction adjacent to bone marrow metastasis.
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PET involves imaging of radiolabeled tracers inside the prostate after IV administration using 
gamma rays (28). It tends to be used for cancer staging, assessing biochemical failure after radio-
therapy, or metastatic involvement. PET imaging highlights the metabolic molecular of cellular 
activity of prostate cells and is used in conjunction with anatomical imaging in the form of PET/
MRI or PET/CT. The different PET methods are characterized by the choice of tracer used and the 
targeted biological process: metabolism (18 F-fluodeoxyglucose is the most common radiotracter 
used to monitor glucose metabolism in tumor cell), cellular proliferation (1-amino-3- fluurine-18-
fluorcylobutane-1-carboxylic acid [18-FACBC], 11C-choline, and 18 F-flurocholine), and receptor 
binding (PMSA-based radiotracers: 64 Cu-labeled aptomers and 11C-, 18F-, 68Ga-, and 86Y-labeled 
low molecular weight inhibitors of PSMA) (46).

CONCLUSIONS

Despite newer imaging technology, advances in prostate cancer imaging have historically been slow 
to develop. The history of the development of ultrasonography as well as advances in MRI illustrate 
how we have reached our current methods to image the prostate. The recent software and imaging 
platforms developed for prostate fusion biopsies have begun to move us from an essentially blind 
biopsy process to a more targeted approach. Thus the history of prostate imaging has shown us that 
the continued advances in the field of radiology have benefited our ability to better image and biopsy 
the prostate.
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2 Transrectal Ultrasound 
(TRUS)-Guided Prostate Biopsy
Historical Perspective and 
Contemporary Clinical Application

Jennifer Fantasia, Dragan Golijanin, and Boris Gershman

INTRODUCTION

Prostate cancer is the most common cancer in men and the second leading cause of cancer mortality 
(Siegel et al. 2017). In 2017, there were an estimated 161,360 new cases and 26,730 deaths attributed 
to prostate cancer (Siegel et al. 2017). Despite substantial changes in screening for prostate cancer 
over the last 40 years, transrectal ultrasound (TRUS)-guided prostate biopsy remains the diagnostic 
standard and is utilized to establish tissue diagnosis in the overwhelming majority of prostate can-
cer cases (Carter et al. 2013). It is estimated that more than 1 million TRUS-guided prostate biopsies 
are performed annually in the United States, with important implications for both cost and potential 
morbidity (Aubry et al. 2013). Accordingly, clinicians must understand the underlying principles 
behind this imaging modality to safely perform biopsies and accurately interpret imaging findings 
relevant to the clinical management of their patients.

HISTORICAL PERSPECTIVE

As an internal male reproductive organ, physical examination of the prostate requires digital rectal 
examination (DRE). Historically, a DRE suspicious for malignancy would constitute the indica-
tion for performing a prostate biopsy. Initially, prostate biopsy was performed via a transperineal 
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approach as first described by Barringer in 1922 (Barringer 1922). In 1937 Astraldi described 
performance of prostate biopsy by transrectal digital guidance (Astraldi 1937). Digitally guided 
biopsies remained common practice until the development of ultrasonography and its clinical appli-
cation to prostate imaging. The advent of ultrasonography allowed for imaging of the prostate, first 
reported in 1952 by Wild and Reid, followed by Takahashi in 1963 (Wild and Reid 1952; Takahashi 
and Ouchi 1963). The quality of such imaging was technically limited until the late 1960s, when 
Watanabe performed the first successful TRUS-guided biopsy (Watanabe et al. 1968). Subsequent 
advances in ultrasound imaging have since made it the primary imaging modality to evaluate the 
prostate for both benign and malignant processes. To accurately perform and interpret a TRUS 
of the prostate, it is critical for the practicing urologist to have a strong understanding of both the 
underlying prostatic anatomy as well as an understanding of the physical properties of ultrasound 
for optimal image acquisition and interpretation (Figure 2.1).

FIGURE 2.1 Ultrasound platform.
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PROSTATE ANATOMY AND HISTOLOGICAL ARCHITECTURE

The prostate is a glandular organ positioned above the urogenital diaphragm and below the blad-
der neck superiorly; it rests behind the pubic symphysis anteriorly, with the rectum posteriorly. The 
urethra courses through the entire length of the prostate, from the base of the prostate to its apex. 
Additional structures that may be visualized during ultrasound of the prostate include the seminal 
vesicles and vasa deferentia.

Histologically, the prostate has traditionally been divided into different zones based on location 
and tissue types (McNeal 1981). These zones have important clinical implications based on observed 
patterns of pathology, both benign and malignant. Traditional zones of the prostate include the anterior 
fibromuscular stroma (AFS), the transitional zone (TZ), peri-urethral zone, central zone (CZ), and 
peripheral zone (PZ). The majority of prostatic malignancies arise from the peripheral and central 
zones of the prostate, both located posteriorly in the gland. This pattern was reported by Stamey 
(1995) based on observations from gross and histological findings obtained from radical prostatec-
tomy specimens. In contrast, the transitional zone is more likely to harbor adenomas from benign pros-
tatic hyperplasia. While there is no distinct delineation of these zones on ultrasound, the transitional 
zone—which may be particularly enlarged in cases of benign prostatic  hyperplasia—demonstrates a 
more heterogeneous echogenicity as compared with the central and peripheral zones (Halpern 2002).

TECHNICAL ASPECTS OF PROSTATE ULTRASONOGRAPHY

Ultrasonography involves the passage of sound waves through tissues, allowing the interface 
between the sound wave and tissue to be communicated back to the transducer to reveal informa-
tion about tissue structure, composition, and density (Kossoff 2000). The transducer uses alternat-
ing electrical current pulses to stimulate mechanical energy from the internal transducer crystals; as 
these crystals expand and contract, the mechanical energy is converted into sound waves which pass 
from the transducer, through a coupling agent (gel), and into the tissue. As the longitudinal sound 
waves travel through tissue, a portion of the sound wave energy is reflected back to the transducer to 
be converted to mechanical, then electrical, energy, which is then reconstructed to create the visual 
ultrasound image (Kossoff 2000).

Certain parameters of the ultrasound can be manipulated by the provider to optimize image 
acquisition. Ultrasound frequency is an important parameter, as manipulation of the frequency will 
alter the tissue penetration of the sound waves (Kossoff 2002). A high frequency results in a higher-
resolution image, with greater discrimination between various tissues and possible lesions, but 
comes at the expense of decreased tissue penetration. The majority of prostate TRUS are performed 
at a frequency of 6–10 Hz, although recent studies have described high-resolution ultrasound using 
high frequencies up to 29 MHz (Ghai et al. 2016). A working knowledge of the technical aspects 
of the imaging modality will allow the practitioner to set optimal parameters for various clinical 
indications. For example, the posterior central and peripheral zones are optimally imaged with a 
higher-frequency setting, whereas the anterior prostate may require a lower-frequency for improved 
tissue penetration.

The most common form of ultrasound performed for prostate TRUS is a gray-scale modality. 
The amplitude of the sound wave determines the brightness of the pixelation on the image, and 
the image should be calibrated so that the peripheral zone reflects a medium gray color (Kossoff 
2002). Terminology describing the echogenicity, or brightness, of the imaging ranges from hyper-
echoic (bright) to hypoechoic (dark), with the peripheral zone set as the reference. Anechoic is the 
term used to describe complete absence of echogenicity as is seen with the passage of sound waves 
through fluid. The echogenicity of tissue is due to the reverberation of the sound wave against the 
particles of the tissue (Kossoff 2002). Thus, a denser tissue will result in a more echogenic image.

Historically, the echogenicity of lesions within the prostate was felt to correlate with malignant 
lesions. In 1989, Hodge reported that TRUS prostate biopsy of hypoechoic lesions correlated with a 
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palpable abnormality on DRE in 90% of cases, with histological diagnosis of prostate cancer con-
firmed in 66% of biopsies obtained from correlating lesions (Hodge 1989). Still, prostate cancers 
may be hypoechoic, hyperechoic, or anechoic (Shinohara et al. 1989). Indeed, 39% of lesions are 
isoechoic on ultrasound (Shinohara et al. 1989). Nonetheless, although hypoechoic lesions are not 
pathognomonic of prostate cancer, such abnormalities still provide visual targets for areas of con-
cern at the time of biopsy.

TECHNICAL ASPECTS OF PERFORMING TRUS-GUIDED PROSTATE BIOPSY

Prior to biopsy, the patient is instructed to perform a cleansing enema to evacuate the rectum of 
stool to allow for enhanced visualization of the prostate as well as to potentially decrease the risk 
for infectious complications. Most commonly, the patient is positioned in the left lateral decubitus 
position, with knees drawn to the chest. Alternatively, some facilities utilize a prone position for 
performing biopsy. A DRE should be performed prior to insertion of the probe to evaluate for asso-
ciated pathology that may prevent successful TRUS (e.g., rectal mass, stricture, patient intolerance) 
as well as to confirm any palpable abnormalities. The ultrasound probe is lubricated with a gel that 
serves as a coupling agent and placed into a sterile sleeve (Figures 2.2 and 2.3).

The mapping, or initial survey, of the prostate begins with scanning the gland in both axial and 
sagittal planes to obtain an accurate volume estimate. The width and the length of the gland are 
obtained in the axial plane, while the length is measured in the sagittal plane. Prostate volume is 
then estimated by the ultrasound platform, typically by calculating the geometric volume of the 
prostate as an ellipsoid. The prostate is then inspected from base to apex for characteristics such as 
overall gland contour, echogenicity, and appearance of the seminal vesicles and vasa deferentia. The 
echogenicity of the prostate should be symmetrical between lobes with a clear sonographic capsule 
differentiating between the prostate gland and peri-prostatic tissues (Figures 2.4 and 2.5).

FIGURE 2.2 End-fire ultrasound probe/transducer.
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FIGURE 2.3 Ultrasound probe with coupling gel and needle guide.

FIGURE 2.4 Axial view of prostate with measurements.
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There are two types of ultrasound probes used for prostate biopsy that provide imaging in differ-
ent orientations. This has important implications regarding how the probe is manipulated to view 
different aspects of the prostate. The end-fire probe relays an image from either directly in front of 
the probe or at a very slight angle. Thus, to obtain lateral views of the prostate—important for both 
administration of local anesthetic as well as obtaining sample cores from the most lateral lobes 
of the prostate—the probe handle must be angled laterally away from the target of interest. This 
requires that the patient be positioned such that the handle can be moved up and down with the anus 
as a fulcrum to successfully visualize the right and left lobes. In contrast, the side-fire probe relays 
an image laterally from the probe and thus rotation of the probe allows for complete imaging of the 
prostate, including right and left lateral lobes.

CLINICAL ASPECTS OF TRUS PROSTATE BIOPSY

INDICATIONS

Indications for performance of prostate biopsy include elevated prostate-specific antigen (PSA), 
abnormal PSA kinetics, or abnormal DRE suspicious for malignancy (Carter et al. 2014). 
Contemporary clinical guidelines advocate shared decision making—a discussion between patients 
and providers of the risks and benefits of PSA screening—to prevent overdiagnosis and overtreat-
ment of clinically insignificant prostate cancer (Carter et al. 2014). While prostate TRUS without 
biopsy may be performed for a variety benign indications—including obtaining accurate prostate 
size measurements as part of evaluation for voiding dysfunction, evaluation of azoospermia, and 
suspected prostatic infection—this chapter will focus on TRUS-guided prostate biopsy.

FIGURE 2.5 Sagittal view of the prostate with measurement.
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TRUS-guided prostate biopsy is the standard of care diagnostic test for elevated PSA in the 
biopsy-naïve setting, and in recent years it has been increasingly applied for monitoring of active 
surveillance. However, the diagnosis of prostate cancer by systematic sampling of the prostate is 
a relatively unique paradigm in oncology as it represents a random sampling of the gland rather 
than targeted biopsy of a radiographically apparent lesion. Accordingly, there is a risk of sampling 
error whereby clinically significant disease may not be captured. This limitation has presented a 
challenge to both the diagnosis and management of prostate cancer, resulting the introduction of 
prostate MRI and MRI-U/S fusion biopsy. This technology is increasingly utilized for patients on 
active surveillance and for patients with elevated PSA undergoing repeat biopsy (AUA 2016). Still, 
TRUS-guided biopsy is an integral component even when MRI fusion is applied.

CONTRAINDICATIONS

Contraindications to TRUS-guided prostate biopsy including active urinary infection, coagulopa-
thy, and rectal anomalies that preclude the procedure (e.g., rectal stricture, which may result in 
inability to tolerate rectal introduction of the TRUS probe; or absence of rectum, as in patients with 
total proctocolectomy). Active urinary infection is associated with high risk of serious infectious 
complications. Similarly, coagulopathy can result in severe bleeding complications. Some patients 
may require sedation to successfully undergo the procedure, either due to concomitant ano-rectal 
pathology or anxiety.

PREPARATION

The procedure is reviewed in detail including post-procedural recovery. Informed consent is 
obtained after discussion of the indication(s), risks, benefits, and alternatives to the procedure, 
including potential complications and possible implications based on biopsy results.

Management of antiplatelet or anticoagulation therapy prior to prostate biopsy has important 
considerations for risk of post-biopsy bleeding complications and has been studied extensively. 
Current American Urological Association (AUA) guidelines recommend that patients may continue 
use of low-dose aspirin as this has not been associated with increased risk of significant bleeding 
complications (Culkin et al. 2014). Other antiplatelet agents (e.g., clopidogrel) or anticoagulation 
therapy should be discontinued based on the half-life of the medication so that coagulopathy is 
fully reversed at the time of the procedure. Clopidogrel should be discontinued 5–7 days prior to 
biopsy. Novel oral anticoagulants should be held for 2–5 days prior to the procedure, depending on 
the agent. For patients on warfarin, a normalized INR should be documented prior to biopsy. For 
patients at high risk of a venous thromboembolic event, if antiplatelet or anticoagulation therapy is 
held (e.g., recent cardiac stent, mechanical prosthetic valve), the clinician should consider bridging 
with heparin or low-molecular-weight heparin prior to biopsy.

Infectious complications have received growing attention in recent years given increasing risk 
of serious infectious complications following prostate biopsy (Loeb et al. 2011). Peri-procedural 
antibiotic prophylaxis mitigates this risk. Identified risk factors include healthcare workers, prior 
antibiotic exposure within 6  months, and recent international travel to areas with high rates of 
resistance (Anderson et al. 2015). AUA guidelines recommend that all patients undergoing pros-
tate biopsy receive antibiotic prophylaxis against coliform, or intestinal, bacteria including E. coli, 
klebsiella, proteus, enterobacter, serrattia, enterococcus, and anaerobes (Wolf et al. 2008). However, 
since the clinical introduction of prostate biopsy, antimicrobial resistance patterns have signifi-
cantly increased, correlating with a 4% increase in the risk of hospitalization, largely due to the 
infectious complications of TRUS prostate biopsy in the setting of antibiotic-resistant bacteria 



16 Prostate Cancer Imaging

(Nam et al. 2010). Currently, the AUA guidelines published in 2014 still recommend either fluo-
roquinolone-based or first-, second-, or third-generation cephalosporin antibiotic prophylaxis as a 
first-line therapy, for a duration of <24 hours. Alternative prophylactic regimens include Bactrim 
and aminoglycosides or aztreonam.

Increased recognition of antimicrobial resistance profiles has also stimulated extensive 
research to establish best practices with emphasis on safety, antibiotic stewardship, and cost-
effectiveness. Recent data suggests that rectal swabs may identify patients with fluoroquinolone 
resistance for tailored antimicrobial therapy (Taylor et al. 2012). Others recommend use of local 
and up-to-date antibiograms to assess for current patterns of resistance and to inform choice of 
prophylactic agent (Liss et al. 2017). Another approach is to include the addition of a second 
antimicrobial agent (e.g., gentamicin) at the time of biopsy for “augmented” antimicrobial pro-
phylaxis (Womble et al. 2015).

BIOPSY TECHNIQUE AND PATTERNS

After the initial survey of the prostate, local anesthesia is administered. Acknowledging the 
potential for patient discomfort and peri-procedural anxiety, several studies have evaluated dif-
ferent methods of analgesia. While abroad it is more common to utilize intravenous sedation 
or systemic pain medication in the form of opioids, peri-prostatic nerve block remains the gold 
standard and is the most frequently used in the United States (Bjurlin et al. 2014). This block is 
performed by targeting the neurovascular bundles that lie laterally at the junction of the prostate 
and the seminal vesicles. This area can be identified as a hyperechoic region due to the presence 
of peri-prostatic fat. Most commonly, 5 mL of local anesthetic (1%–2% lidocaine or bupivacaine) 
can be used to infiltrate the plane containing the neurovascular bundles bilaterally. The anesthetic 
agent can be administered either as one single injection per side or via multiple injections per side 
(Cantiello et al. 2012).

The biopsy cores are obtained using a spring-loaded core needle biopsy gun, usually 18-gauge. 
The ultrasound probe is designed with a trough for the biopsy needle and the needle itself is etched 
to enhance its visualization on ultrasound; many ultrasound devices also include a marker ruler in 
the parasagittal plane to facilitate accurate placement of the needle to obtain samples. Historically, 
lesions were targeted either by palpation or by correlating hypoechoic findings on ultrasound. 
However, many malignant lesions cannot be distinguished by ultrasound or palpation. Accordingly, 
a systematic sampling of the prostate using a sextant model was purposed by Hodge et al. (1989). 
Biopsies were obtained from the base, mid, and apex bilaterally. However, this sampling scheme 
failed to adequately sample areas of the prostate, particularly at the lateral peripheral zone. This 
was confirmed by correlating pathological findings from radical prostatectomy specimens (McNeal 
et al. 1988). Current guidelines recommended performing a 12-core biopsy pattern, including the 
original sextant biopsy template plus additional samples at the lateral base, mid, and apex, as well 
as the targeted biopsy of any palpable abnormalities or suspicious lesions on imaging (Bjurlin et al. 
2013) (Figures 2.6 through 2.10).

COMPLICATIONS

Although a commonly performed procedure, TRUS-guided prostate biopsy may be associated 
with potential morbidity which can have substantial impact on both the patient and the health-
care system. Physical complications are often classified into noninfectious (i.e., pain; bleeding 
complications including hematuria, hematospremia, and rectal bleeding; urinary retention) and 
infectious complications (i.e., bacteriuria, urinary tract infection, bacteremia, sepsis). Reported 
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rates of complications vary widely in the literature depending on patient cohort, biopsy tech-
nique, and definitions of endpoints.

Most complications as usually self-limited and resolve over days to weeks. Bleeding complica-
tions can be mitigated by appropriate peri-procedural management of antiplatelet or anticoagulation 
medications. The most common complication experienced is hematospermia, which affects over 
30% of patients and resolves spontaneously in most instances (Heidenreich et al. 2014). Similarly, 
nearly 15% of patients experience mild hematuria with spontaneous resolution (Heidenreich et al. 
2014). Approximately 2% of patients experience rectal bleeding lasting longer than 2 days, and <1% 
develop urinary retention (Heidenreich et al. 2014).

Infectious complications range in severity, from the symptomatic urinary tract infection that 
can be safely managed with oral antibiotics to sepsis requiring hospitalization. Indeed, the vast 
majority of prostate biopsy complications requiring hospitalization are infectious in nature (Loeb 
et al. 2013). Associated risk factors for patients who ultimately require hospitalization follow-
ing TRUS prostate biopsy include diabetes and enlarged prostate (Loeb et al. 2013). Rates of 
urinary tract infections following TRUS prostate biopsy vary between 2% and 6%, while the 
rate of hospitalization after TRUS prostate biopsy for febrile illness ranges between 0.6% and 
4.1% (Heidenreich et al. 2014; Nam et al. 2014). Recent studies suggest an increase in the rates 
of infectious complications requiring hospitalization compared to historical trends (Loeb et al. 
2013). Consistently, these infectious complications are associated with antimicrobial-resistant 
bacteria (Loeb et al. 2013). These trends continue to fuel the research to optimize antimicrobial 
prophylaxis.

FIGURE 2.6 Prostate biopsy gun.
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FIGURE 2.8 Spinal needle used to inject local anesthetic.

FIGURE 2.7 Prostate specimen samples.
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FIGURE 2.9 Axial view of prostate with hypoechoic lesion at the right lateral posterior prostate (arrow).
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FUTURE DIRECTIONS

Recent technical advancements in the field of ultrasonography are currently being evaluated in 
hopes of refining the diagnostic ability for TRUS prostate biopsy. Color Doppler ultrasound is now 
being used to assess areas of increased vascularity within the prostate, which may correlate with 
malignant change, to allow for targeted biopsies. In one study, this imaging technique was shown 
to increase cancer detection rates and provide more accurate diagnosis. However, the sensitivity 
remains low, with as many as 45% of malignant lesions failing to demonstrate any sonographic 
findings (Halpern et al. 2000). To further improve the diagnostic accuracy, intravenous microbubble 
contrast agents have been utilized to better delineate the microvasculature associated with malig-
nant lesions. In early studies, the use of contrast-enhanced ultrasound has improved the sensitivity 
for the detection of prostate cancers (Halpern et al. 2000). With improved sonographic demonstra-
tion of lesions, the use of the 3D ultrasound has also been investigated to improve the accuracy 
of biopsy (Bjurlin et al. 2014). Finally, the fusion of real-time ultrasound imaging with a detailed 
MRI-based mapping of the prostate, MRI-U/S fusion biopsy, has emerged as a novel contemporary 
paradigm in prostate biopsy. MRI-fusion biopsy will be addressed in detail in Chapter 5.
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3 Current Active Surveillance 
Protocol for Prostate Cancer

Scott Greenberg and Jennifer Yates

INTRODUCTION

The landscape of prostate cancer screening, diagnosis, and treatment is changing rapidly. The most 
active areas of research and development are arguably occurring in the treatment of advanced and 
metastatic prostate cancer. With the introduction of abiraterone and enzalutamide, the paradigm 
for advanced prostate cancer management has significantly changed. On the other end of the pros-
tate cancer spectrum, screening for prostate cancer has become a controversial topic. The changes 
introduced by the United States Preventive Services Task Force’s (USPSTF) prostate cancer screen-
ing recommendations has had a major impact on attitudes toward screening and actual screening 
practices. Once recent review of studies assessing the impact of the USPSTF grade “D” recom-
mendation found that prevalence of low-risk prostate cancer has decreased since 2012 (Lee et al. 
2017). Additional studies of prostate cancer epidemiology over the next decade may continue to 
reveal a shift in the stage at diagnosis, a concern to urologists who will be tasked with treating more 
advanced prostate cancer.

The concept of active surveillance (AS) arose from the desire to minimize overtreatment of 
prostate cancer, coupled with the realization that many men have indolent cancers that may never 
be troublesome in their lifetimes. Active surveillance must be distinguished from watchful waiting 
(WW), as they have dramatically different goals of care. Active surveillance is utilized for men 
presumed to have a more indolent cancer that poses no immediate threat to their health. The goal 
of AS is to intervene if necessary while the disease is localized and treatable. In contrast, WW is 
best suited for older or more co-morbid patients with limited life expectancies. There is no intent to 
“cure,” but rather minimize the risk of morbidity related to advanced prostate cancer.

Over the past 10 years, several randomized controlled trials supported the growing belief that 
many patients with prostate cancer are overtreated with modalities such as radiation (RT) and radi-
cal prostatectomy (RP). In 2014, the results of a long-term Scandinavian study, SPCG-4, were pub-
lished (Bill-Axelson et al. 2014). The authors assigned patients to either watchful waiting or RP, and 
followed them for a mean of 23.2 years. The patients included in the study displayed higher-risk 
characteristics than the other two randomized trials reported below. The mean prostate-specific 
antigen (PSA) was 13  ng/dL and the majority had palpable disease. The authors found that RP 
decreased the overall risk of death from any cause by 12.7 percentage points, and the risk of death 
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from prostate cancer decreased by 17.7 percentage points. The long-term mortality benefits of RP 
were greatest in patients younger than 65 years of age.

In contrast, the Prostate Cancer Intervention versus Observation Trial (PIVOT) (Wilt et  al. 
2012) included patients with lower-risk characteristics, who were randomized to either observa-
tion or RP. During a median follow-up period of 10 years, all-cause mortality was reduced only by 
2.9  percentage points, and prostate cancer specific mortality was reduced by 2.6 percentage points. 
However, the cohort that appeared to benefit the most from RP included men with a PSA greater 
than 10 ng/mL, and possibly those patients with intermediate- or high-risk disease. The results of 
the study were criticized due to low statistical power, thus this should be taken into consideration 
when comparing observation and RP.

Finally, the United Kingdom Prostate Testing for Cancer and Treatment (ProtecT) trial random-
ized patients to AS, RP, or RT (Hamdy et al. 2016). Patients included in the study displayed pre-
dominantly low-risk characteristics, with 77% of patients diagnosed with Gleason 3+3 disease, and 
76% had clinical stage T1c disease. Cancer-specific and all-cause mortality were similar at 10 years, 
regardless of the assigned treatment group. The rate of clinical progression and metastatic disease 
were lower in the treatment groups, but this could not be extrapolated to conclude that treatment 
leads to significant differences in disease-specific or overall survival.

Acknowledging that a certain cohort of men with prostate cancer are at risk for overtreatment, 
the challenge becomes identifying those patients with indolent cancer who can be safely enrolled 
in an AS program. A number of AS protocols have published series with robust follow-up, dem-
onstrating the safety of AS in the well-selected cohort of patients. Table 3.1 lists the inclusion 
criteria for several of the larger prospective AS series. In general, most AS programs utilize well- 
established criteria for low-risk disease. The Epstein criteria, first described in 1994, risk-stratify 
patients based on tumor volume (low risk, <0.2 cm3), the presence of Gleason 4 or 5 disease (low 
risk, no Gleason 4 or 5), and clinically localized disease (Epstein et al. 1994). The criteria were 
revised to include PSA density less than 0.15 ng/mL, fewer than 3 positive biopsy cores, and less 
than 50% of core involvement with cancer. Another widely used risk calculator was described by 
D’Amico and  colleagues (1999), and utilizes PSA, clinical stage, and Gleason score when determin-
ing risk. The National Comprehensive Cancer Network (NCCN) expanded the calculation of risk 
to include both low-risk and very low-risk patients. The variables considered when risk-stratifying 
patients include clinical stage, PSA, number of positive cores, percentage positive of involved cores, 
and PSA  density (PSAD) (NCCN.org).

TABLE 3.1
Inclusion Criteria for Large Prospective AS Programs

AS Protocol PSA Clinical Stage
Percent Cores 
Involved (%) Gleason Grade

Number of 
Positive Cores

Toronto* ≤10a — — ≤3+3; 3+4c —

JHU† (PSAD <0.15 ng/mL) ≤T2a ≤50 ≤6 ≤2

PRIASb,‡ ≤10 and PSAD <0.2 ng/mL ≤T2c — ≤6 ≤2

UCSF§ ≤10 ≤T2a ≤50 ≤6 ≤33%

a Age less than 70.
b Prior to 2012 (i.e., original protocol).
c Gleason 3+4 included if shorter life expectancy/comorbidities.
* Klotz, L. et al., J. Clin. Oncol., 33, 272–277, 2015.
† Tosoian, J.J. et al., J. Clin. Oncol., 29, 2185–2190, 2011.
‡ Bokhorst, L.P. et al., Eur. Urol., 70, 954–960, 2016.
§ Welty, C.J. et al., J. Urol., 193, 807–811, 2015.

http://www.NCCN.org
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Recognizing that many patients with prostate cancer harbor indolent disease, the International 
Society of Urological Pathology (ISUP) introduced a change in the categorization of prostate cancer. 
The new grading system was validated in a large cohort of patients (Epstein et al. 2016), and is being 
introduced into clinical guidelines. The new system includes five groups: Group 1 (Gleason grade 6 or 
less); Group 2 (Gleason grade 3+4); Group 3 (Gleason grade 4+3); Group 4 (Gleason grade 8); Group 5 
(Gleason grade 9 and 10). Placement of patients into risk categories such as these may facilitate selec-
tion of patients for AS. Patients in Group 1 can also be reassured that their disease is unlikely to lead 
to long-term morbidity and mortality, understandably a concern in any patient diagnosed with cancer.

This chapter introduces imaging modalities and biomarkers that are useful adjuncts to standard 
clinical variables in selecting patients for and monitoring patients on AS. Historically, repeat biopsy 
has remained a mainstay of AS protocols, important for both confirmation of low-risk disease, and 
for monitoring for progression of disease. Despite confirmatory biopsy being a well-accepted foun-
dation of AS, many patients either decline or are not offered repeat biopsies. One series reviewing 
the SEER database, including 5,192 patients on an AS protocol, found that only 13% of patients 
underwent prostate biopsies more than 2 years into the protocol (Loeb et al. 2016). Older age and 
higher rates of comorbidities were associated with a lower rate of biopsy, while recent diagnosis 
and higher income were associated with a higher rate of biopsy. The importance of repeat biopsy 
was highlighted in a study of patients identified as appropriate candidates for AS (King et al. 2013). 
Repeat biopsy disqualified 17% of patients based on increase in cancer volume of grade.

The outcomes of selected patients on AS protocols are defined in several prospective studies, 
listed in Table 3.2. Despite favorable outcomes for most patients enrolled in AS, there has not been 
a rapid adoption of this treatment modality. A recent review of the United States National Cancer 
Database revealed that only 12.1% of men eligible for AS were enrolled (Maurice et al. 2015). The 
authors also found that the clinical application of AS was not based only on risk stratification, but 
other factors such as practice setting (academic) and region within the country also influenced 
enrollment in AS. With the inclusion of AS in widely accepted guidelines, AS may be offered to 
more patients across wider demographic and geographic patient populations.

Guidelines for prostate cancer treatment from major oncologic organizations now reflect the 
incorporation of AS into urologists’ treatment paradigms. Notably, the NCCN, the European 
Association of Urology (EAU), and the American Urological Association (AUA) guidelines now 
address AS for lower-risk patients.

TABLE 3.2
Outcomes of Large Prospective AS Programs

AS Protocol
Median 

Follow-Up
Overall 
Survival CSS

Metastases Free 
Survival Treatment Rate

Toronto* 6.4 98.1% at 10 years
94.3% at 15 years

5 years 24.3%
10 years 36.5%
15 years 45%

JHU† 5 93% at 10 years 99.9% at 10 years 99.4% at 10 years 50% curative intervention 
at 10 years

PRIAS‡ 10 — — — 52% at 5 years
73% at 10 years

UCSF§ 5 98% 100% 100% 40% at 5 years

* Klotz, L. et al., J. Clin. Oncol., 33, 272–277, 2015.
† Tosoian, J.J. et al., J. Clin. Oncol., 29, 2185–2190, 2011.
‡ Bokhorst, L.P. et al., Eur. Urol., 70, 954–960, 2016.
§ Welty, C.J. et al., J. Urol., 193, 807–811, 2015.
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CURRENT ACTIVE SURVEILLANCE PROTOCOL FOR PROSTATE CANCER

IMAGING

Multiparametric magnetic resonance imaging (mpMRI) is becoming the modality of choice for 
prostate cancer imaging due to its superior ability to diagnose and risk-stratify disease (Scarpato 
and Barocas 2016). Multiparametric MRI imaging combines anatomic imaging with functional 
and molecular imaging to produce a PI-RADS (Prostate Imaging-Reporting and Data System) 
score to quantify the overall probability of clinically significant prostate cancer (Hassanzadeh et al. 
2017). Initially, mpMRI was scored using PI-RADS v1 which consisted of T2-weighted imaging, 
MR spectroscopy (metabolic imaging), diffusion-weighted imaging (DWI), and dynamic contrast-
enhanced (DCE) MRI. In 2015, PI-RADS v2 was adopted and removed MR spectroscopy from 
the scoring equation as it is believed that this study added little value to the mpMRI interpretation. 
PI-RADS v2 has since been validated, but has been shown to have moderate interobserver variabil-
ity (Hassanzadeh et al. 2017).

One of mpMRI’s greatest strengths is its ability to accurately detect and discriminate clinically 
significant disease (i.e., higher-volume and higher-grade disease) from more indolent forms of dis-
ease in patients with suspected and known prostate cancer. Several studies have demonstrated the 
high negative predictive value (NPV) of mpMRI for intermediate- and high-risk prostate cancers. 
A recent study by Lu et al. (2017) evaluated men with negative prostate mpMRI by subsequently 
performing 12-core systematic mapping biopsy. In subgroup analysis, biopsy revealed prostate can-
cer in 44.8% (13/29) of men already on AS, but only 2 of those 29 men had Gleason ≥7 disease. 
They concluded that while the NPV for any prostate cancer on mpMRI in the AS cohort was only 
55.2%, the NPV for clinically significant (Gleason ≥7 disease) was 93.1%. Studies that evaluate 
both patients without a diagnosis of prostate cancer and patients already on an AS protocol have 
demonstrated a NPV of up to 98% for mpMRI (Siddiqui et al. 2015). Given that the prostate cancer 
treatment paradigm is shifting to only treat clinically significant cancers that are likely to have 
detrimental effects on quality of life and longevity—mpMRI shows great promise for reducing the 
overdetection and overtreatment of prostate cancer.

In addition to mpMRI’s strong NPV, other studies have demonstrated the high sensitivity of 
mpMRI for detecting clinically significant cancers by allowing improved targeting of suspicious 
areas on biopsy. Siddiqui et al. (2015) compared detection rates of intermediate- and high-risk pros-
tate cancer in men who received targeted MR/ultrasound fusion prostate biopsies, standard 12-core 
extended-sextant biopsies, and combined modalities (i.e., MR/US fusion and extended-sextant biop-
sies). The group found that targeted biopsies diagnosed 30% more high-risk cancers and 17% fewer 
low-risk cancers versus standard biopsy methods. Interestingly, when combining targeted fusion 
biopsy with standard 12-core biopsy, 22% more cancers were detected than with targeted fusion 
biopsy alone—however, 83% of these tumors were low risk. Despite most tumors being low risk, the 
knowledge that some high-grade tumors may be missed with MR/US fusion alone has led to rec-
ommendations to undergo the combined method rather than MR/US fusion guided biopsy or stan-
dard sextant biopsy alone (Hansen et al. 2016). Hansen et al. found that in 343 men with PI-RADs 
3–5 lesions, systematic (templated 24-core) biopsies missed 13 of 138 clinically significant lesions, 
defined as Gleason score 7–10. Likewise, targeted biopsies missed 12 of 138 clinically significant 
lesions—thus leading the authors to conclude that combining targeted and systematic biopsy is 
superior to either method alone (Hansen et al. 2016).

Given mpMRI’s strong negative predictive value and high sensitivity for detecting clinically 
significant disease, it stands to reason that mpMRI has the potential to serve as a useful tool in 
monitoring disease in patients diagnosed with low-grade, localized prostate cancer who elect 
to undergo active surveillance. A 2017 anonymous survey by the National Cancer Institute that 
polled over 300 urologists found that 72.5% of respondents used mpMRI to monitor patients 
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on active surveillance (Muthigi et al. 2017). Two important benefits mpMRI confers to patients 
undergoing AS are its ability to accurately detect disease progression and upgrading lesions. A 
recent study found that of 259 men with Gleason 3+3 or 3+4 disease detected by MRI/US fusion 
and subsequently enrolled in AS, 32 of 33 (97%) of upgraded lesions (to at least 4+3) occurred 
at sites visible on MRI or at three-dimensional digitally tracked sites of previously biopsied 
tumor (Nassiri et al. 2017). The authors concluded that during AS, tracking and targeting tumor 
foci with MRI/US fusion biopsy allows for improved detection of clinically significant cancers. 
Additionally, Almeida et al. (2016) demonstrated the utility of mpMRI in accurately grading and 
staging patients eligible for AS. The authors prospectively analyzed 73 patients with low-risk 
disease who elected prostatectomy rather than AS. Prior to prostatectomy, all men underwent 
mpMRI. They found that 92% of patients who were upstaged and 76% with upgraded based on 
prostatectomy pathology had a PI-RADS 4–5 lesion seen on mpMRI. The authors did not report 
whether these mpMRI lesions mapped to the same location in the prostatectomy specimen. The 
authors concluded that PI-RADS 4–5 lesions are strong predictors for clinically significant cancer 
in AS candidates (Almeida et al. 2016).

Another application of mpMRI in active surveillance is the use of apparent diffusion coefficient 
(ADC) to assess the need for re-biopsy. ADC is derived from diffusion weighted imaging (DWI) 
and used with T2-weighted MRI to identify tumor nodules on diagnostic imaging (Morgan et al. 
2017). In poorly differentiated tumors—including those in prostate cancer—ADC values are lower 
(Morgan et al. 2017). A strong inverse correlation has been documented between ADC and Gleason 
grade and this relationship can help risk-stratify men undergoing AS for need to repeat biopsy of 
suspicious prostate lesions (Tosoian et al. 2016). Men with low-grade prostate cancer on biopsy but 
a discordant finding on mpMRI ADC may be good candidates for re-biopsy as the lesion may con-
tain undiscovered clinically significant tumor. However, it should be noted that the benefit of ADC 
may not be applicable to all men—specifically those on 5-alpha-reductase inhibitors (5-ARIs). A 
prospective, randomized, placebo-controlled trial analyzing 37 men on AS found that men taking 
dutasteride for 6 months had less conspicuous lesions (defined as peripheral zone divided by tumor 
ADC) than their counterparts taking a placebo (Giganit et al. 2017). This difference was largely due 
to a significant increase in tumor ADC in men on dutasteride. Thus, men on 5-ARIs undergoing 
AS protocols utilizing mpMRI/ADC may require a lower threshold for re-biopsy compared to their 
non-5-ARIs counterparts.

In addition to ADC’s utility in risk stratification of clinically significant tumors for men undergo-
ing AS, it may also be clinically useful in monitoring the growth kinetics of these lesions. A recent 
study measured longitudinal change in dominant prostatic lesions volume compared to changes in 
ADC on mpMRI in patients on AS for prostate cancer. They discovered that ADC and tumor vol-
ume are negatively correlated, and variability of volume measurement by a single expert observer at 
a single center is >60%. However, the measured ADC variability was only ~5% (Morgan et al. 2017). 
Thus, calculating the change in ADC may be a more reliable tool for measuring tumor growth than 
measuring change in volume on mpMRI in prostate cancer surveillance.

Despite the advantages that mpMRI offers to patients undergoing prostate cancer AS, there is 
still no consensus regarding the use of mpMRI in this cohort. Multiparametric MRI and fusion 
biopsy are still in their relative infancy compared to imaging modalities and biopsy techniques 
used in other fields. Much of the research performed on the use of mpMRI in AS have taken place 
in high-volume academic centers. The application of this data to the community setting has not 
been evaluated and warrants additional study. In addition, the optimal application and appropri-
ate sequencing of mpMRI in AS has not yet been fully defined (Schulmann et al. 2017). As more 
data is obtained from long-term studies measuring outcomes from prostate cancer patients on AS, 
current guidelines and consensus statements will likely be revised to reflect the application of 
mpMRI in AS.
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MOLECULAR MARKERS

There has been increasing interest in the application of tissue-based molecular profiling tests to pro-
vide more data points for patients considering AS for low-grade prostate cancer. Three commonly 
utilized genomic assays include DecipherTM, Oncotype DX®, and Prolaris®.

DecipherTM analyzes 1.4 million genomic markers, which represents 46,000 RNA sequences, 
by utilizing transcriptome-wide microarrays (Syed et al. 2017). The test focuses on 22 genes that 
are highly associated with prostate cancer (cell proliferation, androgen signaling, motility, differ-
entiation, and immune modulation) and assigns the patient a value on the continuum from 0 to 1 to 
categorize the risk for metastatic disease at 5 years following radical prostatectomy—higher values 
are associated with worse outcomes (Knudsen et al. 2016, Syed et al. 2017). Several studies have 
validated DecipherTM in high-risk patients after radical prostatectomy; specifically, as a predictor for 
metastatic disease, biochemical recurrence, and prostate cancer mortality (Syed et al. 2017). While 
DecipherTM is not currently used as a tool for AS, further investigation may find clinical utility for 
men undergoing prostate cancer monitoring. A recent study found that RNA obtained from biopsy 
specimen and the subsequent radical prostatectomy specimen demonstrated correlation of r = 0.70 
on DecipherTM testing (Knudsen et al. 2016). This correlation of biopsy and prostatectomy RNA 
supports use of DecipherTM on prostate biopsy tissue, but further research is necessary to evaluate 
any incremental benefit it may bestow to men on AS.

Oncotype DX® utilizes small-volume tissue samples (1mm) to generate a Genomic Prostate 
Score (GPS) by using reverse transcription polymerase chain reaction (RT-PCR) to measure the 
expression of a 17-gene panel (Tosoian et al. 2016, Syed et al. 2017). Of these genes, 12 are involved 
with carcinogenesis (not prostate-specific) and the other 5 are reference genes (Tosoian et al. 2016). 
Like DecipherTM, Oncotype DX® was originally used for predicting the risk of metastasis after radi-
cal prostatectomy. However, in 2014, Klein et al. demonstrated that in biopsy tissues, this 17-gene 
assay improves prediction of the presence of clinically significant disease (high Gleason grade or 
non-organ-confined). The authors concluded that Oncotype DX® may have an application in select-
ing patients for AS (Klein et al. 2014). While this tissue-based test has potential to benefit patients 
considering AS, there is a paucity of literature assessing outcomes in the AS cohort.

Prolaris®, like Oncotype DX®, also uses RT-PCR to measure expression of genes associated with 
prostate cancer to create a score that is used to predict the likelihood of cancer progression, prostate 
cancer specific mortality, and aggressive pathologic features after prostatectomy (Syed et al. 2017). 
Prolaris® uses 1 mm of continuous tumor tissue to measure tumor cell proliferation. A 46-gene 
panel consisting of 31 cell cycle genes and 15 housekeeping genes is utilized to produce a cell cycle 
progression (CCP) score. The CCP score has been associated with likelihood of biochemical recur-
rence after prostatectomy. However, it has not been shown to be an independent predictor of mortal-
ity in men with Gleason 3+3 disease (Tosoian et al. 2016, Syed et al. 2017). Its potential application 
to patients on AS is unclear, as many of these patients are diagnosed with Gleason 6 prostate cancer.

Although there is a paucity of long-term prospective data for these molecular tests in the AS 
population, the NCCN does acknowledge that men with clinically localized prostate cancer under-
going AS may consider these genetic assays in deciding whether to enter an AS protocol (Syed et al. 
2017). These tests have the potential to serve as a useful tool to alert patients and physicians to the 
presence of previously unidentified clinically significant cancer and thus prompt repeat biopsy or 
imaging with mpMRI.

SERUM TESTS

In addition to the widely used PSA serum test for prostate cancer detection and active surveillance, 
several other serum-based tests are also under clinical investigation for use in the AS population. 
These tests utilize PSA (Human Kallikrein 3; hK3), other Human Tissue Kallikreins, and their 
derivatives to risk stratify men and may help with decisions regarding their cancer management.
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The PHI (Prostate Health Index) test uses total PSA (tPSA) and two derivatives to calculate a 
score that is then used to stratify men into risk categories. The PHI is calculated using the proPSA, 
a PSA isoform that has been shown to outperform PSA and free PSA in prostate cancer detection, 
and free PSA (Boegemann et al. 2016). This score was initially used to predict extracapsular spread, 
Gleason score, and upgrading at radical prostatectomy, but evidence from a 2012 paper by Tosoian 
et al. found -2proPSA and PHI score to have improved predictive accuracy over tPSA and %fPSA 
for reclassifying men on AS to higher-grade prostate cancer on follow-up (Tosoian et al. 2012, Syed 
et al. 2017).

The 4K score uses PSA (hK3), hK2, free PSA, and intact PSA (iPSA) along with age, digital 
rectal exam (DRE), and biopsy history to stratify patients into low-, intermediate-, and high-risk 
groups for the presence of clinically significant prostate cancer (Syed et al. 2017). This risk stratifi-
cation has been successful in predicting development of metastatic prostate cancer within 20 years 
(Stattin et al. 2015). Further studies have suggested that 4K score predicts the presence of more 
aggressive cancer on prostate biopsy in men with initially diagnosed low-grade prostate cancer, 
which has the potential to make the 4K score a valuable tool for men deciding on AS versus imme-
diate intervention (Syed et al. 2017).

While both PHI and the 4K scores show much promise, currently, there is a lack of long-term 
prospective data for these serum markers in the AS setting. Although the preliminary evidence sup-
ports the use of PHI and 4K scores in the AS population, further longitudinal studies are needed 
before they are widely incorporated into AS protocols.

URINE TESTS

Currently, two urine biomarkers show promise for men interested in pursuing AS—Prostate Cancer 
Antigen 3 Gene (PCA3) and TMPRSS2::ERG (“T2ERG”).

PCA3 is a non-coding mRNA that is overexpressed 10- to 100-fold in prostate cancers compared 
to non-neoplastic prostate tissue. Expression is even higher in more poorly differentiated tumors 
(Filella et al. 2013). To obtain PCA3 for measurement in the urine, an examiner performs prostate 
massage through DRE. The first-catch urine (20–30 mL) is then collected and analyzed for PCA3 
mRNA level and, as a control, PSA mRNA level. In 2012, the FDA approved PCA3 testing to risk-
stratify patients with a prior negative biopsy to determine need for repeat biopsy (Syed et al. 2017). 
In 2017, a study from Johns Hopkins evaluating the PCA3 results from the men on their AS program 
found that the 11% of men who underwent Gleason grade reclassification (Gleason score >6) had 
higher first PCA3 score (p = 0.007) and subsequent PCA3 scores (p = 0.002) (Tosoian et al. 2017). 
Interestingly, longitudinal changes (increase or decrease PCA3 score in the same patient) did not 
affect a patient’s risk of Gleason reclassification. In their multivariable model, the initial PCA3 
score remained significantly associated with Gleason grade reclassification leading the authors to 
conclude that PCA3 provides additional prognostic information in patients undergoing or interested 
in AS (Tosoian et al. 2017).

As with PCA3, the transcription products of T2ERG can be collected in the urine after prostate 
massage. T2ERG is a fusion protein of the TMPRSS2 gene (21q22.3) and the ERG gene (21q22.2) that 
is present in ~40% to 80% of prostate cancers (Yu et al. 2010). TMPRSS2 is an androgen-sensitive 
gene and ERG is an ETS family transcription factor that is considered a key prostate cancer oncogene 
(Squire 2009). Like the BCR:ABL gene translocation in chronic myeloid leukemia (CML), a deletion 
in the long arm of chromosome 21 places the ERG gene immediately downstream of the androgen 
responsive TMPRSS2 gene. ERG will then drive the overexpression of TMPRSS2. This overexpres-
sion with loss of PTEN leads to unregulated cellular proliferation, anti-apoptotic activity, and addi-
tional cell cycle events that lead to malignant cells (Squire 2009). A study of 265 patients on AS with 
median follow-up of 4.1 years found ERG-positive tumors had a 58.6% risk of disease progression 
versus 21.7% in the ERG-negative cohort (hazard ratio 2.45) (Berg 2016). There is limited literature on 
the long-term outcomes of urinary T2ERG’s predictive value in AS and further research is warranted.
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CONCLUSION

Within the last decade, a shift in the treatment of lower stage and grade prostate cancer has made 
active surveillance an increasingly popular management option. The challenge lies in selecting the 
appropriate patient, the patient with indolent disease who does not harbor more aggressive cancer 
that could pose a threat to their longevity. The refinement of mpMRI has offered clinicians a tool 
both for selecting patients for AS and for monitoring patients on AS. In combination with cur-
rently utilized clinical parameters, mpMRI and molecular markers may offer patients and clini-
cians a nomogram to risk-stratify prostate cancer and select those patients who will benefit the most 
from AS.
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4 Prostate MRI

J. Pereira, Gyan Pareek, and D. Grand

INTRODUCTION

Prostate cancer (PCa) is the most prevalent cancer among men in the United States, with an esti-
mated incidence of 180,890 cases in 2016.1 Screening for prostate cancer has traditionally consisted 
of a digital rectal exam and prostate-specific antigen testing. Following a positive screening evalu-
ation, transrectal ultrasound-guided prostate biopsy is the gold standard for pathologic diagnosis 
prior to treatment. However, while ultrasound is used to target regions of the prostate, it is unable 
to reliably identify focal, high-risk nodules.2 Essentially, the prostate remains the last organ that is 
routinely biopsied “blind.” As such, the incorporation of precise prostate imaging in the evaluation 
for PCa has become a topic of great interest. First described as a tool for prostate imaging in the 
1980s, MRI has been shown to reliably detect and exclude high-risk prostate cancer and can provide 
targeting of these lesions for transrectal biopsy.3–5 As the use of prostate MRI grew, the Prostate 
Imaging-Reporting and Data System (PI-RADS) was introduced, which outlines standards for MRI 
technique, interpretation, and reporting.6,7

MULTIPARAMETRIC MRI OF THE PROSTATE

The key benefit of MRI for prostate imaging is its exquisite soft-tissue contrast, which allows for 
differentiation of benign and malignant nodules. Multiparametric MRI (mpMRI) refers to the com-
bination of both anatomic and physiologic imaging sequences, including diffusion-weighted imag-
ing (DWI) and dynamic contrast-enhanced imaging (DCE).7,8 Together, anatomic and physiologic 
data are assessed to arrive at an overall impression of the risk of clinically significant prostate 
cancer in any given prostate lesion.

ANATOMIC SEQUENCES

T1- and T2-weighted images serve as the anatomic sequences on which MRI imaging is based. 
Each imaging sequence is acquired using specific parameters that take advantage of the tissues 
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intrinsic properties. This allows the sequences to highlight the tissues differently and provide com-
plimentary information. On T1WI, water will have low intensity signal and appear dark, while fat 
displays high intensity signal and appears bright. In comparison water and fat will both appear 
bright, displaying high signal intensity on T2WI.9 (Of note, fat can be made to appear dark on either 
T1- or T2-weighted sequences using fat suppression techniques.)

The soft-tissue contrast of T1WI in the prostate is quite poor. The primary use of T1WI is to iden-
tify areas of prostatic hemorrhage (commonly present when MRI is performed following biopsy) 
to prevent mistaking blood products for suspicious lesions (both of which may be dark on T2WI).10 
Rapid T1WI is performed following intravenous administration of gadolinium to assess perfusion 
of focal prostatic lesions.

The excellent soft-tissue contrast of T2WI provides detailed information on the anatomic zones 
of the prostate: the peripheral zone (PZ), transitional zone (TZ), central zone, and anterior fibromus-
cular zone.10,11 The PZ is largest anatomic zone in young men, accounting for approximately 75% of 
total prostate volume, and is the location of over 70% of carcinomas. The PZ forms the subcapsular 
portion of the prostate surrounding the distal urethra and consists of a large posterior portion, as 
well as smaller anterior area often referred to as the anterior horn of the PZ. On T2WI, the normal 
PZ is noted to have intermediate to high signal intensity (Figure 4.1). PCa in the PZ, however, will 
appear as an area of low signal intensity amongst the higher signal intense background of normal PZ 
tissue. Unfortunately, low T2 signal in the peripheral zone is not pathognomonic for PCa. Prostatitis 
and hemorrhage (often post-biopsy) may have a similar appearance. As such, additional imaging 
sequences are used to differentiate between benign and malignant causes of these findings on T2WI 
of the PZ.8,10,12

The TZ surrounds the proximal urethra and is the site of benign prostatic hyperplasia (BPH) 
growth. Due to the growth of the TZ with age, the appearance of the PZ on T2WI is variable. BPH 
nodules in the TZ appear as round well-defined areas of inhomogeneous material with variable 
signal intensity that are circumscribed by a low signal intensity rim.13 While BPH lesions may 
be difficult to discern from areas of PCa with similar signal intensity, other radiologic features 
help differentiate a malignant lesion. These include homogeneity of the lesion, a lenticular shape, 
ill-defined or irregular edges of the lesion, and invasion of the urethra or anterior fibromuscular 
zone.10 As is true with the TZ, the central zone is also found to be of variable signal intensity and 
when compressed by an enlarged TZ the two zones are indiscernible from one another on T2WI. 
The anterior fibromuscular zone is identified as a dense area of low signal intensity posterior to the 
retropubic fat pad.7,11

FIGURE 4.1 Axial T2-weighted image (a) and apparent diffusion coefficient mapping (b) demonstrating a 
normal peripheral zone.
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DIFFUSION-WEIGHTED IMAGING

As mentioned previously, malignant lesions of the prostate appear as an area of low signal intensity 
on T2WI. However, these lesions may be difficult to distinguish from other benign pathologies 
with similar signal intensity. DWI helps to further differentiate benign and malignant lesions using 
structural differences in the tissue types.7,8,11

DWI is based on the diffusion of free water protons in cells. The level of diffusion weighting 
used during a study is referred to as the b value. When multiple b values are acquired, an apparent 
diffusion coefficient (ADC) can be calculated for the tissues being studied. The ADC is a measure-
ment of the ability of water molecules to move freely within tissues. The ADC map is a graphical 
representation of the diffusion coefficient in each voxel of the image.8,10,11

Normal tissues are predominantly composed of extra-cellular space, through which water mol-
ecules can easily diffuse (picture walking from end to end of an empty subway car at 10:00 pm). 
In contrast, cancerous tissues have a much higher cellular density, replacing this large, open extra-
cellular space with impenetrable cell membranes (now picture trying to walk from end to end of 
the same subway car at rush hour). Higher cellular density results in restricted diffusion, which 
corresponds to a low ADC.

That malignant lesions have been shown to have significantly lower ADCs than benign 
lesions is especially useful to distinguish BPH nodules of the TZ from PCa. The use of DWI in 
combination with T2WI has been shown to dramatically improve the sensitivity and specificity 
of PCa detection on MRI, when compared to T2WI alone. Additionally, the ADC directly cor-
relates with the Gleason score of a lesion. That is, the lower the ADC, the higher the Gleason 
score.11

Unfortunately, there is overlap of the ADC values of benign and malignant prostatic lesions. 
Therefore, there is no concrete threshold ADC indicative of malignancy. More recently, investigators 
have shown that additional information can be gathered using high b value imaging (HBVI), using a 
b value greater than 1400 sec/mm2. On these images, signal is preserved in areas of restricted diffu-
sion on standard DWI and thus malignant lesions will appear hyperintense. This may be especially 
helpful in identifying malignant lesions near the anterior fibromuscular zone and in subcapsular or 
apical regions.11

DYNAMIC CONTRAST ENHANCEMENT

Dynamic contrast enhancement (DCE) is another method used to differentiate between benign 
and malignant tissues. This technique uses T1-weighted images obtained at multiple time 
points following IV contrast administration.8 The prostate is commonly imaged 4–6 times/
minute for approximately 5 minutes, after which the uptake and washout of the gadolinium is 
measured.

Compared to normal prostate tissue, PCa tissues are hypervascular due to increased angio-
genesis. This results in earlier uptake and more rapid washout of contrast in malignant tissues. 
Enhancement can be evaluated qualitatively, semi-quantitatively, or quantitatively. Qualitative anal-
ysis is performed by visual inspection of the obtained images for signal intensity. Semi-quantitative 
techniques introduce uptake washout parameters such as integral area under the gadolinium con-
centration time curves, wash-in gradient, maximum signal intensity, time-to-peak enhancement, 
and start of enhancement. Quantitative evaluation uses complex pharmacokinetic models to further 
evaluate contrast uptake and washout.8,10,14

Despite early excitement, DCE has more recently been shown to be of only marginal benefit in 
the diagnosis of prostate cancer. Prostatitis in the peripheral zone and BPH in the central zone can 
both be hypervascular and mimic the appearance of PCa. The second version of PI-RADS includes 
an updated scoring system that relegates the role of DCE to helping sway borderline lesions toward 
suspicious categories if hypervacular.7
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SIGNAL-TO-NOISE RATIO IN MRI OF THE PROSTATE

In order to acquire the best possible images of the prostate, MRI protocols seek to optimize the 
 signal-to-noise ratio (SNR), as a higher SNR translates into higher spatial resolution and thus 
higher-quality images. SNR is affected by many factors but the two most important to the discus-
sion of prostate MRI is the field strength of the magnet and the distance between the prostate and 
the “antennae” (receiving coil).9

MRI is commonly performed using magnetic field strengths of 1.5 Tesla (T) or 3T. SNR increases 
linearly with the strength of the magnetic field. Thus, MRI acquired at 3T will have nearly twice 
the SNR of a 1.5T scan. However, the SNR increases exponentially as the receiving coil (antennae) 
is moved closer to the organ of interest. Surface coils placed on the pelvis should always be used 
and may be combined with an endorectal coil (ERC) to exploit this benefit of proximity.9 ERCs 
may be especially useful when obtaining sequences with inherently low SNR such as DWI.11 In 
MRI, though, there is no free lunch. The ERC may compress the prostate and distort its anatomy 
on imaging. Also, ERCs are often quite uncomfortable, which leads to patient motion and image 
degradation.14 The use of external coils alone can achieve high-quality images with adequate SNR, 
particularly when paired with a high magnetic field strength. Adequate images can be obtained 
with or without an ERC, using a 1.5T or 3T machine, though data comparing techniques is limited. 
Currently, PI-RADS version 2 (v2) recommends that radiologists strive to achieve the best possible 
images with the equipment available.7

REPORTING WITH PI-RADS

Prior to the introduction of the PI-RADS v1 in 2012, the protocols used for imaging and 
the systems used to report imaging findings were not standardized, which greatly hindered 
the acceptance of mpMRI of the prostate. Earlier reporting systems had largely been devel-
oped and used by individual institutions without external validation or consensus. Using the 
Breast Imaging-Reporting and Data System (BI-RADS) as a model, the European Society of 
Urogenital Radiologists (ESUR) sought to introduce guidelines for the performance, inter-
pretation, and reporting of mpMRI of the prostate.6,15 After its introduction, PI-RADS v1 was 
validated in several clinical and research settings. The systems’ success lead to its joint revi-
sion by the ESUR, the American College of Radiology, and the AdMeTech Foundation in 2015. 
PI-RADS v2 focuses on the identification of clinically significant PCa, defined as disease with 
a Gleason score of 7 or higher, total volume of 0.5 cm3 or larger, or with extra prostatic exten-
sion (EPE).7

As in the original version, PI-RADS v2 assigns a score of 1–5 to prostatic lesions based on their 
probability of containing clinically significant disease. A score of 1 indicates that clinically signifi-
cant disease is highly unlikely to be present, while a score of 5 indicates that clinically significant 
disease is highly likely to be present. Biopsy is typically recommended for lesions with a PI-RADS 
scores of 4 or 5, though other clinical factors may play a role in the decision to biopsy lesions of 
lower scores.7

In PI-RADS v2, the primary and secondary MR sequence used for scoring is determined by 
the location of the lesion. A lesion that is evaluated as having a score of 1, 2, 4, or 5 using the 
primary sequence will maintain that number as the overall PI-RADS score. Scores of 3 on the pri-
mary sequence, however, are reevaluated using the secondary sequence to determine if the overall 
PI-RADS score will remain at 3 or be upgraded to 4. The primary and secondary sequences for a 
lesion in the PZ are the DWI and DCE sequences, while the primary and secondary sequences for 
a lesion in the TZ are the T2WI and DWI, respectively. MR spectroscopy, which had been recom-
mended in PI-RADS v1, is no longer included in PI-RADS v2.7
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EVALUATION OF A LESION IN THE PERIPHERAL ZONE

The primary sequence for the evaluation of a PZ lesion is DWI (Table 4.1). When evaluation of a PZ 
lesion on DWI is performed, the signal intensity of the lesion should be compared to that of normal 
tissue in the same anatomic zone. If a lesion appears normal on DWI and HBVI, it is assigned a 
PI-RADS score of 1, while a lesion displaying indistinct hypointensity on ADC is scored as a 2. 
Lesions that appear mild to moderately hypointense on ADC and are isointense or mildly hyperin-
tense on HBVI are assigned a PI-RADS score of 3. If a lesion is noted to have a focal area of obvious 
hypointensity on ADC (Figure 4.2) with definite hyperintensity on HBVI and a size less than 1.5 cm 
in its greatest dimension, it is given a score of 4. If a lesion has the appearance of a lesion with a 
score of 4 but is measured to be greater than 1.5 cm on greatest dimension or has any evidence of 
extra-capsular extension, it is assigned a score of 5.7

The secondary sequence used for evaluation of a PZ tumor is DCE (Table 4.1). Unlike the 
other sequences, a numeric scale is not used to describe DCE images. Lesions are only evalu-
ated for the presence or absence of enhancement during this sequence. A lesion is considered 
to enhance if a focal area enhances earlier than or at the same time (but more profoundly) than 
the surrounding tissues. If the area of enhancement does not correspond to a lesion identified 
on T2WI or DCE, it is not considered true enhancement. Similarly, if the area of enhancement 
corresponds to a lesion that is clearly identified as BPH on T2WI, it is not considered to be true 

TABLE 4.1
Peripheral Zone Lesion Evaluation and Scoring with PI-RADS Version 2

Sequence Score Description

Primary sequence: DWIa 1 Lesion appears normal on DWI and HBVIb

2 Lesion displays indistinct hypo intensity on ADCc mapping

3 Lesion appears mild to moderately hypointense on ADC mapping and 
isointense or mildly hyperintense on HBVI

Note: Positive DCEd upgrades PI-RADS score to 4

4 Lesion noted to have a focal area of obvious hypointensity on ADC mapping 
with definite hyperintensity on HBVI and a size <1.5 cm in its greatest 
dimension

5 Lesion noted to have a focal area of obvious hypointensity on ADC mapping 
with definite hyperintensity on HBVI and a size ≥1.5 cm in its greatest 
dimension

Secondary sequence: DCEd Positive Lesion demonstrates a focal area that enhances earlier or more profoundly 
than the surrounding tissues

Negative Lesion shows no difference in enhancement compared to surrounding tissues
OR
Area of enhancement does not correspond to the lesion identified on T2WIe

OR
Area of enhancement corresponds to a lesion which is clearly identified as 
BPHf on T2WI, it is not considered to be true enhancement

a Diffusion-weighted imaging.
b High b value imaging.
c Apparent diffusion coefficient.

d Dynamic contrast enhancement.
e T2-weighted imaging.
f Benign prostatic hyperplasia.
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enhancement. When a PZ lesion is scored as a 3 on DWI, the overall PI-RADS score should be 
upgrade to a 4 if enhancement is noted on DCE.7

In the case of PZ lesions, T2WI is only used for PI-RADS scoring if DWI is unavailable. As 
mentioned previously, malignant lesions of the PZ observed on T2WI will appear as hypointense 
focal lesions. If the lesion does not appear hypointense on T2WI it is given a score of 1. If an area 
of hypointensity is noted to have a linear or wedge-shaped appearance, or if a diffuse hypoin-
tense area with no distinct margin is noted, the lesion is scored a 2. If a lesion is noted to have 
heterogeneous signal intensity or if it is a non-circumscribed area of moderate hypointensity, it 
is scored a 3. A well-circumscribed lesion with homogenous hypointensity of less than 1.5 cm 
in its largest dimension is considered a 4. If a lesion is larger than 1.5 cm or displays EPE, it is 
scored a 5.7

EVALUATION OF A LESION IN THE TRANSITIONAL ZONE

In the evaluation of a lesion in the TZ, the T2WI serves as the primary sequence for PI-RADS scor-
ing (Table 4.2). In the TZ, malignant lesions will appear as poorly circumscribed areas of hypoin-
tensity. If no change in signal is noted in the lesion compared to surrounding tissues, it is given a 
score of 1. When a well-circumscribed hypointense lesion, or a well-encapsulated heterogeneously 
intense lesion (consistent with BPH) is seen, it is given a score of 2 (Figure 4.3). A lesion with 
unclear margins and heterogeneous signal intensity should be scored as a 3. Any lenticular or non-
circumscribed lesion with moderate hypointensity that is less than 1.5 cm in its greatest dimension 
should be scored as a 4. If a lesion with a similar appearance to that of a 4 is larger than 1.5 cm or 
displays EPE, it is given a score of 5.7

The secondary sequence used to score a lesion in the TZ is DWI. Evaluation for a TZ lesion on 
DWI is performed in the same manner described previously for PZ lesions (Table 4.2). When a TZ 

FIGURE 4.2 Axial T2-weighted image (a), apparent diffusion coefficient mapping (b), and post-contrast 
T1-weighted image demonstrating a large peripheral zone mass (c).
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lesion is given a score of 3 on T2WI, DWI should be evaluated to determine if that lesion will receive 
a final PI-RADS score of 3 or be upgraded to a 4. If the lesion is evaluated to have a score of 5, the 
overall score is upgraded to 4. If the DWI score is valuated to be 4 or lower, the overall PI-RADS 
score will remain a 3. Of note, DCE does not play a role in the scoring of TZ lesions.7

TABLE 4.2
Transition Zone Lesion Evaluation and Scoring with PI-RADS Version 2

Sequence Score Description

Primary sequence: T2WIa 1 Lesion demonstrates no change in signal compared to surrounding tissues

2 Lesion is hypointense and well circumscribed hypointense
OR
Lesion is well encapsulated and heterogeneously intense (consistent with 
BPHb)

3 Lesion with unclear margins, and heterogeneous signal intensity
Note: Score ≥4 on DWIc upgrades PI-RADS score to 4

4 Lesion is lenticular or non-circumscribed with moderate hypointensity and a 
size <1.5 cm in its greatest dimension

5 Lesion is lenticular or non-circumscribed with moderate hypointensity and a 
size ≥1.5 cm in its greatest dimension

Secondary sequence: DWIc 1 Lesion appears normal on DWIc and HBVId

2 Lesion displays indistinct hypointensity on ADCe mapping

3 Lesion appears mild to moderately hypointense on ADC mapping and 
isointense or mildly hyperintense on HBVI

4 Lesion noted to have a focal area of obvious hypointensity on ADC mapping 
with definite hyperintensity on HBVI and a size <1.5 cm in its greatest 
dimension

5 Lesion noted to have a focal area of obvious hypointensity on ADC mapping 
with definite hyperintensity on HBVI and a size ≥1.5 cm in its greatest 
dimension

a T2-weighted imaging.
b Benign prostatic hyperplasia.
c Diffusion-weighted imaging.

d High b value imaging.
e Apparent diffusion coefficient.

FIGURE 4.3 Axial T2-weighted image (a) and apparent diffusion coefficient mapping (b) demonstrating 
a lesion with diffuse low T2 signal without restricted diffusion likely due to chronic prostatitis; PI-RADS 
score: 2.
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STANDARDIZED REPORTING

As part of PI-RADS, a standardized method of reporting findings on mpMRI of the prostate was 
outlined. In addition to the scoring of lesions, radiologists should also describe lesion size and 
location. PI-RADS utilizes a standardized mapping system which describes 39 distinct sectors 
of the prostate that should be used to describe the location of lesions or other notable findings. 
According to PI-RADS v2, up to four lesions should be described and from these a dominant 
lesion should be identified. The dominant lesion is the lesion with the highest PI-RADS score. 
If multiple lesions have the same PI-RADS score, a lesion with EPE is considered dominant. If 
no lesions demonstrate EPE, the largest lesion is dominant. If more than four lesions are present, 
the four lesions with the highest likelihood of representing clinically significant cancer should be 
reported.7,8

CLINICAL APPLICATIONS OF PROSTATE MRI

The clinical applications of prostatic MRI include the staging, diagnosis, and surveillance of 
PCa.5,8,10,16,17 A growing body of evidence continues to support the use of MRI for several of these 
indications. Current guidelines focus on the use of MRI of the prostate for the detection of clini-
cally significant PCa in men with a prior negative biopsy and for the staging of clinically proven 
intermediate or high-risk disease.18

Transrectal ultrasound-guided prostate biopsy remains the standard procedure for initial pros-
tate biopsy but false negative results are common.19 As such, the use of MRI guidance to perform 
targeted prostate biopsies has been an area of interest. Studies have demonstrated that the use of 
mpMRI for targeted prostate biopsy increases the detection rates of clinically significant PCa,10,18 
while decreasing the detection rates of clinically insignificant disease. Use of target biopsies alone, 
however, may fail to detect some clinically significant disease when compared to the use of targeted 
biopsy in conjunction with standard prostate biopsy.18 The clinical significance of the use of mpMRI 
for targeted biopsy in the biopsy-naïve man remains controversial, especially in light of the cost 
associated with the procedure.17

MRI has proven to be most useful in the diagnosis of significant cancers when clinical suspicion 
for PCa remains high despite negative biopsies.19 Recently, the American College of Radiology 
and the American Urological Association released a joint consensus statement on the use of MRI 
targeted prostate biopsy in men with a prior negative biopsy. Use of targeted biopsies in this setting 
results in the detection of clinically significant disease in 11%–54% of cases. It is recommended that 
at least two biopsy cores are obtained from each suspicious lesion identified on MRI and that these 
be performed in conjunction with a standard biopsy.18

Active surveillance (AS) has become a mainstay in the treatment of low- and some intermediate-
grade PCa. An AS protocol monitors for disease progression via the use of prostate-specific antigen 
(PSA) testing, digital rectal exam (DRE), and prostate biopsy. AS protocols vary by institution, but 
typically PSA testing and DRE are performed every 3–6 months and prostate biopsy is performed 
every 12–18 months. Prostate MRI is not yet considered a standard part of AS, but it has been stud-
ied as an adjunct. During AS, an unchanged mpMRI has been shown to have a negative predictive 
value of 80% for upstaging of disease on subsequent prostate biopsy.17 Currently, mpMRI of the 
prostate is not sufficient to serve as the primary modality of surveillance, but further research and 
technological improvements may change this.

Finally, prostate MRI is a valuable tool in the staging of prostate cancer. MRI has been shown to 
be equivalent to CT or PET scan for the identification of metastatic disease in regional lymph nodes.5 
MRI has also been shown to be highly specific for the identification of EPE and SVI (Figure 4.4), 
with specificity rates of 91% and 97% respectively.5 Obtaining MRI prior to treatment can influence 
the choice of treatment modality and help to inform surgical planning.
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CONCLUSIONS

Utilization of MRI to aid in the diagnosis and management of PCa has increased exponentially in 
recent years and will likely continue to expand in the near future. MRI confidently identifies clini-
cally significant cancer, supplanting “overdiagnosis” with accurate and actionable diagnosis. MRI 
is also particularly useful to identify and target occult malignancy when clinical suspicion remains 
high despite negative prior biopsies. Finally, as increasing numbers of patients choose active surveil-
lance over immediate, definitive treatment, MRI will likely play a large role in disease monitoring. 
PI-RADS provides a template for standardized communication between radiologists and urologists, 
which should improve clarity of reporting and interobserver variability.
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5 Current Role and Evolution 
of MRI Fusion Biopsy 
for Prostate Cancer

Danielle Velez, Joseph Brito, and Joseph Renzulli II

The American Urology Association (AUA) recommends screening for prostate cancer (PCa) in men 
aged 55–70 who are without risk factors or family history.1 Screening involves a digital rectal exam 
(DRE) and serum prostate-specific antigen (PSA), the combination of which helps to provide a level 
of risk of prostate cancer to the patient. The gold standard for the actual diagnosis of prostate cancer 
remains the transrectal ultrasound-guided biopsy (TRUS biopsy), which relies on a standard sextant 
template, randomly sampling the prostate at the base, mid, and apex levels, with two samples taken 
from each level from the right and left lobes, resulting in 12 cores. While it has proven to be a use-
ful tool, ultrasound (US) alone is inadequate for visualizing suspicious prostatic lesions. Although 
cores are obtained in a systematic fashion, there is a risk of the biopsy needle missing a focus of 
intermediate- or high-risk prostate cancer.2 Prostate biopsy itself is not without morbidity, as it is 
uncomfortable and invasive, can lead to transient hematuria and hematochezia, and carries a rate of 
post-biopsy sepsis from 0.6% to 5.7%.3

MRI-guided prostate biopsy has gained popularity in the last decade, with the promise of 
improving the detection rate of clinically significant prostate cancer in patients undergoing biopsy. 
Here we present a brief history of the utilization of MRI in the realm of prostate cancer, as well as 
indications for its utility in the diagnosis and treatment of this disease.

MRI HISTORY

Magnetic resonance imaging (MRI) was first utilized in 1977. Since its inception, the ability for 
MRI to detect and stage malignancy has been further refined and explored. In 1983, Hricak per-
formed 25 pelvic MRIs using a 0.35T magnet, noting that in the prostate cancer patients, malignant 
tissue had a characteristically higher intensity signal than the surrounding benign gland.4

Modern MRI generally employs the more powerful 3T magnet. Paralleling the increase in imag-
ing quality, the use of MRI in the diagnosis and staging of prostate cancer has become an increas-
ingly common implement in the urologist’s arsenal. As discussed previously, inherent sampling 
error in the standard sextant TRUS biopsy risks understaging of patient disease. Alternatively, 
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random biopsies may uncover only clinically indolent disease with little or no risk of progression, 
creating a situation where the risks of a radical prostatectomy or radiation therapy outweigh its ben-
efits. The United States Preventative Services Task Force (USPSTF) recommended against screen-
ing for prostate cancer in their 2008 guidelines. The task force concluded that treatment for prostate 
cancer diagnosed by screening exposes patients to the risks of treatment, including erectile dysfunc-
tion, urinary incontinence, bowel dysfunction, or even death, without proof that this population 
would have ever experienced cancer-related symptoms in their lifetime.5 MRI allows the urologist 
to image the prostate in great detail, offering the opportunity to identify regions of interest for sub-
sequent biopsy. Using this image as a map in real time to ensure tissue acquisition of the suspicious 
areas can further increase the biopsy yield for clinically significant (Gleason 7 or greater) disease.6

MULTIPARAMETRIC MRI

With increasing utilization of prostate MRI, select phases (or parameters) have become favored 
for detection of disease. Today, the industry consensus is for the multiparametric MRI (mpMRI) 
to include high-resolution T2-weighted images, and at least two functional techniques, diffusion-
weighted imaging (DWI) and dynamic contrast enhancement (DCE), with or without MR spectros-
copy. The combination of these images allows mpMRI to detect higher-grade disease, thus reducing 
the diagnosis and subsequent treatment of clinically indolent cancers.

Radiologists use the Prostate Imaging-Reporting and Data System (PI-RADS) to catego-
rize lesions seen under mpMRI. Created under the International Prostate MRI Working Group 
in 2007, and then revised by the American College of Radiology and the European Society 
of Urogenital Radiology in 2015, the PI-RADS v2 system standardized the classification and 
reporting of prostate MRI lesions, which greatly facilitated in multicenter clinical evaluation 
and implementation.7

PI-RADS v2 uses a 5-point scale to assign a likelihood that the combination of mpMRI findings 
on T2WI, DWI, DCE correlates to a clinically significant focus of cancer within the gland: 

• PI-RADS 1—Very low (clinically significant cancer is highly unlikely to be present)
• PI-RADS 2—Low (clinically significant cancer is unlikely to be present)
• PI-RADS 3—Intermediate (the presence of clinically significant cancer is equivocal)
• PI-RADS 4—High (clinically significant cancer is likely to be present)
• PI-RADS 5—Very high (clinically significant cancer is highly likely to be present)

Even with standardized reporting, there is still substantial variability in mpMRI interpretation. 
Garcia-Reyes et al.8 showed that dedicated mpMRI education programs, and ultimately radiology 
experience, are required for diagnostic accuracy. Five blinded radiology fellows evaluated 31 mpM-
RIs, which had already been evaluated by board-certified radiologists with at least 5 years of pros-
tate mpMRI experience. The radiology reads were then compared to final histopathology findings 
after radical prostatectomy. The fellows then underwent a dedicated mpMRI education program, 
and reevalauted the images. Cancer detection increased from 74.2% to 87.7% (p  =  0.003), with 
Gleason score accuracy increasing from 54.8% to 73.5% (p = 0.0005) after education.

T2-weighted images reflect the tissue water content, and are used to establish prostatic anat-
omy. Cancerous lesions appear as poorly defined, low-signal intensity foci. Alone, T2WI carries 
a specificity and sensitivity of only 88% and 74%, respectively, as the lesions appear similar to 
benign prostatic hyperplasia in the peripheral zone, or even biopsy-related hemorrhage.9 To pre-
vent confusion during MRI fusion biopsy, the American College of Radiology recommends wait-
ing at least 6 weeks between initial prostate biopsy and MRI fusion biopsy to allow for bleeding 
resolution.7

For this reason, T2WI is combined with functional imaging to improve mpMRI sensitivity and 
specificity. Diffusion-weighted imaging measures the random Brownian motion of water molecules 
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within tissues. Denser tissues have less movement, and therefore lower diffusion coefficients. The 
change in the tissue density is measured as the apparent diffusion coefficient (ADC). On DWI, 
cancerous lesions are defined by a high diffusion coefficient and low ADC. Diffusion-weighted 
imaging is particularly important, as the lesions identified on this phase have been shown to have a 
higher likelihood of being clinically significant (i.e., Gleason grade ≥7).10

Dynamic contrast-enhanced MRI evaluates tumor vascularity by imaging the prostate pre- and 
post-gadolinium administration. Magnetic resonance spectroscopic imaging (MRSI) relies on ele-
vated choline and lower citrate in cancerous as opposed to benign tissue. It is useful in predicting 
the presence or absence of cancer and can provide information on the aggressiveness of the disease, 
further improving the specificity and sensitivity of mpMRI over T2WI alone (Figure 5.1).

INDICATIONS FOR mpMRI AND MRI FUSION BIOPSY

As more mpMRIs and MRI fusion biopsies are performed, the clinical scenarios where the technol-
ogy has a benefit over traditional TRUS biopsies are also evolving and expanding. TRUS biopsy 
remains the gold standard for prostate cancer diagnosis. However, there is a rapidly growing body of 
literature to support a role for MRI fusion biopsy, as detailed in the 2016 guidelines released by the 

FIGURE 5.1 3T prostate MRI of a 71-year-old male with on active surveillance for low-risk T1 Gleason 6 
prostate cancer. PSA 2.8. Arrows point to a PI-RADS 4 lesion in the right mid-gland, peripheral zone, as seen 
on different MRI sequences. Top left: unable to visualize lesion on T1 sequence. Top right: hypointense lesion 
on T2 sequence. Bottom left: DWI, notable for decreased ADC. Bottom right: VIBE imaging.



46 Prostate Cancer Imaging

AUA and the Society of Abdominal Radiology. Overall, the literature recommends consideration of 
mpMRI and MRI fusion biopsy in:2,11

• Patients considering active surveillance, or those currently on active surveillance, to ensure 
that this is the most appropriate management strategy

• Patients with history of prior negative prostate biopsy but continued suspicion of prostate 
cancer, usually due to rising PSA and/or abnormal DRE

In 2012, the European Society of Urogenital Radiologists (ESUR)10 also released clinical guide-
lines, including a decision-making flowchart (Figure 5.2) focused on further prostate imaging after 
a patient’s first TRUS biopsy. For low-risk patients deciding between treatment versus active sur-
veillance, mpMRI may detect the presence of intermediate- to high-risk disease. Targeted biopsy of 
these “hot” lesions minimizes the sampling error of the standard TRUS biopsy, potentially remov-
ing active surveillance as an appropriate option if that lesion proves to be clinically significant.

Intermediate-risk patients may benefit more from information on disease location, such as the 
presence or absence of extraprostatic extension, to aid decision making on nerve-sparing and surgi-
cal approach. The ESUR concluded that Detection Protocols are most appropriate in the low-risk 
population, limiting the MRI to a 30-minute protocol, without an endorectal coil, covering the 
entire prostate with T2WI, DCE, and DWI phases. This differs slightly from the Staging Protocol, 
where a longer-MRI scan is required (45 minutes), due to the addition of magnetic resonance spec-
troscopic imaging (MRSI).

MRI provides the clinician with information regarding tumor volume, aggressiveness, and loca-
tion. Particularly for anterior lesions, which may be missed on standard template biopsy, or for small 
lesions—mpMRI has enough sensitivity to detect tumors at least 0.5 mL in volume.10

But in the era of joint decision making between provider and patient, it is not the volume of infor-
mation but the quality that counts. Multiparametric MRI favors the detection of high-risk disease. 
By identifying these lesions, mpMRI helps the provider to establish the population that would truly 
benefit from intervention. Simultaneously, by ignoring low-risk lesions, patients avoid the morbidity 

First presentation
TRUS-biopsy
(10-14 cores)

Biopsy positive
# of cores

% of each core positive

Curative intent
Patient factors: life

expectancy, co-
morbidities, preference

Staging MRI with
bone and node MRI

in high risk (PSA>15 or
Gleason>7, or DRE T3)

Staging MRI to con�rm
grade and extent T2WI,

DWI, DCE, (MRSI)

Detection MRI and then
biopsy (TRUS guided by

MRI or MR-guided biopsy
in some specialist units)

Biopsy negative
Clinical follow up
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FIGURE 5.2 ESUR prostate imaging algorithm. Detection MRI: <30  minute protocol consisting of the 
T2WI, DWI, and DCE images. Staging MRI: 45-minute protocol to evaluate for extraprostatic extension, 
using the above images ± MRSI. (From Barentsz, J. et al., Eur. Radiol., 22, 746–757, 2012.)
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of low-yield biopsies and ultimately the overtreatment of disease that is unlikely to change their 
quality of life or life expectancy.

Vargas et al.12 sought to assess the value of mpMRI and MRI fusion biopsy in men with clinically 
low-risk prostate cancer prior to placement on active surveillance. In this retrospective review, 388 
men underwent mpMRI, followed by confirmatory biopsy, which included 12 cores plus a sampling 
of suspicious areas by US, MRI, or DRE. Seventy-nine men were upgraded to Gleason ≥3+4 on 
confirmatory biopsy. They also noted the high negative predictive value of a PI-RADS 2 lesion for 
disease upgrading (0.96–1.0), compared to the high sensitivity of a PI-RADS 5 lesion (0.87–0.98) 
for upgrading on confirmatory biopsy.

Active surveillance protocols often require repeat prostate biopsy. Alberts et al.13 examined 210 
men on AS with Gleason 6 disease who underwent a mpMRI at 3 months from diagnosis, at confir-
matory biopsy 1 year from diagnosis, or after one or more repeat TRUS biopsies. The authors found 
that 64% of the men had a “positive” MRI, defined as detection of a PI-RADS ≥3 lesion, with 24% 
upgraded to Gleason ≥3+4 disease after re-biopsy. This finding was similar across the three groups 
(23%, 23%, and 27%, respectively). Although this was not directly compared to a control group of 
TRUS biopsy patients, the study was important in that it established that whether the mpMRI is per-
formed early or later in the active surveillance course, its detection of higher-grade disease allows 
the patient to make better informed decisions about their selected management strategy. When per-
formed earlier, MRI fusion biopsy may help to prevent unnecessary additional biopsies, which may 
not detect advancement of disease. Timely targeted biopsy may also lead to earlier treatment for 
clinically significant disease, which may help to improve cancer-specific survival.

The second indication for mpMRI and MRI-fusion biopsy is patients with negative biopsy but 
continued concern for undetected prostate cancer. Lee et al.14 evaluated the efficacy of targeted 
biopsy using MRI in men with a previously negative prostate biopsy and rising PSA. Eighty seven 
men underwent mpMRI prior to biopsy, which was performed in a cognitive fusion technique (see 
below), obtaining the standard 12-core biopsy as well as targeted biopsies of suspicious lesions iden-
tified on MRI. Suspicious MRI lesions were seen in 94.2% of the men, with 56% of those patients 
having prostate cancer in at least one core biopsy (targeted or template). Of the prostate cores, 28.8% 
of the targeted cores, versus 3.6% of the template cores, (p = 0.012) contained prostate cancer. Only 
two patients had a negative MRI but finding of cancer within 1 of the 12 standard template cores. 
Furthermore, only five patients were found to have insignificant prostate cancer by Epstein criteria 
on MRI-targeted biopsy.

Taken together, these studies demonstrate the ability of mpMRI to visualize higher Gleason 
grade disease and to identify targetable lesions during re-biopsy. This technique helps to more accu-
rately grade and stage a patient’s disease, thereby decreasing the number of unnecessary biopsies a 
patient may have to undergo. MRI may also aid in patient selection for enrollment in or continuation 
of active surveillance protocols.

METHODS FOR MRI FUSION BIOPSY

Multiple methods for performing MRI-guided prostate biopsy have been described. In-bore, mag-
netic resonance-guided biopsy (MRG-biopsy) was the first method developed to sample MRI-
visualized prostatic lesions. It requires the use of MRI-safe needles, which are placed into the 
lesions identified on MRI, and the location of the needle prior to its withdrawal is confirmed via 
MRI. Drawbacks to this method are that it is time-consuming, and therefore more uncomfortable 
to the patient, who must lay in the prone or decubitus position with a rectal probe in place. It is also 
more financially taxing, requiring access to the MRI scanner, the software, and MRI-safe needles. 
However, this method is very precise, and may be most helpful in patients with an altered anatomy 
(i.e., post abdominal-perineal resection).2

The so-called cognitive fusion or visual registration approach relies mostly on operative abil-
ity to use anatomic landmarks on ultrasound and MRI to manually guide the needle into the 
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MRI-identified lesions.2 “Anatomic fiducials” include cysts, bony landmarks, and calcifications. 
Although this technique does not require as much equipment and time as the MRG biopsy, it is 
heavily dependent on operator experience and technique. Smaller lesions, anterior masses, and 
those at the lateral edge or apex can be particularly difficult to sample with cognitive fusion biopsy.11

Finally, software-based registration platforms overlay the mpMRI onto the real-time US images, 
giving the provider a map of the prostate and its lesions, in addition to real-time ultrasound feedback 
on needle location. Alignment is achieved in a rigid or elastic fashion. First, a prostatic sweep is 
performed with the ultrasound probe, creating a 3D reconstruction of the prostate. Rigid registra-
tion projects the mpMRI over the 3D ultrasound image and aligns the contour of the prostate and 
its landmarks under MRI to the US in an unchanging fashion. This does not correct for changes in 
prostate anatomy that may occur with patient repositioning or probe movement. Elastic registration 
attempts to compensate for the prostate deformation during the course of the biopsy, although in 
the process can cause some anatomic distortion by sacrificing internal architecture for continuously 
aligned contours.2,15 In both rigid and elastic registration, the software tracks the movement of the 
ultrasound probe so that the fused US/MRI image remains accurate. Today, most software-based 
registration platforms have evolved to allow for a combination of elastic and rigid registration to 
maximize accuracy (Figure 5.3).

A literature review by Wegelin et al.15 found no statistically significant benefit to any of the tech-
niques described above in the detection of clinically significant prostate cancer. Any of the MRI 
fusion biopsies, regardless of the technique, were superior to routine TRUS in detecting clinically 

(a) (b)

(c) (d)

FIGURE 5.3 MRI to US fusion. (a) The T2WI is contoured in purple. (b) Transrectal ultrasound view of 
the same prostate (c) and (d). The TRUS and MRI prostatic images are combined, to create a 3D mapping of 
the prostate, including the location of previously detected suspicious lesions on MRI. In a rigid system, the 
surgeon would manually overlap prostate contour taken from the MRI to the prostate viewed under TRUS. In 
an elastic system, the software automatically compensates for differences in prostate shape/contour.
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significant prostate cancer (OR 1.16, range 1.02–1.32). Pooled sensitivities for prostate cancer diag-
nosis were 0.72 (95% CI 0.62–0.81), 0.81 (95% CI 0.75–0.85), and 0.89 (95% CI 0.78–0.95) for 
cognitive-fusion biopsy, software-based biopsy, and in-bore MRI-guided biopsy, respectively.

MRI fusion biopsy programs also rely on tracking software to visualize the TRUS probe position 
and needle advancement in three dimensions, helping the provider to accurately target the lesion of 
interest.2 The tracking software is also able to store the needle’s location for each of its biopsy cores, 
allowing providers to re-sample the same areas on subsequent biopsies.

There are several ways to track the biopsy needle, and even more software systems to fine-
tune these methods within clinical practice. One is electromagnetic tracking, which relies on a 
solenoid sensor on the TRUS biopsy probe, which generates a constantly changing magnetic field 
and subsequent electric current, which is then relayed to the computer to create a 3D image. The 
UroNav® system (Invivo Corporation), reports a registration and tracking error of 2–3 mm when 
the biopsy probe is positioned just proximal to the lesion of interest prior to deployment of the 
biopsy needle.16

Robotic arms affixed to the biopsy table and fitted with position-encoded sensors have also been 
used to track the 3D position of the biopsy probe. In this technique, as movement of the probe is 
controlled by the robotic arm, its motion is restricted to rotation along a fixed axis. One example of 
position-encoded sensors is the Artemis (Eigen), pictured below (Figure 5.4).

Finally, image-based tracking uses elastic registration and the 3D image of the prostate to 
track the ultrasound probe. A second 3D TRUS image is obtained after firing the prostate biopsy, 
to confirm the needle’s position. The Urostation (Koelis) is an image-based software tracking 
system.

FIGURE 5.4 Artemis 3D imaging and navigation for prostate biopsy (Eigen). (From http://www.eigen.com/
products/artemis.shtml.17)

http://www.eigen.com/products/artemis.shtml
http://www.eigen.com/products/artemis.shtml


50 Prostate Cancer Imaging

MRI FUSION BIOPSY VERSUS THE GOLD STANDARD

As more institutions adopt mpMRI and MRI fusion biopsy into practice, more data has been gener-
ated to compare the MRI fusion biopsy performance to that of the traditional template TRUS biopsy.

Costs associated with MRI/TRUS fusion technologies include the upfront financial investment 
in equipment and software, a heavy time commitment for training and traversing the learning curve 
of the technology, as well as the more long-term cost of maintenance and upgrading. However, 
the challenges that a practice faces in initiating an MRI fusion biopsy program are supported by a 
wealth of research supporting the use of MRI fusion biopsy over TRUS.

As previously mentioned, Lee et al.14 noted that of their 87 patients with a previously negative 
biopsy and rising PSA, only 8 of the 46 newly identified prostate cancers (17.4%) would have been 
biopsied if only a traditional TRUS biopsy had been performed without mpMRI and MRI fusion 
biopsy.

Pokorny et al.6 reported on the cancer detection rate for 226 biopsy-naïve men, with rising PSA 
and/or abnormal DRE after undergoing an mpMRI. Men with PI-RADS ≥3 lesions first underwent 
MRI fusion biopsy, and then 30 minutes later a standard sextant TRUS biopsy. Men with PI-RADS 
1–2 lesions underwent TRUS biopsy alone. MRI-guided biopsy was performed in 142 men, versus 
223 TRUS biopsies. Prostate cancer was diagnosed in 69.7% of the MRI-guided biopsy patients, 
versus 56.5% of the TRUS biopsy patients; in addition, MRI-guided biopsy detected more interme-
diate- to high-risk disease: 93.9% versus 62.7% (p < 0.01). MRI-guided biopsy also did not detect as 
much low-risk disease (6.1% vs. 62.7%, p < 0.001) as the standard TRUS biopsy. If the patients had 
only undergone MRI-guided biopsy for the PI-RADS 3 or greater lesions, fewer would have been 
exposed to the risks of biopsy, only to be diagnosed with a low-risk disease that does not warrant 
intervention.

Other studies have failed to establish a statistically significant difference in prostate cancer 
detection rate between TRUS and MRI-guided biopsy. Mendhiratta et al.18 performed MRI fusion 
biopsy and TRUS biopsy in 161 men with a history of at least one negative prostate biopsy. Prostate 
cancer detection rates were similar, with MRI detecting 21.7% of cancers, and TRUS biopsy 18.6% 
(p = 0.36). However, looking at cancer detection rates per Gleason grade, MRI-guided biopsies 
detected more of the Gleason ≥7 cancers than TRUS biopsy (14.9% vs. 9.3%, p = 0.02). This is con-
sistent with the basic intention of mpMRI, in that it is geared to the diagnosis of high-risk lesions, 
rather than clinically insignificant disease.

CONCLUSIONS

As a clinician’s responsibility is to weigh the risks and benefits of every test and intervention, 
choosing the diagnostic test with the greatest yield for actionable diagnoses is in the best interest of 
the patient. In its current state, MRI fusion biopsy has been shown to outperform standard TRUS 
biopsy in the detection of intermediate- to high-risk disease. But as the techniques for performing 
mpMRI become more refined, and US/MRI fusion software improves, indications for the utilization 
of mpMRI in the management of both newly diagnosed and monitored prostate cancer are expected 
to evolve and expand.
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6 Current Role of Focal Therapy 
for Prostate Cancer

H. Abraham Chiang and George E. Haleblian

INTRODUCTION

BACKGROUND

Prostate cancer is a prevalent malignancy, but the natural progression of disease is heterogeneous. 
Hence, current management of clinically localized prostate cancer depends on disease risk stratifi-
cation. Standard of care management options include active surveillance, radical prostatectomy, and 
radiation with or without androgen deprivation therapy. Of note, it is estimated that up to 20%–55% 
of patients on active surveillance transition to definitive treatment (Wilt et al. 2012; Hamdy et al. 
2016). With advancements in early prostate cancer detection and treatment, the 10-year prostate 
cancer–specific survival rate for patients with clinically localized prostate cancer is excellent at 
approximately 99%. The morbidities associated with radical prostatectomy and radiation are signifi-
cant and can gravely impact a patient’s quality of life. Rates of erectile dysfunction (ED) and urinary 
incontinence after definitive treatment are estimated to be 60%–80% and 20%–40%, respectively 
(Resnick et al. 2013; Wilt et al. 2017).

In recent years, multiple groups have published results of randomized controlled trials compar-
ing definitive therapy to active surveillance for clinically localized prostate cancer. One such trial is 
the ProtecT trial, which compared radical prostatectomy, radiation therapy, and active surveillance 
in men with predominantly low-risk prostate cancer. After 10 years of follow-up, this trial demon-
strated no overall or prostate cancer–specific survival with definitive treatment when compared to 
active surveillance (although rates of disease progression and metastasis were higher with active 
surveillance) (Hamdy et al. 2016).

Altogether, the unclear survival benefit of definitive treatment for men with low- to intermediate- 
risk  prostate cancer combined with morbidities associated with treatment have fueled debate 
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regarding overtreatment of clinically localized prostate cancer. In this setting, there has been 
increasing interest in developing less radical, less morbid therapies for the management of clinically 
localized prostate cancer.

The adoption of less radical therapies has already occurred for the management most other solid 
organ malignancies. Within the field of urology, this transition can be appreciated in the manage-
ment of small renal masses. Classically, small renal masses suspicious for malignancy were man-
aged with radical nephrectomy. While this was associated with favorable oncologic outcomes, the 
consequences of being left with a solitary kidney can be significant, and patients with impaired 
baseline renal function may not be operative candidates for radical nephrectomy. With development 
of less radical treatment options, such as partial nephrectomy and percutaneous ablation therapies, 
patients now have less morbid yet oncologically sound options.

Interestingly, prostate cancer has remained an exception to this trend toward partial or focal 
organ therapy. One reason for this is the belief that prostate cancer is inherently a multifocal dis-
ease and hence not amenable for focal treatment. However, there is increasing appreciation that not 
all prostate cancer is clinically significant, raising the possibility that (1) indolent prostate cancer 
lesions may not require treatment and (2) ablation of clinically significant index lesions may be 
sufficient in providing desired oncologic outcomes while decreasing morbidities associated with 
more radical, whole-gland treatment. Furthermore, advancements in diagnostic imaging modalities, 
such as prostate MRI, continue to improve our ability to discern clinically significant lesions from 
indolent ones with increasing accuracy. The significance of these developments is reflected in the 
renewed interest in investigation of focal therapy for prostate cancer.

The goal of this chapter is to review the technical aspects, oncologic outcomes, and functional 
outcomes with regard to various focal therapy modalities in the treatment of prostate cancer. The 
modalities reviewed include high-frequency focused ultrasound (HIFU), cryoablation, photody-
namic therapy (PDT), laser interstitial thermotherapy (LITT), brachytherapy, irreversible elec-
troporation (IRE), and radiofrequency ablation (RFA) (Table 6.1). Where applicable, the role of 

TABLE 6.1
Technical Aspects of Various Focal Therapy Modalities

Modality Energy Delivery Ablation Mechanism Route Imaging Guidance

High-intensity focused 
ultrasound (HIFU)

Parabolic-focused 
ultrasound waves

Thermal: coagulative 
necrosis

Mechanical: cavitation 
bubbles

Transurethral or 
transrectal

In-bore MRI 
(transurethral)

MR-TRUS fusion 
(transrectal)

Cryoablation Cryo-needles Hypothermia Transperineal MRI
Color doppler U/S

Photodynamic therapy 
(PDT)

Laser + 
photosensitizer + 
tissue oxygen

Formation of reactive 
oxygen species, vascular 
occlusion and tumor 
necrosis

Transperineal 
(intravenous 
photosensitizer)

MRI

Laser interstitial 
thermotherapy (LITT)

Laser Thermal Transperineal or 
transrectal

MRI

Brachytherapy Radioactive seeds DNA damage, cell death Transperineal MR-TRUS fusion

Irreversible 
electroporation (IRE)

Electric field Cell membrane disruption, 
apoptosis

Transperineal TRUS

Radiofrequency 
ablation (RFA)

Alternating current Thermal Transperineal TRUS
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imaging guidance modalities will also be discussed. It is important to note that focal therapy for 
prostate cancer remains in various stages of clinical trials and is not currently standard of care for 
the management of prostate cancer.

WHO SHOULD BE OFFERED FOCAL THERAPY?

Focal therapy for prostate cancer has been proposed for various clinical scenarios, including  primary 
treatment of clinically localized prostate cancer, secondary treatment for recurrence,  cytoreduction 
in more advanced or metastatic disease, as well as for palliation. Focal therapy indicated for  primary 
treatment of clinically localized prostate cancer has the most robust body of evidence and hence 
will be the focus of this chapter.

From a technical standpoint, it seems reasonable that a patient with a unifocal clinically 
significant lesion (or at least disease restricted to one lobe) is better suited for focal therapy 
compared to those with multifocal or bilateral disease. Furthermore, the target lesion should 
be readily identifiable and spatially localizable using the radiographic modality guiding focal 
therapy delivery (i.e., ultrasound, CT, or MRI). Beyond this, the optimal selection criteria with 
respect to patient and disease characteristics remain poorly defined in literature. Thus far, the 
vast majority of patients included in clinical trials are in the low- to intermediate-risk catego-
ries, with some studies including high-risk patients as well (Table 6.2). Given that low- and 
 intermediate-risk patients are at greater risk of “overtreatment” and exposure to morbidities 
associated with  radical therapy, it stands to reason that these patients may gain the most from 
alternatives such as focal therapy.

IMAGING MODALITIES

Imaging serves two critical roles in focal therapy: (1) optimal patient selection based on disease/
lesion characterization and (2) treatment planning and delivery.

Historically, ultrasound has been the most commonly used imaging modality of choice for evalu-
ating the prostate. However, malignant prostatic lesions are not reliably visualized on ultrasound. 
Recent advancements in prostate MRI is having a profound effect in the detection and surveil-
lance of prostate cancer. One study found that when compared to transrectal ultrasound (TRUS)-
guided prostate biopsy, prostate MRI has higher sensitivity (93% vs. 48%) and negative predictive 
value (89% vs. 74%) in the detection of clinically significant prostate cancer (Ahmed et al. 2017). 
Furthermore, MRI provides good enumeration and spatial localization of suspicious lesions, quali-
ties that are critical to effective focal therapy delivery. With accurate spatial localization, the margin 
of ablation can be decreased with decreased risk of injury to surrounding structures, such as the 
urethra, neurovascular bundle, and rectum. Furthermore, the overall volume of ablated tissue can 
be decreased, reducing procedure time.

MRI offers yet another benefit over alternative imaging modality in the form of thermometry. 
The majority of focal therapy modalities rely on some form of thermal ablation. Traditionally, 
this required the use of invasive temperature probes to monitor adequate ablation, as well as 
sparing of nearby critical structures from thermal spillover. It has now been demonstrated that 
MRI is capable of accurate real-time temperature monitoring, potentially obviating the need 
for additional invasive temperature monitoring probes (Ishihara et al. 1995). It is no surprise, 
then, that MRI is quickly being adopted as the imaging modality of choice for prostate focal 
therapy.
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FOCAL THERAPY MODALITIES

HIGH-INTENSITY FOCUSED ULTRASOUND (HIFU)

HIFU utilizes parabolic-focused ultrasound waves to ablate target tissue via two mechanisms. First, 
focused ultrasound wave energy is converted into thermal energy at the target tissue, triggering cell 
death by coagulative necrosis. During this process, target tissue can be heated up to 70°C–100°C 
within seconds of energy application. The second effect is mechanical: ultrasound waves interact 
with tissue water and generate negative pressure, thereby forming cavitation bubbles. The collapse 
of these cavitation bubbles transmits mechanical force, destroying adjacent tissue (Chaussy and 
Thüroff 2017). HIFU-mediated tissue ablation was first described in 1944 by Lynn and Putnam, and 
subsequently explored for ablation of prostatic adenomas in treatment of benign prostatic hyper-
plasia (BPH) in the 1990s. Ironically, HIFU was found to cause high rates of post-treatment uri-
nary retention due to tissue edema and urethral sloughing and abandoned as a treatment for BPH. 
Nonetheless, HIFU did demonstrate considerable gland shrinkage after treatment, confirming its 
efficacy in prostatic tissue ablation.

HIFU energy is delivered using a transurethral or transrectal probe. Targeting of focused ultra-
sound is achieved by one of two mechanisms: (1) movement of the transducer or (2) electronic 
manipulation of the focal point (Chaussy and Thüroff 2017). An endorectal cooling device can be 
used to protect adjacent tissue from thermal injury (Ramsay et al. 2017). Although HIFU can be 
performed with ultrasound guidance, contemporary case series have increasingly leveraged MRI 
guidance. As previously discussed, MRI not only allows accurate spatial localization of the target 
lesion, but also provides real-time thermometry data. In a pilot study of five patients who underwent 
focal HIFU therapy just prior to radical prostatectomy, Ramsay et al. (2017) demonstrated that 
prostatic tissue ablation can be achieved with both spatial and thermal accuracy using MRI guid-
ance. On surgical pathology, all index lesions were fully contained within the outer limit of thermal 
ablation.

Technical limitations of HIFU include limited tissue penetrance (24–40 mm depending on device 
model) that may preclude treatment of particularly large volume glands. Prostatic calcifications can 
also dissipate or deflect energy delivery. Furthermore, as in the case for all thermal ablative proce-
dures, large vessels can act as heat sinks and limit adequate thermal ablation to nearby tissue.

In the United States, HIFU was approved for “prostatic tissue ablation” by the FDA in 2015. 
Europe, in contrast, has been using HIFU for many years, and as a result there is a large body of 
literature detailing its oncologic and functional outcomes. Golan et al. performed a meta-analysis 
of HIFU for focal ablation of prostate cancer, reviewing 13 studies (10 prospective, 2 comparative, 
1 retrospective) for a total of 543 patients who received partial gland HIFU therapy. Nearly all 
patients undergoing primary treatment of prostate cancer had low- or intermediate-risk disease. 
Median follow-up ranged from 6 months to 10 years. Prostate cancer–specific survival was 100%. 
Of the 364 patients who underwent primary HIFU therapy followed by post-treatment prostate 
biopsy, 103 (28%) patients had a positive repeat biopsy, of whom 30 (8%) had clinically significant 
prostate cancer; 10% of patients went on to receive secondary therapy. Post-HIFU rates of ED and 
urinary incontinence ranged from 0% to 48% and 0% to 10%, respectively (Golan et al. 2017).

As is the case for all focal therapy modalities, interpretation of the above findings is limited 
by several issues. The type of pre- and post-treatment prostate biopsies were not standardized and 
included standard TRUS, targeted, and template biopsies. Furthermore, at least one study did not 
mandate post-treatment biopsies (i.e., post-treatment biopsy was performed for clinical suspicion 
of biochemical recurrence only). With regard to the functional outcomes, the definition of ED and 
urinary incontinence varied widely from study to study. Despite these limitations, the published 
literature suggests that HIFU is a relatively safe procedure with favorable functional outcomes 
when compared to standard of care radical therapies. Oncologic outcomes with respect to pros-
tate cancer–specific survival appear no worse than standard of care, which is not surprising given 
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that studies primarily focused on low- to intermediate-risk patients. However, the implications of 
residual clinically significant prostate cancer remain uncertain in the absence of longer follow-up 
and secondary outcome data regarding disease progression and development of metastatic disease. 
Randomized controlled trials comparing HIFU to standard of care therapies are lacking and needed 
to better evaluate the role of HIFU in the treatment of prostate cancer.

CRYOABLATION

Cryoablation is an FDA-approved treatment for prostate cancer, and as its name implies, achieves 
tissue ablation by exposing target lesions to extreme hypothermia. Early descriptions of prostate 
cryoablation date back to 1966 and were initially performed surgically (Gonder et al. 1966). With 
further refinement of cryoablation devices, percutaneous ablation became feasible in the 1990s 
by inserting cryo-needles transperineally under ultrasound guidance (Onik et al. 1993). Adjunct 
devices, such as urethra-warming catheters, can be used to protect nearby critical structures.

In recent years, MRI-guided cryoablation has been increasingly explored given its supe-
rior spatial localization compared to ultrasound, noninvasive thermal monitoring, and ability 
to clearly delineate frozen tissue post-treatment (Josan et al. 2009). A prospective feasibility 
study of software-assisted MRI-guided cryoablation enrolled 18 patients with intermediate- to 
high-risk disease. Early and late post-treatment MRI showed no radiographic evidence of resid-
ual disease within the ablated fields. Unfortunately, post-treatment biopsies were not obtained. 
Patients reported stable erectile and urinary symptoms compared to baseline at 12 month follow-
up (Valerio et al. 2017c).

Valerio et al. performed a meta-analysis including 11 case series (9 retrospective and 2 prospec-
tive) evaluating the use of cryotherapy for treatment of prostate cancer. Ablation technique was 
most commonly hemi-gland ablation followed by focal ablation. Of the 1,950 patients included in 
this meta-analysis, the majority of patients were in the low- to intermediate-risk categories with 
a median PSA of 6.3. At a median follow-up of 26 months, prostate cancer–specific survival was 
100%. Rate of clinically significant prostate cancer on post-treatment biopsy was 5.4%; 7.6% of 
patients underwent secondary treatment. Rates of ED and leak-free continence were 18.5% and 2%, 
respectively (Valerio et al. 2017a).

Overall, cryoablation appears to be a well-tolerated procedure with a relatively low sexual and 
genitourinary adverse side effect profile when compared to radical therapies. However, randomized 
controlled trials comparing cryoablation to standard of care therapies are needed to better assess 
oncologic and functional outcomes.

LASER-MEDIATED ABLATION: PHOTODYNAMIC THERAPY (PDT) 
AND LASER INTERSTITIAL THERMOTHERAPY (LITT)

Tissue ablation using lasers can be achieved by two different methods: PDT and LITT. PDT requires 
three components: a laser light source, photosensitizer, and target tissue oxygen. For prostate PDT, 
the photosensitizer is administered intravenously and the laser fibers are inserted into the target 
region transperineally. When the laser excites the photosensitizer at the target tissue, free radi-
cals are generated, which in turn react with local tissue oxygen to create reactive oxygen species. 
Reactive oxygen species are highly cytotoxic and induce vascular occlusion and ultimately tumor 
necrosis (Lebdai et al. 2017). Given systemic circulation of the photosensitizing agent, patients are 
generally advised to avoid exposure to direct sunlight for a period of time.

Unique among focal therapy modalities, PDT has been compared to a standard of care therapy 
(active surveillance) in a randomized controlled trial. Azzouzi et al. recruited 413 patients with 
low-risk prostate cancer and randomized 206 to undergo PDT and 206 to active surveillance. After 
24 months of follow-up, prostate cancer–specific survival in both groups was 100%. However, the 
rate of prostate cancer progression (from low-risk to intermediate- or high-risk disease) was lower 
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for the PDT group compared to the active surveillance group (28% vs. 58%, HR 0.34, 95% CI 
0.24–0.46; p < 0.0001). Patients in the PDT group were also more likely to have a negative prostate 
biopsy at 24 months compared to the active surveillance group (49% vs. 14%, HR 3.67, 95% CI 
2.53–5.33; p < 0.0001). Finally, patients in the PDT group were less likely to undergo subsequent 
radical therapy when compared to those in the active surveillance group (6% vs. 29%, p < 0.0001). 
Clinically significant adverse side effects (National Cancer Institute grades 3–4) were rare, with ED 
and urinary incontinence occurring in 1% of patients for both PDT and active surveillance groups 
(Azzouzi et al. 2017).

Hence, Azzouzi et al. concluded that PDT may decrease risk of prostate cancer progression and 
increase likelihood of subsequent negative prostate biopsies when compared to active surveillance 
for patients with low-risk disease. Sexual and genitourinary toxicity profile associated with PDT 
treatment was comparable to active surveillance. Interestingly, patients who were randomized to 
PDT were less likely to undergo subsequent radical therapy. While this may be explained in part by 
higher rates of disease progression and positive post-treatment biopsies, it also raises the possibil-
ity that patient anxiety classically associated with active surveillance may be mitigated with focal 
therapy. Limitations of the study include the absence of intermediate-risk patients as well as com-
parison to other standard of care therapies, such as radical prostatectomy or radiation. Undoubtedly, 
recruitment for such randomized controlled trials would be more challenging. This study employed 
standard TRUS-guided biopsies, and hence another limitation is the inherent sampling error rate of 
prostate biopsies. Short of radical prostatectomy pathology specimens, template biopsies offer the 
most thorough sampling of the prostate followed by the standard TRUS-guided biopsy as a distant 
third. Nevertheless, this study provides valuable insight as the unique randomized controlled trial 
in the field of focal therapy for prostate cancer.

A second method of laser tissue ablation is LITT. LITT is distinct from PDT in that the laser 
light directly heats target tissue to achieve thermal ablation. Hence, a photosensitizer is not needed. 
A shortcoming of all thermal ablation modalities, including LITT, is thermal spillover and potential 
injury to adjacent tissue.

A meta-analysis of four prospective series evaluating LITT included 50 patients with low- to 
intermediate-risk prostate cancer. At a median follow-up of 4.5 months, the prostate cancer–specific 
survival rate was 100%. The rate of clinically significant prostate cancer on post-treatment biopsy 
was 4.8%. ED and urinary incontinence rates were 0% and 0%, respectively (Valerio et al. 2017a). 
Further studies are needed to better evaluate the safety and efficacy profile of LITT in the treatment 
of prostate cancer.

BRACHYTHERAPY

Whole-gland brachytherapy has long been used as a standard of care treatment for clinically local-
ized prostate cancer. Pre-treatment mapping of the prostate is performed with ultrasound, CT or 
MRI. Once the prostate contour is determined, tissue ablation is achieved by placing radioactive 
seeds transperineally, typically under TRUS guidance with template. When compared to other 
standard of care treatments, brachytherapy offers several benefits. It is less invasive than prosta-
tectomy and may be a viable option for patients who are not operative candidates. Furthermore, 
because the radioactive seeds can be “placed-and-forgotten,” fewer hospital visits are required 
during treatment compared to external beam radiation. On the other hand, a major shortcom-
ing of brachytherapy is a more pronounced genitourinary side effect profile when compared to 
radical prostatectomy or external beam radiation. It seems reasonable to deduce, then, that adapt-
ing brachytherapy from a whole-gland to focal ablation technique may reduce genitourinary side 
effects. As a demonstration of technical feasibility, a study has shown that hemi-gland brachyther-
apy, when compared to whole-gland brachytherapy, resulted in significant reduction in radiation 
dose to the contralateral gland, as well as to the urethra, neurovascular bundle, and rectum (Laing 
et al. 2016).



60 Prostate Cancer Imaging

The largest published series of sub-total gland brachytherapy by Nguyen et al. includes 318 
patients with low- to intermediate-risk disease. Notably, in this series sub-total gland ablation was 
performed by radiating the entire peripheral zone of the prostate, instead of hemi-gland or focal 
ablation. Hence, this technique does not fully conform to the idea of “focal therapy.” Nonetheless, 
as the largest series in sub-total prostate brachytherapy, the study provides valuable insight with 
regards to oncologic outcomes. After a median follow-up of 61 months, prostate cancer-free sur-
vival was 99.7% and 3.5% of patients were found to have clinically significant prostate cancer post-
treatment (Nguyen et al. 2012). Functional outcomes were not investigated.

Cosset et al. published preliminary data on a smaller series of 21 patients with low- to intermediate-
risk disease who did undergo truly focal, lesion-directed brachytherapy. Of note, patient selection 
was narrowed to those with limited and localized tumors on two separate biopsies and MRI. Mean 
treatment volume was 34% of the total prostate volume. Follow-up and data collection is still under-
way, but of the five patients who have been biopsied post-treatment, none had clinically significant 
prostate cancer. ED and urinary toxicities at 1-year follow-up was found to be comparable to whole-
gland brachytherapy (Cosset et al. 2013). Data from longer follow-up will provide further informa-
tion regarding oncologic and functional outcomes of LITT.

IRREVERSIBLE ELECTROPORATION (IRE)

IRE achieves ablation by exerting a strong electric field to the target tissue, disrupting cell mem-
branes and inducing apoptosis. This is in stark contrast to most other focal therapy modalities that 
involves thermal ablation and necrosis. As a direct consequence of its unique mechanism of action, 
IRE lacks thermal spillover to adjacent tissue and achieves a very sharp ablation boundary that is 
measured in cell layers (Lee et al. 2010). Technical feasibility of IRE has been demonstrated in 
non-curative intent trials where patients underwent IRE followed by radical prostatectomy. Surgical 
specimen pathology confirmed adequate target tissue ablation without skip lesions (Van den Bos 
et al. 2016).

A retrospective case series by Ting et al. included 25 patients with low- to intermediate-risk 
prostate cancer showed 100% prostate cancer–specific survival at 7 months of follow-up. On post-
treatment biopsy, 25% of patients were found to have clinically significant prostate cancer, although 
none of these samples were from the treated field. Patient-reported erectile function and inconti-
nence rates remained stable when compared to pre-treatment (Ting et al. 2016).

A more recent prospective case series by Valerio et al. included 19 patients with low- to inter-
mediate-risk prostate cancer, and after follow-up of 12 months, prostate cancer–specific survival 
was 100%. Some 33.3% of patients were found to have clinically significant prostate cancer on 
post-treatment biopsy, but laterality/location of these positive samples were not specified, making it 
unclear whether these represented recurrences, inadequate ablation, or separate nontargeted lesions. 
One patient reported new onset ED and no patients had new urinary incontinence (Valerio et al. 
2017b). All in all, data regarding IRE for treatment of prostate cancer remains scarce, and further 
trials are needed to assess its safety and efficacy profiles.

RADIOFREQUENCY

RFA uses alternating current to heat target tissue and induce coagulative necrosis. Although com-
monly used for cardiac ablation or treatment of small renal masses, very little data is available 
regarding the use of RFA for treatment of prostate cancer.

The only published case series for focal RFA of prostate cancer is a proof-of-concept study dat-
ing back to 1998. In this series, 15 patients received RFA with no intention to treat prior to radical 
prostatectomy. Both monopolar and bipolar energy were used and target lesions identified when 
visible on TRUS. Even if no suspicious lesions were visible, one or two ablative lesions were made 
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in the gland. Surgical pathology demonstrated coagulative necrosis lesions in line with predicted 
lesion size. No oncologic or functional outcomes were measured (Zlotta et al. 1998).

CONCLUSION

Early detection and treatment of prostate cancer in the era of PSA screening has led to excellent 
disease-specific survival for patients. Unfortunately, this outcome has been achieved at the cost of 
overtreatment and significant morbidities associated with standard of care radical therapies. These 
shortcomings in the management of prostate cancer, combined with the ever-growing concerns of 
rising healthcare costs, have fueled interest in focal therapy as an alternative treatment modalities 
in select patients.

A multitude of focal ablation techniques including HIFU, cryoablation, PDT, LITT, brachyther-
apy, IRE, and RFA are actively being investigated. Of these, HIFU and cryoablation have been most 
thoroughly studied, particularly in patients with low- to intermediate-risk disease. In this patient 
population, studies have shown that radical therapy is comparable to active surveillance with regard 
to overall and disease-specific survival. Early results suggest that focal therapy may be associated 
with disease-specific survival comparable to these standard of care treatments.

However, a number of limitations must be addressed before focal therapy is recommended as a 
treatment option for patients with prostate cancer. For one, nearly all studies conducted thus far have 
been case series. Randomized controlled trials that compare focal therapy against standard of care 
treatments have been lacking and are only starting to be published. In the absence of such compara-
tive efficacy trials, it is yet unfeasible to comment on the oncologic efficacy of focal therapy in the 
treatment of prostate cancer. Furthermore, as follow-up data for focal therapy matures, it will be 
interesting to see if differences in clinically meaningful secondary outcome measures, such as rates 
of disease progression or metastasis, become apparent.

From a functional standpoint, a goal of focal therapy is to spare nearby critical structures, such 
as the urethra, neurovascular bundle, and rectum. By ablating a small lesion, or even with hemi-
gland ablation and sparing of contralateral structures, the expectation is that improved functional 
outcomes can be achieved. Data thus far suggest that functional outcomes with regard to ED and 
urinary incontinence are favorable when compared to standard of care radical therapies. However, 
interpretation of this data is limited by relatively short follow-up periods, large methodology varia-
tions in measuring of functional status, and small sample sizes for most modalities.

Above all, randomized controlled trials comparing focal therapy to standard of care therapies 
are needed to better assess both oncologic and functional outcomes. Thus far, one randomized 
controlled trial comparing PDT to active surveillance has been published by Azzouzi et al. and 
discussed this in chapter. Another randomized controlled trial currently underway is the partial 
prostate ablation versus radical prostatectomy (PART) trial, which recently completed recruitment. 
The first phase of the PART trial will randomize 80 patients with intermediate-risk prostate cancer 
to radical prostatectomy or HIFU. The goal of the first phase is to assess the feasibility of recruiting 
and randomizing an adequate number of participants. If successful, additional recruitment will be 
performed to assess oncologic and functional outcomes. Long-term data from randomized con-
trolled trials such as this are needed before focal therapy will be accepted as standard of care treat-
ment option for prostate cancer.

Finally, although not discussed in detail in this chapter, the role of focal therapy for recurrent 
and metastatic prostate cancer as well as for palliation is also being explored. Overall, the role of 
focal therapy for prostate cancer remains unclear and is not recommended as standard of care at 
this time. Nevertheless, if the evolution in management of other solid organ malignancies are a 
sign of things to come, we can expect focal therapy to play an increasing role as optimal patient 
selection and disease characterization become better defined, and as ablative technology continues 
to improve.
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7 High-Intensity Focused 
Ultrasound (HIFU)

Rutveej Patel and Sammy Elsamra

INTRODUCTION

Ultrasound refers to sound waves that contain frequencies higher than the upper audible limit in 
human hearing, and is defined by the American National Standards Institute as sound at frequencies 
greater than approximately 20 kilohertz (20,000 hertz). Ultrasound devices operate in multiple lev-
els of frequencies and have been used in the medical field as an imaging modality since the 1940s. 
Current ultrasound instruments typically operate at 1–18 megahertz. Ultrasonic images are created 
as a result of sending ultrasound pulses into tissue. This produces echoes off the tissue of varying 
degrees that can be recorded by the sensor and displayed as an image.

Ultrasound has an ability to interact with tissues and can propagate through them. This prop-
agation creates cycles of increased and decreased pressure, which can manipulate tissue. While 
imaging ultrasound operates at higher frequencies, HIFU typically uses frequencies from 0.8  to 
3.5 MHz. This results in a delivery of energy to the tissues much higher than the levels seen with 
diagnostic ultrasound. HIFU is in the category of therapeutic ultrasound, which is broadly divided 
into two subtypes: low-intensity and high-intensity. Other applications in this field include litho-
tripsy, targeted drug delivery, and ultrasound-mediated hemostasis or thrombolysis. High-intensity 
applications can also selectively destroy tissue.

HISTORY OF HIFU

The development of the modern ultrasound relies on the piezoelectric effect, which was first dis-
covered in 1880 by Jacques and Pierre Curie. The piezoelectric effect is the ability of certain mate-
rials to generate an electric charge when mechanical stress is applied to them. This effect is also 
reversible—if a material generates electricity when external stress is applied, then it also has an 
ability to generate stress when an external electric field is applied. The piezoelectric effect was not 
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incorporated into practical applications from its discovery until the initiation of World War I, when 
it was employed in the form of SONAR devices. As technology has advanced, new materials that 
can utilize the piezoelectric effect have been created and this phenomenon has been applied in many 
different industries.

Modern ultrasound transducers utilize the piezoelectric effect to produce and receive sound 
waves. Applying an electric field to a piezoelectric crystal will cause a realignment of the inter-
nal dipole structure, resulting in crystal lengthening or shortening. The size of the mechanical 
adjustment will depend on the voltage that is applied to the crystal. Running an alternating current 
through the crystal will cause vibrations at high speeds and this will produce an ultrasound. The 
wave will then bounce back off the tissue under investigation and will have a reverse effect on the 
crystal—the mechanical energy from the sound wave will cause the crystal to vibrate and this 
vibration will be converted into electric energy.

The history of HIFU can be traced back to the 1950s with the discovery, by Frank and William 
Fry, that high-frequency sound waves can generate localized tissue damage. Their initial interest 
into the study of the central nervous system led to the invention of instruments that generated, 
detected, and measured ultrasound. Their investigations and inventions led to understanding how 
ultrasound is scattered and attenuated, the degree to which different tissues can tolerate ultrasound, 
and further understanding of ultrasound parameters such as the speed of propagation. The equip-
ment for these experiments was built from scratch and current modern-day devices are iterations of 
these initial devices.

The treatment of prostate cancer with HIFU was first reported in 1995 and 1996.1,2 Transrectal 
HIFU continues to be a popular treatment alternative due to it being a minimally invasive treat-
ment for localized disease. There is no requirement for an incision, and it can be performed with 
little to no bleeding. Patients do not require any hospitalization, and if they do develop a recur-
rence, the treatment can be repeated. Previous treatment with radiation or other local therapy 
also does not preclude patients from receiving HIFU for recurrences.3 In late 2015, the United 
States Food and Drug Administration (FDA) approved HIFU for the ablation of prostate tissue. 
HIFU had been already approved for use in prostate tissue for ablation outside the United States 
by this point.

MECHANISM OF ACTION OF HIFU

HIFU can be delivered as a pulsed or continuous beam, and is applied as a pulse in medical devices 
and extracorporeal shock wave lithotripsy. Thermal ablation is the predominant mechanism of tissue 
destruction for the current HIFU devices, but mechanical effects also play a role. High-frequency 
vibration of a piezoelectric or piezoceramic transducer generates ultrasound waves that are focused 
into a focal point by an energy source. The probe uses an acoustic lens and converges multiple tra-
versing beams of ultrasound onto the target. The individual beams pass through the tissue without 
any effect. However, at the focal point where the beams are concentrated, the energy is deposited 
for ablative effects. The temperature of the tissue at the focus point will then rise to 65°C–85°C, 
resulting in irreversible cell death from coagulative necrosis. Each individual ultrasound beam and 
energy deposition will treat a precise location. The focused waves travel through the tissue and 
deposit the thermal energy only at the target location. Tissue damage is similar to radiofrequency 
ablation in the sense that damage is both a function of the temperature the tissue is being heated 
to and the length of the heat exposure. The absorption coefficient of the tissue as well as the size, 
shape, and thermal response of the tissue play a role in determining the extent of necrosis. Focusing 
these acoustic waves at more than one location or by changing the focus, a therapeutic target volume 
can be created and ablated. Therefore, the therapeutic field is treated with multiple energy beams 
and is devised via a physician protocol. The typical volume of ablation after a single HIFU pulse is 
small and it is generally shaped like a cylinder or grain of rice, with a few millimeters in the trans-
verse direction and about 1 cm in the height.
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High acoustic intensities also create cavitation, which plays a role in the mechanical effects of 
HIFU. These microbubbles are created as a result of the alternating cycles of increased and reduced 
pressure from the propagating waves. At the time of reduced pressure, gas can be drawn out of solu-
tion and form bubbles, which then implode rapidly. This results in shock waves that can mechani-
cally damage tissues and induce cell necrosis. The pressures achieved during the implosion of the 
microbubbles can be as high as 20,000–30,000 bars. In comparison, the deepest trench in the ocean 
has a pressure of approximately 1100 bars.

After tissue ablation and the coagulative necrosis, the cellular response at the edge of the ablation 
zone is the formation of granulation tissue. Histologic samples of necrotic lesions have shown that 
there is a sharp gradient between the tissue in the HIFU target and the surrounding area, proving 
that HIFU is a precise method of delivering ablative energy to the tissue. After the initial necrosis, 
leukocytes migrate deep into the treated tissue and the treated region is eventually replaced with 
proliferative repair tissue. Over time, imaging modalities have shown shrinkage of the treated areas 
and replacement of the tissue with fibrous scar tissue.

PRINCIPLES OF HIFU AND PROCEDURAL CONSIDERATIONS

HIFU treatment does offer some advantages over other methods of thermal ablation. It is mini-
mally invasive and it does not rely on radiation, allowing for repetition without any long-term 
effects. However, as in the case of ultrasound, HIFU sound waves do not readily pass through 
solid structures or air. Additionally, HIFU requires the use of general anesthesia and larger glands 
require larger treatment times. The procedure itself involves placement of a HIFU transducer 
covered by a condom in the rectum. To help diminish the thermal effects on the rectum during 
the HIFU procedure, the rectum is generally irrigated with cold and degassed water concurrently 
with the real-time ultrasound. HIFU-treated lesions can become visible as hyperechoic areas in 
real time. Traditionally, this is a same-day procedure performed under general anesthesia that typi-
cally lasts 1–3 hours, depending on the size of the gland. Generally, the patient will have bladder 
drainage via a urethral catheter or suprapubic catheter for 2 weeks. If the patient has a concomitant 
transurethral resection of the prostate (TURP), then the urethral catheter is generally left only for 
a few days.

Currently, there are three systems on the market in the United States. The Sonablate® 450, 
which was developed by SonaCare Medical, was the first device approved in the United States. 
Newer models have improved upon this and added better safety features. The second main system, 
Ablatherm® by EDAP TMS SA has now also gained approval for ablation of prostate tissue in the 
United States. The Ablatherm® is the longest utilized system, with its main safety and efficacy 
established in Europe. Table 7.1 summarizes some of the similarities and differences between the 
two main systems on the market. An important difference between the two systems is the size of 
the ablative field, which can make one system more suited for focal, partial, or full-gland ablation. 
Since the ablative lesions on the Sonablate® can be stacked, the anterior-posterior limit for whole-
gland ablation is <37 mm. In comparison, the anterior-posterior limit for the Ablatherm® system is 
fixed to <24 mm due to the way it delivers the ablative energy. Each system also includes different 
equipment or sensors to ensure rectal wall safety while treatment is active. The Ablatherm® allows 
for real-time rectal distance adjustment on each treatment slice. There are also internal controls 
that correct or stop treatments depending on the probe position with regard to the rectal wall. The 
Sonablate® system introduces the reflectivity index measurement (RIM) which analyzes real-time 
images of the rectal wall and digitally compares it to stored images taken prior to therapy. If the 
RIM score increases beyond a certain threshold, the treatment is stopped and the treating clinician 
is notified.

The major side effects of HIFU treatment with these two systems include urinary retention and 
erectile dysfunction. Regardless of the modality of energy delivery for current HIFU systems, a dis-
advantage is that it can be hard to target cancers in the anterior zone of the prostate or when treating 
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large glands. Also, while HIFU is a precision energy delivery system, it can be difficult to monitor 
the effects in real time, such as in the case of cryoablation.

INDICATIONS FOR HIFU IN PROSTATE CANCER

HIFU was initially started in a very distinct group of patients with localized prostate cancer who 
were not candidates for surgery.4 But with increasing safety and efficacy data, the indications broad-
ened to include patients who wished to undergo partial ablation for focal therapy, patients who were 
considered for salvage therapy in recurrent prostate cancer, as a debulking modality in patients with 
advanced prostate cancer, and in patients with castrate-resistant prostate cancer.5

As discussed previously, ablation with HIFU can be difficult in large prostates (i.e., 40 cc and 
above) because of the distance from the transducer to the anterior margin of the prostate. Therefore, 
since 2000 TURP just prior to HIFU has become routine practice for large glands. This reduces 
not only the size of the gland but also post-HIFU urethral sloughing/obstruction, and allows for 
removal of any calcifications in the transition zone that would make the HIFU treatment difficult. 
The increased invasiveness of a concurrent TURP is offset by the benefit of higher efficacy and 
reduced side effects and complications.6,7

Recent screening strategies have also led to earlier identification of men with small prostate 
tumors or with focal or unilateral disease.8 With this shift in prostate cancer, an increased number 
of practitioners have started to treat focal lesions with therapies such as HIFU as a means for organ 
preservation.

Current contraindication for HIFU treatment includes a history of rectal fistula. Prostate size 
is not a contraindication as long as the volume is decreased either through the use of luteinizing 
hormone-releasing hormone (LHRH) agonist or concurrent or antecedent TURP with HIFU treat-
ments. Additionally, if patients are taking anti-coagulants, then it is recommended that the medica-
tion be stopped for 10 days prior to the procedure to minimize risk of bleeding.9

TABLE 7.1
HIFU Technology

Ablatherm® Sonablate®

Cost (approx.) $750,000 $450,000

Disposables cost $1,200 $2,400

Coupling medium Degassed water Proprietary gel

Type Robotic Manual/robotic versions available

Automated movements of probe Transduce and probe motion Transducer only

Type of endorectal probes 3 MHz—treatment only, 7.5 MHz 4 MHz

Real time imaging Yes with 7.5 MHz No

Patient positioning Lateral Dorsal Lithotomy

Treatment time 10 cc/hr 10 cc/hr

Fusion compatibility None Coming soon

Safety features • Rectal temperature monitoring
•  Automatic adjustment of probe in regards 

to rectal wall
•  Automatic patient movement detection

• Rectal temperature monitoring
•  Rectal wall distance 

monitoring
•  Organ movement feedback

Ablation method/size

Hemi 24 mm lesion—single row Stackable 10 mm, 12 mm lesions

Focal 24 mm 10 mm or 12 mm

Apex sparing 4 mm safety margin required No margin required
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EFFECTIVENESS/OUTCOMES OF HIFU

LOCALIZED DISEASE

To determine the effectiveness of HIFU, biochemical markers and biopsy results post-HIFU have 
been used as markers. However, a universal definition of biochemical failure in patients treated with 
HIFU remains to be created. Biochemical free survival (BFS) rates have ranged from 75% to 77%, 
using the Phoenix criteria (nadir PSA + 2).10,11 Using the American Society for Radiation Oncology 
(ASTRO) definition, the BFS rates have ranged from 66% to 77%.12,13 Table 7.2 also summarizes 
some of the current literature regarding the efficacy of HIFU. Repeat prostate biopsies were also 
reported in many of the studies regarding HIFU treatment, however, the timing of surveillance 
biopsy varied significantly. Ultimately, 8% of men had residual clinically significant disease after 
HIFU.14

Meta-analysis of previous studies has shown an increased risk of biochemical failure at 1-year 
follow-up in patients who underwent HIFU when compared to external beam radiotherapy (EBRT), 
21% versus 1.3%.16 However, this statistical difference was not seen at 5-year follow-up. In compari-
son to radical prostatectomy (RP), HIFU was noted to be at an increased risk of biochemical failure 
at 1 and 5 years, but again these results were not statistically significant. The predicted rates of 
biochemical failure in the treatment models of the meta-analysis were approximately 34% for HIFU, 
13% for EBRT, and 11% for RP at 5 years.16

Overall survival data regarding HIFU has shown increased survival rates for HIFU when com-
pared to EBRT at 4 years follow-up.17,18 Estimated rates of survival were 99% for HIFU and 91% for 
EBRT.16 For cancer-specific survival (CSS), a statistically significant lower rate was observed for 
HIFU than for EBRT at 1 year, however, there was no difference between HIFU and RP at 1 year. 
Predicted rates of CSS for comparison modeling at 1 year was 88% for HIFU, 95% for EBRT, and 
90% for RP. One reason for this variation could be attributed to the severity of disease across the dif-
ferent modalities. A larger percentage of patients were Gleason 6 or less in the EBRT studies when 
compared to HIFU or RP. Also 50% or more patients in the HIFU and RP population represented 
more localized clinical stage T1 disease.16

HIFU AS SALVAGE THERAPY

HIFU has also been used in the past as salvage therapy in cases of advanced disease, even after 
modalities such as radiation, cryoablation, high-dose brachytherapy, and primary HIFU. Previous 
analysis has shown that in patients who experience recurrence with EBRT, the majority do not 
receive any local therapy. Only 3.9% of these patients undergo subsequent treatment, of which 
0.9% is salvage prostatectomy and the rest cryoablation.19 Furthermore, while salvage prostatec-
tomy and cryoablation offer some benefits in theory, their high complexity and morbidity make it 

TABLE 7.2
High-Intensity Frequency Ultrasound—Efficacy

Study # of Patients
Mean PSA 
(ng/mL) Stage

Median 
Follow-up 
(months)

Biochemical 
Survival

Retreatment 
Rate (%)

Gelet et al. (2001)12 102 8.38 T1-2 19 66% 78.4

Poissonnier et al. (2003)13 120 5.67 T1-2 27 76.9% —

Poissonnier et al. (2007)15 227 7.0 T1-2 20.5 — 42.7

Blana et al. (2008)11 140 7.0 T1-2 76.8 77% @ 5 years 29.3

Blana et al. (2008)10 163 5.0—median T1-2 57.6 75% @ 5 years 20.8
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a challenging option for salvage treatment. In this scenario, salvage HIFU offers a favorable risk/
benefit profile. Data regarding HIFU after radiation or surgery is sparse, but salvage HIFU after 
brachytherapy appears to be a viable and safe approach without a significant increase in compli-
cation when compared to primary HIFU.4 In patients who have a recurrence post-prostatectomy, 
HIFU ablation of these recurrences shows negative biopsies in 77% of cases. These patients have 
a BFS of 91% at 5 years.20 However, the utility of salvage HIFU in the post-prostatectomy setting 
relies on the ability to identify a lesion on a transrectal ultrasound and an ability to verify the lesion 
with a biopsy.

FOCAL THERAPY WITH HIFU

Partial gland ablation has increased in frequency as practitioners are now looking to treat localized 
disease while also preserving quality of life. Whole-gland HIFU has shown promising long-term 
function and oncologic outcomes and as imaging and ablative technologies have improved, a new 
shift toward partial ablation and focal therapy has been seen. Current literature includes studies 
that have studied short- and mid-term functional and oncologic outcomes of partial-gland HIFU 
in the treatment of prostate cancer. However, the current studies do not have comparison to whole-
gland ablation, or with other modalities of ablation. Despite these shortcomings, a systematic review 
of current partial-gland ablation studies did show that CSS was 100% for the median follow-up. 
However, 10% of men in the primary treatment group and 37% in the salvage group had to receive 
additional treatment.14 Two-year rates of biochemical recurrence ranged from 42% to 67% in the 
salvage therapy setting. These are comparable to biochemical failure rates following radiotherapy, 
which are reported as 50% at 5 years out.

Recurrences or additional treatment of patients who undergo partial-gland ablation are likely 
a result of missed cancers on multiparametric MRI or systematic biopsy that were not part of the 
initial ablative field.

ADVERSE EFFECTS

Main adverse effects of HIFU and other prostate cancer treatments include urinary incontinence, 
erectile dysfunction, and potential bowel issues. The risk of incontinence was largest for RP at 66%; 
HIFU and EBRT carried a risk of 10% and 5%, respectively.16 Fecal incontinence was reported in a 
study as an adverse event for people undergoing HIFU.21

Erectile dysfunction (ED) in prostate cancer treatment has been heavily studied, but the out-
comes assessed and measured vary widely across the studies due to differences in the definitions 
used and the types of data studied. Analysis of data comparing ED showed a reduced rate of ED 
following HIFU when compared to RP at a 1-year follow-up. However, this was not statistically sig-
nificant. Predicted rates of ED with comparison models at a 1-year timeframe were 23% for HIFU 
and 33% for RP. The authors of this model were unable to estimate the rate of ED for people treated 
with EBRT.16

Short-term adverse events related to HIFU include dysuria, urinary retention, bladder 
spasms, infection, urethral stricture, bladder neck contracture, rectal bleeding, and rectal fis-
tula. The reported rate on rectal fistulas ranged from 0%22 to 5%.23 Bladder neck contracture 
rates were also widely varied and were as high as 14%.23,24 Urethral stricture rates were reported 
to be up to 16.6%.25 Urinary infection rates ranged from 0.6% to as high as 45% of the study 
population.23,26

Two studies have reported about a variety of quality-of-life outcomes of patients undergoing 
HIFU. In one study, validated questionnaires such as the I-PSS, IIEF-15, and the UCLA-EPIC uri-
nary incontinence scale were used. After HIFU therapy, 89% of studied patients achieved pad-free 
continence, erections sufficient for intercourse, and cancer control.27
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FUTURE DIRECTIONS WITH HIFU

Given that HIFU is a precise method of delivering ablative energy, to increase its efficacy as a thera-
peutic tool for prostate cancer it will be necessary to improve imaging modalities that can help to 
better image and localize the tumor and concerning lesions. In addition to improvement in precision 
diagnostic technology, HIFU is being investigated with several advancements. This includes the use 
of multiparametric MRI, high-resolution ultrasound, contrast-enhanced or Doppler ultrasound, and 
lastly being able to fuse previous imaging with real-time HIFU.

Beyond the technological advancements, HIFU is increasingly being considered for focal ther-
apy and in other settings. There are many ongoing trials reflecting the interest in focal therapy. One 
such trial is NCT02265159 that is actively recruiting participants to determine the oncologic safety 
of focal HIFU treatment. Additional trials are also combining imaging modalities and HIFU such 
as the FOcal RECurrent Assessment and Salvage Treatment (FORECAST) trial. This trial assesses 
accuracy of whole-body MRI as well as safety of focal salvage therapy.

HIFU may well become a form of curative therapy in localized disease or as a viable option for 
adjuvant therapy in advanced disease. Imaging improvements will only enhance the efficacy of 
HIFU and as results from ongoing clinical trials are published, it may become a more widespread 
treatment option for prostate cancer.
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8 Current Role of Cryotherapy 
in the Treatment of 
Prostate Cancer

Adnan Dervishi and Murali K. Ankem

INTRODUCTION

Prostate cancer is the second most common cancer and third leading cause of death in American 
men. In 2017 alone, the American Cancer Society estimated about 161,360 new cases and 26,730 
deaths from prostate cancer (1). Current modalities include but are not limited to radical surgery, 
radiotherapy, cryotherapy, high-intensity focused ultrasound (HIFU), and active surveillance.

The concept of destroying tissues by freezing was described by Arnott et al. in 1851 (2), but 
urologic application was initiated by Gonder and Soanes in 1966 (2). The first perineal probes were 
used by Magalli et al. in 1974 and are widely considered as first-generation cryosystem (2). This 
was abandoned due to high incidence of incontinence, impotence, urethral necrosis, and rectoure-
thral fistulae. The second-generation cryosystems were popularized by Onik et al. in 1988 (2,3). 
Transrectal guidance for perineal placement of cryoprobes and real-time monitoring of the ice ball 
with concurrent use of intraurethral warming catheters reduced the complication rates. The cur-
rently available systems are third-generation cryosystems. They use the Joule-Thompson principle 
with argon for freezing, helium for thawing, small 17G cryo-needles, temperature sensors, and ure-
thral warming catheters which have led to excellent results with low morbidity.

Traditionally cryotherapy was used in salvage setting for radiotherapy failures and in patients 
who are high-risk surgical candidates. Of late it is being offered as primary modality for low-risk 
prostate cancer in the form of focal or whole-gland ablation. Primary cryotherapy offers 5-year bio-
chemical disease-free survival (bDFS) rates of 77% (2) while salvage cryotherapy achieved 58.9% 
with acceptable morbidity (4).
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The American Urological Association recognized cryotherapy as a therapeutic option for pros-
tate cancer in 1996. As the demand for minimally invasive effective therapies increases, with 
advances in imaging and ablating technology, we forecast these options will be offered more in the 
near future.

CRYOBIOLOGY

Cryotherapy induces cell death by vascular thrombosis and destruction of cell membrane and 
organelles. The intracellular formation of ice crystals causes mechanical disruption of membranes 
and freezing temperatures cause malfunction of proteins leading to irreversible damage. The stan-
dard double freeze and thaw process adds additional insult in the form of reperfusion injury. Chosy 
et al. showed that temperatures of −19.4°C are needed for complete necrosis (5). Within 24 hours 
coagulative necrosis ensues with infiltration of macrophages, plasma cells, and lymphocytes with 
eventual scar formation.

CRYOTHERAPY TECHNIQUE

We use a similar setup and technique that we use for prostate brachytherapy. This includes a stan-
dard 2D ultrasonography unit with a transrectal probe, laptop computer, perineal template, and 
a rotational mover device attached to the operating table. Under general or spinal anesthesia, the 
patient is placed in the lithotomy position. The transrectal ultrasonography probe is then inserted 
into the rectum until the prostate can be clearly seen in the transverse and sagittal views. A template 
is displayed in the transverse view and we plan the respective probe positions, leaving appropriate 
distances between probes, to the lateral aspect, base, and apex of the prostate, to the urethra, and 
to anterior rectal wall. We typically place approximately six cryo-needles, and verify their posi-
tions in the transverse and sagittal views. Three thermocouples are then inserted under guidance, 
at the apex, pre-rectal, and intraprostatic locations. Flexible cystoscopy is performed to verify the 
intraurethral/bladder placement of the cryo-needles, and once appropriate position is confirmed, a 
urethral warming device is then inserted. Argon gas is used as a cooling source and helium as the 
rewarming (thawing) source. As the freezing process commences, the progress of the ice ball for-
mation is monitored in real time. This allows cautious monitoring of the freezing process, coverage 
of target area, rectal wall, and external sphincter. A standard double freeze-thaw cycle is utilized. 
A suprapubic catheter is then placed routinely and the patient is admitted for 23 hours observation. 
The suprapubic catheter is removed once the post-void residual urine is less than 150 mL.

PRIMARY WHOLE GLAND THERAPY

There are no randomized controlled studies (RCTs) comparing primary therapies for localized pros-
tate cancer. A systematic review of literature by Wilt and associates showed a low level of evidence 
supporting cryotherapy as a primary modality (6). In the absence of RCTs the data is difficult to 
interpret because of the different study designs, criteria for failure, and use of dissimilar generations 
of cryosystems in various studies. Currently, post-cryotherapy failure is determined based on either 
American Society for Radiation Oncology (ASTRO) or Phoenix criteria. Some studies take levels 
equal to or above 0.5 ng/dL as evidence of recurrence. These varied definitions make it difficult 
to establish a successful outcome. Nevertheless, Ritch et al. observed that cryotherapy has similar 
short-term bDFS rates compared to other primary treatment modalities (7). Cohen et al. reported 
a 10-year bDFS rate of 56.01% (ASTRO) and 62.36% (Phoenix) (8). When they looked at subsets 
based on the risk (low, intermediate, high) the bDFS was 80.56%, 74.16%, and 45.54% respectively. 
The study also showed an overall survival rate of 73.81% for patients with negative biopsy status 
(9). To enhance understanding of the efficacy of primary cryotherapy, the Cryo Online Database 
(COLD) registry was initiated; it includes four academic centers and 34 community urology groups. 
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Five-year data from the COLD registry demonstrated bDFS rates of 77.1% (ASTRO) and 72.9% 
(Phoenix) for the entire group (2,4). Risk stratification and analysis showed bDFS rates of 84.7%, 
73.4%, and 75.3% (ASTRO) for low-, intermediate-, and high-risk patients respectively (2,4,10). This 
could reflect the improvements in technology as well as the experience of the treating physicians.

One area of significant improvement is the reduction of complication rates after cryother-
apy. The downtrend in complication rates has been attributed to the development of third- 
generation cryosystems, and has rekindled the interest in this form of therapy. In a multicenter 
study (n = 106), Han and colleagues (11) noted urethral sloughing (5%), incontinence (3%), urge 
incontinence (5%), urinary retention (3.3%), rectal pain (2.6%), and rectourethral fistula (0%). 
Hubosky et al. reported even lower rates of complications in the 2% range, and when compared 
to brachytherapy cohort cryotherapy patients had better urinary function (9). Although there has 
been an overall decrease in complications rates in whole-gland cryotherapy, the high incidence 
of erectile dysfunction, with only 20% of patients achieving any meaningful erections at 1 year, 
is discouraging (7).

SALVAGE CRYOTHERAPY

External beam radiation therapy (EBRT) is a standard primary treatment for localized prostate 
cancer. Even in conformal EBRT with image guidance and dose escalation technique about 20%–
50% develop biochemical recurrence in 10 years (12). Post-EBRT prostate biopsy demonstrates 
that most failures are secondary to recurrence/residual disease. Failure to treat local recurrence 
might lead to debilitating urinary symptoms, possible distant spread, and poor quality of life. 
Despite potential benefits of salvage treatment most of the patients are usually managed by obser-
vation or androgen deprivation treatment (ADT). Post-radiation therapy failures are often treated 
with salvage prostatectomy (open/robotic), salvage cryotherapy, salvage HIFU, and re-radiation. 
Open salvage prostatectomy is technically difficult with major complication rates. Recently sal-
vage robotic radical prostatectomy has been promising due to two-thirds of patients with bDFS 
rate with continence rate of 60% and potency rates of 20% in short-term (36 months) follow-up 
(12). Cryotherapy is a logical choice since it’s inherently less invasive and has a low complication 
rate. Izawa et al. noted 3% incontinence and 2% fistula after salvage cryotherapy (13). Pisters and 
associates (4) studied COLD registry patients who underwent salvage cryotherapy (n = 279) and 
found a 5-year bDFS rate of 59% using ASTRO criteria. Izawa et al. (13) reported a post-salvage 
cryotherapy biopsy positive rate of less than 23%, and Chin et al. found a lower positive biopsy rate 
of 14.2% (14). This is not surprising because it is almost impossible to achieve a total kill of all the 
prostate epithelial cells. This is especially true with periurethral glands, which are protected by a 
urethral warming device, and lethal dose is not delivered at this site. Izawa et al. found transure-
thral biopsy positive rates as high as 17% (13).

An area of concern is the use of ADT along with salvage cryotherapy. This makes compari-
son between various studies perplexing, and the results should be accepted with caution. Most 
often, ADT is added to downsize the prostate to enhance the delivery of freezing temperatures 
to the whole gland. About 8.2% of the COLD registry patients were on ADT and some reported 
even higher number of patients (32%) on ADT (2,4). However, upon evaluation of outcomes of 
salvage cryotherapy in patients who had not received neoadjuvant hormonal ablative therapy 
(n  =  156), from the COLD registry, Spiess et al. found that for 1-, 2-, and 3-year bDFS in 
patients with a pre-salvage PSA < 5 ng/mL were 95.3%, 86.7%, and 78.3%, respectively, versus 
81.4%, 58.4%, and 52.9%, respectively, for the subgroup with a pre-salvage PSA 5 ng/mL (3). 
This study highlights the important prognostic role of a patient’s pre-treatment PSA level and 
emphasizes the importance of a prompt referral once local failure is suspected (3). Salvage 
therapy is well tolerated, with a urinary incontinence rate of 4% and a fistula rate of 1.2% as 
shown in the COLD registry (4). Recent technological advances in cryosystems have led to 
lower urinary incontinence rates from 83% to 9% (3). The incidence of erectile dysfunction post 



74 Prostate Cancer Imaging

salvage therapy is very high, in the range of 90%, due to collateral damage to the neurovascular 
bundles. More work needs to be done in order to protect future sexual function (Table 8.1).

FOCAL CRYOTHERAPY

Focal cryotherapy is a novel approach to achieve oncologic control with preservation of quality of 
life. Primary treatment options for localized prostate cancer are too aggressive with significant mor-
bidity. In select patients focal ablative techniques can be utilized to preserve potency by sparing the 
neurovascular bundles. Multiparametric magnetic resonance imaging (mpMRI) has enhanced the 
diagnosis, localization, and delivery of ablative therapy. In this area, more work is being reported 
in the form of MRI-guided focal cryotherapy, laser ablation, and HIFU. The limiting factor is that 
not all localized prostate cancers are truly localized to one small area, and the natural history of 
the disease is unpredictable, so this approach should be used with caution in select patient popula-
tions. Nevertheless, the quest to develop a truly minimally invasive option with minimal side effects 
continues and more results are being reported in the literature.

Early studies showed enough evidence to pursue this approach. Katz et al. (18) reported a bDFS 
rate of 84% at 3 years with preservation of potency in 68% of patients. Onik and colleagues (19) found 
95% had a stable PSA at 2 years with no post-treatment positive biopsy at 1 year; 90% maintained 
potency as well. However, four patients underwent a whole-gland ablation as the PSA never reached 
nadir. This highlights one important finding that the cancer should be localized to one site or side. 
More information was reported by Ellis et al. (20), Bahn et al. (21), and Lambert et al. (22) with 
similar short-term results with preservation of potency anywhere between 70% and 88.9%. Potency 
was defined as erections sufficient for penetration with or without aid. None of the studies reported 
any significant urinary issues or bowel symptoms; however, the selection criteria varied between the 
studies. Lambert et al. used standard 12-core biopsies and Ellis’s group recruited liberally across 
the board. Onik and his associates used a 3D transperineal mapping biopsy with no restrictions on 
the PSA or Gleason score. These results underscore the need for stricter uniform selection criteria 
with in-depth 3D or MRI mapping to identify occult and multifocal lesions. Eggener and colleagues 
(23) attempted to define the ideal selection criteria which include prostate cancers with stage T1–T2a, 
PSA less than 10, PSA density less than 0.15, PSA velocity less than 2 ng/dL, no Gleason 4 or 5, 
and no evidence of extra-prostatic extension with single lesion. Overall, focal cryotherapy lives up 
to the promise of satisfactory cancer control in the short term and excellent functional outcomes, 

TABLE 8.1
Review of Outcomes from Focal Salvage Cryotherapy for Recurrent Prostate Cancer after 
Radiotherapy

Study (year) Patients (n)
Pretreatment 
PSA (ng/mL)

Median Follow-up 
(Months) bDFS Definition bDFS (%) Ref.

Li (2015) 91 4.8 15 Phoenix 95.1% 1 year
72.4% 3 years
46.5% 5 years

(15)

De Castro Abreu 
et al. (2013)

25 2.8 31 Phoenix 68% (16)

Eisenberg et al. 
(2008)

19 3.3 18 ASTRO 89% 1 year
67% 2 years
50% 3 years

(17)

Abbreviations:  ASTRO: American Society for Radiology and Oncology; bDFS: biochemical disease-free survival; PSA: 
prostate-specific antigen; Ref.: reference.
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however, significant challenges remain in this field of focal ablation of prostate cancer. First, some 
might argue these patients are ideal candidates for active surveillance in the contemporary practice. 
Second, there is a lack of uniform selection criteria, follow-up, and insufficient long-term data. 
Finally, acceptable biopsy strategy needs to be determined as well.

In summary, even though there is enough interest in this approach, its rationale is questioned in 
the background of active surveillance which is rapidly gaining popularity. Whether there is a super-
select population at high risk for active surveillance who could be offered focal ablative option 
needs to be determined in the future (Tables 8.2 and 8.3).

TABLE 8.2
Outcome of Focal Cryotherapy of Localized Prostate Cancer

Study (year) Patients (n)
Median 

Age
Pretreatment 

PSA
Median 

Follow-up
Definition 

bDFS bDFS (%) Ref.

Barqawi et al. 
(2014)

62 60.5 NA 28 months PSA > pre-op 
PSA

71 (24)

Barrett et al. (2013) 50 66.5 6.1 9 months PSA Median 
= 2.5 at 
12 months

NA (25)

Bahn et al. (2012) 73 64 5.9 3.7 years NA NA (26)

Ward et al. (2012) 1149 67.8 21.1 months ASTRO 75.7 (10)

Truesdale et al. 
(2010)

77 69.5 6.54 24 months Phoenix 72.7 (27)

Lambert et al. 
(2007)

25 68 6.0 28 months 50% of pre-op 
PSA

84 (22)

Ellis et al. (2007) 60 69 7.2 12 months ASTRO 80.4 (20)

Onik et al. (2007) 55 NA 8.3 3.6 years ASTRO 93 (19)

Bahn et al. (2006) 31 63 4.95 70 months ASTRO 92.8 (21)

Abbreviations:  ASTRO: American Society for Radiology and Oncology; bDFS: biochemical disease-free survival; NA: not 
available; PSA: prostate-specific antigen; Ref: reference.

TABLE 8.3
Side Effects Secondary to Focal Cryotherapy

Side Effects

Study (year) (Ref.) Incontinence (%)  ED (%)  Fistula (%)

Barqawi et al. (2014) (24) 0 0 0

Barrett et al. (2013) (25) 0 0 2

Bahn et al. (2012) (26) 0 26 (1 year)
14 (2.4 years)

0

Ward et al. (2012) (10) 1.6 42 0.01

Lambert et al. (2007) (22) 0 29 0

Ellis et al. (2007) (20) 3.6 29.4 0

Onik et al. (2007) (19) 1 15 0

Bahn et al. (2006) (21) 0 11.9 0

Abbreviations: ED: erectile dysfunction; Ref.: reference.
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FOLLOW-UP AFTER CRYOTHERAPY

There is no standard follow-up protocol after any form of cryotherapy. Most groups have attempted 
to use radiation therapy follow-up protocols. Both radiation and ablative techniques aim to destroy 
the whole gland or part of the gland. ASTRO and Phoenix criteria are still used to report oncologic 
efficacy. This approach is problematic at multiple levels. First, whole-gland cryotherapy aims to 
destroy the prostate, however, the periurethral glands are spared due to use of a urethral warming 
system. These periurethral glands continue to secrete PSA, and thus some level of post-ablation 
PSA is expected. However, this acceptable PSA level is yet to be determined. It is even more dis-
putable in the focal ablation as it is not clear what the acceptable PSA will be. Second, the use of 
post-ablation prostate biopsy and its timing and duration are not clear either. Even though it appears 
to be a promising follow-up strategy, it may not be desirable for the patients to have biopsies on a 
regular basis as biopsy is invasive and can have complications. Third, post-ablation interpretation of 
biopsy is complex due to ablative changes, concurrent ADT, and the fact that some patients continue 
to have residual cancer. No uniform opinion exists about how to deal with persistent positive biopsy 
with low PSA. Multicenter clinical trials and large databases like COLD will be able to provide 
answers in the near future.

COST ANALYSIS

Very little information is available in the literature regarding the cost comparison between cryother-
apy and other modalities. Benoit et al. (38) reported overall cost reduction of 27% when compared 
to radical prostatectomy, and Schmidt et al. (29) found that at a cost of $13,000, cryotherapy is half 
the cost of radical prostatectomy. These are initial hospital costs and didn’t take into consideration 
subsequent follow-up, interventions for complications, and recurrence of disease. It is desirable to 
dig deep into cost-effective analysis by head-to-head comparison of available standard treatment 
modalities.

FUTURE

It is indisputable that cryotherapy has evolved in the last 150 years and this is mainly due to avail-
ability of new generation cryosystems and demand for minimally invasive approaches. Availability 
of mpMRI in the pre-, peri-, and postoperative settings will increase the accuracy of diagnosis, 
treatment, and follow-up (30). New strides are being made in the field of combined modalities, 
that is, cryotherapy with chemo and immunotherapeutic approaches. Even though they are inves-
tigational at this time, the future holds much promise. Multicenter randomized clinical trials and 
analyzing COLD registry are desirable. Although it is not a standard therapy at this time, focal 
ablation may play an important role as a complementary therapy to active surveillance in patients 
with low-risk prostate cancer.

CONCLUSION

Durable PSA response with negative post-treatment biopsy rates after cryotherapy with preserved 
quality of life is appealing to patients and providers alike. Current data demonstrates that focal 
ablation bDFS are comparable to whole-gland treatment. Although erectile dysfunction remains 
problematic after whole-gland ablation, focal therapy has demonstrated to have a lower risk for ED. 
Due to its favorable outcomes and lower side effect profile, focal cryotherapy has a promising future 
as an alternative to whole-gland treatment for primary localized low-risk prostate cancer, as well as 
for recurrent cancer after radiotherapy.
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In addition to establishing optimal criteria for proper patient selection, and lessening complica-
tions, further research is needed for accurate localization, delivery of ablative energy, follow-up 
strategies, long-term outcomes, and combined modalities such as chemo/immunotherapies.
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9 Transperineal Mapping of the 
Prostate for Biopsy Strategies

Daniel Kaplon and Winston Barzell

INTRODUCTION

Prostate cancer (PCa) has traditionally been regarded as a multifocal disease, yet radical prosta-
tectomy specimens have shown that 20%–30% of men with PCa may have unilateral or unifocal 
cancer. The concept of an index cancer was recently introduced to describe the largest cancer within 
a prostate, almost always the highest-grade cancer present, and the one likely to penetrate the cap-
sule. In multifocal disease, the index cancer is the presumed main driver of progression, outcome, 
and prognosis, leading to the hypothesis that small secondary cancers might be clinically irrelevant 
if the index lesion is treated. Ohori (1) reported that in patients with multifocal cancer, 80% of the 
tumor load arose from the index cancer, and that extracapsular extension, present in 28% of patients, 
almost always originated from the index lesion. Herein, the focus is on mapping the prostate in 
clinical scenarios where the prostate cancer is on surveillance protocol or on an active focal therapy 
treatment regimen.

Therapeutic dilemmas leading to a decision to perform transperineal biopsy of the prostate may 
be encountered in two patient populations: active surveillance (AS) candidates and focal therapy 
(FT) candidates.

ACTIVE SURVEILLANCE

Patients meeting criteria for active surveillance have minimal low-grade cancer on transrectal ultra-
sound (TRUS)-guided prostate biopsy. The patients meet strict criteria (less than 1 mm of Gleason 
score 6 or less in one biopsy core on transrectal biopsy) and have a 50% probability of having an 
“insignificant” cancer. Theoretically, these patients can be managed with watchful waiting as the 
cancer is considered to have no impact on morbidity or survival. Because up to 50% of these patients 
may upstage their disease, transperineal biopsy at set follow-up intervals is advised.

FOCAL THERAPY GROUP

This group is comprised of patients who appear to have limited unilateral disease as defined on 
initial diagnosis or with recurrence after failed primary therapy. These patients may be considered 
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for focal therapies such as salvage “remedial” brachytherapy following prior suboptimal implant or 
unilateral cryotherapy as primary treatment. Other scenarios include relapse from primary external 
beam radiation, brachytherapy, or cryoablation. In all these cases, mapping the location and extent 
of the cancer is essential for rational management.

The concept of FT has been criticized on the basis that prostate cancer is frequently multifocal. 
Furthermore, the efficacy of FT is unproven, and validated criteria for identifying patients who can 
safely be managed by this modality do not exist. Consequently, it is important that the selection 
process for patients undergoing FT excludes patients with cancer outside the area destined to be 
treated while precisely locating the targeted area to be selectively ablated.

Given the limitations of our existing imaging modalities, the selection of patients for FT is 
 currently best achieved by a comprehensive re-staging biopsy procedure.

This chapter explores the various re-staging biopsy strategies, including saturation transrectal 
ultrasound biopsies (TRBx), and transperineal template guided 3-dimensional pathologic mapping 
biopsies (3-DPM). The technique of 3-DPM is illustrated, and the advantages and disadvantages 
of saturation TRBx versus 3-DPM are discussed as they relate to the process of patient selection.

TRANSRECTAL BIOPSY STRATEGIES

TRANSRECTAL SYSTEMATIC BIOPSIES

Systematic sextant biopsies under transrectal ultrasound guidance (TRBx) were introduced into 
clinical practice in 1989 by Hodge and remained the gold standard for several years. Because of 
the high false negative rate of these sextant biopsies, extended biopsy protocols were introduced by 
many to maximize PCa detection rates. Eskew (2) described a 5-region technique incorporating 
lateral and midline biopsies with traditional sextant cores (total 13) which enhanced the detection 
rate to 40%. The improved cancer detection rates using a 12-core biopsy strategy, which includes 
the classic sextant distribution with another set of sextant biopsies directed more laterally, provide 
the basis for the current wide use of this biopsy scheme (3).

TRANSRECTAL SATURATION BIOPSIES

Several authors have proposed a technique of “saturation” biopsies to increase cancer detection 
and to better estimate the tumor extent and grade (4,5). When saturation TRBx is used as a repeat 
diagnostic procedure, the cancer detection rate is around 30%–40% (6). While saturation biopsies 
appear to detect more cancers than extended biopsies, the accuracy with which any TRBx scheme 
can determine the size, location, extent, and grade of cancer remains to be demonstrated (7). In an 
effort to solve the latter shortcoming a novel 3-dimensional TRUS biopsy system (The TargetScan®) 
has been described recently. This system uses a 3D imaging and targeting system to biopsy the 
prostate in a template fashion. Preliminary studies reported a 47.6% of cancer detection rate in 
patients with no previous biopsies; furthermore, this approach appears superior to conventional 
TRUS biopsy in terms of characterizing tumor size, location, and Gleason score (8).

TRANSPERINEAL BIOPSY STRATEGIES

The efficacy of FT remains unproven, and validated criteria for identifying patients who can safely 
be managed by this modality do not exist. It is therefore incumbent upon us to exclude patients 
who may unknowingly harbor more extensive significant cancer than predicted by the initial office 
TRBx. In our opinion, this is currently best accomplished by proceeding with a comprehensive re-
staging procedure prior to selective ablation.

For many reasons, we prefer a transperineal template guided 3-DPM approach for re-staging 
(9,10), a perspective shared by Onik (11,12) and Crawford (13). Advantages of the transperineal 
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approach include a ready access to the anterior apical areas of the prostate; a systematic approach to 
sampling that does not rely on visual 3D recall and provides a fixed reproducible set of XYZ coor-
dinates for use in cancer mapping, treatment planning, and follow-up; and a decreased likelihood of 
infection and bleeding. Furthermore there are inherent difficulties in translating the findings from 
saturation TRBx schemes to a Cartesian coordinate transperineal grid system through which most 
current FT modalities are delivered. Admittedly, the disadvantages of 3-DPM are that it is tedious, 
requires logistical support with specimen handling and labeling, and is more costly. Additionally, it 
requires either a general, regional, or local anesthesia.

The 3-DPM biopsy technique has been previously described (9,10) (Figures 9.1 and 9.2). Biopsies 
with specific XYZ coordinates may be individually labeled and submitted, or alternatively indi-
vidual biopsies may be lumped together into zones (Figure 9.3), from which a pathologic map is 
generated (Figure 9.4). When considering FT, and specifically hemi-gland ablation, it is important 
to segregate the midline biopsies (Figures 9.1 and 9.4) posterior to the urethra to prevent a “false 
positive” cancer reading from the side destined to be untreated. Due to the “bevel” tracking, which 
is a feature of most biopsy needles, a needle can inadvertently travel across the midline from a loca-
tion free of cancer and sample a cancerous region on the opposite side. As this is a critical area for 
ablation because of its proximity to the urethra and rectal wall, separating these midline biopsies 
into a “neutral zone” is advisable.

Our initial practice was to leave an indwelling Foley catheter following the procedure, but in the 
past 100 patients a post-op catheter has not been routinely utilized. By meticulous avoidance of the 
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the ultrasound (US) probe. This technique prevents the needle from tracking and sampling outside the area 
intended for biopsy. While one is performing these biopsies, it is crucial to avoid injury to the prostatic ure-
thra. This is accomplished by keeping a catheter in place to readily identify the urethra, and then by steering 
the biopsy needle away from this area. It is also important that midline biopsies are taken posterior to the 
urethra only because anterior midline biopsies will injure the urethra. (Reprinted from the authors Barzell, 
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FIGURE 9.2 Operating room sterile setup.
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urethral and bladder mucosa in the biopsies, significant urinary bleeding should be an exceedingly 
rare event. Complications with 3-DPM are usually minor (9,13). In our study cited below, 12 of 140 
patients (8.6%) developed minor complications (none requiring hospitalization), including urinary 
retention (6 of the 12), worsening lower urinary tract symptoms (LUTS) (2 of the 12), and fever, 
scrotal edema, significant gross hematuria, perineal ecchymosis (1 each).

In an expansion of our initial retrospective study (10), we analyzed the data on 140 patients who 
presented to one of the authors (WEB) between 2001 and 2009, with unilateral cancer deemed suit-
able for hemi-ablation based on an office TRBx. These patients underwent a re-staging procedure 
that included 3-DPM with a concomitant repeat TRBx. Patients were considered suitable for FT 
if there was no cancer on the side contralateral to the presenting lesion as noted on initial office 
TRBx. Of the 140 patients, only 67 (48%) were suitable for FT using this strict definition, a finding 
consistent with reports by Onik (11,12). When comparing 3-DPM to repeat TRBx in determining 
suitability for FT, 52% were found to be unsuitable by 3-DPM while only 6.4% were deemed unsuit-
able by TRBx. Additionally, repeat TRBx had a false negative rate of 52%, a sensitivity of 34%, and 
a negative predictive value of 28%.

Those who believe that treating the “index” cancer is sufficient, and are willing to ignore small 
non-index cancers, have argued that our eligibility criteria were too stringent. We have therefore 
considered two other definitions of suitability when the extent of cancer on the contralateral side 
was consistent with modified characterizations of insignificant or indolent cancer (14,15). Using 
these more liberal definitions of suitability, which allow potentially insignificant cancer on the side 
destined to be untreated, we still found that between 23% and 27% of patients presenting with uni-
lateral small volume cancer on office TRBx were unsuitable for FT. In many patients, by relying on 
repeat TRBx alone, high-risk cancer on the side destined to be untreated would have been missed, 
and in some this “untreated” side harbored the more aggressive cancer or so-called index lesion. 
In the latter group, a FT treatment plan that relied solely on repeat TRBx could theoretically have 
targeted the “wrong” side.

While our results imply a clear superiority of 3-DPM over repeat TRBx, a word of caution 
is needed, as there were several biases favoring 3-DPM (10) in this study, including the limited 
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number of repeat TRBx (average of 10/patient) in this study. Arguably, a saturation TRBx scheme 
would have provided a fairer comparison as discussed above (4–6), and implied by ex vivo studies 
(16). However, as recently demonstrated by Delongchamps (17), merely increasing the number of 
TRBx may not solve the inherent weakness of TRBx, indeed a 36-core biopsy scheme appeared to 
offer no advantage over an 18-core scheme.

Based on our own experience, validated by others (11–13), reliance on TRBx to select patients 
for FT may lead to an unacceptable failure rate, given the potential for significant cancer remaining 
undetected and thereby untreated. When significant cancer is missed by TRBx, in our experience 
the sites most commonly overlooked are the anterior apical regions of the prostate, a finding con-
firmed by Taira (18). Since the consequences of improper designation of a patient as an FT candidate 
may be profound, we believe that 3-DPM should be an integral component of any FT program.

CONCLUSIONS

We have chosen the transperineal approach for saturation biopsy rather than the transrectal approach 
as practiced by Stewart et al. (4) for both practical and theoretical reasons. First, there are physical 
and technical limitations of the standard transrectal approach using current equipment that limit 
access to the anterior and apical regions of the prostate. Second, the risk of infection and rectal 
bleeding is potentially higher with increasing numbers of rectal wall needle sticks. Third, inherent 
and inevitable inaccuracies of sampling and mapping occur when using unstabilized manual posi-
tioning of the needle guide and relying on 3D visual recall for guidance when attempting a large 
number of biopsies.

Conversely, the increased accuracy provided by the template-guided transperineal approach 
allows both a more comprehensive and systematic approach to sampling and a set of fixed reproduc-
ible coordinates to use for accurate mapping of cancer within the prostate.

The weaknesses of the transperineal route are that it requires some form of anesthesia and it is 
less efficient in sampling the posterior peripheral zone adjacent to the rectal wall. Although this area 
is perhaps the most likely to contain cancer, it is most likely also the area previously sampled by 
standard transrectal biopsy. For this reason, we recommend combining standard transrectal biopsy 
with transperineal saturation biopsy in the setting of patients who qualify under the expectant man-
agement or focal treatment indications. It is important to emphasize that, in our opinion, trans-
perineal saturation biopsies should be done as a follow-up approach only after taking at least three 
negative sets of transrectal biopsies using an extended 10- to 12-biopsy regimen.

Unilateral saturation biopsies are done on the contralateral unaffected side for the focal therapy 
group to prove the absence of cancer on the uninvolved and what will ultimately be the untreated 
side. Bilateral saturation biopsies are performed in the diagnostic and expectant management 
groups. In the diagnostic group, they are done on those patients with a rising PSA, unacceptable and 
falling free PSA, or other indicators of high risk who have had at least three prior sets of negative 
extended ultrasound-guided systematic transrectal needle biopsies. In the expectant management 
group, they are performed when low Gleason score and low-volume disease are suspected and 
patients are being considered for a watchful waiting approach. In this latter instance, the primary 
purpose is to avoid the risk of undersampling leading to underdiagnosis that exists if only transrec-
tal biopsies are done. To be conservative, we also recommend combining repeat transrectal biopsies 
with saturation transperineal biopsies in this setting.

Until such time that newer imaging modalities can more accurately and reliably identify small 
foci of PCa, 3-DPM offers an accuracy in tumor localization that is crucial not only for proper 
patient selection and treatment planning (9–13), but also for follow-up biopsy validation of the effi-
cacy of FT ablation, especially when considering novel technologies.

A vital key to the success of selective FT of the prostate is proper patient selection. Currently, 
this is best achieved by a re-staging procedure that can exclude patients with cancer outside the 
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area destined to be treated while precisely locating the targeted area to be selectively ablated. 
A re-staging procedure that uses 3-DPM fulfills these criteria and should be used in the appropri-
ate selection of patients for FT.
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INTRODUCTION

PROSTATE ANATOMY

The prostate is an exocrine gland of the male reproductive system having an inverted pyramidal 
shape, which is located below the bladder and in front of the rectum. It measures approximately 
3 cm in height by 2.5 cm in depth and its weight is estimated from 7 to 16 g for an adult [1]. The 
prostate size increases at two distinct stages during physical development: initially at puberty 
to reach its normal size, then again after 60 years of age leading to benign prostatic hyperplasia 
(BPH) [2].

A zonal classification of the prostate has been suggested by McNeal [3]. Subsequently, this cat-
egorization has been widely accepted in the literature [2,4–6] and is used during all medical exami-
nations (e.g., biopsy, MRI screening). The classification is based on dividing the gland into three 
distinct regions: (i) the central zone (CZ), accounting for 20%–25% of the whole prostate gland; 
(ii) the transitional zone (TZ), standing for 5%; and (iii) the peripheral zone (PZ), representing the 
70%. In MRI images, tissues of CZ and TZ are difficult to distinguish and are usually merged into 
a common region, denominated central gland (CG). As part of this classification, the prostate is 
divided into three longitudinal portions: base, median gland, and apex.

PROSTATE CARCINOMA

Prostate cancer (CaP) has been reported on a worldwide scale to be the second most frequently 
diagnosed cancer of men, accounting for 13.6% [7]. Statistically, in 2008, the number of new 
diagnosed cases was estimated to be 899,000, with no less than 258,100 deaths [7]. In United 
States, aside from skin cancer, CaP is the most commonly diagnosed cancer among men, 
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implying that approximately 1 in 6 men will be diagnosed with CaP during their lifetime and 
1 in 36 will die from this disease, causing CaP to be the second most common cause of cancer 
death among men [8,9].

Despite active research to determine the causes of CaP, a fuzzy list of risk factors has arisen [10]. 
The etiology has been linked to the following factors [10]: (i) family history [11,12], (ii) genetic fac-
tors [13–15], (iii) race/ethnicity [11,16], (iv) diet [11,17,18], and (v) obesity [11,19]. This list of risk 
factors alone cannot be used to diagnose CaP and, in this way, screening enables early detection 
and treatment.

CaP growth is characterized by two main types of evolution [20]. Slow-growing tumors, account-
ing for up to 85% of all CaPs [21], progress slowly and usually stay confined to the prostate gland. 
For such cases, treatment can be substituted with active surveillance. In contrast, the second variant 
of CaPs develops rapidly and metastases from prostate gland to other organs, primarily the bones 
[22]. Bone metastases, being an incurable disease, significantly affects the morbidity and mortality 
rate [23]. Hence, the results of the surveillance have to be trustworthy to distinguish aggressive from 
slow-growing CaP.

CaP is more likely to come into being in specific regions of the prostate. In that respect, around 
70%–80% of CaPs originate in the PZ, whereas 10%–20% originate in the TZ [24–26]. Only about 
5% of CaPs occur in the CZ [25,27]. However, those cancers appear to be more aggressive and more 
likely to invade other organs due to their locations [27].

CAP SCREENING AND IMAGING TECHNIQUES

Current CaP screening consists of three different stages. First, prostate-specific antigen (PSA) 
control is performed to distinguish between low- and high-risk CaP. To assert such diagnosis, 
samples are taken during prostate biopsy and finally analyzed to evaluate the prognosis and the 
stage of CaP. In this section, we present a detailed description of the current screening as well as 
its drawbacks.

Since its introduction in mid-1980s, PSA is widely used for CaP screening [28]. A higher-than-
normal level of PSA can indicate an abnormality of the prostate either as BPH or cancer [29]. 
However, other factors can lead to an increased PSA level such as prostate infections, irritations, 
a recent ejaculation, or a recent rectal examination [2]. PSA is found in the bloodstream in two 
different forms: free PSA accounting for about 10% and one linked to another protein for the 
remaining 90%. A level of PSA higher than 10 1ng mL−  is considered to be at risk [2]. If the PSA 
level ranges from 4 to 10 1ng mL− , the patient’s risk is considered as suspicious [30]. In that case, 
the ratio of free PSA to total PSA is computed; if the ratio is higher than 15%, the case is consid-
ered as pathological [2].

A transrectal ultrasound (TRUS) biopsy is carried out for cases that are considered pathologi-
cal. At least six different samples are taken randomly from the right and left parts of the three 
different prostate zones: apex, median, and base. These samples are further evaluated using the 
Gleason grading system [31]. The scoring scheme to characterize the biopsy sample is composed 
of five different patterns that correspond to grades ranging from 1 to 5. A higher grade is associ-
ated with a poorer prognosis [32]. Then, in the Gleason system, 2 scores are assigned correspond-
ing to (i) the grade of the most present tumor pattern, and (ii) the grade of the second most present 
tumor pattern [32]. A higher Gleason score (GS) indicates a more aggressive tumor [32]. Also, it 
should be noted that biopsy is an invasive procedure that can result in serious infection or urine 
retention [33,34].

Although PSA screening has been shown to improve early detection of CaP [34], its lack 
of reliability motivates further investigations using MRI-based computer-aided detection and 
diagnosis (CAD). Two reliable studies—carried out in the United States [35] and in Europe 
[36,37]—have attempted to assess the impact of early detection of CaP, with diverging outcomes 
[34,38]. The study carried out in Europe1 concluded that PSA screening reduces CaP-related 
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mortality by 21%–44% [36,37], while the American2 trial found no such effect [35]. However, 
both studies agree that PSA screening suffers from low specificity, with an estimated rate of 
36% [39]. Both studies also agree that overtreatment is an issue: decision making regarding 
treatment is further complicated by difficulties in evaluating the aggressiveness and progres-
sion of CaP [40].

Hence, new screening methods should be developed with improved specificity of detection and 
more accurate risk assessment (i.e., aggressiveness and progression). Current research is focused 
on identifying new biological markers to replace PSA-based screening [41–43]. Until such research 
comes to fruition, these needs can be met through an active-surveillance strategy using multipa-
rametric MRI (mpMRI) techniques [29,44]. CAD systems, which is an area of active research and 
forms the focus of this chapter, can be incorporated into this screening strategy to allow for more 
systematic and rigorous follow-up.

Another weakness of the current screening strategy is due to the untrustworthy results provided 
by TRUS biopsy. Due to its “blind” nature, there is a chance of missing aggressive tumors or detect-
ing microfocal “cancers,” which influences the aggressiveness-assessment procedure [45]. As a con-
sequence, overdiagnosis is estimated at up to 30% [46], while missing clinically significant CaP is 
estimated at up 35% [47]. In an effort to solve both issues, alternative biopsy approaches have been 
explored. MRI/ultrasound (UTS)-guided biopsy has been shown to outperform standard TRUS 
biopsy [48]. There, mpMRI images are fused with UTS images in order to improve localization 
and aggressiveness assessment to carry out biopsies. Human interaction plays a major role in biopsy 
sampling which can lead to low repeatability; by reducing potential human errors at this stage, the 
CAD framework can improve repeatability of examination. CaP detection and diagnosis can benefit 
from the use of MRI-based CADs.

In an effort to improve the current stage of CaP diagnosis and detection, this chapter intends to 
review the principles of a mpMRI-CAD system starting with a description of the MRI modalities in 
the section titled “MRI Techniques.”

CAD SYSTEMS FOR CAP

During the last century, physicists have focused on constantly innovating in terms of imaging 
techniques assisting radiologists to improve cancer detection and diagnosis. However, human 
diagnosis still suffers from low repeatability, synonymous with erroneous detection or interpre-
tations of abnormalities throughout clinical decisions [49,50]. These errors are driven by two 
majors causes [49]: observer limitations (e.g., constrained human visual perception, fatigue, or 
distraction) and the complexity of the clinical cases themselves, for instance due to imbalanced 
data—the number of healthy cases is more abundant than malignant cases—or overlapping 
structures.

Computer vision has given rise to many promising solutions, but instead of focusing on 
fully automatic computerized systems, researchers have aimed at providing computer image 
analysis techniques to aid radiologists in their clinical decisions [49]. In fact, these investiga-
tions brought about both concepts of computer-aided detection (CADe) and computer-aided 
diagnosis (CADx) grouped under the acronym CAD. Since those first steps, evidence has shown 
that CAD systems enhance the diagnosis performance of radiologists. Chan et al. reported a 
significant 4% improvement in breast cancer detection [51], which has been confirmed in later 

1 The European Randomized Study of Screening for Prostate Cancer (ERSSPC) started in the 1990s in order to evaluate 
the effect of PSA screening on mortality rate.

2 The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial is carried out in the United States and 
intends to ascertain the effects of screening on mortality rate.
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studies [52]. Similar conclusions have been drawn in the case of lung nodule detection [53], 
colon cancer [54], or CaP as well [50]. Chan et al. also hypothesized that CAD systems will 
be even more efficient assisting inexperienced radiologists than senior radiologists [51]. That 
hypothesis has been tested by Hambrock et al. and confirmed in case of CaP detection [50]. 
In this particular study, inexperienced radiologists obtained equivalent performance to senior 
radiologists, both using CAD whereas the accuracy of their diagnosis was significantly poorer 
without CAD’s help.

In contradiction with the aforementioned statement, CAD for CaP is a young technology due 
to the fact that is based on a still young imaging technology: MRI [55]. Indeed, four distinct MRI 
modalities are employed in CaP diagnosis which have been mainly developed after the mid-1990s: 
(i) T2-weighted (T2-W)-MRI [56], (ii) dynamic contrast-enhanced (DCE)-MRI [57], (iii) magnetic 
resonance spectroscopy imaging (MRSI) [58], and (iv) diffusion weighted (DW)-MRI [59]. In addi-
tion, the increase of magnetic field strength in clinical settings, from 1.5 T to 3 T, and the devel-
opment of endorectal coils, both improved image spatial resolution [60] needed to perform more 
accurate diagnosis. It is for this matter that the development of CAD for CaP is still lagging behind 
the fields stated above.

The following sections aim first to provide an overview of the current state of the art of CAD for 
CaP and, later, according to the drawn conclusions, to propose a CAD which takes advantages of 
mpMRI modalities. A review of the current proposed CAD for CaP is presented in the section titled 
“Review of CAD Systems for CaP.”

MRI TECHNIQUES

MRI promises overcome the drawbacks of current clinical screening techniques mentioned in the 
introductory section. Unlike TRUS biopsy, MRI examination is a noninvasive protocol and has 
been shown to be the most accurate and harmless technique currently available [61]. In this sec-
tion, we review different MRI imaging techniques developed for CaP detection and diagnosis. 
Features strengthening each modality will receive particular attention together with their drawbacks. 
Commonly, these features form the basis for developing analytic tools and automatic algorithms. 
However, we refer the reader to “CADx: Feature Detection” for more details on automatic feature 
detection methods since they are part and parcel of the CAD framework.

T2-W-MRI

T2-W-MRI was the first MRI modality used to perform CaP diagnosis [56]. Nowadays, radiologists 
make use of it for CaP detection, localization, and staging purposes. This imaging technique is well 
suited to render zonal anatomy of the prostate [30].

This modality relies on a sequence based on setting a long repetition time (TR), reducing the 
T1 effect in nuclear magnetic resonance (NMR) signal measured, and fixing the echo time (TE) 
to sufficiently large values in order to enhance the T2 effect of tissues. Thus, PZ and CG tissues 
are well perceptible in these images. The former is characterized by an intermediate/high-signal 
intensity (SI) while the latter is depicted by a low SI [4]. An example of a healthy prostate is shown 
in Figure 10.1a

In the PZ, round or ill-defined low-SI masses are synonymous with CaPs [56] as shown in 
Figure 10.1b. Detecting CaP in CG is more challenging. Both normal CG tissue and malignant tis-
sue have a low SI in T2-W-MRI, reinforcing difficulties in distinguishing among them. However, 
CaPs in CG appear often as homogeneous mass having ill-defined edges with lenticular or “water-
drop” shapes [30,62] as depicted in Figure 10.1c.
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CaP aggressiveness has been shown to be inversely correlated with SI. Indeed, CaPs assessed 
with a GS of 4–5 implied lower SI than the one with a GS of 2–3 [63].

In spite of the availability of these useful and encouraging features, the T2-W modality lacks 
reliability [29,64]. Sensitivity is affected by the difficulties in detecting cancers in CG [64] while 
specificity rate is highly affected by outliers [30]. In fact, various conditions emulate patterns of 
CaP, such as BPH, post-biopsy hemorrhage, atrophy, scars, and post-treatment [4,30,59,65,66]. 
These issues are partly addressed using more innovative and advanced modalities.

T2 MAP

As previously mentioned, T2-W-MRI modality shows low sensitivity. Moreover, T2-W-MRI images 
are a composite of multiple effects [55]. However, T2 values alone have been shown to be more 
discriminative [67] and highly correlated with citrate concentration, a biological marker in CaP 
[68,69]. T2 values are computed using the characteristics of transverse relaxation which is formal-
ized as follows in Equation 10.1:
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The Fast Spin-Echo (FSE) sequence has been shown to be particularly well suited in order to build 
a T2 map and obtain accurate T2 values [70]. Similar to T2-W-MRI, T2 values associated with CaP 
are significantly lower than those of healthy tissues [68,71].

FIGURE 10.1 Rendering of T2-W-MRI prostate image with both 1.5 T  and 3 T MRI scanner. (a) T2-W-MRI 
slice of a healthy prostate acquired with a 1.5 T MRI with an endorectal coil. The blue contour represents the 
CG while the PZ corresponds to the green contour. (b) T2-W-MRI slice of a prostate with a CaP highlighted 
in the PZ using a 3 T MRI scanner without an endorectal coil. (c) T2-W-MRI slice of a prostate with a CaP 
highlighted in the CG using a 1.5 T MRI scanner with an endorectal coil.
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DCE-MRI

DCE-MRI is an imaging technique that exploits the vascularity characteristic of tissues. Contrast 
media, usually gadolinium-based, is injected intravenously into the patient. The media extravasates 
from vessels to extravascular-extracellular space (EES) and is released back into the vasculature 
before being eliminated by the kidneys [72]. Furthermore, the diffusion speed of the contrast agent 
may vary due to several parameters: the permeability of the micro-vessels, their surface area, and 
the blood flow [73].

Healthy PZ is mainly made up of glandular tissue, around 70% [74], which implies a reduced 
interstitial space restricting exchanges between vessels and EES [75,76]. Normal CG has a more 
disorganized structure, composed of mainly fibrous tissue [29,74], which facilitates the arrival of 
the contrast agent in EES [77]. To understand the difference between contrast media kinetic in 
malignant tumors and the two previous behaviors mentioned, one has to focus on the process known 
as angiogenesis [78]. In order to ensure growth, malignant tumors produce and release angiogenic 
promoter substances [78]. These molecules stimulate the creation of new vessels toward the tumor 
[78]. However, the new vessel networks in tumors differ from those present in healthy tissue [72]. 
They are more porous due to the larger number of “openings” in their capillary walls [72,74]. In 
contrast to healthy cases, this increased vascular permeability results in increased contrast agent 
exchanges between vessels and EES [79].

By making use of the previous aspects, DCE-MRI is based on an acquisition of a set of T1-W-
MRI images over time. The gadolinium-based contrast agent shortens T1 relaxation time enhancing 
contrast in T1-W-MRI images. The aim is to post-analyze the pharmacokinetic behavior of the con-
trast media concentration in prostate tissues [79]. The image analysis is carried out in two dimen-
sions: (i) in the spatial domain on a pixel-by-pixel basis and (ii) in the time domain corresponding 
to the consecutive images acquired with the MRI. Thus, for each spatial location, a signal linked to 
contrast media concentration is measured as shown in Figure 10.2b [80].

By taking the above remarks into account, CaPs is characterized by a signal having an earlier 
and faster enhancement and an earlier washout—that is, the rate of the contrast agent flowing out of 
the tissue—as shown in Figure 10.2b [79]. Three different approaches exist to analyze these signals 
with the aim of labeling them as corresponding to either normal or malignant tissues.

Qualitative analysis is based on a qualitative assessment of the signal shape [29]. Quantitative 
approaches consist of inferring pharmocokinetic parameter values [80]. Those parameters are 
part of mathematical-pharmacokinetic models that are directly based on physiological exchanges 
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FIGURE 10.2 Illustration of typical enhancement signal observed in DCE-MRI analysis collected with a 
3 T MRI scanner. (a) T1-W-MRI image where the cancer is delimited by the red contour. The green area was 
still not invaded by the CaP. (b) Enhancement curve computed during the DCE-MRI analysis. The red curve 
is typical from CaP cancer while the green curve is characteristic of healthy tissue.
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between vessels and EES. Several pharmacokinetic models have been proposed such as the Kety 
model [81], the Tofts model [82], and mixed models [83,84]. The last family of methods mixes both 
approaches, grouped together under the heading of semi-quantitative methods. They rely on shape 
characterization using mathematical modeling to extract a set of parameters such as wash-in gradi-
ent, washout, integral under the curve, maximum signal intensity, time-to-peak enhancement, and 
start of enhancement [29,79]. These parameters are depicted in Figure 10.16. It has been shown 
that semi-quantitative and quantitative methods improve localization of CaP when compared with 
qualitative methods [85]. the section titled “CADx: Feature Detection” provides a full description 
of quantitative and semi-quantitative approaches.

DCE-MRI combined with T2-W-MRI has shown to enhance sensitivity compared to 
T2-W-MRI alone [86–89]. Despite this fact, DCE-MRI possesses some drawbacks. Due to its 
“dynamic” nature, patient motions during the image acquisition lead to spatial mis-registration of 
the image set [79]. Furthermore, it has been suggested that malignant tumors are difficult to dis-
tinguish from prostatitis located in PZ and BPH located in CG [29,79]. These pairs of tissues tend 
to have similar appearances. Later studies have shown that CaPs in CG do not always manifest 
in homogeneous fashion. Indeed, tumors in this zone can present both hypo-vascularization and 
hyper-vascularization which illustrates the challenge of CaP detection in CG [77].

DW-MRI

As previously mentioned in the introduction, DW-MRI is the most recent MRI imaging technique 
aiming at CaP detection and diagnosis [59]. This modality exploits the variations in the motion of 
water molecules in different tissues [90,91].

The distinction between healthy and CaP in DW-MRI rests on the following physiological bases. 
On the one hand, PZ, as previously mentioned, is mainly a glandular and tubular structure allowing 
water molecules to move freely [29,74]. On the other hand, CG is made up of muscular or fibrous tis-
sue causing the motion of the water molecules to be more constrained and heterogeneous than in PZ 
[29]. Then, CaP growth leads to the destruction of normal glandular structure and is associated with 
an increase in cellular density [29,91,92]. Furthermore, these factors both have been shown to be 
inversely correlated with water diffusion [91,92]: higher cellular density implies a restricted water 
diffusion. Thus, water diffusion in CaP will be more restricted than both healthy PZ and CG [29,91].

From the NMR principle side, DW-MRI sequence produces contrasted images due to variation 
of water molecules’ motion. The method is based on the fact that the signal in DW-MRI images 
is inversely correlated to the degree of random motion of water molecules [93]. In fact, gradients 
are used in DW-MRI modality to encode spatial location of nuclei temporarily. Simplifying the 
problem in only one direction, a gradient is applied in that direction, dephasing the spins of water 
nuclei. Hence, the spin phases vary along the gradient direction depending of the gradient intensity 
at those locations. Then, a second gradient is applied aiming at canceling the spin dephasing. Thus, 
the immobile water molecules will be subject to the same gradient intensity as the initial one, while 
moving water molecules will be subject to a different gradient intensity. Thus, spins of moving 
water molecules will stay dephased, whereas spins of immobile water molecules will come back in 
phase. As a consequence, a higher degree of random motion results in a more significant signal loss, 
whereas a lower degree of random motion is synonymous with lower signal loss [93]. Under these 
conditions, the MRI signal is measured as follows:

 
M t b M

t
S bx y x y, ,

2

, = (0) ( )( ) −







exp ,

T
ADC  

(10.3)

 S b bADC ADC( ) = exp ,− ×( )  (10.4)



95Computer-Aided Diagnosis Systems for Prostate Cancer Detection

where SADC refers to signal drop due to diffusion effect, ADC is the apparent diffusion coefficient, and b 
is the attenuation coefficient depending only on of the gradient intensity and the gradient duration [94].

By using this formulation, image acquisition with a parameter b equal to 0 2s mm−  corresponds to 
a T2-W-MRI acquisition. Then, increasing the attenuation coefficient b—that is, increase gradient 
intensity and duration—enhances the contrast in DW-MRI images.

To summarize, in DW-MRI, CaPs are characterized by high SI compared to normal tissues in PZ and 
CG as shown in Figure 10.3a [30]. However, some tissues in CG looks similar to CaP with higher SI [30].

Diagnosis using DW-MRI combined with T2-W-MRI has shown a significant improvement 
compared with T2-W-MRI alone and provides highly contrasted images [74,95,96]. As drawbacks, 
this modality suffers from poor spatial resolution and specificity due to false positive detection 
[74]. With a view to eliminate these drawbacks, radiologists use quantitative maps extracted from 
DW-MRI, which is presented in the next section.

ADC MAP

The NMR signal measured for DW-MRI images is not only affected by diffusion as shown in 
Equation 10.3. However, the signal drop—Equation 10.4—is formulated such that the only vari-
able is the acquisition parameter b [94]. The ADC is considered a “pure” diffusion coefficient 
and is extracted to build a quantitative map known as the ADC map. From Equation 10.3, it is 
clear that performing multiple acquisitions only varying b will not have any effect on the term 
M x y

t
, (0)

2
exp ( )− T . Thus, Equation 10.3 can be rewritten as follows:

 S b S b( ) = 0 exp .− ×( )ADC  (10.5)

To compute the ADC map, a minimum of two acquisitions are necessary: (i) for b equal to 0 2s mm− , 
where the measured signal is equal to S0; and (ii) b1 greater than 0 2s mm− , typically 1000 2s mm− . 
Then, the ADC map can be computed as:
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FIGURE 10.3 Illustration of DW-MRI and ADC map. The signal intensity corresponding to cancer are 
inversely correlated on these modalities. (a) DW-MRI image acquired with a 1.5 T MRI scanner. The cancer 
corresponds to the high-SI region highlighted in red. (b) ADC map computer after acquisition of DW-MRI 
images with 1.5 T MRI scanner. The cancer corresponds to the low-SI region highlighted in red.
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More accurate ADC maps are computed by acquiring a set of images with different values for 
the parameter b and fitting linearly a semi-logarithm function using the model presented in 
Equation 10.5.

Regarding the appearance of the ADC maps, it has been previously stated that by increasing the 
value of b, the signal of CaP tissue increases significantly. Considering Eq. (6), the tissue appear-
ance in the ADC map is the inverse of DW-MRI images. Then, CaP tissue is associated with low SI, 
whereas healthy tissue appears brighter as depicted in Figure 10.3b [30].

Similar to the gain achieved by DW-MRI, diagnosis using ADC map combined with T2-W-MRI 
significantly outperforms T2-W-MRI alone [74,97]. Moreover, it has been shown that ADC coef-
ficient is correlated with GS [98–100].

However, some tissues of the CG mimic CaP with low-SI [64] and image distortion can arise due 
to hemorrhage [74]. It has also been noted that a high variability of the ADC occurs between dif-
ferent patients making it difficult to define a static threshold to distinguish CaP from nonmalignant 
tumors [74].

MAGNETIC RESONANCE SPECTROSCOPY IMAGING (MRSI)

CaP induces metabolic changes in the prostate compared with healthy tissue. Thus, CaP detection 
can be carried out by tracking changes of metabolite concentration in prostate tissue. MRSI is an 
NMR-based technique that generates spectra of relative metabolite concentration in a region of 
interest (ROI).

In order to track changes of metabolite concentration, it is important to know which metabolites 
are associated with CaP. To address this question, clinical studies identified three biological mark-
ers: (i) citrate, (ii) choline, and (iii) polyamines composed mainly of spermine, and in less abun-
dance of spermidine and putrescine [101–103].

Citrate is involved in the production and secretion of the prostatic fluid, and the glandular pros-
tate cells are associated with a high production of citrate enabled by zinc accumulation by these 
same cells [102]. However, the metabolism allowing the accumulation of citrate requires a large 
amount of energy [102]. In contrast, malignant cells do not have high zinc levels leading to lower 
citrate levels due to citrate oxidization [102]. Furthermore, this change results in a more energy-
efficient metabolism enabling malignant cells to grow and spread [102].

An increased concentration of choline is related to CaP [101]. Malignant cell development 
requires epigenetic mechanisms resulting in metabolic changes and relies on two mechanisms: 
deoxyribonucleic acid (DNA) methylation and phospholid metabolism, which both result in choline 
uptake, explaining its increased level in CaP tissue [101]. Spermine is also considered as a biological 
marker in CaP [103,104]. In CaP, reduction of the ductal volume due to shifts in polyamine homeo-
stasis might lead to a reduced spermine concentration [104].

To determine the concentration of these biological markers, one has to focus on the MRSI 
modality. In theory, in presence of a homogeneous magnetic field, identical nuclei precesses at 
the same operating frequency known as the Lamor frequency [105]. However, MRSI is based 
on the fact that identical nuclei will slightly precess at different frequencies depending on the 
chemical environment in which they are immersed [105], a phenomenon known as the chemical 
shift effect (CSE) [2]. Given this property, metabolites are identified and their concentrations are 
determined. In this regard, the Fourier transform is used to obtain the frequency spectrum of 
the NMR signal [2,105]. In this spectrum, each peak is associated with a particular metabolite 
and the area under each peak corresponds to the relative concentration of this metabolite, as 
illustrated in Figure 10.4 [2].

Two different quantitative approaches are used to decide whether or not the spectra of a ROI 
is associated with CaP: (i) relative quantification or (ii) absolute quantification [106]. In relative 
quantification, the ratio of choline-polyamines-creatine to citrate is computed. The integral of the 
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signal is computed from choline to creatine—that is, from 3.21 to 3.02 ppm—because the peaks in 
this region can be merged at clinical magnetic field strengths [29,104], as depicted in Figure 10.4. 
Considering the previous assumptions that choline concentration rises and citrate concentration 
decreases in the presence of CaP, the ratio computed should be higher in malignant tissue than in 
healthy tissue.

In contrast with relative quantification, absolute quantification measures molar concentrations by 
normalizing relative concentrations using water as reference [106]. In this case, “true” concentra-
tions are directly used to differentiate malignant from healthy tissue. However, this method is not 
commonly used as it requires an additional step of acquiring water signals, inducing time and cost 
acquisition constraints.

MRSI allows examination with high specificity and sensitivity compared to other MRI modali-
ties [74]. Furthermore, it has been shown that combining MRSI with MRI improves detection and 
diagnosis performance [107–109]. Citrate and spermine concentrations are inversely correlated with 
the GS, allowing us to distinguish low- from high-grade CaPs [103]. However, choline concentration 
does not provide the same properties [103].

Unfortunately, MRSI also presents several drawbacks. First, MRSI acquisition is time consuming 
which prevents this modality from being used in daily clinical practice [30]. In addition, MRSI suf-
fers from low spatial resolution due to the fact that signal-to-noise (SNR) is linked to the voxel size. 
However, this issue is addressed by developing new scanners with higher magnetic field strengths 
such as 7.5 T [103]. Finally, a high variability of the relative concentrations between patients has 
been observed [74]. The same observation has been made depending on the zones studied (i.e., PZ, 
CG, base, mid-gland, apex) [106,110]. Due to this variability, it is difficult to use a fixed threshold to 
differentiate CaP from healthy tissue.

SUMMARY AND CONCLUSIONS

Table 10.1 provides an overview of the different modalities presented in the previous section. 
Indeed, each MRI modality alone provides a different discriminative level to distinguish CaP 
from healthy tissue. However, a recurrent theme in the literature is that the ability to combine these 
MRI modalities would lead to the best diagnosis performance. In this regard, we will present in 
the next section automatic tools which have been developed to design mpMRI CAD systems for 
the detection of CaP.
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FIGURE 10.4 Illustration of an MRSI spectrum for both healthy and cancerous voxels with a 3 T MRI. 
The highlighted areas correspond to the related concentration of the metabolites which is computed by inte-
grating the area under each peak. Acronyms: choline (Cho), spermine (Spe), creatine (Cr), and citrate (Cit). 
(a) Illustration of an MRSI spectrum of a healthy voxel acquired with a 3 T MRI. (b) Illustration of an MRSI 
spectrum of a cancerous voxel acquired with a 3 T MRI.
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REVIEW OF CAD SYSTEMS FOR CaP

As previously mentioned, CADs are developed to advise and back up radiologists in their tasks of 
CaP detection and diagnosis, but not to provide fully automatic decisions [49]. CADs can be divided 
into two different subgroups: either as CADe, with the purpose to highlight probable lesions in 
MRI images, or CADx, which focuses on differentiating malignant from nonmalignant tumors [49]. 
Moreover, an intuitive approach, motivated by developing a framework combining detection and 
diagnosis, is to mix both CADe and CADx by using the output of the former as a input of the latter. 
Although the outcomes of these two systems should differ, the framework of both CAD systems is 
similar. A general CAD work-flow is presented in Figure 10.5.

MRI modalities mentioned in the section “MRI Techniques” are used as inputs of CAD for CaP. 
These images acquired from the different modalities show a large variability between patients: the 
prostate organ can be located at different positions in images—due to patient motion, variation of 
acquisition plan—and the SI can be corrupted with noise or artifacts during the acquisition process 

TABLE 10.1
Overview of the Features Associated with Each MRI Modality Used for Medical Diagnosis 
by Radiologists

Modality Significant Features CaP Healthy Tissue GS Correlation

T2-W-MRI SI Low SI in PZ [4] Intermediate to high 
SI in PZ [4]

+ [63]

Shape Round or ill-defined 
mass in PZ [56]

0

SI Low SI in CG [30,62] Low SI in CG [30,62] 0

Shape Homogeneous mass 
with ill-defined edges 
in CG [30,62]

0

T2 map SI Low SI [68,71] Intermediate to high 
SI [68,71]

+ [67–69]

DCE MRI Semi-quantitative features [79]:

• Wash-in Faster Slower 0

• Washout Faster Slower 0

• Integral under the curve Higher Lower 0

• Maximum signal intensity Higher Lower 0

• Time-to-peak enhancement Faster Slower 0

Quantitative features (Tofts 
parameters [80]):

• kep Higher Lower 0

• K trans Higher lower 0

DW-MRI SI Higher SI [30,93] Lower SI [30,93] +
ADC map SI Low SI [30] High SI [30] + [98–100]

MRSI Metabolites:

• Citrate (2.64 ppm) [111] Lower concentration 
[101,102,104]

Higher concentration 
[101,102,104]

+ [103]

• Choline (3.21 ppm) [111] Higher concentration 
[101,102,104]

Lower concentration 
[101,102,104]

0 [103]

• Spermine (3.11 ppm) [111] Lower concentration 
[101,102,104]

Higher concentration 
[101,102,104]

+ [103]

Notes:  +: significantly correlated; 0: no correlation.
Abbreviations: Prostate cancer (PCa); signal intensity (SI); Gleason score (GS).
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caused by the magnetic field non-homogeneity or the use of an endorectal coil. To address these issues, 
the first stage of CAD is to pre-process mpMRI images to reduce noise, remove artifacts, and stan-
dardize the SI. Subsequently, most of the later processes focus only on the prostate organ; therefore it 
is necessary to segment the prostate in each MRI modality to define it as a ROI. However, data may 
suffer from misalignment due to patient motions or different acquisition parameters. Therefore, a reg-
istration step is usually performed so that all the previously segmented MRI images are in the same 
reference frame. Registration and segmentation can be swapped depending on the strategy chosen.

Some studies do not fully apply the methodology depicted in Figure 10.5. Details about those 
can be found in Table 10.2. Some studies bypass the pre-processing stages to proof the robustness 
of their approaches to noise or other artifacts, by using directly the raw data as inputs of their 
CAD systems. In some cases, prostate segmentation is performed manually as well as registration. 
Sometimes, it is also assumed that no patient motions occur during the acquisition, removing the 
need of registering the mpMRI images.

Once the data are regularized, it becomes possible to extract features and classify the data to 
obtain the location of possible lesions (i.e., CADe) or/and the malignancy nature of these lesions 
(i.e., CADx).

In a CADe framework, possible lesions are segmented automatically and further used as input of 
a CADx. Nevertheless, some works also used a fusion of CADe-CADx framework in which voxel-
based features are directly used, and in which the location of the malignant lesions are obtained as 
results. On the other hand, manual lesions segmentation is not considered to be part of CADe.

CADx is composed of the processes that allow malignant tumors to be distinguished from 
nonmalignant tumors. Here, CaP malignancy is defined using the grade of the GS determined after 
biopsy or prostatectomy. As presented in Figure 10.5, CADx is usually composed of the three com-
mon steps used in a classification framework: (i) features detection, (ii) feature extraction/selection, 
and (iii) feature classification.

T2

T2

FIGURE 10.5 Common CAD framework based on MRI images used to detect CaP.
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This chapter is organized using the methodology presented in Figure 10.5. Methods embedded 
in the image regularization framework are presented initially to subsequently focus on the image 
classification framework, being divided into CADe and CADx. Finally, we present a summary of 
the results reported in the state-of-the-art as well as a discussion that follows. Table 10.2 summa-
rizes the 56 different CAD studies reviewed in this section. The first set of information reported is 
linked to the data acquisition such as the number of patients included in the study, the modalities 
acquired as well as the strength of the field of the scanner used. Subsequently, information about 
the prostate zones considered in the CAD analysis—that is, PZ or CG—are reported since detect-
ing CaP in the CG is a more challenging problem and has received particular attention only in the 
recent publications.

The papers have been selected by investigating referenced international peer-reviewed journals 
as well as international peer-reviewed conferences. Additionally, a breadth-search (or snowball 
sampling) was first used to refine missing publications. Only studies proposing CAD systems spe-
cifically for CaP have been reviewed.

PRE-PROCESSING

Three different groups of pre-processing methods are commonly applied to images as initial stage 
in CADs for CaP. These methods are explained for both MRI and MRSI modalities.

MRI Modalities
Noise Filtering
The NMR signal, measured and acquired in the k-space, is affected by noise. This noise obeys a 
complex Gaussian white noise mainly due to thermal noises in the patient [167]. Furthermore, MRI 
images visualized by radiologists are in fact the magnitude images resulting from the complex 
Fourier transform of the k-space data. The complex Fourier transform does not affect the Gaussian 
noise characteristics since this is a linear and orthogonal transform [167]. However, the calculation 
of the magnitude is a nonlinear transform—that is, the square root of the sum of squares of the real 
and imaginary parts—implying that the noise distribution is no longer Gaussian; it indeed follows 
a Rician distribution making the de-noising task more challenging. Briefly, a Rician distribution 
is characterized as follows: in a low-SI region (low SNR), it can be approximated with a Rayleigh 
distribution, while in a high-SI region (high SNR), it is similar to a Gaussian distribution [168]. 
Refer to Figure 10.6 to observe the difference between a Gaussian and a Rayleigh distribution. 
Comprehensive reviews regarding denoising methods can be found in [169,170].

Median filtering is the simplest approach used to address the de-noising issue in MRI images 
[139,140]. In both studies, Ozer et al. [139,140] used a square-shaped kernel of size 5 5× px.

More recently, Rampun et  al. used a combination of median and anisotropic diffusion filter 
[143–146], proposed in [171]. In low-SNR images, the gradients generated by an edge and noise can 
be similar, making the de-noising by diffusion more challenging. In this condition, the threshold 
allowing to locally differentiate a noise gradient from an edge gradient needs to be increased, at the 
cost of blurring edges after filtering. Therefore, Ling and Bovik [171] proposed to apply a standard 
anisotropic diffusion filter with a low threshold followed by a median filtering to remove spikes.

Samarasinghe et al. filtered DCE-MRI images with a sliding 3D Gaussian filter [147]. However, 
from a theoretical point of view, this simple filtering method is not well formalized to address the 
noise distribution in MRI images. That is why more complex approaches have been proposed to 
overcome this problem. Another common method used to de-noise MRI images is based on wavelet 
decomposition and shrinkage. This filtering exploits the sparsity property of the wavelet decompo-
sition. The projection of a noisy signal from the spatial domain to the wavelet domain implies that 
only few wavelet coefficients contribute to the “signal-free noise,” while all wavelet coefficients 
contribute to the noise [172]. Therefore, insignificant wavelet coefficients are thresholded/attenuated 
to enforce the sparsity in the wavelet domain, which results to a de-noising process in the spatial 
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domain. Investigations focus on the strategies to perform the most adequate coefficient shrinkage 
(e.g., thresholding, singularity property, or Bayesian framework) [173]. Ampeliotis et al. de-noised 
the magnitude MRI images [112,113]—that is, T2-W-MRI and DCE-MRI—by wavelet shrinkage, 
using thresholding techniques [174]. However, since the wavelet transform is an orthogonal trans-
form, the Rician distribution of the noise is preserved in the wavelet domain. Hence, for low-SNR, 
the wavelet and scaling coefficients still suffer from a bias due to this specific noise distribution 
[167]. That is why, Lopes et al. filtered T2-W-MRI images [133], using the method proposed in [175] 
based on joint detection and estimation theory. In this approach, the wavelet coefficients “free of 
noise” are estimated from the noisy wavelet coefficients using a maximum a posteriori (MAP) esti-
mate. Furthermore, the designed estimator takes spatial context into account by including both local 
and global information in the prior probabilities. The different probabilities needed by the MAP are 
empirically estimated by using mask images, representing the locations of the significant wavelet 
coefficients. These mask images are computed by thresholding the detail images obtained from the 
wavelet decomposition. To remove the bias from the wavelet and scaling coefficients, the squared 
magnitude MRI image is computed instead of the magnitude MRI image as proposed in [167]. 
This involves changing the Rician distribution to a scaled non-central Chi-squared distribution. It 
implies that the wavelet coefficients are also unbiased estimators and the scaling coefficients are 
unbiased estimators but up to a constant C as defined in Equation 10.7 which needs to be subtracted 
from each scaling coefficient such as:

 C J= +2( 1) 2σ , (10.7)

where J  is the number of levels of the wavelet decomposition and σ  is an estimate of the noise 
standard deviation.

f(x
)

x

FIGURE 10.6 Illustration of a Gaussian and Rayleigh distribution. Although the mode of these distributions 
are identical, it can be noted that the Rayleigh distribution ( )µ =1.253  is suffering of a bias term when com-
pared with the Gaussian distribution ( )µ =1  .
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Bias Correction
Besides being corrupted by noise, MRI images are also affected by the inhomogeneity of the MRI 
field commonly referred to as bias field [176]. This bias field results in a smooth variation of the SI 
through the image. When an endorectal coil is used, a resulting artifact of an hyperintense signal 
is observed around the coil as depicted in Figure 10.7. As a consequence, the SI of identical tissues 
varies depending on their spatial location in the image making further processes such as segmenta-
tion, registration, or classification more challenging [177,178]. A comprehensive review of bias cor-
rection methods is proposed in Vovk et al. [178].

The model of image formation is usually formalized as follows:

 s o b( ) ( ) ( ) ( )x x x x= +η , (10.8)

where s( )x  is the corrupted SI at the pixel for the image coordinates x = { , }x y , o( )x  is the “noise-
free signal,” b( )x  is the bias field function, and η( )x  is an additive white Gaussian noise. Hence, the 
task of bias correction involves estimating the bias function b( )x  in order to infer the “signal-free 
bias” o( )x .

Viswanath et al. corrected this artifact on T2-W-MRI images [160], using the model proposed in 
[176], in which Styner et al. model the bias field function by using a linear combination of Legendre 
polynomials fi as: 
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where b( )⋅  is the bias estimation with the image coordinates x = { , }x y  and the m coefficients of the 
linear combination p = , ,11p pij ; m can be defined as m l l= + +( 1) ( 2) 2( ), where l is the degree of 
Legendre polynomials chosen; and Pi ( )⋅  denotes a Legendre polynomial of degree i.

This family of functions allows the bias function to be modeled as a smooth inhomogeneous 
function across the image. To estimate the set of parameters p, a cost function is defined which relies 
on the following assumptions: (i) an image is composed of k regions with a mean µk   and a variance 

FIGURE 10.7 Example of artifacts with high SI due to perturbation from the endorectal coil which create 
non-homogeneity.
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σ k
2 for each particular class, and (ii) each noisy pixel belongs to one of the k regions with its SI value 

close to the class mean µk  . Hence, the cost function is defined as follows:
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where ρk ( )⋅  is a M-estimator allowing estimations to be less sensitive to outliers than the usual 
squared distance [179].

Finally, the parameters p are estimated by finding the minimum of the cost function C( )p , which 
was optimized using the nonlinear (1 1)+  evolution strategy (ES) optimizer [180].

In a later publication, Viswanath et al. [162] as well as Giannini et al. [122] corrected T2-W-MRI 
using the well-known N3 algorithm [181] in which Sled et al. infer the bias function using the PDFs 
of the signal and bias. Taking advantage of the logarithm property, the model in Equation 10.8 
becomes additive as expressed in Equation 10.12. 
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where o( )x  is the signal only degraded by noise. Sled et al. show that Equation 10.12 is related to 
PDFs such that

 S s B s O s( ) ( ) * ( )= , (10.13)

where S( )⋅ , B( )⋅ , and O( )⋅  are the PDFs of s( )⋅ , b( )⋅ , and o( )⋅ , respectively.
The corrupted signal s is restored by finding the multiplicative field b which maximizes the 

 frequency content of the distribution O. Sled et al. [181] argued that a brute-force search through all 
possible fields b and selecting the one which maximizes the high frequency content of O is possible 
but far too complex. By assimilating the bias field distribution to be a near Gaussian distribution as 
a priori, it is then possible to infer the distribution O using the Wiener deconvolution given B and 
S  and later to estimate the corresponding smooth field b.

Lv et al. corrected the non-homogeneity in T2-W-MRI images [134] by using the method pro-
posed by Madabhushi et al. [182] to correct the MRI images by detecting the image foreground 
via generalized scale (g-scale) in an iterative manner and estimating a bias field function based 
on a second-order polynomial model. First, the background of the MRI image is eliminated by 
thresholding, in which the threshold value is commonly equal to the mean SI of the considered 
image. Then, a seeded region growing algorithm is applied in the image foreground, considering 
every thresholded pixel as a potential seed. However, pixels already assigned to a region are no 
longer considered as potential seeds. As in seeded region growing algorithm [183], two criteria 
are taken into account to expand a region. First, the region grows using a connected neighbor-
hood, initially defined by the user. Then, the homogeneity of SI is based on a fuzzy membership 
function taking into account the absolute difference of two pixel SI. Depending on the member-
ship value—corresponding to a threshold which needs to be defined—the pixel considered is or 
is not merged to the region. Once this segmentation is performed, the largest region R is used as 
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a mask to select pixels of the original image and the mean SI, µR , is computed. The background 
variation b( )x  is estimated as follows:
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where s( )x  is the original MRI image.
Finally, a second-order polynomial bΘ( )x  is fitted in a least-squares sense as in Equation 10.15,

 Θ
Θ

Θ
� �= | ( ) ( ) | ,2arg min b b Rx x x− ∀ ∈ . (10.15)

Finally, the whole original MRI image is corrected by dividing it by the estimated bias field func-
tion bΘ( )x . The convergence is reached when the number of pixels in the largest region R does not 
change significantly between two iterations.

SI Normalization/Standardization
As discussed in a later section, segmentation or classification tasks are usually composed of a learn-
ing stage using a set of training patients. Hence, one can emphasize the desire to perform automatic 
diagnosis with a high repeatability or in other words, one would be sure to obtain consistent SI of 
tissues across patients of the same group—that is, healthy patients versus patients with CaP—for 
each MRI modality. However, it is a known fact that variability between patients occurs during MRI 
examinations even when using the same scanner, protocol, or sequence parameters [184]. Hence, 
the aim of normalization or standardization of the MRI data is to remove the variability between 
patients and enforce the repeatability of the MRI examinations. These standardization methods are 
categorized either as statistical-based standardization or organ SI-based standardization.

Artan et al. [115,116], Ozer et al. [139,140], and Rampun et al. [143–146,185] standardized T2-W-
MRI, DCE-MRI, and DW-MRI images by computing the standard score (also called z-score) of 
the pixels of the PZ as follows:
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where Is( )x  is the standardized SI with the image coordinates x = { , }x y , Ir ( )x  is the raw SI, µpz  is the 
mean SI of the PZ, and σ pz is the SI standard deviation in the PZ. This transformation enforces the 
image PDF to have a zero mean and a unit standard deviation. In a similar way, Liu et al. normalized 
T2-W-MRI by making use of the median and inter-quartile range for all the pixels [132].

Lemaitre et al. proposed using the a priori that the underlying data distribution follows a Rician 
distribution instead of a Gaussian distribution [186]. The data are standardized by removing the 
mean and scaled by dividing by the standard deviation, empirically computed as follows:
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where ν  and σ  are the distance between the reference point and the center of the bivariate distribu-
tion and the scale, respectively; and L1/2 denotes a Laguerre polynomial.
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Lv et al. scaled the SI of T2-W-MRI images using the method proposed by Nyul et al. [187], 
based on PDF matching [134]. This approach is based on the assumption that MRI images from the 
same sequence should share the same PDF appearance. Hence, one can approach this issue by trans-
forming and matching the PDFs using some statistical landmarks such as quantiles. Using a training 
set, these statistical landmarks—such as minimum, 25th percentile, median, 75th percentile, and 
maximum—are extracted for N  training images: 
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where φ n
i
th
th is the nth percentile of the ith training image.

Lemaitre et al. extended the use of non-parametric transformation using an elastic transforma-
tion instead of a piecewise-linear transformation [186]. They proposed to use a generic method to 
register functional data based on the square-root slope function (SRSF) representation [188] which 
transforms the Fisher-Rao metric into the conventional 2 metric, and thus allows definition of a cost 
function corresponding to a Euclidean distance between two functions in this new representation.

Then, the mean of each statistical landmarks { , , , , }0 25 50 75 100Φ Φ Φ Φ Φ  is also calculated. Once this 
training stage is performed, a piecewise linear transformation  ( )⋅  is computed as in Equation 10.20. For 
each test image t, this transformation maps each statistical landmark ϕ( )⋅

t  of the image t to the pre-learned 
statistical landmarks Φ( )⋅ . An example of such piecewise linear function is depicted in Figure 10.8. 
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Viswanath et  al. used a variant of the piecewise linear normalization presented in Madabhushi 
et al. [189], to standardize T2-W-MRI images [160–162]. Instead of computing the PDF of an entire 
image, a pre-segmentation of the foreground is carried out via g-scale which has been discussed in 
the bias correction section. Once the foreground is detected, the largest region is extracted, and the 
regular piecewise linear normalization is applied.

The standardization problem can be tackled by normalizing the MRI images using the SI of 
some known organs present in these images. Niaf et al. and Lehaire et al. normalized T2-W-MRI 
images by dividing the original SI of the images by the mean SI of the bladder [126,137,138], which 
is depicted in Figure 10.9a. Giannini et al. also normalized the same modality but using the signal 
intensity of the obturator muscle [122]. Likewise, Niaf et al. standardized the T1-W-MRI images 
using the arterial input function (AIF) [137]. They computed the AIF by taking the mean of the SI 
in the most enhanced part of the common femoral arteries—refer to Figure 10.9b—as proposed in 
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Wiart et al. [190]. Along the same line, Samarasinghe et al. normalized the SI of lesion regions in 
T1-W-MRI using the mean intensity of the prostate gland in the same modality [147].

MRSI Modality
As presented in the section titled “Clinical Aspects of TRUS Prostate Biopsy,” MRSI is a modality 
related to a one-dimensional signal. Hence, specific pre-processing steps for this type of signal have 
been applied instead of standard signal processing methods.

Phase Correction
Acquired MRSI spectra suffer from zero-order and first-order phase misalignment [191,192] as 
depicted in Figure 10.10. Parfait et al. and Trigui et al. used a method proposed by Chen et al. where 

FIGURE 10.8 Example of piecewise linear normalization as proposed by Nyul et al. [187].

FIGURE 10.9 Illustration of the two organs used in Niaf et al. [137,138] to normalize T2-W-MRI and T1-W-
MRI images. (a) Illustration and location of the bladder on a T2-W-MRI image acquired with a 3 T MRI scan-
ner. (b) Illustration and location of the femoral arteries on a T1-W-MRI image acquired with a 3 T MRI scanner.
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the phase of MRSI signal is corrected based on entropy minimization in the frequency domain 
[141,156,157]. The corrected MRSI signal o( )ξ  can be expressed as follows: 
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where ℜ ⋅( ) and ℑ ⋅( ) are the real and imaginary part of the complex signal, respectively; s( )ξ  is the 
corrupted MRSI signal; φ 0 and φ 1 are the zero-order and first-order phase correction terms, respec-
tively; and N  is the total number of samples of the MRSI signal.

Chen et  al. tackled this problem as an optimization in which φ 0 and φ 1 have to be inferred. 
Hence, the simplex Nelder-Mead optimizer [193] is used to minimize the following cost function 
based on the Shannon entropy formulation:
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where ′s ( )ξ  is the first derivative of the corrupted signal s( )ξ  and λ  is a regularization parameter. 
Once the best parameter Φ vector is obtained, the MRSI signal is corrected using Equation 10.21.

Water and Lipid Residuals Filtering
The water and lipid metabolites occur in much higher concentrations than the metabolites of inter-
est, namely choline, creatine, and citrate [192,194]. Fortunately, specific MRSI sequences have been 
developed in order to suppress water and lipid metabolites using pre-saturation techniques [194]. 
However, these techniques do not perfectly remove water and lipids peaks and some residuals are 
still present in the MRSI spectra as illustrated in Figure 10.11. Therefore, different post-processing 
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FIGURE 10.10 Illustration of phase misalignment in an MRSI spectra acquired with a 3 T MRSI scan-
ner. Note the distortion of the signal specially visible for the water and citrate peaks visible at 5 and 3 ppm , 
respectively.
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methods have been proposed to enhance the quality of the MRSI spectra by removing these residu-
als. For instance, Kelm et al. [123] used the HSVD algorithm proposed by Pijnappel et al. [195] 
which models the MRSI signal by a sum of exponentially damped sine waves in the time domain 
as in Equation 10.23.
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where ak is the amplitude proportional to the metabolite concentration with a resonance frequency 
fk, dk represents the damping factor of the exponential, φ k  is the first-order phase, and η( )t  is a 
complex white noise.

The “noise-free signal” can be found using the singular value decomposition (SVD) decomposi-
tion [195]. Therefore, the noisy signal is reorganized inside a Hankel matrix H. It can be shown 
that the signal is considered “noise-free” if the rank of H is equal to rank K . However, due to the 
presence of noise, H is in fact a full rank matrix. Thus, to recover the “noise-free signal,” the rank 
of H is truncated to K  using its SVD decomposition. Hence, knowing the cut-off frequencies of 
water—that is, 4.65 ppm—and lipid—that is, 2.2 ppm—metabolites, their corresponding peaks 
are reconstructed and subtracted from the original signal [196].

Baseline Correction
Sometimes, the problem discussed in the above section regarding the lipid molecules is not 
addressed simultaneously with water residuals suppression. Lipids and macro-molecules are known 
to affect the baseline of the MRSI spectra, causing errors while quantifying metabolites, especially 
the citrate metabolite.
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FIGURE 10.11 Illustration of the residues of water and fat even after their suppression during the acquisition 
protocol. The acquisition has been carried out with a 3 T MRI.
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Parfait et al. compared two different methods to detect the baseline and correct the MRSI spectra 
[141] which are based on Lieber and Mahadevan-Jansen [197] and Devos et al. [198]. Lieber and 
Mahadevan-Jansen corrected the baseline in the frequency domain by fitting a low-degree polyno-
mial p x( )—for example, second or third degree—to the MRSI signal s x( ) in a least-squares sense 
[197]. Then, the values of the fitted polynomial are re-assigned as: 
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Finally, this procedure of fitting and re-assignment is repeated on p xf ( ) until a stopping criterion 
is reached. The final polynomial function is subtracted from the original signal s x( ) to correct it. 
Parfait et al. [141] modified this algorithm by convolving a Gaussian kernel to smooth the MRSI 
signal instead of fitting a polynomial function, keeping the rest of the algorithm identical. Unlike 
Lieber and Mahadevan-Jansen [197], Devos et al. [198] corrected the baseline in the time domain 
by multiplying the MRSI signal by a decreasing exponential function as follows:

 c t t( ) ( )= −exp ,β  (10.25)

with a typical β  value of 0.15. However, Parfait et al. concluded that the method proposed by Lieber 
and Mahadevan-Jansen [197] outperformed the one by Devos et al. [198]. The later study of Trigui 
et al. used this conclusion and adopted the same method [156,157].

The previous baseline correction methods do not provide an optimal solution since the iterative 
low-pass filter enforces the smoothness of the baseline too much. Xi and Rocke proposed a baseline 
detection derived from a parametric smoothing model [199]. The NMR signal is formalized as a 
sum of a pure signal, the baseline function, and an additive Gaussian noise such as follows:

 y b ei i i
ni

i= + +µ ε , (10.26) 

where yi  is the NMR signal, bi is the baseline, µ i  is the true signal, and ni and ε i  are Gaussian noises.
Xi and Rocke proposed to find the baseline function through an iterative optimization by maxi-

mizing the following cost function:
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where g bi i( )− γ  is the Heaviside function; A* and B* are the terms controlling the smoothness and 
negative penalties, respectively; σ  is an estimation of the standard deviation of the noise; and N  is 
the total number of points in the MRSI signal.

The standard deviation of the noise σ  is estimated as in Xi and Rocke [199], and the A* and B* 
are empirically set to 5 10 6× −  and 100, respectively, for all the MRSI signal. This method was used 
in the work of Lemaitre [127].

In the contemporary work of Tiwari et al. [154], the authors detected the baseline using a local 
nonlinear fitting method avoiding regions with significant peaks, which have been detected using an 
experimentally parametric signal-to-noise ratio set to a value larger than 5 dB.

Frequency Alignment
Due to variations of the experimental conditions, a frequency shift is commonly observed in the 
MRSI spectra [191,192] as depicted in Figure 10.12. Tiwari et al. [154] corrected this frequency 
shift by first detecting known metabolite peaks such as choline, creatine, or citrate and minimizing 
the frequency error between the experimental and theoretical values for each of these peaks [154].
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Normalization
The NMR spectra is subject to variations due to intra-patient variations and non-homogeneity of the 
magnetic field. As in Devos et al. [198], Parfait et al. compared two methods to normalize MRSI 
signal [141]. In each method, the original MRSI spectra is divided by a normalization factor, similar 
to the intensity normalization described earlier. The first approach consists of estimating the water 
concentration from an additional MRSI sequence where the water has not been suppressed. The esti-
mation is performed using the previously HSVD algorithm. The second approach does not require 
any additional acquisition and is based on the L2 norm of the MRSI spectra  s( ) 2ξ . It should be 
noted that both Parfait et al. and Devos et al. concluded that the L2 normalization is the most efficient 
method [141]. Lately, Trigui et al. used the L2 normalization in their framework [156,157].

The different pre-processing methods are summarized in Table 10.3.

SEGMENTATION

The segmentation task consists of delineating the prostate boundaries in the MRI and is of particu-
lar importance for focusing the posterior processing on the organ of interest [200]. In this section, 
only the segmentation methods used in CAD for CaP are presented. An exhaustive review of pros-
tate segmentation methods in MRI is available in Ghose et al. [200].

Manual Segmentation
To highlight the importance of prostate segmentation task in CAD systems, it is interesting to 
note the large number of studies which manually segment the prostate organs [115,116,126,135,137–
140,142,156,157,163,164]. In all the cases, the boundaries of the prostate gland are manually defined 
in order to limit further processing only to this area. This approach ensures the right delineation 
of the organ, although it is subjective and prone to rater variability; nevertheless, this procedure is 
highly time consuming and should be performed by a radiologist.
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FIGURE 10.12 Illustration of frequency misalignment in a MRSI spectra acquired with a 3 T MRSI scan-
ner. The water peak is known to be aligned at 4.65 ppm. However, it can be seen that the peak on this spectra 
is aligned at around 5.1 ppm.
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Region-Based Segmentation
Litjens et al. used a multi-atlas-based segmentation using multimodal images—that is, T2-W-MRI and 
ADC map—to segment the prostate with an additional pattern recognition method to differentiate CG 
and PZ [129], as proposed in Litjens et al. [201]. This method consists of three different steps: (i) the reg-
istration between each atlas and the multimodal images, (ii) the atlas selection, and finally (iii) the classi-
fication of the prostate voxels into either CG or PZ classes. Each atlas and the MRI images are registered 
through two successive registrations: a rigid registration to roughly align the atlases and the MRI images, 
followed by an elastic registration using a B-spline transformation. The cost function driving the registra-
tion is defined as the weighted sum of the mutual information (MI) of both T2-W-MRI and ADC map. 
The final atlas is selected using either a majority voting or the simultaneous truth and performance level 
estimation (STAPLE) approach [202]. Subsequently, each voxel within the prostate is classified either as 
CG or PZ using a linear discriminant analysis (LDA) classifier. Three types of features are considered to 
characterize the voxels: (i) anatomy, (ii) intensity, and (iii) texture. The relative position and the relative 
distance from the voxel to the border of the prostate encode the anatomical information. The intensity 
features consist of the intensity of the voxel in the ADC coefficient and the T2 map. The texture features 
are composed of five different features: homogeneity, correlation [203], entropy, texture strength [204], 
and local binary pattern (LBP) [205]. Finally, the final segmentation is obtained by removing artifacts 
and smoothing the contour between the zones using the thin plate spline (TPS) [206].

Litjens et al. used an almost identical algorithm in [130], initially proposed for the PROMISE12 
challenge [207]. Their segmentation method is also based on multi-atlas multimodal images, but the 
SIMPLE method [208] is used instead, to combine labels after the registration of the different atlas 
to obtain the final segmentation.

Finally, Rampun et al. recurrently used a method to segment the PZ [143–146,185], which is pro-
posed by Rampun et al. [209]. The PZ is modeled using a quadratic function driven by the center of 
the prostate and the left-most and the right-most coordinates of the prostate boundaries.

TABLE 10.3
Overview of the Pre-Processing Methods Used in CAD Systems

Pre-Processing Operations References

MRI Pre-Processing
Noise Filtering

• Anisotropic median-diffusion filtering [143–146,185]

• Gaussian filtering [147]

• Median filtering [139,140]

• Wavelet-based filtering [112,113,133]

Bias Correction
• Parametric methods [122,134,160]

• Nonparametric methods [161]

Standardization
• Statistical-based normalization [115,116,127,134,139,140,143–146,160–162,185]

• Organ SI-based normalization [126,137,138,147]

MRSI Pre-Processing
Phase correction [127,141,156,157]

Water and lipid residuals filtering [123]

Baseline correction [127,141,154,156,157]

Frequency alignment [127,154,156,157]

Normalization [127,141,156,157]
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Model-Based Segmentation
Viswanath et al. [159,160] used the MANTRA method [210]. Multi-attribute non-initializing texture 
reconstruction-based active shape model (MANTRA) [210] is closely related to the active shape 
model (ASM) from Cootes et al. [211]. This algorithm consists of two stages: (i) a training stage 
where a shape and an appearance model are generated and (ii) the actual segmentation based on the 
learned model. For the training stage, a set of landmarks is defined and the shape model is gener-
ated as in the original ASM method [211]. Then, to model the appearance, a set of K  texture images 
{ , , , }1 2I I Ik  based on first- and second-order statistical texture features is computed. For a given 
landmark l with its given neighborhood  ( )l , its feature matrix extracted is expressed as follows:

 f I l I l I ll k= { ( ( )), ( ( )), , ( ( ))}1 2   , (10.28)

where I lk ( ( ))  represents a feature vector obtained by sampling the k th texture map using the 
neighborhood  ( )l . Therefore, multiple landmarks are generated followed by a decomposition 
using principal components analysis (PCA) [212] to learn the appearance variations as in ASM.

For the segmentation stage, the mean shape learned previously is initialized in the test image. 
The same associated texture images as in the training stage are computed. For each landmark l, a 
neighborhood of patches is used to sample the texture images and a reconstruction is obtained using 
the appearance model previously trained. The new landmark location will be defined as the position 
where the MI is maximal between the reconstructed and original values. This scheme is performed 
in a multiresolution manner as in Cootes et al. [211].

Subsequently, Viswanath et al. [162] used the weighted ensemble of regional image textures for 
active shape model segmentation (WERITAS) method also proposed in Toth et al. [213]. Similar 
to MANTRA, WERITAS is also based on the ASM formulation. It differs in the last stage of 
the algorithm in which the Mahalanobis distance is used, instead of the MI metric, to adapt the 
positions of new landmarks. In the training stage, the Mahalanobis distance is computed between 
landmarks and neighbor patches for each of the features. Subsequently, a new metric is proposed 
as a linear weighted combination of those Mahalanobis distances that maximizes the correlation 
with the Euclidean distance between the patches and the true landmarks. In the segmentation step, 
this metric is then computed between the initialized landmarks and neighboring patches in order to 
update landmark positions, in a similar fashion to other active contour model (ACM) models.

Litjens et al. [128] as well as Vos et al. [166] used an approach proposed by Huisman et al. [214] 
in which the bladder, the prostate, and the rectum are segmented. The segmentation task is per-
formed as an optimization problem taking three parameters into account linked to organ character-
istics such as: (i) the shape (i.e., an ellipse), (ii) the location, and (iii) the respective angles between 
them. Furthermore, Litjens et al. used only the ADC map to encode the appearance [128], whereas 
Vos et al. used both ADC and T2 maps [166]. The cost function, defined as the sum of the devia-
tions, is minimized using a quasi-Newton optimizer. This rough segmentation is then used inside a 
Bayesian framework to refine the segmentation.

Giannini et  al. segmented the prostate with a multi-Otsu thresholding [215] in ADC images 
[122]. Further morphological operations are applied to improve the segmentation.

Only the work of Tiwari et al. used the MRSI modality to segment the prostate organ [151]. The 
prostate is segmented based on an unsupervised hierarchical spectral clustering. First, each MRSI spec-
trum is projected into a lower-dimensional space using graph embedding [216]. To proceed, a similarity 
matrix W  is computed using a Gaussian similarity measure from Euclidean distance [217] such that 
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where s ( )x  and s ( )y  are the MRSI spectra for the voxels x and y, respectively; σ  is the standard 
deviation of the Gaussian similarity measure; and  is the parameter to defined an -neighborhood.

The projection can be performed as a generalized eigenvector problem such that 
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where D is the diagonal weight matrix, L is the Laplacian matrix, λ  and u represent the eigenvalues 
and eigenvectors. Once the MRSI spectra are projected into the lower-dimensional space, a replicate 
k-means clustering method is used to define 2 clusters. Subsequently, the data corresponding to the 
largest cluster is assumed to belong to the non-prostate voxels and thus these voxels are eliminated 
from the processing. The full procedure is repeated until the total number of voxels left is inferior 
to a given threshold experimentally set.

The segmentation algorithms used in CAD system for the detection of CaP are summarized in 
Table 10.4.

REGISTRATION

Image registration plays a vital role in CAD systems using mpMRI images. The features detected in 
each modality are grouped depending of their spatial location, requiring a perfect alignment of the 
mpMRI ahead of the classification.

Image registration is the procedure consisting of aligning an unregistered image—also called 
moving image—into a template image—also called fixed image—via a geometric transformation. 
This problem is usually addressed as depicted in Figure 10.13. An iterative procedure takes place 
to infer the geometric transformation, parametric or non-parametric, via an optimizer which maxi-
mizes the similarity between the two images. In the following, a review of the different components 
of a typical registration framework—transformation model, similarity metric, optimizer, and inter-
polation—are presented. To conclude a summary is given focusing on the registration approaches 
applied in CAD for CaP systems. Exhaustive reviews covering all registration methods in computer 
science and medical fields are available [218–220].

Geometric Transformation Models
As previously mentioned, the registration process is equivalent to finding a geometric transformation 
that minimizes the difference between two images. From all CAD systems reviewed, only parametric 

TABLE 10.4
Overview of the Segmentation Methods Used in CAD Systems

Segmentation Methods References

MRI-Based Segmentation
Manual segmentation [115,116,126,127,135,137–140,142,156,157,163–166]

Region-based segmentation [129,130,143–146,185]

Model-based segmentation [122,128,159–161,166]

MRSI-Based Segmentation
Clustering [151]
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methods have been implemented. Three different groups of parametric transformation models have 
been used—rigid, affine, and elastic—each of them characterized by a specific degree of freedom.

The simplest transformation used in terms of degrees of freedom is usually referred to as rigid 
transformation. This type of transformation is only composed of a rotation and a translation. 
Therefore, for the 2D case where x = ∈( , ) 2x y  , a rigid transformation R is formalized as follows: 
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where θ is the rotation angle and { , }t tx y  represents the translation along { , }x y , respectively. In the 
case of 3D registration using volume, an additional component z is introduced such that x = ( , , )x y z . 
Thus, the rotation matrix R becomes of size 3 3×  whereas the translation vector t consists of a vec-
tor of three variables. The geometric transformation R ( )⋅  is embedded into a matrix of size 4 4× .

The affine transformation provides additional degrees of freedom, providing rotation, 
 translation—as with the rigid transformations—and also shearing and scaling. Hence, for a 2D 
space where x = ∈( , ) 2x y  , an affine transformation A is formalized as 
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where the 4 parameters { , , , }11 12 21 22a a a a  of the affine matrix and { , }t tx y  of the translation encode 
the deformation. As in the rigid registration case, in 3D the affine transformation A( )⋅  is of size 
4 4×  but now with 12 parameters involved.

Finally, the last group of transformations is known as elastic transformations and offers the 
advantage of handling local distortions. In the reviewed CAD systems, the radial basis functions are 
used to formalize the local distortions such as

FIGURE 10.13 Typical framework involved to solve the registration problem.
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where x are the control points in both images and g ( )  is the actual radial basis function.
Two radial basis functions are used: (i) the TPS and (ii) the B-splines. Apart from the formal-

ism, these two approaches have a main difference: with B-splines, the control points are usually 
uniformly and densely placed on a grid, whereas with TPS, the control points correspond to some 
detected or selected key points. By using TPS, Mitra et al. obtained more accurate and time-efficient 
results than with the B-splines strategy [221].

It is reasonable to point out that usually only rigid or affine registrations are used to register 
mpMRI from a same protocol. Elastic registration methods are more commonly used to register 
multi-protocol images such as histopathology with MRI images [210,213].

Similarity Measure
The most naive similarity measure used in reviewed registration framework is the mean squared 
error (MSE) of the SI of MRI images. For a pair of images I and J, the MSE is formalized as 
follows:
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where N  is the total number of pixels. This metric is not well suited when mpMRI images are 
involved due to the tissue appearance variations between the different modalities.

In this regard, MI was introduced as a similarity measure in registration framework in the late 
1990s by Pluim et al. [222]. The MI measure finds its foundation in the assumption that a homoge-
neous region in the first modality image should also appear as a homogeneous region in the second 
modality, even if their SIs are not identical. Thus, those regions share information and the registra-
tion task is achieved by maximizing this common information. Hence, MI of two images A and B 
is defined as

 MI A B S A S B S A B( ; ) ( ) ( ) ( , )= + − , (10.35), 

where S A( ), S B( ), and S A B( , ) are the marginal entropies of A and B and the joint entropy, respec-
tively. Therefore, maximizing the MI is the equivalent of minimizing the joint entropy. The joint 
entropy measure is related to the degree of uncertainty or dispersion of the data in the joint histo-
gram of the images A and B. As shown in Figure 10.14, the data in the joint histogram are concen-
trated in the case of aligned images (see Figure 10.14a), while they are more randomly distributed in 
the case of misaligned images (see Figure 10.14b). The entropy is computed based on an estimation 
of the PDF of the images and thus histogram or Parzen window methods are a common way to 
estimate these PDFs.

A generalized form of MI, combined mutual information (CMI), has been proposed by 
Chappelow et al. [223]. CMI encompasses interdependent information such as texture and gradient 
information into the metric. Hence, for both of images A and B, the image ensembles nA and mB are 
generated and composed of n and m  images based on the texture and gradient. Then, the CMI is 
formulated such as

 CMI S S Sn
A

m
B

n
A

m
B

n
A

m
B( ; ) ( ) ( ) ( , )     = + − . (10.36)
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From Equation 10.36, note that CMI is estimated from high-dimensional data and as a consequence 
the histogram-based methods to estimate the PDFs are no longer suitable [223]. However, other alter-
native approaches are used, such as the one employed in Staring et al. [224] to compute the α-MI [225].

Optimization Methods
Registration is usually regarded as an optimization problem where the parameters of the geomet-
ric transformation model have to be inferred by minimizing/maximizing the similarity measure. 
Iterative optimization methods are commonly used, the most common methods being the L-BFGS-B 
quasi-Newton method [226] and the gradient descent [227]. During our review, we noticed that 
authors do not usually linger over optimizer choice.

Interpolation
The registration procedure involves transforming an image and pixels mapped to non-integer points 
must be approximated using interpolation methods. As for the optimization methods, we notice that 
little attention has been paid on the choice of those interpolations methods. However, commonly used 
methods are bi-linear, nearest-neighbor, bi-cubic, spline, and inverse-distance weighting method [228].

Registration Methods Used in CAD Systems
Table 10.5 summarizes the framework used to register mpMRI images in CAD for CaP.

Ampeliotis et al. did not use the framework as presented in Figure 10.13 to register 2D T2-W-
MRI and DCE-MRI images [112,113]. By using image symmetries and the MSE metric, they found 
the parameters of an affine transformation but without using a common objective function. The 
scale factor, the rotation, and the translation are independently and sequentially estimated.

Giannini et al. used also a in-house registration method for 2D T2-W-MRI and DW-MRI images 
using an affine model [121,122]. The bladder is first segmented in both modalities in order to obtain 
its contours, which are then used as a metric function (i.e., distance between contours) for registration.

Giannini et al. and also Vos et al. used a framework based on finding an affine transformation to 
register the T2-W-MRI and DCE-MRI images using MI [121,165,229]. Then, an elastic registration 
using B-spline takes place using the affine parameters to initialize the geometric model with the 
same similarity measure. However, the two approaches differ regarding the choice of the optimizer 
since Giannini et al. used a gradient descent [121] and Vos et al. used a quasi-Newton method [165]. 
Moreover, Giannini et al. applied a 2D registration, whereas Vos et al. registered 3D volumes.

Viswanath et  al. as well as Vos et  al. registered T2-W-MRI and DCE-MRI images using an 
affine registration and a MI metric [159,160,163]. However, the choice of the optimizer has not been 

FIGURE 10.14 Difference observed in joint histogram between aligned and misaligned images. The joint 
measure will be more concentrated of the histogram in the case that the images are aligned and more ran-
domly distributed in the case that both images are more misaligned. (a) Illustration of a joint histogram 
between two aligned images. (b) Illustration of a joint histogram between two misaligned images.
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specified. Furthermore, Viswanath et al. focused on 2D registration [159,160], while Vos et al. per-
formed 3D registration [163].

Finally, Viswanath et  al. performed a 3D registration with the three modalities, T2-W-MRI, 
DCE-MRI, and DW-MRI, using an affine transformation model combined with the CMI similar-
ity measure [161]. Moreover, in this latter work, the authors employed a gradient descent approach 
[223] to solve this problem but suggested that the Nelder-Mead simplex and the quasi-Newton meth-
ods are other possible solutions.

Lemaitre also registered T2-W-MRI, DCE-MRI, and DW-MRI images [127]. The intra-patient 
motions occurring during DCE-MRI is corrected by rigidly registering all series to the first series 
using MI and a gradient descent optimizer. Once the intra-patient motions are corrected, T2-W-
MRI and the DCE-MRI are co-registered. For that matter, the prostate has been segmented in both 
modalities—T2-W-MRI and DCE-MRI—to create two binary masks. Therefore, these 3D binary 
masks are directly registered using the MSE metric and a gradient descent with an elastic registra-
tion based on B-splines. The T2-W-MRI and ADC map acquisitions are registered using the same 
approach as for the registration of the T2-W-MRI and the DCE-MRI modalities.

CADE: ROIS DETECTION/SELECTION

As discussed in the introduction and shown in Figure 10.5, the image classification framework is 
often composed of a CADe and a CADx. In this section, we focus on studies that embed a CADe 
in their framework. Two approaches are considered to define a CADe: (i) voxel-based delineation 
and (ii) lesion segmentation. These methods are summarized in Table 10.6. The first strategy is in 
fact linked to the nature of the classification framework and concerns the majority of the studies 
reviewed [115,116,121,123,124,126,127,131,133,135,136,139–141,143–146,148–162,185]. Each voxel 

TABLE 10.5
Classification of the Different Registration Methods Used in the CAD Systems Reviewed

Study Index Modality Registered Type

Geometric Model Similarity Measure Optimizer

Affine Elastic MSE MI CMI GD L-BFGS-B

[112,113] T2-W - DCE 2D � − � − − − −
[121,122] T2-W - DW 2D � � − − − − −
[121,122] T2-W - DCE 2D � � − � − � −
[159,160] T2-W - DCE 2D � − − � − − −
[161] T2-W - DCE - DW 3D � − − − � � −
[163] T2-W - DCE 3D � − − � − − −
[165] T2-W - DCE 3D � � − � − − �

[127] T2-W - DCE - DW 3D � � � � − � −

Notes: −: not used or not mentioned; �: used or implemented.
Abbreviations:  Mean squared error (MSE); mutual information (MI); combined mutual information (CMI); gradient 

descent (GD); limited-memory Broyden-Fletcher-Goldfarb-Shannon box constraints (L-BFGS-B).

TABLE 10.6
Overview of the CADe Strategies Employed in CAD Systems

CADe: ROIs Selection Strategy References

All voxels-based approach [115,116,121,123,124,126,127,131,133,135,136,139–141,143–146,148–162,185]

Lesions candidate detection [117,118,128–130,166]
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is a possible candidate and will be classified as cancerous or healthy. The second group of meth-
ods is composed of method implementing a lesion segmentation algorithm to delineate potential 
candidates to further obtain a diagnosis through the CADx. This approach is borrowed from other 
application areas such as breast cancer. These methods are in fact very similar to the classification 
framework used in CADx later.

Regarding lesion candidate detection, Vos et al. highlighted lesion candidates by detecting blobs 
in the ADC map [166]. These candidates are filtered using some a priori criteria such as SI or diam-
eter. As mentioned in the section “Clinical Aspects of TRUS Prostate Biopsy” and Table 10.1, low 
SI in ADC map can be linked to potential CaP. Hence, blob detectors are suitable to highlight these 
regions. Blobs are detected in a multiresolution scheme, by computing the three main eigenvalues 
{ , , },1 ,2 ,3λ λ λσ σ σ  of the Hessian matrix, for each voxel location of the ADC map at a specific scale σ 
[230]. The probability p of a voxel x being a part of a blob at the scale σ is given by 
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The fusion of the different scales is computed as

 L P( ) ( , ),x x= ∀max .σ σ  (10.38) 

The candidate blobs detected are then filtered depending on their appearances—that is, maximum of 
the likelihood of the region, diameter of the lesion—and their SI in ADC and T2-W-MRI images. The 
detected regions are then used as inputs for the CADx. Cameron et al. used a similar approach by auto-
matically selecting low-SI connected regions in the ADC map with a size larger than 1 2mm  [117,118].

Litjens et al. used a pattern recognition approach to delineate the ROIs [128]. A blobness map is 
computed in the same manner as in Vos et al. [165] using the multiresolution Hessian blob detector 
on the ADC map, T2-W, and pharmacokinetic parameters maps (see Section 3.5.2 for details about 
those parameters). Additionally, the position of the voxel x = { , , }x y z  is used as a feature as well as 
the Euclidean distance of the voxel to the prostate center. Hence, each feature vector is composed of 
eight features and a support vector machine (SVM) classifier is trained using a radial basis function 
(RBF) kernel (see Section 3.8 for more details).

Subsequently, Litjens et al. modified this approach by including only features related to the blob 
detection on the different maps as well as the original SIs of the parametric images [129]. Two new 
maps are introduced based on texture and a k-nearest neighbor (k-NN) classifier is used instead of 
a SVM classifier. The candidate regions are then extracted by performing a local maxima detection 
followed by post-processing region growing and morphological operations.

CADX: FEATURE DETECTION

Discriminative features that help to recognize CaP from healthy tissue first need to be detected. 
This processing is known in computer vision as feature extraction. However, feature extraction also 
refers to the name given in pattern recognition to some types of dimension reduction methods which 
are presented later. In order to avoid confusion between these two aspects, in this survey, the pro-
cedure “detecting” or “extracting” features from images and signals is defined as feature detection. 
This section summarizes the different features used in CAD for CaP.

Image-Based Features
This section focuses on image-based features which can be categorized into two categories: (i) vox-
elwise detection and (ii) region-wise detection.
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Voxelwise Detection in MRI
This strategy refers to the fact that a feature is extracted at each voxel location. As discussed in the sec-
tion “MRI Techniques,” CaP has an influence on the SI in mpMRI images. Therefore, intensity-based 
feature is the most commonly used feature [112,113,115–122,124–131,137–140,143,144,156,157,163]. 
This feature consists of the extraction of the intensity of the MRI modality of interest.

Edge-based features have also been used to detect SI changes but bring additional information 
regarding the SI transition. Each feature is computed by convolving the original image with an edge 
operator. Three operators are commonly used: (i) Prewitt operator [231], (ii) Sobel operator [232], and 
(iii) Kirsch operator [233]. These operators differ due to the kernel used which attenuates more or less 
the noise. Multiple studies have used the resulting magnitude and  orientation of the edges computed 
in their classification frameworks [120,124,126,127,137,138,145,146,152,153,155,158,161,185].

Gabor filters [234,235] offer an alternative to the usual edge detector, with the possibility to tune 
the direction and the frequency of the filter to encode a specific pattern. A Gabor filter is defined by 
the modulation of a Gaussian function with a sine wave which can be further rotated and is formal-
ized as in Equation 10.39:
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with

′ = +( )x s x ycos sinθ θ ,

′ = − +( )y s x ysin cosθ θ ,

where λ  is the wavelength of the sinusoidal factor, θ  represents the orientation of the Gabor filter, ψ  
is the phase offset, σ is the standard deviation of the Gaussian envelope, γ  is the spatial aspect ratio, 
and s is the scale factor. In an effort to characterize pattern and texture, a bank of Gabor filters is 
usually created with different angles, scale, and frequency—refer to Figure 10.15—and then con-
volved with the image. Viswanath et al. [162], Tiwari et al. [154], and more recently Khalvati et al. 
[124] and Chung et al. [120] have designed a bank of Gabor filters to characterize texture and edge 
information in T2-W-MRI and DW-MRI modalities.

Lemaitre [127] used a 3D Gabor filters bank. 3D Gabor filters [236] are not commonly used and 
we recall their formulation in Equation 10.40:

 g f g j f x y z( ; , , , ) ( ; ) 2x xσσ σσθ φ π θ φ θ φ θ= + +( )( ) exp sin cos sin sin cos , (10.40) 

FIGURE 10.15 Illustration of four different Gabor filters varying their orientations θ . (a) θ = 0°, (b) θ = 60°, 
(c) θ = 120°, (d) θ = 180°.
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where x is the position vector { , , }x y z , σσ  is the standard deviation vector { , , }σ σ σx y z  of the 3D 
Gaussian envelope, f  is the radial center frequency of the sine wave, θ is the elevation angle, and φ 
is the azimuth angle.

Additionally, Lemaitre [127] features based on phase congruency as proposed by Kovesi are 
computed [237]. Therefore, from a log-Gabor filter bank, the orientation image, the local weighted 
mean phase angle, and the phase angle are estimated at each voxel.

Texture-based features provide other characteristics discerning CaP from healthy tissue. The 
most common texture analysis for image classification is based on the gray-level co-occurrence 
matrix (GLCM) with their related statistics which have been proposed by Haralick et al. [238]. In a 
neighborhood around a central voxel, a GLCM is built considering each voxel pair defined by a spe-
cific distance and angle. Then, using the GLCM, a set of statistical features is computed as defined 
in Table 10.7 and assigned to the location of the central voxel. Therefore, N—up to 14— statistical 
maps are derived from the GLCM analysis, one per statistics presented in Table 10.7. GLCM is 
commonly used in CAD systems, on the different MRI modalities, namely T2-W-MRI, DCE-
MRI, or DW-MRI [114,117,118,120,124,126,127,137,138,145,146,152,153,155,156,158,160–162,185]. 
However, the statistics extracted from the GLCM vary across studies. Along the same line, Rampun 
et  al. extracted from T2-W-MRI [145,185] Tamura features [239] composed of three features to 
characterize texture: (i) coarseness, (ii) contrast, and (iii) directionality.

Lopes et al. used fractal analysis, and more precisely a local estimation of the fractal dimension 
[240], to describe the texture roughness at a specific location. The fractal dimension is estimated 
through a wavelet-based method in multiresolution analysis. They showed that cancerous tissues 
have a higher fractal dimension than healthy tissue.

Chan et al. described texture using the frequency signature via the discrete cosine transform 
(DCT) [241], defining a neighborhood of 7 7× px for modalities used, namely T2-W-MRI and 
DW-MRI. The DCT allows to decompose a portion of an image into a coefficient space, where few 
of these coefficients encode the significant information. The DCT coefficients are computed such as
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where Ck k1, 2
 is the DCT coefficient at the position k k1 2, , M and N  are the dimension of the neighbor-

hood and pm n,  is the pixel SI at the position { , }m n .
Lemaitre [127] incorporated those features in a CAD system.
Regarding other features, Viswanath et al. projected T2-W-MRI images into the wavelet space, 

using the Haar wavelet, and used the resulting coefficients as features [162]. Litjens et al. computed 
the texture map based on T2-W-MRI images using a Gaussian filter bank [128]. Likewise, Rampun 
et al. employed a rotation invariant filter bank proposed in Leung and Malik [242]. The bank is 
composed of 48 filters including Gaussian filters, first and second derivatives of Gaussian filters, as 
well as Laplacian of Gaussian.

Region-Wise Detection in MRI
Unlike the previous section, another strategy is to study a region instead of each pixel independently. 
Usually, the feature maps are computed using the method presented in voxel-based approach followed 
by a step in which features are computed in some specific delineated regions to characterize them.
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The most common feature type is based on statistics and more specifically the statistic-moments 
such as mean, standard deviation, kurtosis, and skewness [100,112–114,117,118,120,124,126,128–
130,137,138,145,146,152,153,155,158,160–162,185]. Additionally, some studies extract additional 
statistical landmarks based on percentiles [100,114,126,128–130,137,138,164–166]. The percentiles 
to use are manually determined by observing the PDF of the features and checking which values 
allow the best to differentiate malignant from healthy tissue.

Further statistics are computed through the use of histogram-based features. Liu et al. introduced 
four different types of histogram-based features to characterize hand-delineated lesions [132]. The 
first type corresponds to the histogram of the SI of the image. The second type is the histogram of 
oriented gradient (HOG) [243] which encodes the local shape of the object of interest by using the 

TABLE 10.7
The 14 Statistical Features for Texture Analysis Commonly Computed 
From the GLCM p as Presented by Haralick et al. [238]
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distribution of the gradient directions. This descriptor is extracted mainly in three steps. First, the gra-
dient image and its corresponding magnitude and direction are computed. Then, the ROI is divided 
into cells and an oriented-based histogram is generated for each cell. At each pixel location, the ori-
entation of the gradient votes for a bin of the histogram and this vote is weighted by the magnitude of 
the same gradient. Finally, the cells are grouped into blocks and each block is normalized. The third 
histogram-based type used by Liu et al. [132] is the shape context introduced by Belongie et al. [244]. 
The shape context is also a way to describe the shape of an object of interest. First, a set of points 
defining edges have to be detected and for each point of each edge, a log-polar-based histogram is 
computed using the relative points distribution. The last set of histogram-based feature extracted is 
based on the framework described in Zhao et al. [245] that uses the Fourier transform of the histo-
gram created via local binary pattern (LBP) [205]. LBP is generated by comparing the value of the 
central pixel with its neighbors, defined through a radius and the number of connected neighbors. 
Then, in the ROI, the histogram of the LBP distribution is computed. The discrete Fourier transform 
(DFT) of the LBP histogram is used to make the feature invariant to rotation.

Another subset of features are anatomical-based features, which have been used in various stud-
ies [117,118,129,130,135]. Litjens et al. computed the volume, compactness, and sphericity related 
to the given region [129,130]. Additionally, Litjens et al. introduced a feature based on symmetry in 
which they computed the mean of a candidate lesion as well as its mirrored counterpart and com-
puted the quotient as feature [130]. Lemaitre [127] incorporated those features in their CAD system. 
Matulewicz et al. introduced four features corresponding to the percentage of tissue belonging to 
the PZ, CG, periurethral region, or outside the prostate region for the considered ROI [135]. Finally, 
Cameron et al. defined four features based on morphology and asymmetry: (i) the difference of 
morphological closing and opening of the ROI, (ii) the difference of the initial perimeter and the 
one after removing the high-frequency components, (iii) the difference between the initial ROI and 
the one after removing the high-frequency components, and (iv) the asymmetry by computing the 
difference of the two areas splitting the ROI by its major axes [117,118].

The last group of region-based features is based on fractal analysis. This group of features is 
based on estimating the fractal dimension, which is a statistical index representing the complex-
ity of the analyzed texture. Lv et al. proposed two features based on fractal dimension: (i) texture 
fractal dimension and (ii) histogram fractal dimension [134]. The first feature is based on estimating 
the fractal dimension on the SI of each image and thus this feature is a statistical characteristic of 
the image roughness. The second fractal dimension is estimated using the PDF of each image and 
characterizes the complexity of the PDF. Lopes et al. proposed a 3D version to estimate the fractal 
dimension of a volume using a wavelet decomposition [133].

DCE-Based Features
DCE-MRI is more commonly based on a SI analysis over time as presented in the section “Prostate 
Anatomy and Histological Architecture.” In this section, the specific features extracted for DCE-
MRI analysis are presented.

Whole-Spectra Approach
Some studies use the whole DCE time series as a feature vector [112,113,127,154,158,159]. In some 
cases, the high-dimensional feature space is reduced using dimension reduction methods.

Semi-Quantitative Approach
Semi-quantitative approaches are based on mathematically modeling the DCE time series. The 
parameters modeling the signal are commonly used, mainly due to the simplicity of their computa-
tion [122,126,127,136–138,142,147,148,156,157]. Parameters included in semi-quantitative analysis 
are summarized in Table 10.8 and are also graphically depicted in Figure 10.16. A set of time 
features corresponding to specific amplitude level (start, maximum, and end) are extracted. Then, 
derivative and integral features are also considered as discriminative and are commonly computed.
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FIGURE 10.16 Graphical representation of the different semi-quantitative features used for DCE-MRI analysis.

TABLE 10.8
Parameters Used as Features for a DCE Semi-Quantitative Analysis in CAD 
Systems

Semi-Quantitative Features Explanations

Amplitude Features

S0
Amplitude at the onset of the enhancement

Smax Amplitude corresponding to 95% of the maximum amplitude

Sp Amplitude corresponding to the maximum amplitude

Sf Amplitude at the final time point

Time Features

t0
Time at the onset of the enhancement

tmax Time corresponding to 95% of the maximum amplitude

tp Time corresponding to the maximum amplitude

t f Final time

ttp Time to peak which is the time from t0 to tp

Derivatives and Integral Features

WI Wash-in rate corresponding to the signal slope from t0 to tm or tp

WO Washout rate corresponding to the signal slope from tm or tp to tp

IAUC Initial area under the curve which is the area between t0 to t f
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Quantitative Approach
As presented in the section “MRI Techniques,” quantitative approaches correspond to math-
ematical-pharmacokinetic models based on physiological exchanges. Four different models 
have been used in CAD for CaP systems. The most common model reviewed is the Brix model 
[115,116,127,131,139,140,148]. This model is formalized as follows:
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where S( )⋅  is the DCE signal, A is the parameter simulating the tissue properties, kel is the parameter 
related to the first-order elimination from the plasma compartment, and kep is the parameter of the 
transvascular permeability. The parameters kep, kel, and A are computed from the MRI data and used 
as features.

Another model is Tofts model [82] which has been used in a number of studies [121,122,125–
127,136–138]. In this model, the DCE signal relative to the concentration is presented as
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where Ct ( )⋅  is the concentration of the medium, Cp( )⋅  is the AIF which has to be estimated indepen-
dently, Ktrans is the parameter related to the diffuse transport of media across the capillary endo-
thelium, kep is the parameter related to the exchanges back into the vascular space, and ve is the 
extravascular-extracellular space fraction defined such that v ve p= −1 . In this model, parameters 
Ktrans, kep, and ve are computed and used as features.

Mazzetti et al., Giannini et al., and Lemaitre used the Weibull function [121,122,127,136] which 
is formalized as

 S t At t B( ) = ( )exp ,−  (10.45)

where A and B are the two parameters which have to be inferred.
They also used another empirical model which is based on the West-like function and named the 

phenomenological universalities (PUN) [246], formalized as
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where the parameters β , a 0, and r are inferred. For all these models, the parameters are inferred 
using an optimization curve fitting approach.

MRSI-Based Features
Whole Spectra Approach in MRSI
As in the case of DCE analysis, one common approach is to incorporate the whole MRSI spectra 
in the feature vector for classification [123,127,135,141,149,151–153,155–157,159]. Sometimes post-
processing involving dimension reduction methods is performed to reduce the complexity during 
the classification as it will be presented in Section 3.7.2.

Quantification Approach in MRSI
We can reiterate that in MRSI only few biological markers—that is, choline, creatine, and citrate 
metabolites—are known to be useful to discriminate CaP and healthy tissue. Therefore, only the 
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concentrations of these metabolites are considered as a feature prior to classification. In order to 
perform this quantification, four different approaches have been used. Kelm et al. [123] used the fol-
lowing models: QUEST [247], AMARES [248], and VARPRO [249]. They are all time-domain quan-
tification methods varying by the type of pre-knowledge embedded and the optimization approaches 
used to solve the quantification problem. Unlike the time-domain quantification approaches, Parfait 
et al. used the LcModel approach proposed in Provencher [250], which solves the optimization prob-
lem in the frequency domain. Although Parfait et al. and Lemaitre used each metabolite relative 
concentration individually [127,141], other authors such as Kelm et al. proposed to compute relative 
concentrations as the ratios of metabolites as shown in Equations 10.47 and 10.48.
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where Cit , Cho, and Cr are the relative concentrations of citrate, choline, and creatine, respectively.
Recently, Trigui et al. used an absolute quantification approach from which water sequences are 

acquired to compute the absolute concentration of the metabolites [156,157]. Absolute quantifica-
tion using water as reference is based on the fact that the fully relaxed signal from water or metabo-
lites is proportional to the number of moles of the molecules in the voxel [251].

Wavelet Decomposition Approach in MRSI
Tiwari et al. performed a wavelet packet decomposition [252] of the spectra using the Haar wavelet 
basis function and its coefficients as features.

The feature detection methods used in CAD are summarized in Table 10.9.

FEATURE BALANCING

Data imbalance is a recurrent issue in classification, notably in medical data. The problem of imbal-
anced datasets lies in the fact that one of the class has a smallest number of data—that is, in med-
ical data, the class corresponding to patients with a disease—compared with the other classes. 
Therefore, solving the problem of imbalance is equivalent to under- or over-sampling part of the 
dataset to obtain an equal number of samples in the different classes. Recently, Lemaitre used bal-
ancing methods during the learning stage to tackle this issue [253].

Undersampling
Techniques that reduce the number of samples of the majority class to be equal to the number of 
samples of minority class are referred to as undersampling (US) techniques. 

Nearmiss (NM) offers three different methods to undersample the majority class [254]. 
In nearmiss-1 (NM-1), samples from the majority class are selected such that for each 
sample, the average distance to the k nearest neighbor (NN) samples from the minority 
class is minimum. Nearmiss-2 (NM-2) diverges from NM-1 by considering the k farthest 
neighbors samples from the minority class. In nearmiss-3 (NM-3), a subset M containing 
samples from the majority class is generated by finding the m  NN from each sample of the 
minority class. Then, samples from the subset M are selected such that for each sample, the 
average distance to the k NN samples from the minority class is maximum.

Instance-hardness-threshold (IHT) select samples with a high hardness threshold [255]. 
Hardness indicates the likelihood of misclassification rate for each sample. The notation 
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TABLE 10.9
Overview of the Feature Detection Methods Used in CAD Systems

Feature Detection Methods Indexes

MRI Image
Voxelwise Detection
Intensity-based ✓−−[112,113,143,144,163] −−✓[121] ✓−✓[115–120,122,124,125, 

128–131,139,140,156,157] ✓✓✓[126,127,137,138]
Edge-based

• Prewitt operator ✓−−[152,153,155,158] ✓−✓[127]
• Sobel operator ✓−−[145,146,152,153,155,158,160–162,185] ✓−✓[127] ✓✓✓[126,137,138]
• Kirsch operator ✓−−[152,153,155,158,160–162] ✓−✓[120,124,127] [126,137,138]
• Gabor filtering ✓−−[154,158,162] ✓−✓[120,124,127]
• Phase congruency ✓−✓[127]

Texture-based
• Haralick features ✓−−[114,145,146,152,153,155,156,158,160,162,185] ✓✓−[161] 

✓− ✓[117,118,120,124] ✓✓✓[126,129,137,138]
• Tamura features ✓−−[145,146,185]
• Fractal analysis ✓−−[133,134]
• DCT ✓✓✓[119]
• Wavelet-based features ✓−−[162]
• Gaussian filter bank ✓−−[130,145,146,185]
• Laplacian of Gaussian filter bank ✓−−[145,146,185]

Position-based [119,128–130]

Region-Wise Detection
Statistical-based

• Percentiles − ✓−[164] −−✓[100,114] ✓✓−[165] ✓✓✓[126,128–130,137,138,166]
• Statistical-moments ✓−−[112,113,145,146,152,153,155,158,160,162,185] −−✓[114] − ✓✓[161]

✓−✓[100,117,118,120,124] ✓✓✓[126,128–130,137,138]
Histogram-based

• PDF [132]
• HOG ✓✓✓[132]
• Shape context ✓✓✓[132]
• LBP ✓✓✓[132,127]

Anatomical-based [117,118,129,130,135]
Fractal-based [133,134]

DCE Signal
Whole spectra approach [112,113,127]
Semi-quantitative approach ✓![142] [122,126,127,136–138,147,148,156,157]
Quantitative approach

• Toft model ✓![100,132] [121,122,125–130,136–138]
• Brix model ✓![115,116,139,140] [127,131,148]
• Weibull function [121,122,127,136]
• PUN [121,122,127,136]

MRSI Signal
Whole spectra approach [123,127,135,141,149–153,155,158]
Quantification approach [123,127,141,156,157]
Wavelet-based approach [154]

Notes: (✓|–✓|–✓|–): triplet stating the implementation or not of the feature for respectively T2-W-MRI images, DCE-MRI 
images, DCE-MRI images; ✓: used or implemented; ✓!: partially implemented.
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of instance hardness is drawn through the decomposition of p h t( | ) using Bayes’ theorem, 
where h represent the mapping function used to map input features to their corresponding 
labels and t represents the training set.

 IH x y p y x hh i i i i( , ) 1 ( | , )〈 〉 = − . (10.49)

 Therefore, undersampling is performed by keeping the most probable samples—that is, 
filtering the samples with high hardness value—through k-fold cross-validation (k-CV) 
training sets while considering specific threshold for filtering.

Oversampling
In contrast to US techniques, data can be balanced by oversampling (OS) in which the new samples 
belonging to the minority class are generated, aiming at equalizing the number of samples in both classes. 

Synthetic minority oversampling technique (SMOTE) is a method to generate new synthetic 
samples [256]. Define xi as a sample belonging to the minority class, and define xnn  as a 
randomly selected sample from the k-NN of xi, with k set to 3. A new sample x j is gener-
ated such that x x x xj i nn i= + −( )σ , where σ is a random number in the interval 0,1 .

SMOTE-borderline1 (SMOTE-b1) oversamples the minority class samples similarly to 
SMOTE [257]. However, instead of using all the minority samples, it focuses on the bor-
derline samples of the minority class. Borderline samples simply indicate the samples that 
are closer to the other class. First, the borderline samples of the minority class are detected. 
A sample xi belongs to borderline samples if more than half of its k-NN samples belong to 
the majority class. Synthetic data is then created based on the SMOTE method for border-
line samples by selecting them. Then, s-NN of the minority class are selected to generate 
synthetic sample similarly to SMOTE.

SMOTE-borderline2 (SMOTE-b2) performs similarly to SMOTE-b1 [257]. However, the 
s-NN are not computed by considering only the minority class but by considering both 
classes. The same generation rules as SMOTE are used.

The data balancing used in CAD systems are summarized in Table 10.10.

CADX: FEATURE SELECTION AND FEATURE EXTRACTION

As presented in the previous section, it is a common practice to extract a wide variety of features. 
While dealing with mpMRI, the feature space created is a high-dimensional space which might 
mislead or corrupt the classifier during the training phase. Therefore, it is of interest to reduce 
the number of dimensions before proceeding to the classification task. The strategies used can be 

TABLE 10.10
Overview of the Data Balancing Methods Used in 
CAD Systems

Balancing Methods References

Under-Sampling
Nearmiss-1 and nearmiss-2 and nearmiss-3 [127]

Instance-hardness-threshold [127]

Over-Sampling
SMOTE and SMOTE-b1 and SMOTE-b2 [127]
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grouped as: (i) feature selection and (ii) feature extraction. In this section only the methods used in 
CAD for CaP systems are presented.

Feature Selection
The feature selection strategy is based on selecting the most discriminative feature dimensions of 
the high-dimensional space. Thus, the low-dimensional space is then composed of a subset of the 
original features detected. In this section, methods employed in CAD for CaP detection are pre-
sented; a more extensive review specific to feature selection is available in Saeys et al. [258].

Niaf et al. make use of the p-value by using the independent two-sample t-test with equal mean 
for each feature dimension [137,138]. In this statistical test, there are two classes: CaP and healthy 
tissue. Hence, for each particular feature, the distribution of each class is characterized by their 
means X1 and X2 and standard deviation sX1 and sX2. Therefore, the null hypothesis test is based on 
the fact that both distribution means are equal. The t-statistic used to verify the null hypothesis is 
formalized such that
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where n1 and n2 are the number of samples in each class. From Equation 10.50, the more the means 
of the class distribution diverge, the larger the t-statistic will be, implying that this particular feature 
is more relevant and able to make the distinction between the two classes.

The p-value statistic is deduced from the t-test and corresponds to the probability of obtaining 
such an extreme test assuming that the null hypothesis is true [259]. Hence, the smaller the p-value, 
the more likely the null hypothesis is to be rejected and the more relevant the feature is likely to be. 
Finally, the features are ranked and the most significant features are selected. However, this tech-
nique suffers from a main drawback in that it assumes each feature is independent, which is unlikely 
to happen, and introduces a high degree of redundancy in the features selected.

Vos et al. [166] employed a similar feature ranking approach but make use of the Fisher dis-
criminant ratio to compute the relevance of each feature dimension. Taking the aforementioned 
formulation, the Fisher discriminant ratio is formalized as the ratio of the interclass variance to the 
intraclass variance as follows: 
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Therefore, a relevant feature dimension is selected when the interclass variance is maximum and 
the intraclass variance in minimum. Once the features are ordered, the authors select the feature 
dimensions with the largest Fisher discriminant ratio.

Lemaitre used the one-way analysis of variance (ANOVA) test [127]. This test is based on com-
puting the F-test which is the ratio of the between-group variability over the within group variabil-
ity. The F-value is computed for each pair of features and the K  feature dimensions corresponding 
to the largest F-values are kept.

MI is a possible metric to use for selecting a subset of feature dimensions. This method has previ-
ously been presented in Section 3.3 and expressed in Equation 10.35. Peng et al. [260] introduced two 
main criteria to select the feature dimensions based on MI: (i) maximal relevance and (ii) minimum 
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redundancy. The maximal relevance criterion is based on the paradigm that the classes and the 
feature dimension which has to be selected have to share a maximal MI; it is formalized as follows: 
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where x = { ; = 1, , }x i di   is a feature vector of d  dimensions and c is the class considered. As in the 
previous method, using maximal relevance criterion alone implies an independence between each 
feature dimension. The minimal redundancy criterion enforces the selection of a new feature dimen-
sion which shares as little as possible MI with the previously selected feature dimensions such that 
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Combining these two criteria is known as the minimum redundancy maximum relevance (mRMR) 
algorithm [260]. Two combinations are usually used: (i) the difference or (ii) the quotient. This 
method has been used on several occasions for selecting a subset of features prior to classification 
[120,124,126,137,138,162].

Random forest (RF) provides information regarding the importance of each feature using the 
metric based on the Gini index. The feature importance in RF is linked with the Gini importance. 
In a tree classifier, the Gini impurity criterion of the child nodes is inferior to the parent node. For 
each individual feature, adding the decrease of the Gini impurity along the tree gives information 
about the feature importance: the higher, the better. Therefore, one can add the decrease of the Gini 
impurity across all the trees of a forest to obtain the importance of a specific feature for this forest. 
Subsequently, the K  most important features are selected to perform the feature selection. Lemaitre 
used this approach to make a feature selection when training their RF [127].

Feature Extraction
The feature extraction strategy is related to dimension reduction methods but not selecting discrimi-
native features. Instead, these methods aim at mapping the data from the high-dimensional space 
into a low-dimensional space to maximize the separability between the classes. As in the previous 
sections, only methods employed in CAD systems are reviewed in this section. We refer the reader 
to Fodor [261] for a full review of feature extraction techniques.

PCA is the most commonly used linear mapping method in CAD systems. PCA is based on 
finding the orthogonal linear transform mapping the original data into a low-dimensional space. 
The space is defined such that the linear combinations of the original data with the k th greatest 
variances lie on the k th principal components [262]. The principal components are computed by 
using the eigenvectors-eigenvalues decomposition of the covariance matrix. Let x denote the data 
matrix. Then, the covariance matrix and eigenvectors-eigenvalues decomposition are defined as in 
Equation 10.54 and Equation 10.55, respectively. The eigenvectors-eigenvalues decomposition can 
be formalized as

 Σ = x xT  (10.54)

 v v− =1 Σ Λ, (10.55)

where v are the eigenvectors matrix and Λ is a diagonal matrix containing the eigenvalues.
It is then possible to find the new low-dimensional space by sorting the eigenvectors using the 

eigenvalues and finally to select the eigenvectors corresponding to the largest eigenvalues. The total 
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variation that is the sum of the principal eigenvalues of the covariance matrix [261], usually cor-
responds to the 95%–98% of the cumulative sum of the eigenvalues. Tiwari et al. used PCA in order 
to reduce the complexity of feature space [127,150,151,154].

Sparse-PCA is another approach for feature extraction and dimension reduction [263]. Similarly to 
PCA, this approach projects the data as a linear combination of input data. However, instead of using 
original data, it uses a sparse representation of the data, and therefore projects them as a linear combi-
nation of a few input components rather than all of them. Referring to Equation 10.55, the cost func-
tion of sparse-PCA is formulated to maximize the variance while maintaining the sparsity constraint: 
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where k indicates that number of non-zero elements in v.
Lemaitre used this approach to decompose the signal obtained from the DCE-MRI and MRSI 

acquisitions.
Similar to PCA decomposition, independent components analysis (ICA) projects data on inde-

pendent components [264]. However, it does not require orthogonality of the space and does not 
assume Gaussian distribution for each independent source. Therefore, in contrast to PCA, it can 
recover uniquely the signals themselves rather than linear subspace in which the signals lie [265]. 
This method has been used by Lemaitre [127].

Nonlinear mapping has been also used for dimension reduction and is mainly based on Laplacian 
eigenmaps and locally linear embedding (LLE) methods. Laplacian eigenmaps, also referred to as 
spectral clustering in computer vision, aim to find a low-dimensional space in which the proximity 
of the data should be preserved from the high-dimensional space [216,217]. Therefore, two adja-
cent data points in the high-dimensional space should also be close in the low-dimensional space. 
Similarly, two distant data points in the high-dimensional space should also be distant in the low-
dimensional space. To compute this projection, an adjacency matrix is defined as follows:

 W i j i j( , ) 2= −exp , x x  (10.57) 

where xi and x j are the two samples considered. Then, the low-dimensional space is found by solv-
ing the generalized eigenvectors-eigenvalues problem:

 ( )D W D− =y yλ , (10.58)

where D is a diagonal matrix such that D i i W j ij( , ) ( , )=  ∑ . Finally the low-dimensional space 
is defined by the k eigenvectors of the k smallest eigenvalues [217]. Tiwari et  al. [149,151,152] 
and Viswanath et  al. [158] used this spectral clustering to project their feature vector into a 
low-dimensional space. The feature space in these studies is usually composed of features extracted 
from a single or multiple modalities and then concatenated before applying the Laplacian eigen-
maps dimension reduction technique.

Tiwari et al. used a slightly different approach by combining the Laplacian eigenmaps techniques 
with a prior multi-kernel learning strategy [151,155]. First, multiple features are extracted from 
multiple modalities. The features of a single modality are then mapped to a higher-dimensional 
space via the Kernel trick [266], namely a Gaussian kernel. Then, each kernel is linearly com-
bined to obtain a combined kernel K  and the adjacency matrix W  is computed. Finally, the same 
scheme as in the Laplacian eigenmaps is applied. However, in order to use the combined kernel, 
Equation 10.58 is rewritten as
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 K D W K KDK( )− =T Ty yλ , (10.59)

which is solved as a generalized eigenvectors-eigenvalues problem as previously. Viswanath et al. 
used Laplacian eigenmaps inside a bagging framework in which multiple embeddings are generated 
by successively selecting feature dimensions [161].

LLE is another widely used nonlinear dimension reduction technique, first proposed in Roweis 
and Saul [267]. LLE is based on the fact that a data point in the feature space is characterized by 
its neighborhood. Thus, each data point in the high-dimensional space is transformed to represent a 
linear combination of its k-nearest neighbors. This can be expressed as

 

x i

j

jW i j= ∑ ( , )x ,

 

(10.60)

 

where x i are the data points estimated using its neighboring data points x j, and W  is the weight 
matrix. The weight matrix W  is estimated using a least square optimization as in Equation 10.61: 
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Then, the essence of LLE is to project the data into a low-dimensional space, while retaining the 
data spatial organization. Therefore, the projection into the low-dimensional space is tackled as an 
optimization problem:

 
y = −∑ ∑arg min

y
y y

i

i

j

jW i j| ( , ) |2 .
 

(10.62)

This optimization is solved as an eigenvectors-eigenvalues problem by finding the k th eigenvectors 
corresponding to the k th smallest eigenvalues of the sparse matrix ( ) ( )I W I W− −T .

Tiwari et al. used a modified version of the LLE algorithm in which they applied LLE in a bag-
ging approach with multiple neighborhood sizes [150]. The different embeddings obtained were 
then fused using the maximum likelihood (ML) estimation.

Another way of reducing the complexity of high-dimensional feature space is to use the family of 
so-called dictionary-based methods. Sparse coded features (SCF) representation has become very 
popular in other computer vision application and has been used by Lehaire et al. [126]. The main 
goal of sparse modeling is to efficiently represent the images as a linear combination of a few typical 
patterns, called atoms, selected from a dictionary. Sparse coding consists of three main steps: sparse 
approximation, dictionary learning, and low-level features projection [268]. 

Sparse approximation: Given a dictionary D ∈ ×n K composed of K  atoms and an original 
signal y ∈n—that is, one feature vector—the sparse approximation corresponds to find 
the sparest vector x ∈K  such that

 arg min s.t.
x

y Dx x   − ≤2 0 λ, (10.63) 

 where λ is a specified sparsity level.
  Solving the above optimization problem is an NP-hard problem [269]. However, approx-

imate solutions are obtained using greedy algorithms such as matching pursuit (MP) [270] 
or orthogonal matching pursuit (OMP) [271,272].
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Dictionary learning: As stated previously, the sparse approximation is computed given a spe-
cific dictionary D, which involves a learning stage from a set of training data. This diction-
ary is learned using K -SVD which is a generalized version of K -means clustering and 
uses the SVD. The dictionary is built in an iterative manner by solving the optimization 
problem of Equation 10.64, alternatively computing the sparse approximation of X and the 
dictionary D:

 arg min s.t.
D, X

Y DX x   − ≤2 1i λ , (10.64) 

 where Y is a training set of low-level descriptors, X is the associated sparse coded matrix—
that is, a set of high-level descriptors—with a sparsity level λ , and D is the dictionary with 
K  atoms. Given D, X is computed using the batch-OMP algorithm, while given X, D is 
sequentially updated, one atom at a time using SVD.

Low-level features projection: Once the dictionary is learned, each set of low-level features FI 
previously extracted is encoded using the dictionary D, solving the optimization problem 
presented in Equation 10.63 such that F DXI I .

  The bag of words (BoW) approach offers an alternative method [273] for feature 
extraction. BoW was used by Rampun et al. [143,144]. This model represents the fea-
tures by creating a codebook or visual dictionary from the set of low-level features. 
The set of low-level features are clustered using k-means to create the dictionary with 
k clusters known as visual words. Once the codebook is created from the training set, 
the low-level descriptors are replaced by their closest word within the codebook. The 
final descriptor is a histogram of size k which represents the codebook occurrences for 
a given mapping.

The feature selection and extraction used in CAD systems are summarized in Table 10.11.

TABLE 10.11
Overview of the Feature Selection and Extraction 
Methods Used in CAD Systems

Dimension Reduction Methods References

Feature Selection
Statistical test [127,137,138,166]

MI-based methods [120,124,126,127,137,138,163]

Correlation-based methods [145,185]

Feature Extraction
Linear mapping

 PCA [150,151]

 Sparse-PCA [127]

 ICA [127]

Non-linear mapping

 Laplacian eigenmaps [149,151–153,158,161]

 LLE and LLE-based [150,151,158,159]

Dictionary-based learning

 Sparse coding [126]

 BoW [143,144]
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CADX: CLASSIFICATION

Once the feature vector has been extracted and eventually the complexity reduced, it is possible to 
make a decision and classify this feature vector to belong to CaP or healthy tissue. A full review of 
classification methods used in pattern recognition is available in Bishop [274].

Rule-Based Method
Lv et  al. make use of a decision stump classifier to distinguish CaP and healthy classes [134]. 
Puech et al. detect CaP by implementing a given set of rules and scores based on a medical support 
approach [142]. During the testing, the feature vector goes through these different rules, and a final 
score is computed resulting in a final decision.

Clustering Methods
One of the simplest supervised machine learning classification methods is k-nearest neighbor 
(k-NN). In this method, a new unlabeled vector is assigned to the most represented class from its k 
nearest neighbors in the feature space. The parameter k is usually an odd number in order to avoid 
any tie case. This method is used in a number of studies [137,138,144], mainly to make a comparison 
with different machine learning techniques. Litjens et al. used k-NN to roughly detect potential CaP 
voxels before performing a region-based classification [129].

The k-means algorithm is an unsupervised clustering method in which the data is partitioned into 
k clusters in an iterative manner. First, k random centroids are defined in the feature space and each 
data point is assigned to the nearest centroid. Then, the centroid position for each cluster is updated 
by computing the mean of all the samples belonging to this particular cluster. Both assignment and 
updating are repeated until the centroids are stable. The number of clusters k is usually defined as 
the number of classes. This algorithm can also be used for “online” learning. In case that new data 
has to be incorporated, the initial centroid positions correspond to the results of a previous k-means 
training and is followed by the assignment-updating stage previously explained. Tiwari et al. used 
k-means in an iterative procedure [149,151]. Three clusters were defined corresponding to CaP, 
healthy, and non-prostate. Tiwari et al. repeatedly applied k-means, and at each iteration, the voxels 
corresponding to the largest cluster were excluded under the assumption that it was assigned to 
“non-prostate” cluster. The algorithm stopped when the number of voxels in all remaining clusters 
were smaller than a given threshold. Tiwari et al. and Viswanath et al. used k-means in a repetitive 
manner in order to be less sensitive to the centroids initialization [150,158,159]. Thus, k clusters are 
generated T  times and the final assignment is performed by majority voting using a co-association 
matrix as proposed in Fred and Jain [275].

Linear Model Classifiers
Linear discriminant analysis (LDA) is used as a classification method in which the optimal linear 
separation between two classes is found by maximizing the interclass variance and minimizing the 
intraclass variance [276]. The linear discriminant function is defined as follows:

 
δ µ µ µ πk i i k k k k( )

1
2

( )1 1x x= − +− −T TΣ Σ log ,
 

(10.65)
 

where xi nx x x= { , , , }1 2   is an unlabeled feature vector of n features, Σ is the covariance matrix 
of the training data, µk   is the mean vector of the class k, and π k   is the prior probability of class k. 
To perform the classification, a sample xi is assigned to the class that maximizes the discriminant 
function as in Equation 10.66:

 C i
k

k i( ) = ( )x xarg max δ , (10.66) 

LDA has been used in numerous studies [114,119,137,138,166].
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Logistic regression is also used to perform binary classification and provides the probability 
of an observation to belong to a class. The posterior probability of one of the classes, c1 is 
 written as

 
p c i

i

( | ) =
1

1 ( )
1 x

w x+ −exp
,T
 

(10.67)
 

with p c p ci i( | ) = 1 ( | )2 1x x−  and where w is the vector of the regression parameters allowing to 
obtain a linear combination of the input feature vector xi. Thus, an unlabeled observation xi is 
assigned to the class that maximizes the posterior probability as shown in Equation 10.68:

 C p C ki
k

i( ) ( | )x x= =arg max . (10.68)

From Equation 10.67, one can see that the key to classification using a logistic regression model is to 
infer the set of parameters w through a learning stage using a training set. This vector of parameters 
w is inferred by estimating the maximum likelihood. This step is performed through an optimiza-
tion scheme, using a quasi-Newton method [226], which seeks in an iterative manner for the local 
minimum in the derivative of Equation 10.67. This method has been used to create a linear proba-
bilistic model in several studies [123,126,142,185].

Nonlinear Model Classifier
Viswanath et al. used quadratic discriminant analysis (QDA) instead of LDA [162]. Unlike LDA in 
which one assumes that the class covariance matrix Σ is identical for all classes, a covariance matrix 
Σk specific to each class is computed. Thus, Equation 10.65 becomes

 
δ µ µ µ πk i i k k k k k k( ) =

1
2

( )1 1x xT TΣ Σ− −− + log ,
 

(10.69)
 

where xi has additional terms corresponding to the pairwise products of individual features such 
as { , , , , , , }1 2 1

2
1 2

2x x x x x x xn n  . The classification scheme in the case of the QDA is identical to 
Equation 10.66.

Probabilistic Classifiers
The most commonly used classifier is the naive Bayes classifier which is a probabilistic classifier 
assuming independence between each feature dimension [277]. This classifier is based on Bayes’ 
theorem:

 
p C k

p C p C
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( = | )
( ) ( | )

( )
x

x
x

= ,
 

(10.70)
 

where p C k( | )= x  is the posterior probability, p C( ) is the prior probability, p C( | )x  is the likelihood, 
and p ( )x  is the evidence. However, the evidence term is usually discarded since it is not class depen-
dent and plays the role of a normalization term. Hence, in a classification scheme, an unlabeled 
observation is classified to the class which maximizes the posterior probability as

 C p C ki
k

i( ) ( | )x x= =arg max , (10.71)
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where d  is the number of dimensions of the feature vector xi i idx x= { , , }1  . Usually, a model 
includes both the prior and likelihood probabilities, and it is common to use an equal prior prob-
ability for each class or eventually a value based on the relative frequency derived from the training 
set. Regarding the likelihood probability, it is common to choose a Gaussian distribution to char-
acterize each class. Thus, each class is characterized by two parameters: (i) the mean and (ii) the 
standard deviation. These parameters are inferred from the training set by using the maximum 
likelihood estimation (MLE) approach. The naive Bayes classifier has been used in numerous stud-
ies [117,118,121,136–138,143–145,185].

Ensemble Learning Classifiers
AdaBoost (AdB) is an adaptive method based on an ensemble learning method, initially proposed 
by Freund and Schapire [278]. AdB linearly combines several weak learners resulting in a final 
strong classifier. A weak learner is defined as a classification method performing slightly better 
than a random classifier. Popular choices regarding the weak learner classifiers are decision stump 
or decision tree learners such as iterative dichotomiser 3 (ID3) [279], C4.5 [280], and classification 
and regression tree (CART) [281].

AdB is considered an adaptive method in the way that the weak learners are selected. The selec-
tion is performed in an iterative manner. At each iteration t, the weak learner selected ht corresponds 
to the one minimizing the classification error on a distribution of weights Dt, which is associated 
with the training samples. Each weak learner is assigned a weight α t as follows:

 
αt

t

t

= −1
2

1
ln ,


  

(10.73)
 

where t corresponds to the classification error rate of the weak learner on the distribution of weight Dt.
Before performing a new iteration, the distribution of weight Dt is updated such that the weights 

associated with the misclassified samples by ht increase and the weights of well-classified samples 
decrease as shown in Equation 10.74:
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(10.71)

where xi is the ith sample corresponding to class yi  and Zt is a normalization factor forcing Dt+1 to 
be a probability distribution. This procedure allows to select a weak learner at the next iteration t +1 
which will classify in priority the previous misclassified samples. Thus, after T  iterations, the final 
strong classifier corresponds to the linear combination of the weak learners selected and the clas-
sification is performed such that
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(10.75)

Lopes et al. made use of the AdB classifier to perform their classification [133], while Litjens et al. 
used the GentleBoost variant [282] which provides a modification of the function affecting the 
weight at each weak classifier [130].

Gradient boosting (GB) is an ensemble classifier [283] which similarly formulated to AdB as in 
Equation 10.76:
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(10.76)
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where h xm ( ) is a weak learner with its associated weight γ m. As with AdB, h xm ( ) is chosen to 
minimize a loss function using the additive model Fm−1. The difference between AdB and GB lies 
in the fact that this minimization is tackled as a numerical optimization problem using the steepest 
descent. Lemaitre used the GB as a meta-classifier to fuse several RF classifiers [127].

RF is a classification method which is based on creating an ensemble of decision trees and was 
introduced by Breiman [284]. In the learning stage, multiple decision tree learners [281] are trained. 
However, each decision tree is trained using a different dataset. Each of these datasets corresponds 
to a bootstrap sample generated by randomly choosing n samples with replacement from the initial 
N  samples available [285]. Then, randomization is also part of the decision tree growth. At each 
node of the decision tree, from the bootstrap sample of D dimensions, a number of d D  dimen-
sions are randomly selected. Finally, the d th dimension in which the classification error is minimum 
is used. This best “split” classifier is often evaluated using MI or the Gini index. Finally, each tree is 
grown as much as possible without using any pruning procedure. In the prediction stage, the unla-
beled sample is introduced in each tree and each of them is assigned a class. Finally, it is common 
to use a majority voting approach to choose the final class label. The RF classifier has been used in 
a number of studies [123,127,130,143–145,147,154–157,160,185].

Probabilistic boosting-tree is another ensemble learning classifier which shares principles with 
AdB but uses them inside a decision tree [286]. In the training stage, the probabilistic boosting-tree 
method grows a decision tree and at each node, a strong classifier is learned in an almost comparable 
scheme to AdB. Once the strong learner is trained, the training set is split into two subsets which are 
used to train the next strong classifiers in the next descending nodes. Thus, three cases are conceiv-
able to decide in which branch to propagate each sample training xi: 

• If q i( 1, ) 1 2 >+ −x  then xi is propagated to the right branch set and a weight wi = 1 is 
assigned.

• If q i( 1, ) 1 2 >− −x  then xi is propagated to the left branch set and a weight wi = 1 is 
assigned.

• Else xi will be propagated in both branches with w qi i= +( 1, )x  in the right branch and 
w qi i= ( 1, )− x  in the left branch.

With w = =w i Ni , {1, , }  corresponding to distribution of weights, N  the number of samples as in 
AdB and q ( )⋅  is defined as
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Employing such a scheme tends to divide the data in such a way that positive and negative samples 
are naturally split as shown in Figure 10.17. In the classification stage, the unlabeled sample x is 
propagated through the tree, where at each node, it is classified by each strong classifier previously 
learned and where an estimation of the posterior distribution is computed. The posterior distribution 
corresponds to the sum of the posterior distribution at each node of the decision tree. The probabi-
listic boosting-tree classifier has been used in several studies [152–154,161].

Kernel Method
A Gaussian process for classification is a kernel method in which it is assumed that the data can be 
represented by a single sample from a multivariate Gaussian distribution [287]. In the case of linear 
logistic regression for classification, the posterior probability is expressed as
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 p y y fi i i i( | , ) ( ( ))x w x= σ , (10.79) 

f i i( )x x w= T ,

where σ( )⋅  is the logistic function and w are the parameters vector of the model. Thus, the classification 
using Gaussian processes is based on assigning a Gaussian process prior over the function f ( )x  which 
is characterized by a mean function f  and covariance function K . Therefore, in the training stage, the 
best mean and covariance functions have to be inferred in regard to our training data using a Newton 
optimization and a Laplacian approximation. The prediction stage is performed in two stages. First, 
for a new observation x*, the corresponding probability p f f( ( )| ( ))*x x  is computed such that 
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where K** is the covariance function k ( , )* *x x  the testing sample x*, and K* is the covariance func-
tion k ( , )*x x  of training-testing samples x and x*. Then, the function f ( )*x  is squashed using the 
sigmoid function and the probability of the class membership is defined such that 
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Only Kelm et al. used Gaussian process for classification of MRSI data [123].

Sparse Kernel Methods
In a classification scheme using Gaussian processes, when a prediction is performed, the whole 
training data are used to assign a label to the new observations. That is why this method is also 
called a kernel method. The sparse kernel category is composed of methods that rely on only a few 
labeled observations of the training set to assign the label of new observations [274].
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FIGURE 10.17 Representation of the capabilities of the probabilistic boosting-tree algorithm to split the 
positive and negative samples at each node of the tree.
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SVM is a sparse kernel method aimed at finding the best linear hyper-plane—nonlinear separa-
tion is discussed further—which separates two classes such that the margin between the two classes 
is maximized [288]. The margin is in fact the region defined by two hyper-planes splitting the two 
classes, such that there are no points lying in between. The distance between these two hyper-planes 
is equal to 2

 w  where w is the normal vector of the hyper-plane splitting the classes. Thus, maxi-
mizing the margin is equivalent to minimizing the norm  w . Hence, this problem is solved by an 
optimization approach and formalized as 

 

arg min ,
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w
w
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 y b i Ni iw x − ≥ = …  

(10.82)

where xi is a training sample with is corresponding class label yi. From Equation 10.82, it is important 
to notice that only few points from the set of N  points are selected which later define the hyper-plane. 
This constraint is imposed in the optimization problem using Lagrange multipliers α. All points that are 
not lying on the margin are assigned a corresponding αi = 0, which is formalized as Equation 10.83:
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The different parameters are inferred using quadratic programming. This version of SVM is known 
as hard-margin since no points can lie in the margin area. However, it is highly probable not to find 
any hyper-plane splitting the classes such as specified previously. Thus, a soft-margin optimization 
approach has been proposed [289], where points have the possibility to lie on the margin but at the 
cost of a penalty ξi which is minimized in the optimization process such that
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The decision to assign the label to a new observation xi is taken such that
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(10.85)

where xn n S| {1, , }=  , S being the support vectors.
SVM can also be used as a nonlinear classifier by performing a Kernel trick [290]. The 

original data x is projected to a high-dimensional space in which it is assumed that a lin-
ear hyper-plane splits the two classes. Different kernels are popular such as the RBF ker-
nel, polynomial kernels, or sigmoid kernels. In CAD for CaP systems, SVM is the 
most popular classification method and has been used in a multitude of research works 
[100,115,116,119,120,122,124,126,128,129,132,133,137–141,148,154,157,163–166].

Relevant vector machine (RVM) is a sparse version of Gaussian process previously presented, 
proposed by Tipping [291]. RVM is identical to a Gaussian process with the following covariance 
function [292]:
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where φ( )⋅  is a Gaussian basis function, xi i N| {1, , }=   are the N  training points, and a  are the 
weights vector. As mentioned in Quinonero-Candela [292], the sparsity regarding the relevance 
vector arises for some j, the weight α j

− =1 0. The set of weights a  is inferred using the expectation 
maximization algorithm. Ozer et al. used RVM to make a comparison with SVM for the task of 
CaP detection [139,140].

Neural Network
Multilayer perceptron is a feed-forward neural network considered as the most successful model 
of this kind in pattern recognition [274]. The most well-known model used is based on two layers 
where a prediction of an observation is computed as
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where h( )⋅  and σ ( )⋅  are two activation functions, usually nonlinear, and w ij
( )1  and w kj

(2) are the weights 
associated with the linear combination with the input feature xn and the hidden unit.

A graphical representation of this network is presented in Figure 10.18. Relating Figure 10.18 
with Equation 10.87, it can be noted that this network is composed of some successive nonlinear 
mapping of the input data. First, a linear combination of the input vector xn is mapped into some 
hidden units through a set of weights w ij

(1). This combination becomes nonlinear by the use of the 
activation function h( )⋅ , which is usually chosen to be a sigmoid function. Then, the output of the 
networks consists of a linear combination of the hidden units and the set of weights w kj

(2). This com-
bination is also mapped nonlinearly using an activation function σ ( )⋅ , which is usually a logistic 
function. Thus, the training of such a network resides in finding the best weights w ij

(1) and w kj
(2), which 

model the best the training data. The error of this model is computed as 
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FIGURE 10.18 Representation of a neural network of the multilayer perceptron family.
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where xn n N| {1, , }=   are the N  training vectors with their corresponding class label y n( )x .
Therefore, the best set of weights is inferred in an optimization framework where the error E( )⋅  

needs to be minimized. This optimization is performed using a gradient descent method where the 
derivative of Equation 10.88 is computed using the backpropagation algorithm proposed by [293]. 
This type of network has been used multiple times [135,141,145,156,157].

Probabilistic neural networks are another type of feed-forward network that is derived from the 
multilayer perceptron case and has been proposed by Specht [294]. This classifier is modeled by 
changing the activation function h( )⋅  in Equation 10.87 to an exponential function such that

 
h n

j j( )
( ) ( )

2 2x
w x w x

= −
− −







exp ,

T

σ  
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where σ is a free parameter set by the user.
The other difference of the probabilistic neural networks compared with the multilayer percep-

tron networks resides in the architecture as shown in Figure 10.19. This network is formed by two 
hidden layers. The first hidden layer consists of the pattern layer, in which the mapping is done 
using Equation 10.89. This pattern layer is subdivided into a number of groups corresponding to the 
number of classes. The second hidden layer corresponds to the summation layer which simply sums 
the output of each subgroup of the pattern layer. This method is used in several studies [112,113,161].

Graphical Model Classifiers
Markov random field (MRF) is used as a lesion segmentation method to detect CaP. First, let 
define s as a pixel that belongs to a certain class denoted by ωs. The labeling process is defined as 
ω ω= ∈{ , }s s I , where I is the set of all the pixels inside the image. The observations correspond-
ing to SI in the image are noted  = ∈{ | }f s Is . Thus, the image process   represents the deviation 

FIGURE 10.19 Representation of a neural network of the probabilistic neural network family.
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from the labeling process ω  [295]. Hence, lesion segmentation is equivalent to estimating the best ω  
which maximizes the posterior probability p ( | )ω  . Thus, using a Bayesian approach, this problem 
is formulated such that
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∈

∏arg max .
 

(10.90)

It is generally assumed that p fs s( | )ω  follows a Gaussian distribution and that the pixels classes 
λ ={1, 2} for a binary classification are characterized by their respective mean µλ and standard 
deviation σλ. Then, ω  is a Markov random field, thus

 
p

Z
U( )

1
( )ω ω= −( )exp ,

 
(10.91)

where Z is a normalization factor to obtain a probability value, and U( )⋅  is the energy function.
Thus, the segmentation problem is solved as an optimization problem where the energy func-

tion U( )⋅  has to be minimized. There are different possibilities to define the energy function U ( )⋅ . 
However, it is common to define the energy function such that it combines two types of potential 
function: (i) a local term relative to the pixel itself and (ii) a smoothing prior that embeds neigh-
borhood information which penalizes the energy function affecting the region homogeneity. This 
optimization of such a function can be performed using an algorithm such as iterated conditional 
modes [295]. Liu et al. and Ozer et al. used MRF as an unsupervised method to segment lesions in 
mpMRI images [131,140]. Artan et al. and Chung et al. used conditional random fields instead of 
MRF for MRI segmentation [115,116,120]. The difference between these two methods resides in the 
fact that conditional probabilities are defined as
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VC1( )⋅  is the state (or partition) feature function and VC2( )⋅  is the transition (or edge) feature function [296].
Classification methods used to distinguish CaP from healthy tissue in CAD systems are sum-

marized in Table 10.12.

MODEL VALIDATION

In pattern recognition, the use of model validation techniques to assess the performance of a clas-
sifier plays an important role in reporting results. Two techniques are broadly used in the develop-
ment of CAD systems and are summarized in Table 10.13. The most popular technique used in 
CAD systems is the leave-one-out cross-validation (LOOCV) technique. From the whole data, one 
patient is kept for validation and the other cases are used for training. This manipulation is repeated 
until each patient has been used for validation. This technique is popular when working with a 
limited number of patients, allowing for training on a representative number of cases even with a 
small dataset. However, LOOCV suffers from a large variance and is considered as an unreliable 
estimate [297].

The other technique is the k-CV technique which is based on splitting the dataset into k  subsets 
where the samples are randomly selected. Then, one fold is kept for testing and the remaining 
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subsets are used for training. The classification is then repeated as in the LOOCV technique. 
In fact LOOCV is a particular case of k-CV when k  equals the number of patients. In the reviewed 
papers, the typical values used for k  have been set to 3 and 5. k-CV is regarded as more appropri-
ate than LOOCV, but the number of patients in the dataset needs to be large enough for the results 
to be meaningful.

TABLE 10.12
Overview of the Classifiers Used in CAD Systems

Classifier References

Rule-Based Method [134,142]

Clustering Methods

k-means clustering [149–151]

k-NN [129,137,138,144]

Linear Model Classifiers
LDA [114,119,130,137,138,166]

Logistic regression [123,125,126,185]

Nonlinear Classifier
QDA [162]

Probabilistic Classifier
Naive Bayes [117,118,121,136–138,143–145,185]

Ensemble Learning Classifiers
AdB [130,133]

GB [127]

RF [123,127,130,143–145,147,154–157,160,185]

Probabilistic boosting tree [151,153,154]

Kernel Method
Gaussian processes [123]

Sparse Kernel Methods
SVM [100,115,116,119,120,122,124,126,128,129,132,133,137–

141,148,154,157,163–166]

RVM [139,140]

Neural Network
Multiple layer perceptron [135,141,145,156,157]

Probabilistic neural network [112,113,161]

Graphical Model Classifiers
Markov random field [131,140]

Conditional random field [115,116,120]

TABLE 10.13
Overview of the Model Validation Techniques Used in CAD Systems

Model Validation Techniques References

LOOCV [100,112–121,123,124,126,129,130,136–140,142,155,161,163,165]

k-CV [128,141,143–146,151–154,156,157,160,162,166,185]
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EVALUATION MEASURES

Several metrics are used in order to assess the performance of a classifier and are summarized in 
Table 10.14. Voxels in the MRI image are classified into healthy or malign tissue and compared 
with a ground-truth. This allows to compute a confusion matrix by counting true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN) samples. From this analysis, different 
statistics are extracted.

The first statistic used is the accuracy which is computed as the ratio of true detection to the num-
ber of samples. However, depending on the strategy employed in the CAD work-flow, this statistic 
is highly biased by a high number of true negative samples which boost the accuracy score, overes-
timating the actual performance of the classifier. That is why, the most common statistics computed 
are sensitivity and specificity defined in Equations 10.93 and 10.94, respectively. The metrics give a 
full overview of the performance of the classifier.

 
SE

TP
TP FN

=
+

,
 

(10.93)

 
SP

TN
TN FP

=
+

.
 

(10.94)

These statistics are also used to compute the receiver operating characteristic (ROC) curves [298], 
which give information about voxelwise classification. This analysis represents graphically the 
 sensitivity as a function of (1 )− specificity , which is in fact the false positive rate, by varying 
the  discriminative threshold of the classifier. By varying this threshold, more true negative samples 
are found but often at the cost of detecting more false negatives. However, this fact is interesting in 
CAD since it is possible to obtain a high sensitivity and to ensure that no cancers are missed even if 
more false alarms have to be investigated or the opposite. A statistic derived from ROC analysis is 
the area under the curve (AUC) which corresponds to the area under the ROC and is a measure used 
to make comparisons between models.

The free-response receiver operating characteristic (FROC) extends the ROC analysis but to 
a lesion-based level. The same confusion matrix is computed where the sample is not pixels but 
lesions. However, it is important to define what is a true positive sample in that case. Usually, 
a lesion is considered as a true positive sample if the region detected by the classifier overlaps 
“ sufficiently” the one delineated in the ground-truth. However, “sufficiently” is a subjective measure 
defined by each researcher and can correspond only to one pixel. However, an overlap of 30%–50% 
is usually adopted. Finally, in addition to the overlap measure, Dice’s coefficient is often computed 
to evaluate the accuracy of the lesion localization. This coefficient consists of the ratio between 
twice the number of pixels in common and the sum of the pixels of the lesions in the ground-truth 
GT and the output of the classifier S, defined as shown in Equation 10.95:

 
QD = ∩

+
2 | |
| | | |

GT S
GT S

.
 

(10.95)

TABLE 10.14
Overview of the Evaluation Metrics Used in CAD Systems

Evaluation Metrics References

Accuracy [115,116,131,148,154]

Sensitivity—specificity [100,115–118,121,124,131,133,136,139,140,141,147,150,151,156–159]

ROC—AUC [100,113,114,119,121–123,125,126,132–138,143–146,152–155,160–165,185]

FROC [128,129,166]

Dice’s coefficient [115,116,131,139]
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DISCUSSION

RESULTS REPORTED

As discussed previously in section “Evaluation Measures,” different metrics have been used to 
report results. A comparison of the different methods reviewed is given depending on the metric 
used in field of research as well as the type of MRI scanner used, that is, 1.5 T or 3 T. For each field, 
the best classification performance obtained in each study have been reported in these figures. The 
results in terms of AUC-ROC are depicted in Figure 10.20. The results vary from 71% to 97% for 
some experiments with a 1.5 T MRI scanner and from 77% to 95% with a 3 T MRI scanner.

The results with regard to sensitivity and specificity are reported in Figure 10.21. In the case of 
data collected with a 1.5 T MRI scanner, the sensitivity ranges from 74% to 100% and the specificity 
from 43% to 93%. For experiments carried out with a 3 T MRI scanner, the sensitivity varies from 
60% to 99% and the specificity from 66% to 100%. Four studies also use FROC analysis to report 
their results and are reported in Figure 10.22.

COMPARISON

We would like to stress the following findings drawn during the review of the different studies: 

 1. Quantitatively, it is difficult to make a fair comparison between the different studies 
reviewed. Different factors come into play to elucidate this fact. Mainly a lack of standard-
ization has to be pointed out in regard to experimental evaluation: (i) different datasets are 
used during the evaluation of the frameworks developed, hindering an inter-study com-
parison (the same conclusion has been recently drawn by Litjens et al. [130] supporting this 
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FIGURE 10.20 Comparison in terms of FROC of the methods using data from 3 T MRI scanner.
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FIGURE 10.21 Numerical and graphical comparison of the results in terms of AUC for 1.5 T (a) and 3 T (b) 
MRI scanners. The green values represent the metric and are graphically reported in the green curve in the 
center of the figure. The red values and areas correspond to the number of patients in the dataset. The numbers 
between brackets in blue correspond to the reference as reported in Table 10.2.
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argument); and (ii) the experimental results are not reported with a common metric which 
leads to the inability to compare the different studies.

 2. However, multiple studies reported some performance improvements using mpMRI tech-
niques instead of monoparametric imaging techniques. Considering only the most recent 
studies proposing CADe-CADx frameworks, the following results can be highlighted. 
Viswanath et  al. obtained an AUC of 77% using an ensemble learning approach com-
bining the features from the three MRI modalities, that is, T2-W-MRI, DCE–MRI, and 
DW-MRI, while the results obtained as stand-alone modalities range from 62% to 65% 
[161]. Tiwari et al. draw similar conclusions by using T2-W-MRI and MRSI modalities as 
in both stand-alone and multiparametric frameworks with an improved AUC ranging from 
57%–76% to 85% [155]. The most recent work of Litjens et al. obtained an improved AUC 
metric from 71% to 76% considering each modality separately, that is, T2-W-MRI, DCE-
MRI, and DW-MRI—to 89% in their mpMRI framework.

 3. The studies comparing particular combinations of more than a single modality give rise 
to the same fact [128,130,132,140]: using three modalities led to better performances than 
using any combination of two modalities.

FIGURE 10.22 Numerical and graphical comparison of the results in terms of SE (a), (c) and SP (b), (d) for 
1.5 T and 3 T MRI scanners. The values in green represent the metric and are graphically reported in the green 
curve in the center of the figure. The red values and areas correspond to the number of patients in the dataset. 
The numbers between brackets in blue correspond to the reference as reported in Table 10.2.



149Computer-Aided Diagnosis Systems for Prostate Cancer Detection

 4. Unlike remark 2, no straightforward conclusions can be given regarding the classification 
performance using each modality in a stand-alone framework. With the modalities being 
processed by different methods, it does not allow us to conclude if a particular modal-
ity by itself is more suitable than another. However, we are able to distinguish some 
interesting trends which deserve the attention of the community. Tiwari et al. observed 
that MRSI is a more suitable modality than T2-W to highlight CaP [152,154,155]. 
Moreover, ADC maps have demonstrated a better discriminative power than T2-W as 
well [100,125,161]. Lately, Litjens et  al. observed that the DW-MRI modality is more 
suitable than both DCE-MRI and T2-W-MRI to distinguish CaP in their CADx system 
[130]. Recently, Rampun et al. showed, however, some promising results using T2-W-
MRI only in conjunction with textons and BoW; this study should be transposed to other 
MRI modalities [144].

 5. Furthermore, mpMRI has attracted the attention of both radiologists and computer vision 
researchers. Indeed, pioneer research groups included new modalities over years when at 
the same time, new research groups directly introduced mpMRI CAD systems. These facts 
lead us to think that CaP researches will benefit from mpMRI techniques.

 6. When focusing on the different modalities used, it can be pointed out that only Trigui 
et al. reported the use of all modalities in a single framework by incorporating the MRSI 
modality [156,157]. Although the results reported are promising, the detection has been 
performed at MRSI scale. Lemaitre performed a similar study but at a finer resolution (i.e., 
T2-W-MRI) [127]. They concluded that MRSI was significantly improving the classifica-
tion performance for CaP detection.

 7. Lately, three studies focused on developing a region-based classification in which the PZ 
will be analyzed separately [129,130,162]. The promising results obtained indicate that this 
strategy should be further investigated.

 8. Recent studies are using quantitative features in addition to SI. It seems that these quantita-
tive features provide uncorrelated information with respect to SI features and should lead 
to better classification performance when combined all together.

 9. Regarding the methods used in the “image regularization”—that is, pre-processing, seg-
mentation, and registration—it is particularly difficult to distinguish the benefit of one 
method over another since none of the studies focus on comparing these processing stages. 
The focus is usually entirely based on the “image classification” framework where different 
methods are directly compared. Note that the performance of a classifier is highly linked 
with the features vector extracted from particular data. Hence, one cannot conclude that 
one machine learning method is more appropriate than another, but we can identify a trend 
in which SVM as well as ensemble learning classifiers—that is, AdaBoost, GentleBoost, 
and RF—seem to perform better than neural network, LDA, or naive Bayes.

 10. We would like to draw the attention of the reader to the feature extraction/selection 
stage. This processing could reduce the complexity and support finding a better feature 
space for classification. However, few studies are performing such approaches. Niaf 
et al., Khalvati et al., Chung et al., Rampun et al., and Lemaitre are successfully apply-
ing a scheme to reduce the number of dimensions by selecting the most discriminative 
features [120,124,127,137,138,145,185]. It allows them to obtain improved performances 
compared with a classification performed with their initial feature vector. Another 
group of studies also applied different feature extraction methods [126,127,143,144,149–
151,153–155,158,159,162]. In these specific cases, no comparison is performed against 
the original data.

 11. Currently, only the work of Lemaitre has tackled the problem of balancing in datasets. 
They found that balancing can have a positive effect on the classification performance. In 
our humble opinion, classification performance would benefit from further investigation in 
this area.
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CONCLUSION

This chapter leads to some general discussions which could direct to future avenues for research. As 
previously mentioned, no open mpMRI is currently available. This fact leads to an impossibility to 
fairly compare the different algorithms designed over years. Also, the availability of a full mpMRI 
dataset, could lead to the development of algorithms that use all the different modalities currently 
available. Recalling Table 10.2, it can be noted that a single research work provides a solution using 
the four different modalities at the same time. Also, all the algorithms are focused only on one type 
of scanner, either 1.5 T and 3 T. A dataset including both these types of imaging could allow devel-
opment of more generic algorithms.

Analyzing the different stages of the CAD work-flow, it is seen that the current CAD systems do 
not include all the pre-processing steps. It could be interesting to evaluate the improvement using 
these pre-processing steps on the final results. Regarding segmentation and registration of the pros-
tate, CAD systems could greatly benefit from specific research in these areas which could lead to a 
better automation of those systems.

Additionally, few research works focus on the problem of imbalanced datasets. While classify-
ing at the voxel level, the medical datasets are highly imbalanced regarding the frequencies of CaP 
against healthy samples. Imbalanced data substantially compromises the learning process since 
most of the standard machine learning algorithms expect balanced class distribution or an equal 
misclassification cost [299]. Therefore, it seems important to investigate this field of pattern recog-
nition to improve the classification performance while developing CAD systems.
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INTRODUCTION

Prostate cancer is the second most common cancer among men in the United States after skin can-
cer [1]. It is estimated that 1 in every 7 men will be suspected with prostate cancer in his lifetime. 
According to the American Cancer Society, prostate cancer caused 26,730 deaths in the United 
States in 2017 [1]. Although it can be a serious disease, early diagnosis of prostate cancer can sig-
nificantly prevent the growth of cancerous cells.

In fact, there are several types of tumors that may occur in the prostatic gland. These tumors 
can be benign or malignant. Some malignant tumors grow fast, but most of them grow slowly and 
are localized in the prostate gland [2]. Approximately 85% of diagnosed prostate cancers (CaP) are 
confined in the prostate gland [3]. According to McNeal et al. [4], 68% of diagnosed CaP is present 
in the peripheral zone (PZ) and those are considered less aggressive, while 32% is present in the 
central gland (CG) which are considered more aggressive.

In general, CaP can be treated by surgery, therapy, or most commonly active surveillance [2]. 
In active surveillance, the treatment option is deferred until some symptoms start to occur or 
until the cancer cells develop in an irregular manner that necessitates medical intervention [3]. 
This option is usually favored for two reasons: (a) it avoids the side effects of other treatment 
options such as therapy and surgical intervention, and (b) most of the localized CaPs do not 
effect patients during their lifetime because they either do not progress or they progress slowly 
[5]. Thus only aggressive and fast-growing cancers are candidates for medical intervention. In 
fact, studies show that many older men who died because of other causes also had CaP that did 
not affect them during their lifetime [2].

Several tests are considered in the daily clinical routine to diagnose a patient with prostate 
cancer. Usually, a blood test is conducted to check the prostate-specific antigen (PSA) level. An 
increased PSA level may be symptomatic for prostate cancer. However, this increase is also related 
to other common health issues such as benign prostatic hyperplasia (BPH) and prostatitis. Recently, 
the United State Preventive Services Task Force (USPSTF) recommended against PSA-based CaP 
screening in an attempt to reduce the overdiagnosis and overtreatment associated with this screening 
tool [5]. The USPSTF highlights the fact that PSA screening is unable to accurately select patients 
who may benefit from treatment and others who would benefit more from active surveillance.

After a positive PSA blood test, a transrectal ultrasound (TRUS) guided biopsy (GB) is carried 
out to further confirm the presence of prostate cancer. TRUS is an imaging technique that depends 
on measuring the echoes of initially sent ultrasound waves. It is used to guide a needle to take 
small samples of the prostatic tissue [1]. The samples are then analyzed and given a score called 
the Gleason score (GS). Due to its “blind” nature, TRUS-GB often leads to overdiagnosis and 
hence overtreatment [6,7]. Also, significant tumors in the prostate may be missed by the biopsy for 
the same reason. Surprisingly, prostate cancer is still the only solid organ cancer that is diagnosed 
by randomized sampling biopsies [6].

In the past few years, the use of magnetic resonance imaging (MRI) was proposed by the CaP 
research community as the most accurate noninvasive screening tool for prostate cancer diagno-
sis and staging [8]. Especially in the case of active surveillance, MRI can greatly assist doctors 
in disease monitoring and treatment management [9]. MRI is an imaging technique that uses the 
fundamentals of nuclear magnetic resonance (NMR) phenomenon to produce images that describe 
internal physical and chemical characteristics of an object [10]. By nature, some atoms such as 
hydrogen (H) possess a random nuclear spin (Figure 11.1a). However, when exposed to an external 
magnetic field (B0), these spins are aligned to produce a net magnetic moment (Figure 11.1b). The 
MRI technique depends on measuring the time needed by these spins to return to their original 
orientations after turning off the aligning magnetic field B0 as in Figure 11.1c.

The most common measurable quantities are the longitudinal relaxation time T1 and the trans-
verse relaxation time T2 [11]. These quantities differ between human tissues making it meaningful 
to be used as a medical imaging tool. Table 11.1 shows how the T2 values differ between different 
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tissue types [11]. These values are used on a grayscale intensity values to create the T1-weighted 
(T1W) MRI and the T2-weighted (T2W) MRI, respectively.

T2W-MRI is the standard MRI modality that shows the anatomy of the scanned organ. In con-
trary, T1W-MRI produces a greyscale image that complements the T2W-MRI. In other words, the 
black matters in the former appear in white in the latter, and vice versa. Usually T1W images are 
acquired in a time series one after another to show the functionality of an organ. Because of their 
dynamic appearance, these images are called the dynamic contrast-enhanced (DCE) MRI. The 
image quality is enhanced by the injection of a contrast agent in the body of the patient at the time 
of acquisition. Diffusion-weighted (DW) MRI is a third modality that uses the T2 values to show 
the water molecules diffusion in the screened tissue. Mathematically, DW images are T2W images 
multiplied by an exponential factor that depends on the apparent diffusion coefficient (ADC) of the 
water molecules and the attenuation coefficient of the applied gradient pulse b as shown in the fol-
lowing equation [12]: 

 S b S e b( ) = − ×
0

ADC
 (11.1)

where S(b) is the DW signal and S0 is the T2W signal. Note that when the attenuation coefficient b 
is 0 sec/mm2, the DW image is the same as the T2W image [12].

Finally, a non-imaging modality that uses the same NMR principle is magnetic resonance spec-
troscopy (MRS). This technique records a 2D signal for each spatial location in the scanned object 
which, clinically, carries information about the presence of certain metabolites in that location. 
More details about each modality will be provided in the following sections.

As can be noticed, the MR imaging technique does not include any ionizing radiation and thus 
is not harmful to the human body [10]. This is by far the main reason for the MRI becoming a daily 
clinical practice in many medical fields.

Although MRI has shown competitive diagnosis performance compared to PSA and TRUS-GB, 
it has not yet been considered as a first-line diagnosis tool. The main reason is related to the 

FIGURE 11.1 (a) Natural random nuclear spin, (b) spins align due to the magnetic field B0, (c) spins 
 de-phasing after removing the effect of B0. (From Toennies, K., Guide to Medical Image Analysis: Methods 
and Algorithms, Springer, London, UK, 2012.)

TABLE 11.1
T2 Values of Some Tissues

Tissue T2 (msec)

Muscle 47

Fat 85

Kidney 58

Liver 43
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difficulties and challenges encountered by radiologists when reading and analyzing MRIs. More 
precisely, the 3D nature of MRI makes it difficult to analyze the full prostate volume by visual 
inspection, and hence it is very dependent on the radiologist’s experience. Moreover, the analysis 
outcome is also affected by the large amount of data that needs to be analyzed simultaneously.

To resolve this issue, a multimodality MRI-based computer-aided diagnosis (CAD) system was 
first proposed by Chan et al. [13] in 2003. Since then, several CAD systems have been proposed by 
the research community targeting the issue of the deployment of a fully automated MRI-based CAD 
system for CaP diagnosis to overcome the limitations of reliability caused by potential human errors.

GENERAL PROCESS PIPELINE

Similar to other medical imaging CAD systems, the computer-aided diagnosis of prostate cancer using 
MRI framework encompasses four stages, namely: pre-processing, prostate region extraction, features 
extraction, and classification (see Figure 11.2). The pre-processing is a set of procedures applied on 
the MRI images in order to improve quality by reducing undesirable effects inferred by the images 
acquisition. The prostate region extraction applies segmentation techniques that aim at the correct 
delineation of the prostate region. The feature extraction is the process of defining and deriving from 
the prostate region computational entities that form a sort of prostate cancer signature. While it per-
forms dimensionality reduction by encoding the prostate region into a compact format, the feature 
extraction is also meant to be discriminative, as much as possible separating the malignant and benign 
cases. The extracted features are then fed into the last stage, the classification, whereby they are treated 
and mapped into one of the aforementioned categories. Depending on the type and the discriminative 
power of the features, the classification method can range from basic technique, such as minimum 
distance classifier, to the heavy machine learning system, such as deep learning networks.

In this chapter, state-of-the-art full MRI-based CAD for CaP systems presented in the literature 
are reviewed. We categorize the reviewed systems based on the MRI modality used as an input for 
the CAD system. In the first four sections we review T2-weighted, DCE, MRS, and DW MRI-based 
CAD systems that are presented in a monomodality framework, respectively. In Section 11.5, we 
review the different fusion methods used in the multimodality MRI framework.

T2-WEIGHTED MRI

T2W is an MR imaging protocol that uses the transverse relaxation time (T2) to construct a grayscale 
image of the scanned object. Figure 11.3 shows a slice of a T2W-MRI obtained using a 1.5 Tesla 
scanner with an endorectal coil placed while acquisition to improve the image resolution [12].

Due to its increasing popularity and availability by many health providers, T2W-MR images 
have been an effective tool for noninvasive CaP diagnosis [14]. The reason is that normal pros-
tatic tissues appear visually different from cancerous tissues in terms of intensity and homogeneity 
[7,15,16]. More precisely, malignant tissues are characterized by lower signal intensity in the PZ 
of the prostate and a more homogeneous appearance in both the CG and the PZ compared to the 
surrounding healthy tissues [12,16]. The other main advantage of this modality is that it provides 
the zonal anatomy of the prostate gland. That is, the CG is well distinguished from the PZ of the 
prostate and the surrounding non-prostatic tissues [15].

On the other hand, studies have reported the lack of reliability of T2W-MRI reflected by the low 
sensitivity and specificity [17]. This mainly results from the difficulty of CaP detection in the CG 

MRI Pre-
processing

Prostate region
extracon

Feature
extracon Classificaon

FIGURE 11.2 MRI-based CAD for CaP pipeline.
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as well as the existence of some other nonmalignant diseases such as BPH that have similar visual 
appearance as malignant tissues in T2W-MRIs [16]. Finally, unlike DCE-MRI, T2W-MRI does not 
provide information about the functionality of the organ under study [18].

In fact, these limitations of T2W-MRI have been addressed by incorporating data from other 
MRI modalities (to be discussed later in this chapter). It is also worth noting that very few studies 
have used this modality as the only input for their CAD systems. Instead, many studies have sug-
gested fusing T2-weighted imaging (T2WI) with other modalities to boost the performance of their 
CAD systems in general [14].

PRE-PROCESSING

T2W-MRIs suffer from artifacts and noise due to factors related to MRI acquisition, such as mag-
netic field inhomogeneity [19] and thermal noise [14]. The most popular artifacts that were addressed 
in the literature are (a) intensity scale nonlinearity [15], and (b) bias field effect which is introduced 
by the use of endorectal coil at the time of MRI examination [12]. In Viswanath et al. [16], the for-
mer is adjusted by the generalized scale algorithm, which aims at aligning the intensity histogram to 
ensure a normalized intensity scale. While the latter is corrected by the nonparametric nonuniform 
intensity normalization (N3) algorithm described in Sled et al. [20].

On the other hand, Rampun et al. [14] corrected the above artifacts by first applying a median 
filter, then normalizing the image intensity to zero mean and a unit variance and finally removing 
remaining noise by an anisotropic diffusion filter. They reported that this three-step process has 
the advantage of (i) removing noise, (ii) preserving edges, and (iii) standardizing image intensities 
between different patients.

To normalize the intensity values and avoid interpatient variability, Niaf et al. [21] used the mean 
SI of the bladder as a normalization factor to normalize the T2WI.

Lopes et al. [19] investigated the use of wavelet-based filters in the preprocessing stage; however, 
it was then excluded as it did not have an effect on the overall system.

Prostate Region Extraction
Identifying the region of interest (ROI) in the MR images is essential to reduce the complexity of the 
next stages and enhance the performance of the overall CAD system. This step could be performed 
either (i) manually by the radiologist or (ii) automatically by the CAD system.

Manual selection of a 12 × 12 pixels ROI was performed in Lv et al. [15] and manual delineation 
by an experienced radiologist was reported in Rampun et al. [14].

FIGURE 11.3 T2W-MRI using a 1.5 Tesla MRI scanner and an endorectal coil. The CG is delineated with 
blue while the green contour represents the PZ. (From Lemaitre, G., Computer-aided diagnosis for prostate 
cancer using multi-parametric magnetic resonance imaging, Doctoral Program in Technology, France, 2016.)
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Instead, automated prostate capsule segmentation presented in Bulman et al. [22] was performed 
in Viswanath et al. [16] where Active Shape Model (ASM) was initialized by automatically identify-
ing prostatic voxels inside a box that contains all the prostate volume.

FEATURE EXTRACTION AND SELECTION

As mentioned earlier, the main descriptive feature of CaP in T2W-MRI is its low signal intensity 
and its homogenous appearance. Most of the studies have focused on capturing these measures as 
the main features in their CAD systems. Lopes et al. [19] proposed the use of fractal and multifractal 
features to detect the unique texture of cancerous tissues. An experiment comparing classical texture 
features, including co-occurrence matrices, Gabor filters, and wavelet frame decomposition, and 
fractal geometry-based features shows the superiority of the latter in identifying prostate cancer [19].

Lv et al. [15] employed the same concept of fractal geometry with some variations in the algo-
rithms. Texture fractal dimension was used to quantify the roughness of the texture. The intensity, 
along with the 2D spatial distribution, formed a 3D surface as shown in Figure 11.4b and e, at which 
the 3D box-counting algorithm is applied. In addition, the 2D version of the same box-counting 
technique is used on the intensity histogram (Figure 11.4c and f) to assess the irregularity and 
complexity of the intensity distribution. Note the clear difference between healthy and non-healthy 
tissues in terms of the intensity inhomogeneity explained above.

Furthermore, distinct textural signatures in the CG and PZ could be uniquely identified accord-
ing to Viswanath et al. [16]. A total of 110 features extracted from Gabor wavelet transform, Haar 
wavelet transform, Haralick texture feature, and Grey-level statistical features were employed. 
Then, feature selection by minimum Redundancy Maximum Relevance (mRMR) is performed in 
order to identify the unique signatures of cancer in both the CG and PZ. Results show that CaP 
could be distinctively identified in the CG by Gabor filters, while it could be better distinguished by 
Haralick texture features in the PZ. Moreover, the optimum 15 features in the CG and 25 features 
in the PZ for identifying tumor were identified in Viswanath et al. [16].

Rampun et al. [14] identified a larger set of 215 features and grouped them in six classes in 
an attempt to investigate the performance of a CAD system that only uses the T2W-MRI. The 
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CsfSubsetEval method was used to reduce the feature space dimensionality. It is reported that 
Gaussian filters, Laplacian of Gaussian filters, image magnitude of the Sobel operator, and Tamura’s 
contrast were among the most selected features when the window size is optimum (9 × 9 voxels). 
Results comparable to other multimodality systems were obtained using T2W-MRI only.

CLASSIFICATION

To simply assess the distinguishing capacity of fractal features, Lv et al. [15] used a simple thresh-
olding technique along with the statistical t-test. The t test yielded an impressive group difference 
(P < 0.001) at 95% confidence level for the histogram fractal dimension (HFD) explained above. 
The potential robustness of the fractal indices is also evaluated by varying the critical value of these 
indices. The area under curve (AUC) of the receiver operating characteristic (ROC) curve is then 
determined. HFD yielded an AUC of 0.966.

Lopes et al. [19] made use of the same fractal and multifractal dimensions, estimated by the 
Variance method and the multifractional Brownian motion (mBm), respectively. Nonetheless, the 
authors proposed a classification framework instead of the simple thresholding used by Lv et al. [15]. 
Support vector machine (SVM) and Adaptive Boosting (AdaBoost) classifiers were both tested on a 
voxel-based scheme. The SVM yielded a sensitivity of 0.83 and a specificity of 0.91, while a slightly 
better performance was noted for the AdaBoost where a sensitivity and specificity of 0.85 and 0.93, 
respectively, were achieved.

Quadratic discriminant analysis (QDA) was performed by Viswanath et al. [16] on the 110 fea-
tures described above to highlight the effectiveness of uniquely identifying region-based features 
in the prostate gland. The AUC was obtained by varying the threshold of the QDA function and 
eventually yielded a value of 0.86.

Rampun et al. [14] reported the performance of 9 popular classifiers and two meta-voting classi-
fiers, where the decisions of the two and three best-performing classifiers were combined, respec-
tively. Keeping all parameters in the default setting, the meta-vote (best 2) classifier outperformed 
all the other 10 classifiers with an AUC of 92.7% ± 7.4%, an accuracy of 85.5% ± 7.2%, and a sensi-
tivity of 93.3% ± 9.1%. This classifier combined the results of the Bayesian networks (BNets) and the 
alternating decision tree (ADTree) using the average probability combination rule. It is important to 
note that some classifiers are very sensitive to parameter settings and thus, their performances could 
be greatly improved by tuning these parameters instead of keeping them on the default setting.

SUMMARY

A summary of Section 11.2 findings is provided in Table 11.2.

TABLE 11.2
Highlights of Section 11.2

Highlights

Pre-processing • Three-step pre-processing by [14]. Generalized scale algorithm and N3 algorithm [16].
• Segmentation by ASM [16].
• Manual segmentation [14,15].

Feature selection 
and extraction

• Fractal features achieve better distinguishing capacity than classical features [15,19].
• Tumors are characterized by unique structural and textural characteristics in the CG and PZ [16].

Classification • AUC = 0.966 using thresholding [15].
• AUC = 0.93 using SVM and AdaBoost [19].
• AUC = 0.86 using QDA [16].
• AUC = 0.93 using meta-vote (BNets, and ADTree) [14].
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DYNAMIC CONTRAST-ENHANCED MRI

DCE-MRI is an imaging technique that produces a sequence of T1W-MRI images that demonstrates 
the behavior of a pre-injected contrast agent (usually gadolinium-based) in the targeted tissue. This 
introduces “time” as a fourth dimension to the 3D MRI, which in turns allows for a noninvasive 
access to tissue vascular characteristics [23]. The main advantage of this modality is that it realizes 
the microvasculature difference between healthy and cancerous tissues [17]. Basically, this differ-
ence results from the nature of malignant tumors which are well fed with blood via vessel networks 
that are of high capillary permeability. As a result, the rate at which the contrast media is exchanged 
between vessels and extravascular-extracellular space (EES) in malignant tissues is higher than the 
corresponding rate in healthy tissues [12,24]. Figure 11.6a and b shows an example of two slices of 
T1W-MRI from a DCE sequence before and after contrast agent injection.

In this context, the main aim is to plot the intensity enhancement versus time curves for each 
voxel or region in the prostate and eventually extract the so-called pharmacokinetic parameters 
from these curves [12]. Figure 11.5 shows the common parameters that are usually extracted from 
the signal enhancement curves. Figure 11.6c and d show the intensity enhancement curve of the 
two delineated foci in Figure 11.6b. The intensity enhancement curve of the tissue circled in green 
is shown in Figure 11.6c while the intensity enhancement curve in Figure 11.6d corresponds to the 
cancerous tissue in the red circle.

In the literature, more than 15 perfusion parameters have been introduced, with forward  volume 
transfer constant (ktrans) and reverse reflux rate constant (kep) being the most useful clinically accord-
ing to [17,25,26]. The former represents the flow rate of the contrast agent from the blood into the 
prostate tissue (wash-in rate), while the later represents the flow rate of the contrast agent leaving the 
tissue to the blood vessels (washout rate) [26].
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Studies have shown superiority, in terms of sensitivity and specificity, of DCE- over T2W-MRI 
in differentiating between healthy and cancerous tissues [17,27]. Hara et al. [28] recommended the 
use of DCE-MRI alone instead of biopsy for CaP diagnosis in older patients.

Although some perfusion parameters could act as relatively good discriminative features, a 
considerable overlap of these parameters between malignant and benign tissues is present [17]. 
Especially in the CG, it is still challenging to distinguish between healthy and cancerous tissues due 
to the fact that they could exhibit the same pharmacokinetic behavior in both cases [12,29]. Finally, 
due to its temporal nature, the DCE-MRI modality is affected by patient breathing and motion [30]. 
It is also worth noting that contrast media injection is not always suitable for patients with kidney 
problems [18].

PRE-PROCESSING

In the CAD system proposed by Vos et al. [24], manual lesion localization using a 3D drawing tool 
was used to localize the suspected lesion by a sphere on the 3D MRI. Similarly, manual delineation 
of the ROI was adopted in Sung et al. [17].

In Viswanath et al. [31], a multi-attribute, non-initializing, texture reconstruction based active 
shape model (MANTRA) segmentation algorithm which only requires a rough manual initializa-
tion is used to automatically segment the prostate gland [32]. This method depends on finding a 
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tissue in (c). (From Ocak, I. et al., Am. J. Roentgenol., 189, 192–201, 2007.)
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statistical shape model of the prostate borders and statistical texture model of the area surrounding 
the prostate border. These two models were then used in an ASM framework.

Another novel segmentation framework is proposed by Firjani et al. [30] at which a maximum a 
posteriori (MAP) of a log-likelihood function is estimated. The function accounts for the shape pri-
ori, the spatial interaction and the specific visual appearance of the prostate in each subject. In addi-
tion, a non-rigid registration scheme is developed to account for deformation due to patient’s motion 
during acquisition. A segmentation sensitivity of 84.6% was obtained on a dataset of 30 patients.

FEATURE EXTRACTION AND SELECTION

Sung et al. [17] extracted 13 perfusion parameters out of each signal enhancement-time curve, 
namely: baseline and peak signal intensities, initial slope, maximum slope during the initial 
50 seconds after the contrast agent injection, time to peak, wash-in rate, washout rate, percentage 
of relative enhancement, percentage enhancement ratio, time of arrival, efflux rate constant indi-
cating the trans-vascular permeability (kep), first-order rate constant for eliminating the contrast 
agent from the blood plasma (kel), and a constant representing the size of the extravascular extra-
cellular space (AH).

Vos et al. [24] identified only three pharmacokinetic features which were selected based on the 
clinical experience. These include (i) 50% percentile T1 static value which is useful in identifying 
post-biopsy hemorrhage, (ii) 75% percentile kep and Ktrans which indicate the permeability of the 
blood vessels that increase in inflamed and tumor tissues, (iii) 25% percentile late wash which is 
defined by the slope of the curve after the first wash-in and which highly correlates to malignant 
tumors according to Vos et al. [24]. On the other hand, the peak perfusion value and the wash-in 
slope were the only two parameters utilized by Firjani et al. [30] to characterize each voxel in the 
segmented prostate.

In contrast, the dimensionality of the intensity feature space is reduced in [31] by the nonlinear 
dimension reduction: locally linear embedding (LLE) algorithm. This idea of reducing the feature 
vector of each voxel is borrowed from Varini et al. [33] where LLE was applied on breast DCE-
MRI to detect malignant lesions. Basically, this algorithm attempts to represent each data point by 
a linear combination of its k-nearest neighbors [12].

CLASSIFICATION

Puech et al. [29,34] used thresholding based on maximum and median wash-in and washout slopes 
in both the PZ and CG in order to give a suspicion score of the selected lesion. A sensitivity of 100% 
was obtained in both PZ and CG with a corresponding 45% and 40% specificity in the PZ and CG, 
respectively.

A k-NN classifier was used by Firjani et al. [30] to distinguish between malignant and benign 
tumors. The boundaries of the tumor were then delineated using a level-set deformable model. A 
classification accuracy of 100% was obtained on a 21-patients dataset.

Similarly, Viswanath et al. [31] applied consensus k-means clustering repeatedly to the reduced 
manifold using different values of k. A co-association matrix which represents the association 
between any two data points based on the number of times they appear in the same cluster through-
out the iterations is then constructed. Multidimensional scaling (MDS) is then performed on the 
co-association matrix, followed by a k-means clustering which yielded the final stable clusters.

Another classification method is adapted as well [31], and compared to the first method. This is 
the 3 time point (3TP) method, where inflection points are determined in the intensity-time curves at 
each pixel. Mainly, these values are used to estimate the contrast agent wash-in and washout rates. 
An improvement in the sensitivity from 38.2% to 60.7% and the specificity from 69.1% to 83.2% 
when using consensus k-means clustering is reported. It is important to note that these results were 
obtained relative to a rigorous ground truth and that this study considered both PZ and CG.
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In contrast, Vos et al. [24] fused their three features mentioned above in a SVM to classify 
malignant and benign lesions in the PZ. The obtained sensitivity was 83% with a corresponding 
specificity of 58%. These results were obtained with reference to an approximated ground truth that 
resulted from a roughly registered histology.

Likewise, SVM was mainly used by Sung et al. [17] to fuse all 13 previously extracted 
 perfusion parameters. Besides, thresholding using the cut-off (optimum) point on the ROC curve 
was also applied to each individual perfusion parameter map besides T2WI. The  individual 
perfusion parameter maps and T2WI were then compared using sensitivity and specificity 
 measures. Expectedly, the SVM-based CAD system showed superior performance in the PZ 
with an accuracy, sensitivity, and specificity of 89%, 89%, and 89%, respectively. Nevertheless, 
the accuracy, sensitivity, and specificity were 77%, 91%, and 64%, respectively, in the CG. It is 
suggested that this difference in the performance is related to the low specificity of the perfu-
sion parameters in the CG.

SUMMARY

A summary of Section 11.3 findings is provided in Table 11.3.

MR SPECTROSCOPY (MRS)

Complementing structural MRI, magnetic resonance spectroscopy imaging (MRSI) is a modal-
ity that provides 3D spectral information describing the metabolic concentrations in a spatial grid 
[12,35]. Usually, the spectral grid is superposed on a 2D slice T2W-MRI which forms the 3D 
modality [36,37]. An example for a 3 × 6 spectroscopic grid projected of the T2W-MRI is shown 
in Figure 11.7.

Note the low resolution of the MRS grid as each voxel in this grid can cover a k × k voxels on 
the T2WI. Moreover, each voxel is characterized by a complex spectrum signal at which informa-
tion about several metabolites can be extracted. Hence, each spectrum at each location is analyzed 
individually to determine the type of the corresponding tissue which is shown in the T2W-MRI. 
More precisely, the area under each peak of the spectrum maps to the relative concentration of a 
certain metabolite [12,37,38]. Figure 11.8 shows MR spectra for a healthy and a malignant tissue in 
the prostate. Note the difference in the relative concentration, interpreted by the height of citrate and 
choline peaks, between healthy and cancerous tissues [36].

TABLE 11.3
Highlights of Section 11.3

Highlights
Pre-processing • Three-step pre-processing by [14]. Generalized scale algorithm and N3 algorithm [16].

• Segmentation by ASM [16].
• Manual segmentation [14,15].

Feature selection and 
extraction

• Thirteen parameters are extracted in [17].
• Three parameters are extracted in [24].
• Peak perfusion and wash-in slope is used in [30].
• In [31], the curve vector is reduced using LLE to obtain a feature vector.

Classification • Sen = spec = 77% for SVM [17].
• Sen = 83%; spec = 58% for SVM [24].
• Accuracy = 100% for k-NN [30].
• Sen = 60%; spec = 83% for k-means clustering [31].
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Clinical studies suggest that the presence of malignant cells is associated with a lower concentra-
tion of citrate and a higher concentration of choline [39]. In addition, the ratio (choline + creatine/
citrate) has also been correlated to the presence of CaP [37].

Compared to other modalities, MRSI shows higher potential to differentiate between healthy 
and CaP tissues [39]. A study conducted by Zi-jun et al. [40] shows a significant positive correlation 
between the diagnostic accuracy of MRSI and the GS of CaP, which suggests the effectiveness of 
this modality in the evaluation of the aggressiveness of CaP [12].

FIGURE 11.7 A sample MRS grid superimposed on a T2WI. (From Tiwari, P. et al., Med. Phys., 36, 
3927–3939, 2009.)
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On the other hand, MRSI lacks (i) spatial resolution, (ii) consistent interpatient metabolite con-
centrations [12], and (iii) consistent metabolite concentrations in different zones of the prostate [38]. 
Also, one of the drawbacks that prevents this modality from being part of the clinical routine is its 
long acquisition time. However, high magnetic field strength is suggested to resolve this problem [12].

PRE-PROCESSING

Parfait et al. [39] proposed a full MRSI pre-processing framework that addresses the removal of 
unwanted artifacts present in phase, baseline, and intensity standardization.

Phase correction is first applied using the Automated phase Correction based on Minimization 
of Entropy (ACME) algorithm proposed in [41]. This algorithm iterates to find two coefficients: (i) 
a zero-order phase coefficient and (ii) a first-order phase coefficient, by minimizing an objective 
function.

In addition, baseline correction is also applied in Parfait et al. [39] to remove the artifact caused 
by the presence of macromolecules and lipids within the tissue of interest, which causes additive 
wide peaks to the spectra. A Gaussian low-pass filter (LPF) was applied iteratively to the spectra to 
remove the assumed additive noise. Figure 11.9 shows the signal before and after baseline correc-
tion. Finally, normalization using the T2-normalization technique is considered before classifica-
tion. To correct the baseline artifact, Kelm et al. [42] used time-domain selective Hankel singular 
values of dynamic system (HSVD) filtering which aims at removing signal components outside the 
frequency range of interest [43]. These two methods are essentially similar in the sense that they 
both filter out unwanted frequency components to correct the baseline signal.

To determine the “informative” MRS blocks that are relevant to the prostate, Tiwari et al. [37] 
used graph embedding, a nonlinear dimensionality reduction scheme, to reduce the space dimen-
sionality of the whole spectra, followed by a replicated k-means clustering. This clustering algo-
rithm yielded two stable clusters: one corresponds to prostatic voxels and the other corresponds to 
non-prostatic voxels. The larger cluster is then eliminated as it is assumed to correspond to non-
prostatic voxels. The average sensitivity and specificity of this selection process were 97.66% and 
98.87%, respectively.

Instead, Parfait et al. [39] and Matulewicz et al. [38] used manual selection of MRS blocks that 
lie inside the prostate.

FIGURE 11.9 MRS signal before (left) and after (right) baseline correction using iterative low-pass filtering. 
(From Parfait, S. et al., Biomed. Signal Process. Control, 7, 499–508, 2012.)
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FEATURE EXTRACTION AND SELECTION

Feature extraction of MRSI spectrum could be classified into two main categories [35,37]: (i) quanti-
fication-based analysis and (ii) pattern recognition-based analysis. In the first category, studies have 
focused on peak detection and relative concentration calculation for the purpose of detecting irregular 
concentrations of metabolites which are biomarkers for CaP. However, recent studies [12,42] show that 
the pattern recognition approach is more efficient and less sensitive to noise and artifacts. This approach 
relies on analyzing the whole spectra instead of performing traditional peak detection algorithms.

Kelm et al. [42] present a comparison between three quantification methods, and four pattern 
recognition approaches including: (i) principle component analysis (PCA), (ii) independent com-
ponent analysis (ICA), (iii) nonnegative matrix factorization (NMF), and (iv) partial least squares 
(PLS). The authors claim no significant difference in the AUC of these four methods. However, they 
report a comparable performance of the studied pattern recognition approaches to that of quantita-
tion based on the semi-parametric quantum estimation (QUEST) approach proposed in [44].

Similarly, Parfait et al. [39] have shown that the final CAD performance is significantly improved when 
using the whole real spectra as an input for the classifier compared to the quantification-based techniques.

CLASSIFICATION

Matulewicz et al. [38] trained an artificial neural networks (ANN), a nonlinear classifier, with one hid-
den layer that has the smallest possible number of neurons to avoid overtraining and poor generalization. 
Two models were tested, one that has the MRSI spectra as the input and another one that has the MRSI 
spectra plus the rough location of the voxel specified as one of four labels each corresponds to a pre-
identified region in the prostate. Their results show that the second model provides an improvement in 
the sensitivity, specificity and AUC over the first model. Nevertheless, the maximum sensitivity achieved 
in this work is 62.5%, which is considered unsatisfactory compare to other MRSI-based CAD systems. 
However, the main contribution of their study is that it shows an improvement in the sensitivity (from 
50% to 62.5%) when considering zonal anatomy of each voxel as an extra input to the ANN classifier.

While in Kelm et al. [42], the classification methods were subdivided into linear and nonlinear 
methods. Linear classification methods are (i) logistic regression, (ii) generalized PLS, and (iii) 
P-spline signal regression (PSR), while nonlinear methods considered in this study are (i) RF, (ii) 
SVM, and (iii) Gaussian processes (GP).

They conclude that nonlinear classification methods outperform all other combinations of linear 
classification methods. Also, nonlinear classifiers easily outperform quantification-based approaches. 
All conclusions were drawn based on the AUC measure, which yields the robustness of the particular 
approach. The final output of their CAD system is a tumor probability map shown in Figure 11.10.

On the other hand, Parfait et al. [39] have compared three classification methods: (i) SVM, (ii) 
multilayer perceptron (MLP), a family of ANN, and (iii) Bayes classification rule, which is based 
on thresholding the relative concentration of choline/citrate. The best performance (error rate 4.51%, 
sensitivity 83.57%, and specificity 98.11%) was achieved using SVM with the input spectra being 
pre-processed for phase, baseline, and intensity scale correction.

Besides, for the purpose of identifying cancerous spectra, Tiwari et al. [37] used four different 
feature extraction methods: (i) graph embedding, (ii) LLE, (iii) PCA, and (iv) z-score. They used 
replicated clustering (similar to the one described in Section 11.4.1) to classify the MRS signals into 
three classes: (i) normal, (i) suspicious, and (iii) indeterminate. A sensitivity of 81.36% with a cor-
responding specificity of 64.71% was obtained using LLE followed by replicated clustering.

It can be concluded that nonlinear methods are more suitable for spectral classification as the 
output of classification is linearly non-separable.

SUMMARY

A summary of Section 11.4 findings is provided in Table 11.4.
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DIFFUSION-WEIGHTED MRI

Simply, DW-MRI is an MR imaging modality at which the motion of water molecules is reflected 
in each voxel intensity value. In a certain location in the image, higher intensity values imply less 
water diffusion, while low intensity values indicate higher diffusion of water molecules. In fact, this 
property allows for a better distinction between healthy and CaP tissues.

Table 11.5 summarizes the differences between these three tissues in the DW-MRI context 
[12,34]. DWI can be acquired at different attenuation coefficients known as the b value. This value 
can be changed by changing the gradient pulse intensity and duration. Figure 11.11 shows a sample 
DW-MRIs for the same patient but at different b values.

Although DW-MRI provides better distinction between soft tissues, CG tissues can sometimes 
be confused with CaP tissues as they both restrict the diffusion of water. Also, this modality lacks 
spatial resolution according to Lemaitre [12].

On the other hand, ADC is a parameter that can be calculated using DW-MRI acquired at two b 
values: (i) b0 = 0 sec/mm2 which is essentially the T2W-MRI and (ii) b1>b0, as follows: 

 
ADC =

( )ln ( ) /S b S

b
1 0

1

 (11.2)

FIGURE 11.10 Tumor probability color map obtained by the CAD system presented in Kelm et al. [42]. Red, 
yellow and green correspond to tumor, undecided, and healthy tissues, respectively.

TABLE 11.4
Highlights of Section 11.4

Highlights

Pre-processing • Phase correction by ACME, baseline correction by LPF, normalization by T2- normalization [39].
• HSVD filtering is applied in [42].
• Graph embedding with k-means Clustering to select informative spectra [37].

Feature selection 
and extraction

• Pattern recognition approach is more reliable than traditional quantification-based approach [39,42].

Classification • The inclusion of zonal anatomy with the MRS improves performance; sen = 62.5% [38].
• Nonlinear classifiers outperform linear classifiers [42].
• SVM outperformed MLP and Bayes classification in [39].
• LLE followed by replicated clustering outperformed, graph embedding, PCA, and z-score 

classification in [37].
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where S(b1) and S0 are the measured signals at b1 and b0, respectively [12]. Note that this equation is 
obtained by rearranging Equation 11.1.

ADC maps could be generated at different b values using the above equation. High discriminatory 
performance between high, intermediate, and low GS using ADC maps was reported in the PZ [45].

An experiment conducted by Litjens et al. [46] shows that a CAD system that uses features from 
DWI alone performs as good as another one which uses features from the combination of T2W-, 
DCE- and DW-MRI.

In Reda et al. [18,47], the authors proposed a fully automated CAD system that segments the 
prostate using an NMF-based level set segmentation method which uses intensity, shape, and spatial 
features to accurately segment the prostate from the surrounding tissues. This segmentation method 
yielded a dice similarity coefficient (DSC) of 86.9%.

The cumulative distribution functions (CDFs) of the normalized ADC maps of the segmented 
prostate were then calculated and considered as the global features for differentiating between 
benign and malignant tissues. The CDFs for 53 patients were obtained for b = [100 200 300 400 
500 600 700], and were all fed to a stacked nonnegativity constraint auto-encoder (SNCAE). Results 
show that the ADC-CDF at b = 700 s/mm2 outperforms all other alternatives including the ADC-
CDFs at all b values together. Impressively, 100% accuracy, sensitivity, and specificity were obtained 
on a leave-one-out cross-validation of 53 patients.

A similar framework is presented by Reda et al. [48], but instead of using the ADC-CDFs at 
b = 700 s/mm2 as the only input for the SNCAE, the authors used all the seven b values in a majority 
voting framework. The overall accuracy obtained is 97.6% on a dataset of 42 patients.

In the same context, Firjani et al. [49] used an intensity, shape, and spatial interaction model to 
segment the prostate. Nevertheless, boundaries of the suspected tumors were first delineated using 
a level-set-based deformable model. Later, a k-nearest neighbor classifier was used to determine the 
malignancy of the tumor. The mean intensity values of the DW-MRI at b = 0 sec/mm2, b = 800 sec/
mm2 and the ADC mean intensity value were found to be the most discriminant features.

TABLE 11.5
Prostate Zonal Anatomy in the DW-MRI Modality. Note That the CG is Not Well 
Distinguished from Other Tissues, Which is the Main Drawback of DW-MRI.

Tissue Physiological Property Water Molecules Diffusion
Visual Appearance 

in DW-MRI
Visual Appearance 

in ADC Maps

PZ Soft glandular and tubular tissue High Low SI High SI

CG Muscular and fibrous structure Constrained and heterogeneous —

CaP High cellular density due to the 
uncontrolled growth of cells

Very restricted High SI Low SI

FIGURE 11.11 Example of DW-MRI obtained at different b values.
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SUMMARY

A summary of Section 11.5 findings is provided in Table 11.6.

MULTIMODALITY-BASED CAD SYSTEMS

The introduction of new types of MRI modalities, obtained using different acquisition methods, and 
containing different information encouraged a new trend of integrating these modalities together 
and benefiting from their potential complementarity for the purpose of enhancing the overall inter-
pretation and decision [50].

Indeed, several works have demonstrated the validity of the multimodality integration schemes 
in the context of prostate cancer diagnosis.

It has been shown that combining multiparametric MRI yields better performance in terms of 
the AUC. Artan et al. [51] have tested several combinations of MRI modalities using the same CAD 
 system, the ROC curve for each combination is then plotted as shown in Figure 11.12. It is clear from 

TABLE 11.6
Highlights of Section 11.5

Highlights

Pre-processing • Segmentation using spatial, shape, and intensity interaction models was performed in [49], [47], and [18].

Feature 
selection and 
extraction

• CDF of the ADC maps at b = 700 s/mm2 used in [47] and [18].
• CDF of the ADC maps at b = [100 200 300 400 500 600 700] s/mm2 are used in [48].
• The mean intensity values of the DW-MRI at b = 0 sec/mm2, b = 800 sec/mm2, and the ADC mean 

intensity value were found to be the most discriminant features [49].

Classification • SNCAE [18,47].
• SNCAE and majority voting [48].
• k-nearest neighbor classifier [49].
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FIGURE 11.12 Average ROC curves using the same CAD system for (1) T2 maps, (2) T maps + ADC, 
(3) T2 maps + ADC + Kep (obtained from DCE-MRI). (From Artan, Y. et al., IEEE Trans. Image Process, 19, 
2444–2455, 2010.)
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the graph that the multimodality MRI-based CAD systems achieve higher AUC compared to mono- 
or bi-modality systems. Other studies [52–55] have also examined and compared the performance of 
CAD for CaP systems that use mono- and multiparametric MRI. They reported better performance 
of the later in terms of several evaluation measures.

Similar to monomodality CAD systems, the pipeline of the multimodal CAD systems starts 
with an optional pre-processing and segmentation step, followed by extracting features from the 
resultant MRI and reducing the feature space if necessary. These steps are usually performed on 
a per-modality basis, regardless of the number of MRI modalities that are considered in the CAD 
system as a whole.

Within the multimodality framework, the integration of data obtained from the multiple 
channels can be performed at different levels, namely, data level, feature level, and classifier 
level.

Data-level fusion is a machine learning approach at which the input is simply the raw data. In 
the case of multimodality MRI systems, raw data may include intensity values, signal enhance-
ment curves, and MR spectra. So far, no work has been reported in the MRI-based CAD for 
CaP systems regarding the data-level integration. In fact, all the multimodal approaches adopted 
either feature fusion or classifier fusion. However, recently a new paradigm of data fusion of 
MRI modalities has been proposed within a deep learning approach presented in Liu et al. [56]. 
In this work, four different types of MRI inputs were generated, using different combinations of 
DWI, ADC maps, ktrans, and transverse T2WI as the red, green, blue (RGB) channels to form a 
color image in the RGB format. This type of image is then fed into a deep learning architecture 
trained on input images of the same type. Impressively, the proposed system outperformed other 
69 systems in the PROSTATEx challenge with an AUC, sensitivity, and specificity of 0.95, 0.89, 
and 0.89, respectively.

FEATURE-LEVEL FUSION

In this fusion scheme, feature vectors are extracted from each modality and then simply aggregated 
by concatenation to form a unique feature matrix. However, in this scenario, feature selection could 
be performed either before or after aggregation.

Feature-level fusion seems to be the most popular in the area of CAD for CaP systems. Full 
CAD systems presented in several studies [21,36,57–60] have reported the use of engineered 
features obtained from multimodal MRI to detect prostate cancer. That is, features are extracted 
from each modality and concatenated in a unique feature vector, before being fused into a certain 
classifier.

An example of the CAD systems that performed feature selection on per-modality basis is 
Tiwari et al. [57]. They presented a novel scheme for data integration from MR imaging and 
non-imaging (spectroscopy) channels. Initially, feature extraction took place on a per-modality 
basis. Then, the feature space dimension was reduced to a pre-defined number of features by 
PCA. This step was also essential for unifying the feature vector length for all channels. Finally, 
the feature vectors of both modalities were concatenated and random forest (RF) is used to clas-
sify the data and obtain the final decision. A maximum accuracy of 0.83 and an AUC of 0.89 is 
obtained.

On the other hand, Lemaitre et al. [12] showed that performing feature selection after feature 
aggregation yields better AUC compared to feature selection performed on per-modality basis 
prior to feature aggregation. In other words, feature selection performed on the final feature vec-
tor obtained from the multiparametric MRI outperforms selecting features from the individual 
modalities.
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CLASSIFIER-LEVEL FUSION

Here a stand-alone classifier is trained by features obtained from each modality, and hence the final 
decision is made by combining the individual decisions of each classifier. In our context, ensemble 
learning is the most commonly used classifier fusion method to combine the interpretation of the 
individual per-modality learners. Lemaitre [12] refers to classifier fusion scheme as stacking. He 
defines stacking as a learning method that comprises three stages: (i) training the per- modality 
classifier, (ii) validating the overall system by another set of data, and (iii) testing the overall system. 
Figure 11.13 shows a schematic that explains the stacking principle [12].

Two classifier fusion methods are commonly used in the design of CAD for CaP systems. These 
are (i) score combination by logistic regression, and (ii) stacking by AdaBoost or Gradient Boosting 
(GB) as a meta-classifier.

In [46], Litjens et al. extracted voxel features from DWI, DCE, and T2WI and fused them all 
together in an RF classifier to give a suspicion score between 0 and 1 for each voxel. Then lesion 
segmentation was performed based on these scores. Again, RF was used to determine whether the 
obtained lesions are benign or cancerous.

The work of Litjens et al. [61] builds upon the CAD system developed earlier by Litjens et al. 
[46]. They used the combination by score scheme to combine the radiologist scores and the scores 
obtained from the CAD system presented by logistic regression [46]. They have shown the potential 
improvement in the performance of the combined system over the scores obtained from the radiolo-
gists and their CAD system individually.

Other studies [36,42,57] used the AdaBoost ensemble learning method. This method tries to 
find the best linear modal that combines multiple weak learners in order to obtain a final strong 
 classifier [12].

In this context, it is worth noting that Lemaitre [12] has investigated three different data com-
bination schemes to determine the most feasible one. These include (i) concatenating 331 features 
extracted from all the four modalities including anatomical features in a single classifier (which cor-
responds to feature-level fusion discussed above), (ii) stacking using AdaBoost as a meta-classifier, 
and (iii) stacking using GB as a meta-classifier. Results show the superiority of the feature-level 
aggregation scheme over the other two classifier fusion alternatives. Figure 11.14 shows the ROC 
analysis of three different approaches presented in [12]. The maximum obtained AUC is 0.836 
which corresponds to the feature-level fusion.

FIGURE 11.13 Stacking as a classifier fusion scheme. In the training stage, a RF classifier is trained indi-
vidually for each modality (red line). Then, a validation set of MR images is provided at the input of each RF 
at which the probabilistic output is used to train a Meta classifier, either Gradient Boosting or AdaBoost (blue 
line). (From Lemaitre, G., Computer-aided diagnosis for prostate cancer using multi-parametric magnetic 
resonance imaging, Doctoral Program in Technology, France, 2016.)
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SUMMARY

A summary of the discussed fusion methods is shown in Figure 11.15.

PERSPECTIVES AND AVENUES FOR FUTURE RESEARCH

Early detection of prostate cancer is the key for an accurate diagnosis and treatment of the disease. 
Common screening strategies such as PSA and TRUS-GB have shown limitations in different aspects 
including accuracy and invasiveness. Typically, these limitations result in late or inappropriate diagnosis 
and treatment. Lately, several MR imaging techniques have been introduced in the area of prostate cancer 
detection holding the potential promise of an accurate noninvasive detection and diagnosis.
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FIGURE 11.14 ROC analysis of three CAD systems: (a) RF-based CAD where selected features from each 
modality are combined on a unique feature matrix (blue), (b) stacking-based CAD where selected features 
from each modality are fed using the principle of stacking (green), and (c) RF-based CAD where all features 
from mp-MRI are combined and then feature selection is performed on the resulted feature matrix (red). 
(From Lemaitre, G., Computer-aided diagnosis for prostate cancer using multi-parametric magnetic resonance 
imaging, Doctoral Program in Technology, France, 2016.)
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However, several problems and challenges are still present in the scene before the MRI screen-
ing becomes part of the daily clinical routine in the case of prostate cancer. One of these problems 
is the complexity of the MR images, especially in the case of 3D images, which makes the task of 
the radiologist difficult, time consuming, and prone to human errors. Also, the interpretation of 
MRI is highly dependent on the radiologist’s experience, which results in inter-reader variability. 
These challenges and problems have created the need for an automated alternative that can guide 
and assist radiologists in their tasks and reduce the number of false positives caused by human 
errors. Consequently, image processing-based CAD systems are being developed to tackle these 
issues.

Different MRI modalities are investigated and processed through the designed systems. 
To date, there seems to be no consensus on the imaging modality that is best for prostate can-
cer detection. However, there is nearly a consensus on the fact that processing a combination 
of multimodality MRI gives better results compared to processing a single modality. This 
might be obvious as additional modalities provide additional complementary information of 
the  subject of study. Particularly, T2WI provides the most accurate anatomical information, 
DCE provides the functional information, MRSI provides metabolites concentration, and DWI 
provides the best soft tissue contrast by measuring the water molecules diffusion. Nevertheless, 
concerns about time and cost are still present for the case of multimodality MRI- based CAD 
systems.

To the best of the authors’ knowledge, only the work of Trigui et al. [36] and Lemaitre [12] have 
combined all the four MRI modalities in a single framework. Other studies, however, have used 
different combinations of two or three modalities.

Although the area of CAD for CaP has experienced an extensive research, it is difficult to aggre-
gate these studies and draw significant conclusions regarding the best approach or the best perfor-
mance. The absence of standardization in many aspects such as: 

 1. MRI acquisition protocol: different datasets are acquired at different setting and by differ-
ent MR scanners.

 2. Ground truth: some studies consider a rough ground truth that is dependent on the radiolo-
gist delineation of the prostate cancer, while others evaluate their results based on a more 
rigid ground truth that is obtained after a full prostatectomy (surgical removal of the pros-
tate gland).

 3. Registration (which refers to the alignment of the images): Different alignment methodolo-
gies were followed by the reviewed studies.

 4. Manual verses automated segmentation: the classification stage is highly dependent on the 
segmentation accuracy. Usually, automatic segmentation dos not yield a perfect delinea-
tion of the ROI compared to manual segmentation. Errors in the segmentation stage may 
significantly affect the overall performance and robustness of the system.

 5. Consideration of the CG: most of the reviewed CAD systems have focused on detecting 
cancer in the PZ only. Other studies however, considered the whole prostate gland.

  It is worth mentioning that, MRI lacks contrast of prostatic cancer in the CG which 
reduces the sensitivity in this part of the image. This in terms is suggested to reduce the 
overall measured accuracy of CAD systems that considered CG in their studies.

 6. Inconsistency in the classes considered in the CAD systems, that is, some studies takes 
into account the presence of two classes (healthy/cancer) while others assume a third class 
which is the (abnormal/undecided) class. This class is claimed to represent other benign 
tumors or diseases.

 7. Different measures are used in evaluating each CAD system, including AUC of the ROC 
curve, sensitivity, specificity, and accuracy.

 8. The results of individual studies are incomparable specially that the dataset sizes vary 
significantly.
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To tackle the problems associated with the absence of a universal validation dataset, Lemaitre et al. 
[7] provided the research community with an open access dataset that includes images of the four 
modalities for each patient with the ground truth. We refer the reader to that review for more details 
about this dataset.

In the case of multimodality approach, several issues are to be further investigated by the research 
community. Those include data-level fusion and classifier-level fusion. Based on the brief investiga-
tions provided by Lemaitre [12] and Liu et al. [56], the former provides promising results that may 
outperform feature-level-based CAD systems. Hopefully, deep learning networks will provide a 
better alternative for the engineered features to be used in a CAD framework.
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PROSTATE: ANATOMY, FUNCTION, AND DISEASES

The prostate is the largest accessory gland in the male urinary and reproductive system. It is a cone-
shaped organ about the size of a walnut that weighs approximately 15–20 g and measures approxi-
mately 4 × 2 × 3 centimeters in a mature male [1]. In this section, brief descriptions of the prostate 
anatomy and function, as well as the diseases that affect the prostate, are provided.

The prostate is located deep in the pelvis just below the urinary bladder and in front of the rec-
tum, see Figure 12.1. It surrounds the urethra as it exits the bottom of the bladder. The prostate has 
two main functions. First, it stores, secretes, and controls the flow of the milky fluid, which consti-
tutes 30% of the volume of the semen and is injected into the urethra along with sperm when a male 
is sexually aroused. Second, it controls the diameter of the urethra, thereby controlling the flow of 
urine [3]. To accomplish these functions, the prostate contains three main cell types: (i) gland cells 
that excrete seminal fluid, (ii) muscles cells that control the diameter of the urethra for urine flow 
and ejaculation, and (iii) fibrous cells that make up the supportive structure of the prostate [3].

In pathology, the prostate region is divided into different segments or zones. Each of these zones 
consists of different cell types and is susceptible to different types of diseases. Figure 12.2 illus-
trates the main glandular zones of the prostate: the peripheral zone (PZ), the central zone (CZ), and 
the transition zone (TZ). The PZ is the subcapsular portion of the prostate gland that surrounds the 
distal urethra and constitutes up to 70% of a normal prostate gland. The CZ is the second largest 
region of the prostate that surrounds the ejaculatory ducts and constitutes about 25% of a normal 
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prostate gland. The third zone is the TZ that surrounds the urethra and is the region of the prostate 
that grows throughout life. The TZ comprises about 5% of a normal prostate gland [4].

The function of the prostate can be affected by various types of medical complications. The three 
most common prostate problems are the prostatitis, benign prostatic hyperplasia (prostate enlarge-
ment), and prostate cancer. Prostatitis is microscopic inflammation (swelling) of the tissue of the 
prostate gland, which affects mostly young and middle-aged men [6]. This inflammatory disease is 
usually caused by bacteria and is categorized into four groups based on the chronicity of symptoms 
[7]: Type I—acute bacterial prostatitis, Type II—chronic bacterial prostatitis, Type III—chronic 
abacterial prostatitis (chronic pelvic pain syndrome), and Type IV—asymptomatic inflammatory 
prostatitis. Type I is less likely to occur; however, it is potentially life-threatening. Type II is also 
relatively uncommon and occurs when bacteria find a spot on the prostate where they can survive. 
On the other hand, Type III is the most common and can be found in men of any age; nevertheless, 
it is the least understood form of prostatitis [8]. The incidence of Type IV is unknown; diagnosis 
is made after a biopsy and is usually correlated with the higher PSA values [9]. Benign prostatic 

FIGURE 12.1 Schematic illustration of an anatomical view of the lower abdomen area that contains the 
prostate. (From HealthNews Texas, PSA Test Reduces Prostate Cancer Deaths [Online], http://healthnew-
stexas.com/5262/psa-test-reduces-prostate-cancer-deaths/.)

FIGURE 12.2 Schematic illustration of the front and side cross-sectional views of the prostate showing dif-
ferent prostate zones. (SIU School of Medicine, Enlarged Prostate [Online], http://www.siumed.edu/surgery/
urology/bph.html.)

http://healthnewstexas.com/5262/psa-test-reduces-prostate-cancer-deaths/
http://www.siumed.edu/surgery/urology/bph.html
http://www.siumed.edu/surgery/urology/bph.html
http://healthnewstexas.com/5262/psa-test-reduces-prostate-cancer-deaths/
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hyperplasia, the second medical complication that affects the prostate, is caused by noncancerous 
enlargement of the prostate gland and is associated with aging. This condition can cause men to 
have some troubles, such as a frequent need to urinate and difficulty to start urination or to fully 
empty the bladder [10].

The last type of prostate disease is prostate cancer, which is one of the most common cancers 
among males. In most cases, prostate cancer has no symptoms and is only found with screening. 
When symptoms are present, they include pain, difficulty in urinating, and problems during sexual 
intercourse. Prostate cancer is a slow-growing cancer that may invade other organs if untreated. 
In addition, it has different occurrence rates at different zones of the prostate, due to the difference 
in cell types that compromise each zone. The vast majority (70%) of prostate cancer originates in 
the PZ, while only 25% occurs in the TZ and 5% in the CZ, which tends to be the more aggressive 
type [11]. In order to determine how far the cancer has spread (within the prostate or to other body 
parts), a staging test is performed. Staging of prostate cancer plays an important role in the choice 
and the success of treatment. Prostate cancer has four stages (Stages I through IV). Stage I is the 
earliest cancer stage in which the cancer cells are confined to a microscopic area and are too small 
to be either felt by a physician or seen in imaging tests. Stage II is more advanced than stage I and 
the cancer can be felt by a physician. Like stage I, however, the cancer is still confined only to the 
prostate gland. In stage III, the cancer spreads outside the prostate to nearby tissues, for example, 
the seminal vesicles. The final stage of prostate cancer is stage IV in which the cancer cells have 
spread beyond the outer layer of the prostate to the nearby organs, such as the lymph nodes, bones, 
rectum, or bladder.

Prostate cancer is the sixth leading cause of cancer-related death in men worldwide and is the 
second in the United States [12]. Therefore, it is crucial to detect/diagnose prostate cancer in its 
earliest stage to improve the effectiveness of treatment and increase the patient’s chance of survival. 
In recent years, both the diagnosis and the treatment of prostate cancer continue to evolve using 
different techniques and methods. The next section overviews different techniques that are used 
for early diagnosis of prostate cancer as well as the related work on prostate cancer detection and 
diagnosis in the context of the proposed framework.

CURRENT DIAGNOSTIC METHODS OF PROSTATE CANCER

Prostate cancer is the most frequently diagnosed male malignancy and the second leading cause 
(after lung cancer) of cancer-related death in the United States, with more than 238,000 new cases 
and a mortality rate of about 30,000 in 2013 [13]. Early diagnosis improves the effectiveness of 
treatment and increases the patient’s chances of survival. Compared to other types of cancers such 
as lung cancer, prostate cancer, when treated by removing the prostate gland, has a zero chance 
of recurrence. There are many techniques that are used for the diagnosis of prostate cancer. The 
main diagnostic tools for prostate cancer are digital rectal exam (DRE), serum concentration using 
prostate-specific antigen (PSA) blood test, and needle biopsy. The DRE test is carried out by a 
skilled physician who manually feels for any abnormalities in the prostate gland through the rec-
tum. The DRE is inexpensive and easy to perform. However, the accuracy of a DRE examination 
is not high enough and depends on physician experience. Also, it can only detect tumors with 
sufficient volumes. Another screening test for the diagnosis of prostate cancer is performed using 
PSA—an enzyme that is secreted by the prostatic cells. The higher the values of PSA, the more 
likely the prostate gland is to have cancer. However, PSA is associated with a high risk of overdi-
agnosis of prostate cancer as higher PSA levels may reflect other conditions, such as an enlarged or 
inflamed prostate [14]. In addition, PSA screening lacks the ability to provide accurate information 
about the location and the extent of the cancer. If either the DRE or PSA tests raises any concern, a 
needle biopsy is performed to collect tissue samples from the prostate, which are analyzed in a lab 
to determine whether or not cancer cells are present. Biopsy remains the gold standard for diagnosis 
of prostate cancer, but it is the last resort because of its invasive nature, high costs, and potential 



192 Prostate Cancer Imaging

morbidity rates. Additionally, the relatively small needle biopsy samples have a higher possibility of 
producing false positive diagnosis.

To overcome these limitations, noninvasive evaluation of prostate cancer has been clinically 
explored with several medical imaging tools, such as ultrasound, computed tomography (CT), and 
magnetic resonance imaging (MRI). These imaging methods are favorable due to their ability to 
provide reliable information about the size and shape of the prostate gland and can localize the 
cancer foci, which would improve the accuracy of diagnosis and enable more efficient treatment. 
Transrectal ultrasound (TRUS) is the most commonly used technique for prostate imaging. TRUS is 
used in estimating the volume of the prostate gland in PSA screening, and is often used in planning 
and guiding needle biopsies [15]. TRUS is often chosen due its inexpensive cost, ease of use, porta-
bility, and real-time nature. However, it does have several disadvantages, including low contrast and 
a low signal-to-noise ratio (SNR) [16]. As a result, it can be difficult to accurately detect and locate 
cancerous cells using TRUS images. Traditional CT imaging modality is widely used for post-ther-
apy evaluation by physicians to assess the effectiveness of treatment [15]. However, it uses radiation 
and has poor soft-tissue contrast resolution, which does not allow precise distinction of the internal 
or external anatomy of the prostate. As an alternative for ultrasound and CT, MRI techniques are 
becoming increasingly attractive as new diagnostic tools for prostate cancer. Over the past years, 
these MRI-based techniques have shown varying degrees of success for improved visualization and 
localization of prostate cancer [17–30]. The key advantage of MRI is that it provides higher contrast 
of soft tissues, which allows for better detection of cancerous tissues. In addition to anatomical 
information, MRI can provide valuable functional information about the tissue by using functional 
acquisition techniques, such as MR spectroscopy (MRS), dynamic contrast-enhanced (DCE)-MRI, 
and diffusion-weighted imaging (DWI) [27].

In this chapter, the focus is on using DCE-MRI to develop a computer-aided diagnostic (CAD) 
system for early detection of prostate cancer. The lack of ionizing radiation, increased spatial resolu-
tion, and the ability to provide both anatomical and functional information are the key motivations 
for using DCE-MRI. In general, early diagnosis of prostate cancer using DCE-MRI requires inter-
mediate image-processing steps, such as prostate registration, segmentation, and classification. The 
next sections introduce the related work on prostate segmentation and registration, as well as the 
state-of-the-art CAD systems for early detection of prostate cancer.

RELATED WORK IN PROSTATE SEGMENTATION AND REGISTRATION

Prostate segmentation, that is, the delineation of prostate borders from the surrounding tissues, is 
a basic step in any noninvasive CAD system for early detection of prostate cancer. However, accu-
rate delineation of prostate borders in MR images is a challenge due to large variations of prostate 
shapes within a specific time series as well as across subjects; the lack of strong edges and dif-
fused prostate boundaries; and the similar intensity profile of the prostate and surrounding tissues. 
Although manual outlining of the prostate border enables the prostate volume to be determined, 
it is time consuming and observer dependent. Moreover, traditional edge detection methods [31] 
are unable to extract the correct boundaries of the prostate since the gray-level distributions of the 
prostate and the surrounding organs are hardly distinguishable. To overcome this limitation, most 
successful known approaches have addressed the segmentation challenges by incorporating the 
prostate appearances and shapes into their segmentation techniques.

In particular, an automated framework by Allen et al. [32] was proposed for 3D prostate segmenta-
tion that consists of two steps. First, voxel classification is performed based on Gaussian probabilities 
of gray level. Then, a statistical shape model is used to segment the prostate region. A hybrid 2D/3D 
active shape model (ASM)-based methodology for global optimal segmentation of the 3D MRI pros-
tate data was proposed by Zhu et al. [33]. Iterative segmentation was performed by a 2D ASM search 
on each slice, then the final surface is reconstructed from the 2D search results and updated by 
re-estimating the parameters of the 3D probabilistic shape model. Klein et al. [34,35] presented an 
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atlas-based segmentation approach that utilized a localized version of mutual information (MI) to 
extract the prostate from MR images. The segmentation of the prostate is obtained as the average of 
the best-matched registered atlas set to the test image (image to be segmented). Flores-Tapia et al. 
[36] proposed a semi-automated edge detection technique for MRI prostate segmentation. In their 
framework, the prostate borders were detected by tracing four manually selected reference points on 
the edge of the prostate using a static wavelet transform [37] to locate the prostate edges. Toth et al. 
[38] presented an algorithm for the automatic segmentation of the prostate in multimodal MRI. Their 
algorithm starts by isolating the region of interest (ROI) from MRS data. Then, an ASM within the 
ROI is used to obtain the final segmentation. A semi-automated approach by Vikal et al. [39] used a 
priori knowledge of prostate shape to detect the contour in each slice and then refined them to form 
a 3D prostate surface. An unsupervised segmentation method was proposed by Liu et al. [40] for the 
segmentation of MR prostate images. A level set deformable model was employed and was guided 
by an elliptical prostate shape prior and intensity gradient was employed to refine the initial results 
obtained by Otsu thresholding [41]. A maximum a posteriori (MAP)-based framework was proposed 
by Makni et al. [42] to perform automated 3D MRI prostate segmentation. Their framework com-
bined gray level, contextual information regarding voxels’ neighborhoods using Markov random field 
(MRF), and statistical shape information to find optimum segmentation based on Bayesian a pos-
teriori classification, estimated with the iterative conditional mode (ICM) algorithm. Liu et al. [43] 
proposed an automated approach that utilized fuzzy MRF modeling for prostate segmentation from 
multiparametric MRI. Their framework exploited T2-weighted image intensities, pharmacokinetic 
(PK) parameter kep, and apparent diffusion coefficient (ADC) values in a Bayesian approach to label 
prostate pixels as cancerous or noncancerous. The labeled pixels are then clustered using the k-means 
algorithm. The system had a specificity of 89.58%, sensitivity of 87.50%, accuracy of 89.38%, and a 
Dice similarity coefficient (DSC) of 62.2%. A similar approach was developed by Artan et al. [44] 
and located cancerous regions using cost-sensitive support vector machine (SVM). Prostate segmen-
tation was performed using a conditional random field and the same three features in Liu et al. [43] 
were utilized for classification. The DSC for prostate localization and segmentation was 0.46 ± 0.26, 
and the area under the receiver operator characteristic (ROC) curves ( )Az  of the classification was 
0.79 ± 0.12. Ozer et al. [45] also developed a technique that directly segmented prostate cancers using 
the same three features in Liu et al. and Artan et al. [43,44]. Both the SVM and relevance vector 
machine (RVM) [46] classifiers were used and the system showed a specificity of 0.78 and a sensitiv-
ity of 0.74 for RVM and 0.74 and 0.79 for SVM. Gao et al. [47] proposed a shape-based technique that 
utilized point cloud registration of the MR images before segmenting the prostate. The final prostate 
border is obtained by minimizing a cost functional that incorporated both the local image statistics as 
well as the learned shape prior. Martin et al. [48] developed an atlas-based approach for segmenting 
the prostate from 3D MR images by mapping a probabilistic anatomical atlas to the test image. The 
resulting map is used to constrain a deformable model-based segmentation framework. Firjani et al. 
[49] proposed a MAP-based framework that combines a graph-cut approach and three image features 
(gray-level intensities, spatial interactions between the prostate pixels, and a prior shape model) for 
2D DCE-MRI prostate segmentation. Their method was later extended in Firjani et al. [50] to allow 
for 3D segmentation from DCE-MRI volumes. It utilized both a 3D MRF to model the spatial inter-
action between the prostate voxels and a 3D shape prior. Recently, Dowling et al. [51] proposed an 
automated framework that combined dynamic multi-atlas label fusion methods. They employed the 
diffeomorphic demons method for the nonrigid registration using the selective and iterative method 
for performance level estimation (SIMPLE) technique [52]. In their framework, a pre-processing step 
for bias field correction, histogram equalization, and anisotropic diffusion smoothing was employed. 
Ghose et al. [53] proposed a probabilistic graph-cut-based framework for prostate segmentation based 
on the fusion of the posterior probabilities determined with a probabilistic atlas and a supervised 
random forest learning framework. An automated technique that first applied global registration to 
the prostate MRI data followed by an active appearance model (AAM)-based segmentation of the 
prostate tissue was proposed by Ghose et al. [54].
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In summary, a tremendous number of studies have been developed for the segmentation and reg-
istration of prostate MRI data. However, in most of these approaches the segmentation and registra-
tion reliability is not very high due to the following reasons: (i) parametric shape models fail in the 
presence of large gray-level variability across subjects and time; (ii) edge detection methods are not 
suitable for discontinued objects; (iii) deformable models tend to fail in the case of excessive noise, 
poor image resolution, diffused boundaries, or occluded objects if they do not incorporate a priori 
models (e.g., shape and appearance). In addition, most of the motion correction models account only 
for the global motion and do not take into account the local motion of the prostate due to transmitted 
respiratory and peristaltic effects. Furthermore, the existing local motion correction methods are 
intensity-based techniques, which are prone to nonlinear intensity variations over the time series 
and perform poorly in pre-contrast images. Also, local motion correction methods register the origi-
nal gray-level data without any prior segmentation; therefore, they do not guarantee voxel-on-voxel 
matches of the registered perfusion data.

RELATED WORK ON CAD SYSTEMS FOR PROSTATE CANCER

The development of CAD systems for detecting prostate cancer using MR image modalities is 
an ongoing area of research. Current medical studies suggest that T2-weighted MRI and DCE-
MRI hold promise for improving prostate cancer detection, thereby reducing the need for prostate 
biopsy [18,26,55–67]. In this section, the state-of-the-art CAD systems developed for prostate can-
cer detection will be discussed.

To the best of our knowledge, the first semi-automated computerized MRI-based CAD system 
for prostate cancer diagnosis was developed by Chan et al. [55]. In their study, multimodal MRI 
(T2-weighted, T2-mapping, and line scan diffusion imaging) were used to estimate malignancy 
likelihood in the PZ of the prostate. Both statistical maps and textural features were obtained 
and a SVM and linear discriminant analysis (LDA) classifiers were employed for the classifica-
tion. Their systems resulted in an Az of 0.761 ±  0.043 and 0.839 ±  0.064, for SVM and LDA, 
respectively. Madabhushi et al. [56] proposed an automated CAD system for detecting prostatic 
adenocarcinoma from MR prostate images. In their method, multiple image features, including 
gray-level statistics (intensity values, mean, and standard deviation), intensity gradient, and Gabor 
filter features, were used for classifying groups of pixels as tumors. A kn-nearest neighbor classifier 
and Bayesian conditional densities were used for classification, and the system achieved an Az of 
0.957. A study by Engelbrecht et al. [57] evaluated which MRI parameters would result in optimal 
discrimination of prostatic carcinoma from normal PZ and CZ of the prostate. Using the ROC 
curves, their study concluded that the relative peak enhancement was the most accurate perfusion 
parameter for cancer detection in the PZ and CZ of the gland. A semi-automated CAD system by 
Kim et al. [58] demonstrated that parametric imaging of the wash-in rate was more accurate for 
the detection of prostate cancer in the PZ than was T2-weighted imaging alone. However, they 
also observed significant overlap between the wash-in rate for cancer and normal tissue in the TZ. 
Fütterer et al. [26] developed a CAD system to compare the accuracies of T2-weighted MRI, DCE-
MRI, and MRS imaging for prostate cancer localization. The results showed higher accuracy in 
DCE-MRI than were achieved with T2-weighted MRI in prostate cancer localization. A similar 
study was conducted by Rouvière et al. [59] for the detection of postradiotherapy recurrence of 
prostate cancer. Their study also concluded that DCE-MRI possesses the ability to depict the intra-
prostatic distribution of recurrent cancer after therapy more accurately and with less inter-observer 
variability than T2-weighted MRI. Puech et  al. [18,60] developed a semi-automated dynamic 
MRI-based CAD system for the detection of prostate cancer. Candidate lesion ROIs were selected 
either manually or by using a region growing technique initiated by a user-selected seed point. 
Lesions are classified as benign, malignant, or indeterminate based on the analysis of the median 
wash-in and washout values. Their CAD system demonstrated a sensitivity and specificity of 100% 
and 45% for the PZ, and sensitivity and specificity of 100% and 40% for the TZ. Ocak et al. [61] 
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developed a CAD system using PK analysis for prostate cancer diagnostics in patients with biopsy-
proven lesions. In their framework, four PK parameters (K trans, kep, ve, and the area under the gado-
linium concentration curve) were determined and compared for cancer, inflammation, and healthy 
peripheral. Their results showed improvement in prostate cancer specificity using the K trans and kep 
parameters over that obtained using conventional T2-weighted MRI. An automated DCE-MRI 
CAD system for prostate cancer detection was proposed by Viswanath et al. [62]. Prostate borders 
were segmented using an ASM, and a nonrigid registration scheme (affine and thin plate spline) 
was employed to map the whole mount histological sections onto corresponding 2D DCE-MRI. 
In order to classify prostate tissue, a local linear embedding approach [68] was used to create a 
feature vector using local neighborhood intensities. Then, a k-means clustering approach was used 
for the classification and the system achieved an accuracy of about 77%. Their framework was later 
extended in Viswanath et al. [63] by combining T2-weighted features and DCE-MRI functional 
features. The system validation showed that the integration of both modalities (Az of 0.815) has 
a better performance of either individual modalities (0.704 for T2-weighted MRI and 0.682 for 
DCE-MRI). A semi-automated framework by Vos et al. [64] classified prostate lesions using quan-
titative PK maps and T1 estimates. PK features were extracted from a user-defined ROI around 
the prostate and a SVM was used to estimate the likelihood of malignancy. Based on the ROC 
analysis, the reported results showed that the system had an accuracy of 83% in the classification of 
the ROIs with abnormal enhancement patterns in the PZ. Ampeliotis et al. [65] proposed a semi-
automated multiparametric CAD system that used T2-weighted and DCE-MRI. The T2-weighted 
pixel intensities and the four low-frequency coefficients of the discrete cosine transform were used 
as features and probabilistic neural networks were employed as the classifier. Based on the ROC 
analysis (Az of 0.898), their study concluded that the fused T2-weighted and dynamic MRI fea-
tures outperform that of either modality’s features alone. A similar CAD system was proposed by 
Litjens et al. [66] that employed an ASM to segment the prostate. In order to classify the segmented 
prostate voxels, the ADC, K trans, and kep parameters were estimated and a SVM classifier with a 
radial basis function kernel was used. The validation results showed a sensitivity of 74.7% and 
83.4% with seven and nine false positives (FPs) per patient, respectively. Vos et al. [67] utilized an 
automated CAD system for the detection of prostate cancer. Just as in Litjens et al. [66], the pros-
tate was segmented using an ASM-based technique. Then, multiple ROIs were located within the 
segmented prostate using peak and mean neighborhood intensity and ADC values. These values 
and the differences between the peak and the mean were again used as features for ROI classifica-
tion. In addition, the 25 percentile T2, 25 percentile ADC, 25 percentile washout, 50 percentile 
T1, 75 percentile K trans, and 75 percentile ve were used as features. The resulting feature vector was 
classified using an LDA classifier. This system had an Az of 0.83 ± 0.20. A maximum Az of 0.88 
was reported for high-grade tumors, but the system had difficulty classifying lower-grade tumors, 
achieving a maximum Az of 0.74. Another semi-automated multiparametric system by Peng et al. 
[69] utilized T2-weighted, DCE-MRI, and DWI. Candidate features, including the T2-weighted 
intensity skew, the K trans, and the average and 10th percentile ADC, were calculated from a manu-
ally selected ROI. Then, an LDA classifier was used to differentiate prostate cancer from normal 
tissue in those ROIs. Their CAD system concluded that the best diagnostic performance (Az of 
0.95 ± 0.02, sensitivity [SEN] of 0.82, and specificity [SPE] of 0.953) is obtained by combining the 
10th percentile ADC, average ADC, and T2-weighted intensity skewness features.

In summary, developing noninvasive CAD systems for the detection and diagnosis of prostate 
cancer is an area of research interest. Current CAD systems focus mainly on the initial voxel clas-
sification stage by obtaining likelihood maps that combine information from MR images using 
mathematical descriptors. State-of-the art studies showed that voxel basis discrimination between 
benign and malignant tissue is feasible with good performances. However, the majority of these 
studies were performed by radiologists who selected an ROI (small window) around the pros-
tate and followed signal changes within these ROIs. In addition, the final diagnosis and patient 
management is left to the radiologist. Unfortunately, such approaches not only require manual 
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interaction of the operators, but also ROI selection biases the final decision and brings up the same 
issue of over- or underestimating the problem in the entire gland, just as with biopsy. Moreover, 
manual ROI selection and function curve generation from these ROIs assume that the prostates 
(prostate contours) remain exactly the same from scan to scan. Nonetheless, prostate contours may 
not always exactly match due to patient movement or breathing effects; therefore, motion correc-
tion techniques should be applied first before ROI selection. Also, to automate the algorithm and 
to cancel ROI dependency, segmentation approaches that can separate the prostate from the sur-
rounding structures are needed.

To overcome the limitations of the existing work on prostate cancer diagnosis using MR 
images, a novel noninvasive DCE-MRI-based framework (Figure  12.3) for early diagnosis of 
prostate cancer is proposed. The proposed framework performs sequentially the following pro-
cessing steps. First, the prostate is segmented from the surrounding anatomical tissues based on a 
MAP estimate of a new likelihood function. To handle the object inhomogeneities and variability 
and overcome image noise, the proposed likelihood function accounts for the visual appearances 
of the prostate and background, 3D spatial interaction between the prostate voxels, and a learned 
3D shape model. Second, in order to account for any local prostate deformations that could occur 
during the scanning process, a nonrigid registration algorithm is employed, which is based on 
deforming a target prostate object over evolving iso-contours to match a reference object. The 
correspondences between the target and reference objects are found by the solution of the Laplace 
equation. In the third step, agent kinetic curves that show the contrast agent (CA) propagation into 
the tissue are obtained, and then used to collect two features to distinguish between malignant 
and benign detected tumors using a kn-nearest neighbor classifier. Finally, parametric map dis-
plays that illustrate the propagation of the CA into the prostate tissue are constructed for visual 
assessment and characterization of the physiological data. Details of the proposed framework are 
described in the following sections.
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FIGURE 12.3 The proposed CAD system for early detection of prostate cancer.
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PROSTATE SEGMENTATION

The segmentation of the prostate from DCE-MRI is a challenge due to the anatomical complexity 
of the prostate and the undistinguishable gray-level distribution of the prostate and surrounding 
organs. To account for these challenges, a MAP-based approach based on a learned shape model 
and an identifiable joint Markov-Gibbs random field (MGRF) model (Figure 12.4) is proposed. The 
proposed MGRF image model relates the joint probability of an image and its object- background 
region segmentation map, to geometric structure and to the energy of repeated patterns within the 
image [70]. The basic theory behind such models is that they assume that the signals associated with 
each voxel depend on the signals of the neighboring voxel, and thus explicitly take into account their 
spatial interaction and other features such as shape.

The input 3D DCE-MRI data g and its region map m are described by the joint MGRF model 
in Equation 12.1. The Bayesian MAP estimate of the map, given g, m g m

m

* = ( , )arg max L  maximize 
the log-likelihood function: 

 L P P( , ) = ( ( )) ( ( ))g m g | m mlog log+  (12.1)

where P( | )g m  is a conditional distribution of the images given the map m and P P P( ) = ( ) ( )m m mVsp  
is an unconditional probability distribution of maps. Here, Psp( )m  denotes the prostate shape prior, 
and PV m( ) is a Gibbs probability distribution with potentials V, which specifies a MGRF model of 
spatially homogeneous maps m.

The specific visual appearance of the prostate in each dataset to be segmented is taken into 
account by modeling the marginal gray-level distribution with the LCDG model [71]. To overcome 
noise effect and to ensure the homogeneity of the segmentation, the spatial voxel interactions 
between the region labels of a given map m are also taken into account using the pairwise MGRF 
spatial model as described in this section and the nearest voxel 26-neighbors shown in Figure 12.5. 
In addition to voxelwise image intensities and their pairwise spatial interaction, additional con-
straints based on the expected shape of the prostate are introduced by co-aligning each given 
DCE-MRI data to a training database and using probabilistic 3D prostate shape model Psp( )m , see 
Figure 12.6.

FIGURE 12.4 Illustration of the joint Markov-Gibbs random field (MGRF) image model of the prostate 
DCE-MRI.
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To perform initial prostate segmentation, a given 3D DCE-MRI is aligned to one of the train-
ing data. The shape model provides the voxelwise object and background probabilities being used, 
together with the conditional image intensity model P( | )g m , to build an initial region map. The 
final Bayesian segmentation is performed using the identified joint MGRF model of the DCE-MRI 
data and its region maps. In total, the proposed prostate segmentation approach involves the steps 
summarized in Algorithm 12.1.

FIGURE 12.5 Three-dimensional second-order MGRF neighborhood system. Note that the reference voxel 
is shown in red and d  represents the absolute distance between two voxels in the same and adjacent MRI 
slices, or cross-sections.

FIGURE 12.6 Gray-coded (a) and color-coded (b) axial view of the prostate shape prior.
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Algorithm 12.1 Prostate Segmentation Approach

Input: 3D MRI prostate data g to be segmented.
Output: segmented prostate border (the final estimate m).

Training Phase:

 1. Co-alignment of the 3D DCE-MRI training sets using a 3D affine registration in a way 
that maximizes their MI [72].

 2. Manual delineation of the prostate borders from the co-aligned data.
 3. Estimation of the voxelwise probabilities by counting how many times each voxel 

( , , )x y z  was segmented as the prostate.

Testing Phase:

 1. Perform a 3D affine alignment of a given MRI to an arbitrary prototype prostate from 
the training set using MI [72] as a matching metric.

 2. Estimate the conditional intensity model P( )g | m  by identifying the bimodal LCDG.
 3. Use the intensity model found in Step 2 and the learned probabilistic shape model to 

perform an initial segmentation (region map m) of the prostate.
 4. Use m to estimate the potential for the Potts MGRF model and to identify the MGRF 

model P( )m  of region maps.
 5. Improve m using voxelwise stochastic relaxation (ICM [73]) through successive itera-

tions to maximize Equation 12.1 until the log-likelihood remains almost the same for 
two successive iterations.

 6. Update the Shape Prior by adding the current segmented 3D prostate data to the prior 
calculated shape model.

NONRIGID REGISTRATION

Due to patient breathing and local movement, accurate registration is a main issue in DCE-MRI 
time series. After affine registration and prostate segmentation, the Laplace-based nonrigid reg-
istration is used for local motion correction of the prostate over the time frame of image acquisi-
tion. For completeness, the main steps of the Laplace-based nonrigid registration is summarized in 
Figure 12.7 as follows: 

 1. Generation of the distance maps inside the prostate regions (Figure 12.7 a,b).
 2. Generation of the iso-contours using distance maps in Step 1 (Figure 12.7 c,d).
 3. Solution of the Laplace equation between respective reference and target iso-contours to 

co-allocate the corresponding points.

PERFUSION CHARACTERIZATION AND TUMOR BOUNDARY DETERMINATION

After the nonrigid alignment, the time-intensity or agent kinetic curves are constructed by calcu-
lating the average intensities of prostate regions for each time sequence. These curves show the 
response of the prostate tissue to the transient of the CA perfusing into each image section (see 
Figure  12.8). To characterize the physiological data, parametric map displays are constructed 
to illustrate the propagation of the CA into the prostate tissue. To construct the initial color 
maps, the changes in image signals ∆x y z, ,   due to the CA transient are estimated (see Figure 12.8) 
from the constructed kinetic curves as the difference between the signals of image sequences at 
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FIGURE  12.7 Generation of the iso-contours: the reference and target distance maps (a, b), and their 
iso-contours (c, d).

FIGURE 12.8 Estimating the changes in image signals ∆  from the kinetic curve as the difference between 
the peak ( )Ip  and initial ( )I0  signals of the image sequences.
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peak time ( )Tp  and initial time ( )T0 . To preserve continuity (remove inconsistencies), the  initial 
estimated ∆x y z, ,   values are considered as samples from a generalized Gauss-Markov random 
field (GGMRF) image model [74] of measurements with the 26-voxel neighborhood shown in 
Figure 12.5. Continuity of the constructed 3D volume (see Figure 12.9) is amplified by using their 
MAP estimates [74]: 

 ∆ ∆ ∆ ∆ ∆
∆

� � �
�

P
P

P P

P P

P P P P= {| | | | },arg min − + −
′∈

′ ′∑a a b bα Γχ
ν

 (12.2)

where ∆x y z, ,   and ∆ x y z, ,   denote the original values and their expected estimates at the observed 3D 
location, P = ( , , )x y z , νP is the neighborhood system (Figure 12.5), Γ P P, ′ is the GGMRF potential, and 
α and χ  are scaling factors. The parameter b∈[1.01,2.0] controls the smoothing level (e.g., smooth, 
b = 2, vs. relatively abrupt edges, b = 1.01). The parameter a∈{1,2} determines the Gaussian, a = 2, 
or Laplace, a = 1, prior distribution of the estimator. Then, the color maps are generated based on the 
final estimated ∆  (see Figure 12.13).

The final step after the 3D GGMRF smoothing is the delineation of the detected tumor bound-
ary, which is important to determine the cancer stage in case of malignancy. To achieve this, the 
level set deformable model [75] is applied again. The evolution of the level set is controlled by a sto-
chastic speed function that accounts for the perfusion information and spatial interactions between 
the prostate voxels.

EXPERIMENTAL RESULTS

PATIENTS AND DATA ACQUISITION

The performance of the proposed framework has been evaluated by applying it on DCE-MRI pros-
tate data that has been collected from 30 patients. These patients had biopsy-proven prostate cancer. 
DCE-MRI was obtained at 1.5 T using a gradient-echo T2 imaging (SIGNA Horizon, General 
Electric Medical Systems, Milwaukee, WI) using an additional pelvic coil. Images were taken at 
a 7 mm thickness with an interslice gap of 0.5 mm; TR was 50 msec; TE was minimum; flip angle 
at 60°; band width was 31.25 kilohertz (kHz); field-of-view (FOV) was 28 cm; and the number of 

FIGURE 12.9 Enhanced perfusion estimation and continuity analysis using the 3D GGMRF image model.
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slices was 7. The DCE-MRI process started with a series of MRI scans that were used to establish 
a baseline in image intensity. These scans were performed without the administration of the CA so 
that the tissue’s non-enhanced image intensity could be established. In the next stage, 10 cubic cen-
timeter (cc) of gadoteric acid (Dotarem 0.5 millimole/milliliter [mmol/mL]; Guerbet, France) was 
administered intravenously at a rate of 3 mL/sec. At this point, a series of MRI scans was performed 
every 10 sec for approximately 3 min, and every series contained 7 slices. Note that all the subjects 
were diagnosed using a biopsy (ground truth).

SEGMENTATION RESULTS

The proposed segmentation approach has been tested on DCE-MRI sequences for 30 independent 
subjects. Figure 12.10 shows some segmentation results of the prostate region at selected image sec-
tions for different subjects and their associated FP and false negative (FN) segmentation errors, with 
respect to the ground truth segmentation. The ground truths were obtained by manual delineation of 
the prostate borders by an MR imaging expert. The positive predictive value (PPV), SEN, and DSC 
statistics for the proposed approach are summarized in Table 12.1.

To highlight the advantage of the proposed segmentation approach, all time series images have 
been segmented using the shape-based (SB) approach proposed by Tsai et al. [76]. The comparative 
results for a few of them are shown in Figure 12.11 and Table 12.2 summarizes the segmentation 

FIGURE 12.10 Sample segmentation results of the proposed segmentation approach for different subjects at 
different cross-sections. The false negative (FN) and false positive (FP) error referenced to the ground truth 
G are shown in yellow and red, respectively.
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FIGURE 12.11 Comparative segmentation results: (a) DCE-MRI of the prostate, (b) proposed segmentation, 
and (c) segmentation with [76]. The false negative (FN) and false positive (FP) errors referenced to the ground 
truth G are shown in yellow and red, respectively.

TABLE 12.1
Error Statistics of the Proposed Segmentation Approach

Performance Metric

PPV SEN DSC

Mean ±  SD 0.982 ±  0.004 0.846 ±  0.004 0.923 ±  0.004

Abbreviation: SD: standard deviation.
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error statistics of the proposed approach and the SB approach with respect to ground truth. The dif-
ferences between the mean errors of the proposed approach and the SB approach are shown to be 
statistically significant by the unpaired t-test (the two-tailed value P is less than 0.0001).

DIAGNOSTIC RESULTS

The ultimate goal of the proposed framework is to successfully distinguish between malignant and 
benign detected tumors by constructing the time-intensity curves from the DCE-MRI sequences. 
The curves show the response of the prostate tissues as the CA perfuses. The malignant subjects 
show an abrupt increase of the signal intensity and the benign subjects show a delay in reaching 
their peak (see Figure 12.12). From these curves, it is conclude that the peak signal value and the 
wash-in slope are the two major features that can be extracted for the classification of prostate 
cancer. To distinguish between benign and malignant cases, a kn-nearest neighbor classifier is used 
to learn the statistical characteristics of both benign and malignant cases from the time-intensity 
curves of the training sets. Nine datasets were used for the training and the other 21 datasets were 
used for testing. The diagnostic accuracy of the kn classifier was 100% for all training and testing 
datasets.

TABLE 12.2
Comparative Segmentation Accuracies of the Proposed Prostate 
Segmentation Against the Shape-Based (SB) Approach [76] in 
Comparison to the Expert’s Ground Truth

Segmentation Technique

Proposed Approach SB Approach [76]

Mean ±  SD (%) 0.53 ±  0.33 5.91 ±  4.44

Two-tailed P-value 0.0001

Abbreviation: SD: standard deviation.

FIGURE 12.12 Normalized signal intensity, averaged over the entire prostate, with respect to the timing of 
contrast agent delivery for selected malignant (red) and benign (blue) subject.
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Following the classification, a visual assessment is performed using color-coded maps. 
Figure 12.13 presents the color-coded maps over all image sections before and after applying the 3D 
GGMRF smoothing for three independent subjects. Figure 12.14 show two examples of the tumor 
contours determination for one benign and one malignant subject.

CONCLUSIONS

In this chapter, a noninvasive framework for detecting prostate cancer using DCE-MRI is pro-
posed. The framework includes delineation of the prostate region, local motion correction, and 
kn- classification. The proposed framework has the documented ability to reliably distinguish benign 
from malignant prostate cancer, in a biopsy proven preliminary cohort of 30 patients. To extract the 
prostate region, a new 3D approach that is based on a MAP estimate of a new log-likelihood func-
tion that accounts for a priori shape, the spatial interactions between the prostate voxels, and the 
current appearance of the prostate tissues and its background is proposed. Following segmentation, 
a nonrigid registration approach is introduced. The proposed approach deforms the prostate object 
on iso-contours instead of a square lattice, which provides more degrees of freedom to obtain accu-
rate deformation. The agent kinetic curves of the co-aligned prostate regions are constructed and 
the two features extracted from these curves undergo kn-classification. Applications of the proposed 
framework yield promising results that would, in the near future, represent a supplement of the cur-
rent technologies to determine the type of prostate cancer.

FIGURE 12.13 Color-coded maps for three subjects before and after the 3D GGMRF smoothing using α = 1, 
χ = 5, b =1.01, a = 2, and Γ P P, = 2′ . The red and blue ends of the color scale relate to the maximum and mini-
mum changes, respectively.
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This work could also be applied to various other applications in medical imaging, such as the 
kidney, the heart, the lung, and the retina.

One application is renal transplant functional assessment. Chronic kidney disease (CKD) affects 
about 26 million people in the United States with 17,000 transplants being performed each year. In 
renal transplant patients, acute rejection is the leading cause of renal dysfunction. Given the limited 
number of donors, routine clinical post-transplantation evaluation is of immense importance to 
help clinicians initiate timely interventions with appropriate treatment and thus prevent graft loss. 

FIGURE 12.14 Color-coded maps of local tumor progression overlaid on anatomic DCE-MRI data for one 
benign (first column) and one malignant (second column) subject. The determined tumor contours are shown 
in green.
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Accurate assessment of renal transplant function is critically important for graft survival. Although 
transplantation can improve a patient wellbeing, there is a potential post-transplantation risk of 
kidney dysfunction that, if not treated in a timely manner, can lead to the loss of the entire graft, 
and even patient death. Thus, accurate assessment of renal transplant function is crucial for the 
identification of proper treatment. In recent years, an increased area of research has been dedicated 
to developing noninvasive image-based CAD systems for the assessment of renal transplant func-
tion utilizing different image modalities (e.g., ultrasound, CT, MRI, etc.). In particular, dynamic 
and diffusion MRI-based systems have been clinically used to assess transplanted kidneys with the 
advantage of providing information on each kidney separately. A variety of studies can be consulted 
for more details about renal transplant functional assessment [77–101].

The heart is also an important application for this work. The clinical assessment of myocardial 
perfusion plays a major role in the diagnosis, management, and prognosis of ischemic heart disease 
patients. Thus, there have been ongoing efforts to develop automated systems for accurate analysis 
of myocardial perfusion using first-pass images [102–118].

Another application for this work could be the detection of retinal abnormalities. The majority of 
ophthalmologists depend on visual interpretation for the identification of diseases types. However, 
inaccurate diagnosis will affect the treatment procedure which may lead to fatal results. Hence, 
there is a crucial need for computer automated diagnosis systems that yield highly accurate results. 
Optical coherence tomography (OCT) has become a powerful modality for noninvasive diagnosis 
of various retinal abnormalities such as glaucoma, diabetic macular edema, and macular degenera-
tion. The problem with diabetic retinopathy (DR) is that the patient is not aware of the disease until 
the changes in the retina have progressed to a level at which treatment tends to be less effective. 
Therefore, automated early detection could limit the severity of the disease and assist ophthalmolo-
gists in investigating and treating it more efficiently [119,120].

Abnormalities of the lung could be another promising area of research and a related application 
for this work. Radiation-induced lung injury is the main side effect of radiation therapy for lung 
cancer patients. Although higher radiation doses increase the radiation therapy effectiveness for 
tumor control, this can lead to lung injury as a greater quantity of normal lung tissues is included 
in the treated area. Almost a third of patients who undergo radiation therapy develop lung injury 
following radiation treatment. The severity of radiation-induced lung injury ranges from ground-
glass opacities and consolidation at the early phase to fibrosis and traction bronchiectasis in the late 
phase. Early detection of lung injury will thus help to improve treatment management [121–161].

This work can also be applied to other brain abnormalities, such as dyslexia and autism. Dyslexia 
is one of the most complicated developmental brain disorders that affect children’s learning abili-
ties. Dyslexia leads to the failure to develop age-appropriate reading skills in spite of a normal 
intelligence level and adequate reading instructions. Neuropathological studies have revealed an 
abnormal anatomy of some structures, such as the corpus callosum in dyslexic brains. There has 
been a lot of work in the literature that aims at developing CAD systems for diagnosing this disor-
der, along with other brain disorders [71,162–183].

This work could also be applied for the extraction of blood vessels from phase contrast (PC) 
magnetic resonance angiography (MRA). Accurate cerebrovascular segmentation using noninva-
sive MRA is crucial for the early diagnosis and timely treatment of intracranial vascular diseases 
[166,167,184,185].
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INTRODUCTION

Prostate cancer is one of the leading causes of cancer-related deaths in American men. Fortunately, 
the survival rate is relatively high for patients who are diagnosed with the disease in its early stages. 
Currently, in vivo imaging modalities have a major role in both the diagnosis and treatment of 
prostate cancer. The most common types of imaging modalities used in clinical diagnosis and 
treatment of prostate cancer are ultrasound and magnetic resonance imaging (MRI) [1–6]. The 
main strength of MRI over ultrasound is that MRI provides improved soft tissue contrast. Accurate 
prostate localization is an important step in diagnosis and treatment, such as developing computer-
aided diagnostic (CAD) systems, guiding biopsy [7], and radiotherapy [8]. This accurate segmenta-
tion of the prostate can be done in a manual or an automated manner. Manual segmentation of the 
prostate is time-consuming, tiresome, and suffers from intra- and inter-observer variability [9]. As 
a result, developing automated and reliable prostate segmentation techniques from MRI is a clini-
cally required task. The challenges related to this task include the following: the border between the 
prostate and its surrounding background is generally weak, the intensity distributions of the voxels 
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around the border of the prostate vary across different subjects, and the shape of the prostate differs 
both across the different slices of the same subject and across different subjects [10].

Several methods have been developed for segmenting the prostate from a variety of MRI modal-
ities. Two deformable model (DM)-based methods have been widely used: active shape models 
(ASMs) [11] and level-sets [12]. For instance, Allen et al. [13] developed a DM-based technique for 
segmenting the prostate from three dimensional (3D) T2-MRI. In their technique, the evolution 
of the DM was guided by voxel intensity and a statistical shape model. Zhu et al. [14] developed a 
2D/3D ASM-based technique for prostate segmentation from 3D MRI. Their idea was that com-
bining 2D and 3D models can lead to a global optimum delineation of the prostate rather than a 
local optimum delineation at each individual slice. Moreover, Ghose et al. [15] proposed an active 
appearance model (AAM)-based methodology that utilized multiple statistical shape and intensity 
models to segment the prostate in 2D and a global registration scheme to impose shape constraint 
in 3D. In addition, Martin et al. [16] proposed an automated approach for prostate segmentation 
from 3D MRI that used an anatomical atlas to generate an initial probabilistic segmentation. This 
probabilistic segmentation introduced a spatial constraint to control the evolution of a deformable 
model for accurate segmentation. Gao et al. [17] proposed a global affine registration to align the 
MR images before segmenting the prostate using a level-set controlled by a learned shape prior and 
local image statistics. Also, Yang et al. [10] proposed a semi-automated approach for prostate seg-
mentation from MRI using level-sets. In their approach, the evolution of the level-set was preceded 
by a background simplification process that involved a prostate landmark detection and a texture 
constraint. The formulation of the level-set was expanded with shape prior for accurate segmenta-
tion of the prostate border.

Statistical-based techniques have also been used for prostate segmentation from MRI data. For 
instance, Ghose et al. [18] proposed an automated prostate segmentation method from 3D T2-MRI. 
The proposed method first used a probabilistic atlas and a random forest classifier to obtain clas-
sification probabilities of the prostate voxels. The final prostate segmentation was based on energy 
minimization using 3D graph cut. Firjany et al. [19] introduced a Markov random field (MRF) 
image model [20] for segmenting the prostate from 2D dynamic contrast-enhanced (DCE)-MRI. 
Their technique integrated a graph cut approach with a prior shape model of the prostate and the 
visual appearance of the prostate image, modeled using a linear combination of discrete Gaussian 
(LCDG) [21]. Their technique was later extended in other studies [22,23] to allow for 3D prostate 
segmentation from DCE-MRI. Makni et al. [24] developed an automated approach for 3D prostate 
segmentation from MRI. In their approach, intensity levels were modeled using a Gaussian mixture 
and the final prostate segmentation was performed by a Bayesian maximum a posteriori (MAP) [25] 
classifier that used both Markov fields and statistical shape information. A semi-automated method 
for prostate segmentation from MRI was proposed by Tian et al. [26]. The proposed approach inte-
grated 3D graph cut and 3D active contours in an iterative mode for accurate prostate segmentation 
by combining the advantages of both graph cut and active contours. The 3D graph cut was used 
to obtain an initial segmentation of the supervoxels which is smoothed in turn by the 3D active 
contours.

Atlas-based techniques have also been used to delineate the prostate from MRI. The atlas is 
composed of original images and their corresponding manual delineation. It is used as a reference 
to delineate the prostate of new subjects. For example, Klein et al. [27] proposed an automatic 
3D prostate segmentation technique from MRI based on nonrigid registration of each pre-labeled 
atlas image with the target image. Then, the closest atlases to the target image are fused to obtain 
the segmentation of the target images. Another automatic method, presented by Dowling et al. 
[28], used an automated atlas approach to segment the prostate region from 3D MR scans based 
on a selective and iterative method for performance level estimation (SIMPLE)-based registration 
approach [29]. Litjens et al. [30] developed a similar segmentation technique to the one proposed 
in the PROMISE12 challenge [31]. Their technique was multi-atlas-based for prostate segmentation 
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from multiparametric images. However, to obtain the final segmentation, the SIMPLE method was 
used instead in order to fuse labels after the alignment of the different atlases.

Besides the previously mentioned techniques, several other techniques have been proposed for 
prostate segmentation from MR images. For example, multiple edge-detection-based techniques 
have been developed for prostate segmentation. The basic idea of those techniques is to produce a 
set of edges using edge-detection operators. Then, the candidate edges are selected and connected 
to obtain the prostate border. For example, Zwiggelaar et al. [32] proposed a semi-automatic tech-
nique for prostate delineation from MR images. Their technique used the anatomical shape of the 
prostate when represented in a polar transform space. The prostate border was tracked using a non-
maximum suppression method. Another semi-automatic edge-detection technique for MRI prostate 
segmentation was proposed by Flores-Tapia et al. [33]. Their technique exploited the behavioral 
variation between the signal and the noise after applying a wavelet transform [34] to detect the 
prostate boundary. In their semi-automatic method, Vikal et al. [35] exploited shape prior to detect 
the prostate boundary in each slice. Then, a 3D surface was generated after refining the detected 
boundaries. Moreover, random walk classification [36] was utilized to segment the prostate from 
MR images by Khurd et al. [37].

Most of the aforementioned techniques segment prostate from T2-MRI. Currently, diffusion-
weighted (DW)-MRI has emerged as a promising imaging modality for diagnosing prostate cancer 
because of its ability to measure both structural and functional qualities. DW-MRI measures the 
sensitivity of tissues to the water molecule motion by applying pairs of opposing magnetic field 
gradients. Although the resolution of DW-MR images is lower than DCE-MR images, DW-MR 
images have distinct advantages over DCE-MR images as they can be acquired very quickly and 
without injecting a patient with a contrast agent that could be harmful to the patient’s kidneys [38]. 
Specifically for prostate cancer, the apparent diffusion coefficient (ADC), a feature calculated using 
DW-MRI images acquired at different magnetic field strengths (or b-values), has been found capable 
of distinguishing between malignant and benign prostate tissues [39–46]. The reported accuracy of 
DW-MRI for diagnosing prostate cancer is better than T2-MRI and DCE-MRI [47].

As a consequence of the discriminative nature of DW-MRI-based features, prostate segmenta-
tion is an essential step in many DW-MRI-based CAD systems for diagnosing prostate cancer. 
Precise segmentation of the prostate can be challenging because of image noise, intra- and inter-
patient differences, and the similar appearance of the prostate and neighboring tissues, such as 
the bladder. A small number of techniques for prostate localization from DW-MRI have been 
proposed to overcome those challenges. For instance, Firjani et al. [39,48,49] proposed the use of 
a MAP [25] approach that exploited intensity, shape, and spatial features for prostate segmenta-
tion from 3D DW-MRI data. The appearance was modeled using the LCDG model and the used 
spatial model was 3D Markov-Gibbs random field (MGRF). Liu et al. [50] developed a 2D level-set 
guided by intensity and shape information for prostate delineation from DW-MRI. The intensity 
of a pixel was found by taking the average of the pixel’s intensity at a b-value of 0 s/mm2 and the 
ADC value found using b-values of 0 and 100 s/mm2. The shape model of the prostate was esti-
mated by fitting an ellipse to an initial segmentation generated using Otsu intensity thresholding 
[51]. Similarly, Liu et al. [52] developed a 3D level-set method guided by intensity and shape 
information. The intensity of a voxel was the ADC value found using b-values of 0 and 600 s/mm2. 
An initial segmentation was performed using a 3D level-set guided by this intensity information. 
The shape of the prostate was then approximated by fitting an ellipsoid and a series of ellipses to 
the initial segmentation. This intensity and shape information was then used to guide another 3D 
level-set for final segmentation. While these techniques have successfully performed DW-MRI 
prostate segmentation, they can be sensitive to similarities between the intensities of object and 
background voxels. To overcome this challenge, nonnegative matrix factorization (NMF) feature 
fusion is introduced to generate a more robust model for guiding the evolution of a 3D level-set for 
DW-MRI prostate segmentation.
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METHODS

In this chapter, a DW-MRI-based prostate segmentation framework is developed, as shown in 
Figure 13.1. It utilizes an NMF-based feature fusion algorithm that includes three features, which 
are DW-MRI intensities, shape, and spatial interactions between voxels. The features resulted by 
applying NMF-based feature fusion are then used to guide the propagation of a geometric deform-
able model (3D level-set) to delineate the prostate from DW-MRI data. Geometric deformable mod-
els based on level-sets are widely utilized for object segmentation from different medical imaging 
modalities. Level-sets have been successfully applied to delineate several organs in the human body 
(e.g., kidney [53], heart [54], and prostate [17,50,52]).

According to the level-set definition, the propagating surface of the level-set at any time instant 
t is represented by the zero level, φn x y z+ =1 0( , , ) , of an implicit level-set function, that is a distance 
map of the signed minimum Euclidean distance from each voxel to the surface. This formulation 
results in points inside the surface having negative (or positive) values and voxels outside the surface 
having positive (or negative) values, respectively. Mathematically, the evolution of the level-set is 
defined by [12]: 

 φ φ τ φn n n nx y z x y z V x y z x y z+ = − ∇1( , , ) ( , , ) ( , , ) | ( , , ) | (13.1)

where t is the discrete time instant t = nτ taken with a step τ, τ > 0 and ∇ = ∂ ∂ ∂ ∂ ∂ ∂[( / , / , / )]x y z   is the 
differential operator. This evolution is guided by the speed function Vn(x, y, z) [55].

Previous speed functions that utilize image intensities, gradient vector flow, and object edges 
have had difficulty delineating noisy images and those with poor object-background contrast. More 
effective speed functions have been developed by using shape priors to incorporate shape informa-
tion of the object of interest. Nevertheless, this has not completely overcome image inhomogeneities 
(e.g., large image noise and discontinuous object borders). In order to more precisely delineate the 
prostate from DW-MRI data, we introduce a speed function that considers the 3D appearance, shape 
prior, and spatial interactions between voxels of the DW-MRI data. These features are integrated 
using an NMF-based fusion approach to provide the voxelwise guidance of the deformable model.
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FIGURE 13.1 A schematic diagram of the proposed DW-MRI prostate segmentation framework.
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3D APPEARANCE, SHAPE, AND SPATIAL FEATURES

Basic Notation: Let Q = {0, ... , Q − 1 and L = {0, 1} be the set of Q integer gray levels and 
a set of object (1) and background (0) labels, respectively. Also, let a 3D arithmetic lattice 
R = {(x, y, z) : 0 ≤ x ≤ X − 1; 0 ≤ y ≤ Y − 1; 0 ≤ z ≤ Z − 1} support the grayscale DW-MRI 
data g: R → Q and their binary region maps m: R → L. Each voxel (x, y, z) is associated 
with its neighbors, {(x + ξ, y + η, z + ζ): (x + ξ, y + η, z + ζ) ∈ R; (ξ, η, ζ) ∈ N} where N 
is the 26 neighborhood system (Figure 13.2) defined by ξ ∈ {−1, 0, 1}, η ∈ {−1, 0, 1}, and 
ζ ∈ {−1, 0, 1}.

Appearance-Based Shape Model: Most prostates have a similar near-ellipsoidal shape 
[56]. As a consequence, the incorporation of a shape prior can significantly enhance the 
accuracy of prostate segmentation. In the developed framework, an appearance-based 
shape model is constructed to take into account not only voxels’ intensities, but also their 
spatial interactions. A shape database was created from all available subjects except the 
one to be segmented (leave-one-out methodology). So in each experiment, the shape 
prior consists a total of 52 subjects. The training data sets were co-aligned to be in 
the reference domain using a 3D affine transformation with 12 degrees of freedom (3 for 
the 3D translation, 3 for the 3D rotation, 3 for the 3D scaling, and 3 for the 3D shearing) 
to decrease the variability and maximize the overlap by maximizing mutual information 
(MI) [57]. The obtained transformation matrix used to map each subject to the reference 
volume is applied to the manually delineated segmentation also to create the shape prior. 
In the case of any new subject, it can be tested directly using all the available 53 subjects 
as the shape prior. The superposition of training maps before (A) and after (B) registra-
tion at different slices (a–e) is illustrated in Figure 13.3. A shape prior is a spatially vari-
ant independent random field of region labels for the co-aligned data. Mathematically, 
this is defined as:

 P P m
x y z

x y z x y zsh e
R

sh : , ,ap ape( ) ( )
( , , )

, ,m = ∏
∈

 (13.2)

 where P lx y zshape: , , ( ) is the voxel-wise empirical probability for label l ∈ L. For each input 
DW-MRI volume to be delineated, the shape prior is built by a process guided by the visual 
appearance features of the DW-MRI data. The appearance-based shape prior is then esti-
mated using the methodology summarized in Algorithm 13.1.

Z
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FIGURE 13.2 Illustration of a voxel’s neighborhood.
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Spatial Voxel Interaction Model: Besides the prostate shape prior, analyzing the interactions 
of a voxel and its neighbors can enhance segmentation [39,58]. In order to model these 
interactions, a second-order 3D MGRF model [59] is used. The MGRF model of the region 
map m is defined as:

Algorithm 13.1 Algorithm for Calculating an Appearance-Based Shape Model

Calculate the value of the shape prior probability at each voxel using the following steps:

 1. Transform each test subject voxel to the shape database domain using the calculated 
3D affine transformation matrix (T).

 2. Initialize an N1i × N2i × N3i search space centered at the voxel.
 3. Find voxels inside the search space with corresponding gray levels to the center voxel 

in all training data sets.
 4. If no corresponding voxels are found, increase the search space size and repeat the 

previous step.
 5. Calculate the label probabilities for each voxel based on the relative occurrence of each 

label in the search results.

 P
Z

V m m
N x y z

eq x y z x y z( ) exp ( , )
( , , ) ( , , )

, , , ,m
R N

= ∑ ∑
∈ ∈

+ + +
1

ε υ ς
ε υ ς  (13.3)

where V m meq x y z x y z, , , ,, + + +( )ε ν ς  is the Gibbs potential and ZN is the normalization factor which can 
be approximated as [60]: 

 Z V lN
x y l

eq x y z≈ ∑ ∑ ∑
∈ ∈

+ + +exp ( , )
( , , ) ( , , )
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R N Lε υ ς

ε υ ς
∈

 (13.4)

The MGRF used can be viewed as a 3D extension of the auto-binomial, or Potts, model with the 
exception that the Gibbs potential is estimated analytically. The maximum likelihood estimate 
of the potential is given as [61]: 

 V V feq ne eq= − = −





2

1
2

( )m  (13.5)

where feq(m) is the relative frequency of equal labels in the voxel pairs x y z x y z, , , , ,( ) + + +( )( )ξ η ζ .

FIGURE 13.3 The superposition of training maps before (A) and after (B) registration at different slices (a–e).
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NMF-BASED FEATURE FUSION

NMF is a method for extracting meaningful features from data sets for representing different 
classes in the data [62]. This is done by calculating a weight matrix W that transforms a vector 
from the input space into a new feature space (H-space) through factorizing the input matrix 
A so that A  ≈  W  H. The input data matrix A contains the intensities for each voxel and its 
neighbors in addition to the shape and spatial probabilities of each voxel (Figure 13.4). NMF 
has been applied to various data analysis problems such as document clustering [63] and facial 
recognition [64]. In addition, it has been used in a few segmentation systems. Particularly, Xie 
et al. [65] used NMF to segment the spinal cord, corpus callosum, and hippocampus regions of 
rats from diffusion tensor imaging (DTI) by k-means clustering the column vectors of the pro-
duced H matrix. Also, Sandler et al. [66] proposed using NMF to factorize intensity histogram 
data for generic image segmentation.

In this chapter, an NMF-based technique is introduced to find the weights for each feature in 
order to create a feature space where object and background classes are better separated, dimen-
sionality is reduced, and information from the training data set is encoded. NMF factorizes a k by 
n input matrix A into a k by r weight matrix W, which contains the basis vectors of the new space as 
columns, and an r by n output matrix H where k is the dimensionality of the input column vectors, n 
is the number of input and output column vectors, and r is the dimensionality of the output column 
vectors [62]. Mathematically, this is defined as 

 A WH≈   (13.6)

W and H are calculated by minimizing the Euclidean distance between A and W H with the con-
straint that W and H contain only nonnegative values. This results in the following constrained 
optimization problem: 
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 (13.7)

In the literature, several approaches have been used to optimize this function. The most 
prominent methods have been multiplicative gradient descent, alternating least square (ALS), 
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FIGURE 13.4 An illustration for the NMF-based fusion of input features (intensity, spatial, and shape) 
where f is the dimensionality of the feature vector, m is the total number of the input voxels, and r is the 
dimensionality of the output space.
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and projected gradient descent (PGD) [67]. In this chapter, the multiplicative method [68] is 
used because of its ease of implementation. This method iteratively updates W and H until 
convergence using the following rules: 

 H H
W A

W W H
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Tαβ αβ
αβ

αβ

←
( )

( )  (13.8)
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where α: 1 → r, β: 1 → n, and γ: 1 → k.
In the proposed framework, NMF is performed on a matrix that has a kth dimensional, one 

dimension for each calculated feature, column vector for each pixel in the training volumes. 
The resulting W is used as the basis vectors to transform new feature vectors into the new 
r-dimensional space (H-space). The resulting H is used to find the r-dimensional centroids 
corresponding to the object and background classes, Cobject and Cbackground, respectively. For 
each voxel in a testing volume, a kth dimensional feature vector was calculated. This resulted 
in a k by n feature matrix B where n is the number of voxels in the volume. The new r dimen-
sional vectors corresponding to the input voxels are calculated by multiplying B by the pseudo-
inverse of W, which can be replaced by WT assuming orthogonality of the columns of W [69]. 
Mathematically, this is described as 

 H W BB
T=  (13.10)

ESTIMATION OF THE STOCHASTIC SPEED FUNCTION

In this chapter, a novel speed function to control the evolution of the level-set deformable model is 
proposed. This speed function is derived using the NMF-based fusion of DW-MRI features, HB x y z: , ,  
for voxel (x, y, z). The proposed speed function V x y zn , ,( ) is defined as ( ) = ( )V x y z k x y zn , , , ,ϑ , 
where κ is the curvature and ϑ x y z, ,( ) is defined as 
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Here, E P P Pobj x y z nmf x y z x y z x y z: , , : , ,= ( ) + ( ) + ( )1 1 1shape: , , spatial: , , ,, where P x y zshape: , , 1( ) is the object 
shape prior probability, and P x y zspatial: , , 1( ) is the object MGRF model probability. Similarly, 
E P P Pbg x y z nmf x y z x y z x y z: , , : , , ,= ( ) + ( ) + ( )0 0 0shape: , , spatial: , ,  where P x y zshape: , , 0( ) is the background shape 
prior probability, and P x y zspatial: , , 0( ) is the background MGRF model probability. Pnmf x y z: , , 1( ) and 
Pnmf x y z: , , 0( ) are defined using the distances from the two class centroids produced by performing 
k-means clustering on the columns of H. The overall segmentation framework is summarized by 
Algorithm 13.2.

PERFORMANCE EVALUATION METRICS

The performance of the proposed segmentation framework was evaluated using three metrics: (1) 
Dice similarity coefficient (DSC), (2) Hausdorff distance (HD), and (3) absolute relative volume 
difference (ARVD). These metrics are detailed below.
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Algorithm 13.2 Proposed Algorithm for DW-MRI Prostate Segmentation

Segment the prostate from a DW-MRI volume using the following steps:

 1. Align the input DW-MRI volume with the training database using the MI-based affine 
transformation.

 2. Calculate the appearance-based shape prior using Algorithm 13.1.
 3. Calculate the 3D pairwise voxel interactions.
 4. Perform NMF-based feature fusion.
 5. Calculate the probabilities that each voxel is object or background using the NMF-

based features.
 6. Use these probabilities to guide the evolution of a level-set to segment the prostate.

DICE SIMILARITY COEFFICIENT (DSC)

Many segmentation and classification metrics are based on the determination of true positive (TP), 
false positive (FP), true negative (TN), and false negative (FN) values (see Figure 13.5). The TP is 
the number of correctly positively labeled samples; the FP is the number of incorrectly positively 
labeled samples; the TN is the number of correctly negatively labeled samples; and the FN is the 
number of incorrectly negatively labeled samples. These values can be used to calculate the DSC as 
shown by the following: 

 
DSC

TP
TP FP FN

=
+ +
2

2
 (13.12)

The value of the DSC ranges from 0 to 1, where 0 means that there is no similarity and 1 means that 
there is a perfect similarity.

HAUSDORFF DISTANCE (HD)

Distance measures are another type of performance metric used for evaluating segmentation meth-
ods. The Euclidean distance is often utilized, but another common measure is the HD. The HD from 
a set A1 to a set A2 is defined as the maximum distance of the set A1 to the nearest point in the set 
A2 [70] (Figure 13.6):

 
HD A AA A1 2, max min ,( ) = { ( ){ }}∈ ∈a a d a a1 1 2 2 1 2  (13.13)
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FIGURE 13.5 Diagram illustrating the meaning of TP, FP, TN, and FP.



228 Prostate Cancer Imaging

where a1 and a2 are points of sets A1 and A2, respectively, and d(a1, a2) is Euclidean distance between 
these points. The bidirectional Hausdorff distance, denoted by HDBi(GT, SR), between the seg-
mented region (SR) and its ground truth (GT) is defined as 

 HD HD HBi GT SR GT SR SR GT, , D ,( ) = ( ) ( ){ }max ,  (13.14)

The smaller the distance, the better the segmentation. The ideal case with perfect segmentation is 
when the bidirectional Hausdorff distance is equal to 0.

ABSOLUTE RELATIVE VOLUME DIFFERENCE (ARVD)

Besides the DSC and the HD, the ARVD has been used as an additional metric for evaluating the 
segmentation accuracy. The ARVD is the percentage volume difference between the segmented and 
the ground truth volumes. The lower the ARVD, the higher the segmentation accuracy.

EXPERIMENTAL RESULTS

MEDICAL IMAGES

The proposed system was tested on 53 DW-MRI volumes acquired using a body coil Signa Horizon 
GE scanner in axial plane with the following parameters:

• Magnetic field strength: 1.5 Tesla
• TE: 84.6 ms
• TR: 8000 ms
• Bandwidth: 142.86 kHz
• FOV: 34 cm
• Slice thickness: 3 mm
• Inter-slice gap: 0 mm
• Acquisition sequence: conventional EPI;
• Diffusion weighting directions: mono direction
• Used range of b-values from 0 to 700 s/mm2

FIGURE 13.6 Diagram illustrating the 2D HD of boundaries A1 and A2 for points a1 and a2.
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On average, 26 slices were obtained in 120 seconds to cover the prostate in each patient with a 
voxel size of 1.25 × 1.25 × 3.00 mm3. The ground truth segmentation used in training and in verify-
ing the segmentation results were verified by an MR expert for each subject.

SEGMENTATION RESULTS

The proposed NMF-based level set has been tested on DW-MRI dataset of 53 subjects at different 
b-values. Evaluation of the system was done using a leave-one-out methodology, where 52 subjects 
were used as training data and the remaining subject was used as test data. This was repeated so that 
each subject was tested once. In order to evaluate the proposed method, we compared the segmenta-
tion results of our method with the following approaches: (1) a level-set guided by the MAP model 
proposed by Firjani et. al. [39] and (2) the reported results for the 3D approach developed by Liu 
et al. [52]. Table 13.1 summarizes the average segmentation accuracy in terms of the DSC, ARVD, 
and HD for each method.

Tables 13.2 and 13.3 show the DSC results and the HD results, respectively, for nine subjects 
using the proposed segmentation approach and the MAP-guided level-set method [39].

As can be seen, the proposed method leads to superior results over the compared meth-
ods. The proposed method reaches 85.9%  ±  4% overall DSC and 1.6%  ±  3.2% ARVD. It 
reaches 5.84%  ±  2.14  mm overall HD which reflects the high accuracy of the proposed 

TABLE 13.1
A Comparison of the Average DSC and HD Values Over 
All Subjects for the Compared Segmentation Methods

Measures NMF MAP [39] Liu et al. [52]

DSC (%) 85.9 ± 4 83.4 ± 7 81 ± 5

ARVD (%) 1.6 ± 3.2 1.8 ± 4.3 —

HD (mm) 5.8 ± 2.1 6.7 ± 2.0 9.1 ± 1.6

TABLE 13.2
The DSC Segmentation Performances of the NMF and MAP-Guided 
Level-Set Methods for Nine Subjects

Method S1 S2 S3 S4 S5 S6 S7 S8 S9

NMF 0.822 0.861 0.907 0.862 0.905 0.828 0.851 0.886 0.905

MAP 0.816 0.858 0.881 0.836 0.900 0.827 0.849 0.647 0.880

TABLE 13.3
The HD Segmentation Performances of the NMF and 
MAP-Guided Level-Set Methods for Nine Subjects

Method S1 S2 S3 S4 S5 S6 S7 S8 S9

NMF 5.30 3.00 6.00 6.00 5.96 8.72 9.75 3.49 3.25

MAP 5.30 3.00 6.34 6.00 6.93 8.75 9.08 9.27 6.00



230 Prostate Cancer Imaging

segmentation approach. Figure 13.7 illustrates the evolution of the level-set for two different 
cases. Figure 13.8 shows that the NMF-based approach used in the proposed framework is 
more accurate than the MAP-based approach described in [39]. Figure 13.9a illustrates the 2D 
projection in the axial view at different cross sections of the final 3D level-set segmentation 
for 3 different subjects using the proposed method. The resultant 3D mesh (from 3 different 
views) of the prostate is shown in Figure 13.9b.

FIGURE 13.7 The propagation of the level set for two subjects (rows): initial surface (a), propagation after 
20 iterations (b), and final surface (c).

FIGURE 13.8 Visual comparison of the segmentation accuracy between (a) the NMF-based approach and 
(b) MAP-based approach at different cross sections. The green and red colors show the contour of the ground 
truth and segmented regions, respectively.
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CONCLUSION

In this chapter, an NMF-based DW-MRI prostate delineation framework was introduced. The use 
of 3D intensity, shape, and spatial features combined with NMF-based feature fusion is significantly 
better at guiding a level-set for DW-MRI prostate delineation than either using MAP with the same 
input information or intensity and shape information alone. The addition of NMF-based feature 
fusion allows the proposed framework to perform robust prostate segmentation despite image noise, 
inter-patient anatomical differences, and the similar intensities of the prostate and surrounding tis-
sues. In future work, this segmentation framework will be tested with a larger data set in order to 
verify its robustness. In addition, the effectiveness of using the proposed method to segment the 
prostate at varying b-values will be investigated. Since segmentation is a key step in developing 
CAD systems for diagnosing different disorders of various human organs, such as the brain [71–93], 
the lung [94–133], the retina [134,135], the heart [136–152], and the kidney [153–178], another future 
work could be the application of the developed framework in segmenting those organs to verify its 
effectiveness.
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INTRODUCTION

Prostate diseases, such as prostate cancer, prostatitis, and enlarged prostate, are common in males 
[1]. In addition to its high incidence, prostate cancer also brings high mortality. According to the 
American Cancer Society [2], prostate cancer was the second leading cause of cancer death in 
American men in 2016 (approximately 26,120 deaths), behind only lung and bronchus cancers.

In clinical practice, when a patient is deemed at risk of prostate cancer after blood test or rectal 
examination, the patient is generally required to have a biopsy to confirm diagnosis. A urologist 
will perform biopsy of the patient to cut out small samples (typically 12 sites) of tissue from the 
prostate and a pathologist will identify whether the cells are malignant or benign [3]. However, 
prostate biopsy is an invasive, painful procedure, has a significant risk of infection, and is subject 
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to false-negative results, in particular, when none of the samples are cut from the lesion areas [3]. 
Alternative noninvasive, biomedical imaging-based methods have recently been widely explored 
for prostate cancer assessment [4–7]. Imaging-based prostate cancer assessment, computer-aided 
diagnosis (CAD) systems can be employed to provide automated approaches to the recognition and 
segmentation of the prostate and this is a fundamental requirement in the analysis of prostate cancer; 
recognition is to identify the site of the prostate in the image volume and segmentation is used to 
quantify the volume of the prostate [8]. This approach has the potential to negate the subjectivity 
and reduce the time needed in manual segmentation and recognition of the prostate [1].

This chapter introduces and discusses a wide range of methods for prostate image recognition 
and segmentation. We will first present common imaging modalities used for prostate cancer diag-
noses and treatments; in particular, the imaging properties of prostate T2-weighted (T2W) MRI for 
its capabilities toward prostate recognition and segmentation. Then, we will review various conven-
tional methods for prostate image recognition and segmentation, including recent approaches using 
deep learning-based methods.

CHALLENGES OF PROSTATE IMAGE RECOGNITION AND SEGMENTATION

TYPES OF BIOMEDICAL IMAGES

MRI, computed tomography (CT), and transrectal ultrasound (TRUS) are the three primary imag-
ing modalities for prostate cancer diagnoses and treatments. The inner-sights of prostate provided 
by each imaging modality significantly differ from each other, and the use of a particular method 
depends on the clinical aim. For examples, MRI is normally used in diagnostic and treatment plan-
ning for prostate cancer [9–11]; in prostate brachytherapy, CT is employed for the radioactive seeds 
localization after treatment [9]; TRUS could assist in determining prostate volume and prostate 
biopsy [9,12]. The characteristics [9] of each imaging modality are summarized in Table 14.1.

As MRI allows cancer detection and staging which are the sequent aims of prostate recognition 
and segmentation, this chapter will focus on the methods conducted on prostate MRI. We suggest 
readers refer to other references for potential usage of TRUS and CT for prostate recognition and 
processing [13–15]. With regard to MRI, there are multiple parametric types of image acquisition 
protocols such as T2W, diffusion-weighted imaging (DWI), dynamic contrast-enhanced imaging 
(DCE), and MR spectroscopy imaging (MRS). These multiple types are often used in combina-
tion, for example, multiparametric MRI (mpMRI), where different imaging types provide com-
plementary information. T2W-MRI provides reliable anatomical visualization of the transitional 
and peripheral zones [16], which enables the recognition of prostate tumors. DWI quantitatively 
provides tumor apparent diffusion coefficient (ADC) values, which can be used in predicting the 
aggressiveness of tumors in clinical practice [16]. High b-value image (BVAL) from DWI could 
generate increased delineation between tumors and healthy tissues. DWI is also usually combined 

TABLE 14.1
The Characteristics of Prostate MRI, CT, and TRUS

MRI CT TRUS

Price Expensive Expensive Inexpensive

Portable χ χ ✓
Real-time imaging χ χ ✓
Radiation involved χ ✓ χ
Imaging contrast for prostate High Medium Low

Cancer detection ✓ χ χ
Cancer assessment ✓ χ χ
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with T2W-MRI to measure the prostate tumor volume. DCE can be used for the assessment of per-
fusion and vascular permeability of prostate tumor [16]. MRS can be used to assess the intracellular 
concentrations of choline and citrate, and thus can differentiate and grade prostate tumors in which 
the ratios of choline-to-citrate are higher. Since most prostate MRI recognition and segmentation 
methods work on T2W, we specify MRI to the certain type of T2W image in the rest of this chapter, 
unless otherwise specified (Figure 14.1).

IMAGING PROPERTIES OF PROSTATE MRI FOR RECOGNITION AND SEGMENTATION

MRI produces a set of tomographic slices of a prostate volume. As shown in Figure 14.2, in 
addition to prostate, other tissues and organs (i.e., bladder, hip, and rectum) are also scanned 
on the image.

FIGURE 14.1 Example prostate MRI. (a) T2W, (b) ADC, and (c) BVAL.

Hip

Bladder

Prostate

Rectum

Hip

FIGURE 14.2 A prostate T2W image of a patient. The prostate is delineated in a red contour.
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There are three major challenges to automated prostate MRI recognition and segmentation, 
which we define into three core categories: 

 1. Image noise: Circuit noise, transmission noise of imaging equipment [17], inappropriate 
imaging-testing position of patients, and other sources of noise inherently bring low qual-
ity to the MR images. Gaussian noise, salt-and-pepper noise, and speckle noise [18] are the 
major three types of image noises. The image noise distorts the one-channel pixels (image 
intensities) and makes them less informative, which increases the difficulty of prostate 
recognition.

 2. Intensity inhomogeneity: Tumors’ regions in the prostate are typically inhomogeneous. 
Such intensity inhomogeneity poses challenges to derive consistent image features to char-
acterize the prostate, which are necessary for prostate recognition and segmentation.

 3. Blurred boundaries: The blurred boundaries of prostate on MRI lead to the false positive 
predictions to recognition algorithms, and significantly impede segmentation algorithms 
delineating prostate.

PROSTATE IMAGE RECOGNITION

Many prostate image segmentation algorithms employ initial points or atlas mapping to localize 
prostate, thus we define two major categories for prostate image recognition.

SEMI-AUTOMATED APPROACHES

The prostate image segmentation algorithms [19–24] require one or more initial point(s) to trace 
the prostate boundary. The exact position of the initial point selected by a user depends on the 
particular algorithm, either inside the prostate [23,24] or around/on the boundary [19–22]. These 
user-intervened methods could be categorized into the semi-automated approach for prostate recog-
nition and (or) segmentation which benefit by reliable point initialization but negate the possibility 
of developing fully-automated CAD.

ATLAS MAPPING

Atlas is a global probabilistic cloud, in which many human annotations corresponding to differ-
ent prostate images are stacked and masked. The density of each pixel/voxel on the atlas indicates 
the corresponding likelihood the pixel/voxel being foreground. Many prostate image segmentation 
works [10,25–30] employ atlas mapping to obtain foreground seeds so that their algorithms could 
be fully automated. To serve for prostate image recognition, atlas is registered [31] with the testing 
image so that it is applicable to the particular image. Afterward, the foreground and background 
seeds could be selected by a pre-defined threshold as described in Li et al [25]. The atlas mapping 
based methods are robust to contrast differences and incorporate shape and intensity information; 
however, they are prone to registration errors as noted in Ghose et al. [9].

PROSTATE IMAGE SEGMENTATION

We categorize prostate image segmentation approaches into four major groups according to method 
models.

CONTOUR AND SHAPE-BASED APPROACHES

A set of works, including contour-based methods and deformable model-based methods, exploit 
the contours and shape information in prostate segmentation. Contour-based methods [19,22,23] 
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usually extract edges and ridges in images via gradient filters, and recognize or trace the boundaries 
by their proposed schemes, for example, the longest curvilinear structure [23] and moving masks 
[19,22]. However, the edge detectors may not always be reliable due to the artifacts (blurred/broken 
boundaries) on biomedical images.

Since deformable model was first introduced by Terzopoulos [32], it has been widely applied in 
many prostate segmentation works [24,33–38] using contour and shape information. Deformable 
models are curves or surfaces and usually formed under the control of internal and external energies 
[39]. Internal energies preserve the smoothness of curves (surfaces) during deformation, and exter-
nal energies force curves (surfaces) toward the anatomical structure boundaries [9]. By minimizing 
the joint internal and external energies, deformable models can be evolved to the desired positions. 
Active shape model (ASM) [40] is one of the most popular modalities used in deformable prostate 
models [37,41–46]. In ASM-based methods, a statistical shape model (SSM) [47] is constructed with 
shape variations using principle component analysis (PCA) on a set of landmarks, and then ASM 
is performed to delineate prostate. As ASM overlooks the interdependencies of shape and appear-
ance [48], active appearance model (AAM) [49] thus is developed for the purpose of combination 
of shape and appearance. However, as noted in Toth et al. [48], conventional ASM and AAM based 
methods are hindered by the use of landmarks. To solve this issue, Toth et al. [48] proposed a novel 
landmark-free AAM-based method for more accurate and robust prostate segmentation on MRI. 
Other modalities applied in deformable models for prostate segmentation include level-set [50–55], 
active contour model [56–61], and so on.

GRAPH-BASED APPROACHES

Many prostate segmentation works [62–70] rebuild prostate images as (un)directed graphs, usu-
ally followed by a cost function. The atomic units (pixels, voxels, superpixels, or supervoxels) are 
the nodes of graph, and the edge weights are measured by the “distances” of pairs of nodes. The 
essential parts of these graph-based approaches are the design of edge weights on graphs and cost 
functions. Positions [62] and intensities [62,66,70] of pixels (voxels, superpixels, or supervoxels) are 
the two extensively used measurements for edge weights. As the utilization of position and intensity 
are usually limited by the biomedical image artifacts, some works employ other information, such 
as prior shape knowledge [67] and image gradients [69], to estimate edge weights. The cost func-
tions are various across the graph-based methods, but most of them [63,64,66,68,70] are formulated 
based on graph-cut model [71]. In addition to graph-cut, Lagrange function [62], and other special 
designed functions (e.g., shape probability function and gradient profile model in [69]) can also be 
applied to energy minimization scheme. However, the fixed parameters for balancing cost function 
need carefully tuning so that may hinder the robustness of these methods across different datasets.

After the construction of graph model, some other works [72–74] formulate segmentation as 
labeling propagation problem, in which unlabeled nodes could be predicted by pre-defined labeled 
nodes. Random walker [75] could be an effective and efficient algorithm to solve the labelling 
propagation problem in prostate segmentation [72–74].

FEATURE EXTRACTION AND CLASSIFICATION APPROACHES

The classification-based approaches extract a set of image features as feature vectors, and tend to 
partition feature space (vector space associated with feature vectors [9]) into two or more groups. 
The classic classifiers, such as support vector machine [76] and random forest [77], have been exten-
sively studied in the last decades and proved favorable capacity of feature space partition, thus can 
also be applied in prostate segmentation works. Gray level intensity and spatial coordinate are the 
simple but useful common features that are widely used in many works [78–81]. Other computer 
vision features, such as histogram of oriented gradients [82,83], Haar features [82,83], curvature 
[80], Haralick texture features [81], and Laws energy features [81], are also widely employed to 
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differentiate prostate. Ghosh et al. [84] imposed prior knowledge on texture and shape features by 
genetic algorithm, which achieved better segmentation results compared to Laws energy features. 
Instead of classic classifiers, Li et  al. [83] proposed a set of location-adaptive classifiers which 
enable effectively gathering of local information and propagation of them to other regions. Gao 
et al. [82] proposed an extended sparse representation based classification to address the issue of 
low contrast on prostate images.

HYBRID SEGMENTATION APPROACHES

As hybrid techniques are robust to noise and produce superior results in the presence of shape and 
texture variations of the prostate [9], most works combine two or even more methods for prostate 
segmentation.

As a common prostate segmentation approach, deformable models are usually combined 
with various techniques to boost performance. Graph-based methods and classification-based 
methods are usually employed to initialize deformable models in many works [33,36,52,85,86]. 
Zhan et al. [36] tentatively labeled voxels by proposed Gabor-SVM classifier to feed the later 
deformable surface model. Martin et  al. [33] utilized atlas to map a specific prostate image 
before deformable model. For more reliable initialization of deformable model, Guo et al. [85] 
employed deep learning features to estimate rough prostate recognition map. Different from 
aforementioned works exploiting priors for deformable models, the results by deformable mod-
els in the work of [11,87] can also be treated as location and shape priors for other techniques 
(i.e., Bayesian classification).

Classification-based approaches are usually followed by a graph-cut based cost function in a set 
of works [63,66,80,88,89]. Such combination focuses on local features in patch classification phase; 
meanwhile, the correlations of neighboring patches/pixels can be attributed to smoothness in cost 
function. Other hybrid segmentation methods can be found in Martin et al. [10] (atlas and shape 
model combined), Lu et al. [90] (level-set and registration combined), Liao et al. [91] (representation 
learning and labeling propagation combined), and so on.

DEEP LEARNING FOR PROSTATE RECOGNITION AND SEGMENTATION

In computer vision, image features learned via deep neural networks (DNN) have proved to be more 
intrinsic and semantic encodings for image segmentation and classification. Many deep learning 
approaches are proposed to extract the high-level image features, such as with the stacked autoen-
coder (SAE) [92], convolutional neural network (CNN) [93], and deep Boltzmann machine [94]. To 
apply deep learning algorithms on prostate image recognition and segmentation, images are typi-
cally: either (1) partitioned into a set of superpixels and the deep learning algorithms then perform 
binary classification for each superpixel; (2) or directly fed into CNN and produce the correspond-
ing pixelwise segmentation map. The first approach is a sparse segmentation as it predicts the seg-
mentation map in superpixel scale, and the latter one is a dense segmentation. In this section, we 
first present two state-of-the-art deep learning-based methods for sparse prostate image recognition 
and segmentation, employing SAE and CNN, respectively. Then, we introduce two top-performing 
algorithms with CNN on dense prostate image segmentation. The prostate MR Image Segmentation 
2012 (PROMISE12) dataset [95] is used to validate and evaluate the methods. This dataset contains 
50 cases which are multicenter and multi-vendor and have different acquisition protocols [65]. Each 
case is composed of 15–54 prostate transverse T2W-MR images. Manual segmentation is available 
for each case and used as the ground truth.

COMPREHENSIVE AUTOENCODER FOR SUPERPIXEL CLASSIFICATION (PROSTATE IMAGE RECOGNITION)

The prostate recognition method [96] via SAE consists of four stages as shown in Figure 14.3.
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Early Feature Descriptors
Before feeding SAE, two early feature descriptors (i.e., the intensity descriptor and the position 
descriptor) should be gained. Denote a prostate image as I. SLIC algorithm [97] is applied on I 
to segment I into N superpixels {P}. Then, an early feature vector f(P) could be gained for P with 
details as follows: 

Intensity descriptor: Intensity histogram IH(P), with 20 bins in [96], is employed to 
describe P’s intensity. Note that the number of pixels are variable among different 
superpixels; intensity histogram IH(P) should be normalized to have a uniform sum to 
address this issue.

Position descriptor: Generally, the prostate is approximately located at the center area 
of patient MR image. To use this spatial prior knowledge, the bounding box of P is 
extracted as

 C P c( ) ( , ) : ,, ,= ={ }υ υ υα α υ1 2 1 2  (14.1)

 where c1 and c2 are the top-left coordinate and bottom-right coordinate of C(P) in image 
I, respectively. 𝛼𝑣,1 and 𝛼𝑣,2 are c𝑣’s values corresponding to x-axis and y-axis, respectively. 
Then, the position information of P could be described by
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Early feature vector: Given the intensity and position descriptors of P, a superpixel-wise fea-
ture vector f(P) is generated as 

 f P P P( ) { ( ); ( )}= IH POS  (14.3)

Prostate Stacked Autoencoder Model
The obtained early feature vectors of prostate superpixels are input to a stacked autoencoder (SAE). 
SAE could extract high-level features and perform the reconstruction of input data. As shown in 
Figure 14.4, three autoencoders are stacked; hence a six-layer network, including three encoding 
layers and three decoding layers, is formed.

FIGURE 14.3 Pipeline of the SAE-based method [96] for prostate image recognition. (a) Early feature 
extraction. (b) Superpixel reconstruction. (c) Superpixel classification. (d) Refinement.
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Superpixel Classification
The output of the SAE is the reconstruction of the input superpixel, which could be used for clas-
sification. For a superpixel, set the reconstruction error as 

 err( ) exp ( ) ( )P f P y P
W

= ∑ −( )
=ω

ω ωτ
1

2
   (14.4)

where f(P)𝜔 and y(P)𝜔 are the 𝜔th elements of f(P) and the output of the SAE, respectively. W is the 
dimension of f(P) and y(P). 𝜏 controls the distance between different superpixels’ reconstruction 
errors within an image and is set to 100 empirically. The reconstruction error is adopted to measure 
the probability of a superpixel being prostate tissue. This is because as the SAE model is learned 
from the set of prostate superpixels, the prostate superpixel should have a lower reconstruction error 
than the background superpixel does and vice versa [96].

Denote the probability map obtained from superpixels’ reconstruction errors as DAE. In the next 
subsection, a refined prostate detection map with better suppressed background, more smooth inner 
region, and clear boundary is generated based on DAE.

Refinement
The refinement of DAE is to assign a label HOp ∈ {0,1} to a pixel p to measure whether p belongs to 
foreground or not. For the set of pixels’ labeling O = {Op: p ∈ I}, this can be solved by minimizing 
the energy function [98] 
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where Y is a set of all pairs of neighboring pixels. H(Op) is the cost for assigning a label Op to 
a pixel p. DAE is used to approximate the label cost of pixels. The second term in Equation 14.5 
encourages intensity and spatial coherence by penalizing discontinuities [71] between neighboring 
pixels, with the parameter 𝜉 controlling the scale of discontinuity penalty. T(⋅) is 1 if the condition 
inside the parentheses is true and 0 otherwise.

Minimum cut/maximum flow algorithms [71] can minimize Equation 14.5 and generate the cor-
responding prostate detection map Dmf. Then DAE and Dmf are linearly combined as the final prostate 
detection map: 
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Encoding Decoding

Output
(Reconstruction)Input

: node of SAE

: fully connection

FIGURE 14.4 Architecture of the SAE. The output of each layer is the input for its subsequent layer. The 
output of the last layer is a reconstruction for the input data.
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Results
Precision-recall (PR) curve and F-measure [98,99] are two major evaluation metrics in object rec-
ognition. The F-measure is calculated based on Precision and Recall by 

 F
Precision Recall

Precision Recall
η

η
η

=
+ ⋅ ⋅

⋅ +
( )1 2

2  (14.7)

An atlas-based seeds-selection in segmentation approach (RW) [74] and three popular classifiers, 
that is, support vector machine (SVM) with radial basis function kernel, random forest (RF), and 
naïve Bayes (NB), were chosen as comparison methods. Precision and F-measure of the SAE-based 
method reported by Yan et al. [96] are 86.99% and 68.32%, respectively. SAE-based method [96] 
outperformed all the comparison methods by >4% precision and >5% F-measure (RW: 82.86% 
precision, 62.20% F-measure; SVM: 63.94% precision, 62.28% F-measure; RF: 55.06% precision, 
57.66% F-measure; NB: 48.94% precision, 50.33% F- measure).

CONVOLUTIONAL NEURAL NETWORKS FOR SUPERPIXEL 
CLASSIFICATION (PROSTATE IMAGE SEGMENTATION)

This subsection will introduce a novel model [100] for prostate image segmentation via deep neural 
networks. A 3D prostate image volume P is composed of m transverses {T1, T2, …, Tm}. The aim of 
the prostate segmentation of P is to generate m segmentation maps {ST1, ST2, …, STm} correspond-
ing to each transverse. The 3D prostate image segmentation method [100] via CNN consists of 
two stages. In the first stage, the algorithm performs binary classification for each superpixel and 
explores n prostate proposals { , ,..., }I I IT T

n
Tj j j

1 2  for each transverse Tj; In the second stage, the algo-
rithm selects a typical prostate proposal from { }Ik

Tj , where k ∈ {1,2, …, n}, as the segmentation map 
STj for Tj. For simplification, we use T to denote Tj, that is, a specific transverse in the remaining 
parts of this subsection, unless otherwise specified.

Superpixel Classification and Prostate Proposal
A Geodesic Object Proposals (GOP) algorithm [101] is applied to find candidate objects {OT} over T. 
To improve efficiency of the algorithm, {OT} are trimmed by atlas probability map 𝒜 ∈ [0,1] as 
follows.

For a specific OT from {OT}, the accuracy score AS(OT) and coverage score CS(OT) [102] com-
pared to 𝒜 can be calculated. The two scores are used to measure the confidence of prostate recog-
nition by OT [102]: 

 
C

O O
O O

OT
T T

T T( ) =
+ × ×

× +
( ) ( ) ( )

( ) ( )
1 β

β
AS CS

AS CS
 (14.8)

The global prostate proposals {I (g)T} for T can be formed by the candidate objects from {OT} with 25 
top confidence values. Then, CNN is employed to refine each candidate object as follows.

For the transverse T, the local context TLI(g)T corresponding to the specific I(g)T is the subregion 
of T where the bounding box of the prostate proposal on TLI(g)T covers. In order to capture the 
context near the prostate boundary, TLI(g)T is expanded with 10 pixels on each side. The aim is to 
measure the likelihood of each superpixel on TLI(g)T being prostate. To achieve it, TLI(g)T is input to 
a deep convolutional network for classification of patches. As one of the most popular convolutional 
networks, the AlexNet [103] model is adopted and thus TLI(g)T is resized to 227 × 227 pixels to fit 
the input structure of AlexNet model. In addition to TLI(g)T, a 227 × 227 size mask is also input to 
convolutional network together with TLI(g)T  to indicate position of superpixel, in which the region of 
superpixel is set to 1 and the remaining is set to 0.
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The final prostate proposal IT can be obtained by 

 I I IT g T l T= + −( )α α( ) ( )1  (14.9)

where 𝛼 is set to 0.3 to emphasize the impact of local refinement and then binarized by the threshold 
of 0.5.

Graph Model for 3D Prostate Segmentation
In the previous stage, n prostate proposals as LT = {IT} could be obtained for a specific transverse, 
corresponding to each I(g)T in {I(g)T}. Then the features of each prostate proposal are calculated 
as edge weight of graph. The feature of IT is composed of intensity histogram (intensity descrip-
tor), Inner-Distance Shape Context [104] (shape descriptor), and (IT) via (Equation 14.8) (position 
descriptor). Denote intensity descriptor and shape descriptor of IT as IDIt and SDIt, respectively.

With the features of all IT, that is, IDIt, SDIt, and (IT), a directed graph 𝒢 = (V, E) is constructed 
to indicate the differences among IT. V is the set of nodes and E ⊆ V × V is the set of edges in 𝒢. 
Inspired by Meng et al. [105], the construction of 𝒢 is as follows: 

 1. V = {V0, V1, …, Vm, Vm+1}; V0 = 𝒜; Vm+1 = 𝒜; and Vj = LTj

 where j ∈ {1,2, …, m}.
 2. For ∀(u, 𝑣) ∈ E, if u ∈ Vi, then 𝑣 ∈ Vi+1 where i ∈ {0,1,.. m}.
 3. The weight of edge e = (u, 𝑣) is calculated by 

 w u v ID ID SD SD u vu v u v, , ,( ) = − ( )( ) + ( )+ ( ) − ( )1 σ φ     (14.10)

where 𝜎(∙) is the histogram intersection and 𝜙(∙) is the Hausdorff distance.
Finally, the optimal prostate proposals for each transverse can be selected by searching the path 

on 𝒢 with minimum weight cost from node V0 to node Vm+1, which can be easily solved by any short-
est path algorithm (such as Dijkstra’s algorithm [106] and the Bellman-Ford algorithm [107,108]). 
The selected { }ITj  are adopted as the final segmentation maps { }STj .

Results
Four state-of-the-art methods [34,41,79,109] are selected as the comparisons with the method. 
Following Kirschner et  al. and Vincent et  al. [34,109], dice similarity coefficient (DSC) and 
Hausdorff distance (HD) are used as the quantitative metrics for evaluation: 
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where X and Y are the algorithm segmentation and reference segmentation respectively; Xs and 
Ys are the surface points of the algorithm segmentation and reference segmentation respec-
tively; and 𝜑(∙) is the Euclidean distance. DSC of the CNN method [100], RF [79], PAS [34], 
MAC [41], and AAM [109] are 0.89, 0.73, 0.86, 0.85, and 0.88, respectively. HD of the CNN 
method [100], PAS [34], and AAM [109] are 3.8, 9.5, and 4.1, respectively. HD of RF [79] and 
MAC [41] are not available.
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CONVOLUTIONAL NEURAL NETWORKS FOR DENSE PROSTATE IMAGE SEGMENTATION

The sparse segmentation (superpixel classification) methods are more likely to get trapped into the 
inherent limitations of superpixel pre-segmentation, in particular near the blurred prostate bound-
aries. To alleviate this problem and produce a dense segmentation map from CNN, Long et  al. 
[110] proposed fully convolutional networks (FCN) for pixelwise semantic segmentation on general 
images. After that, some state-of-the-art CNN models were invented to segment 3D prostate image 
volume. V-Net [111] and Volumetric ConvNets [1] are the top two CNN-based 3D prostate image 
segmentation methods.

The structures of V-Net and Volumetric ConvNets are similar. They use the sequent 
convolution+pooling blocks to encode the images, producing compressed feature maps. 
To decompress the feature maps to gain the pixelwise segmentation maps, they then use 
deconvolution+convolution blocks to upsample the feature maps progressively. Convolutional layer 
is the essential component in CNN, which will filter the distracting information out of images so 
that the algorithm can focus on the intrinsic image structures. The convolutional layer in CNN can 
be illustrated as follows. A typical filter F ∈ ℝu×𝑣×d convolves the input data X ∈ ℝm×h×d by [112] 
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where b is a bias attached with F. The filter F and the bias b are learnable during the training phase. 
The optimal F and b would urge CNN to produce ideal segmentation maps across different images. 
Deconvolution is the transpose of convolution, which supports input upsampling and output crop-
ping [112]. Therefore, deconvolution is usually employed to predict dense segmentation maps from 
relatively small feature maps.

Both V-Net and Volumetric ConvNets participated in MICCAI Grand Challenge (Prostate MR 
Image Segmentation 2012). From the PROMISE12 leaderboard, V-Net and Volumetric ConvNets 
achieved scores of 82.39 and 86.65, respectively; particularly, Volumetric ConvNets ranked first 
among all participants.

SUMMARY

Prostate image recognition and segmentation are broadly categorized into DNN and non-DNN meth-
ods. In DNN models, sparse connectivity and shared weights allow features to be detected regardless 
of their position in visual field; pooling operation makes detected features less sensitive to input shift 
and distortion. Therefore, DNN methods are the state of the art in performance and could overcome 
some limitations in non-DNN methods. The future research direction on prostate imaging will move 
to prostate lesion detection and classification. By taking advantages of DNN features, deep learning-
based approaches will be extensively explored in the field. The DNN methods introduced in this 
chapter on prostate image recognition and segmentation could be extended to lesion detection; how-
ever, huge variations among prostate lesions in terms of shape, size, and Gleason score make prostate 
lesion processing more difficult than prostate recognition and segmentation.
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15 Precision Imaging of 
Prostate Cancer
Computer-Aided Detection and 
Their Clinical Applications
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INTRODUCTION

Prostate cancer (PCa) is currently the most common cancer in men and the second leading cause of 
cancer-related deaths among men in the United States [1]. In 2015, it was estimated that the number 
of new cases and deaths would be 220,800 and 27,540, respectively, accounting for 26.0% of new 
cancer cases and 8.8% of cancer deaths for American men [1].

The prostate is subdivided into the base, mid-gland, and apex from superior to inferior. The 
prostate also has four anatomic zones: the transition zone (TZ), which contains 5% of the glan-
dular tissue and accounts for around 25% of PCa; the central zone (CZ), which contains 20% of 
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the glandular tissue and accounts for around 5% of PCa; the peripheral zone (PZ), which contains 
70%–80% of the glandular tissue and accounts for about 70% of PCa; and the non-glandular anterior 
fibromuscular stroma. Accurate localization of PCa within the TZ or the PZ is extremely important 
as TZ prostate cancer is associated with favorable pathologic features and better recurrence-free 
survival [2].

At present, the clinical standard for definitive diagnosis of prostate cancer is transrectal ultra-
sound (TRUS)-guided sextant or systematic biopsy. The prostate-specific antigen (PSA) blood test 
and digital rectal examination (DRE) results are considered to identify patients who need biopsy. 
The actual impact of MRI for prostate cancer management is through guided biopsies and improved 
cancer diagnosis and staging yield. In recent years, magnetic resonance imaging (MRI) targeted 
prostate biopsies have been showing better disease localization and more accurate sampling than 
conventional TRUS-guided biopsy in various studies [3–6]. Sophisticated MRI-based computer-
assisted imaging for individual patients would offer such a significant role in defining an optimal 
targeted biopsy and interventional approach. Several approaches have been explored to improve the 
accuracy of image-guided targeted prostate biopsy, including in-bore MRI-guided, cognitive fusion, 
and MRI/TRUS fusion-guided biopsy [7].

MR imaging provides excellent soft-tissue contrast and has become an imaging modality of 
choice for localization of prostate tumors. Multiparametric MRI (mpMRI) includes high-resolution 
T2-weighted (T2W) MRI, diffusion-weighted imaging (DWI), dynamic contrast-enhanced imaging 
(DCE-MR), and MR spectroscopy (MRS). The mpMRI has proven to be an effective technique to 
localize high-risk prostate cancer [8,9]. The combined use of anatomic and functional information 
provided by the multiparametric approach increases the accuracy of MR imaging in detecting and 
staging prostate cancer [8,9]. It can also help guide biopsies to achieve a higher tumor detection rate 
and better reflect the true Gleason grade. The European Society of Urogenital Radiology (ESUR) 
in 2012 established the Prostate Imaging-Reporting and Data System (PI-RADS) scoring system 
for multiparametric MRI of the prostate [10]. The MR PI-RADS aims to enable consistent inter-
pretation, communication, and reporting of prostate mpMRI findings [10,11]. A joint steering com-
mittee, formed by the American College of Radiology, ESUR, and the AdMeTech Foundation, has 
recently announced an updated version of the proposals of PI-RADS version 2 (v2) [12]. Prostate 
mpMRI at 3 T had been recommended in PI-RADS v2. Generally, CAD systems are classified into 
two categories: computer-aided detection (CADe) and computer-aided diagnosis (CADx) systems. 
Currently, most CAD systems in prostate MRI focus on local suspicious lesions and discrimination 
between benign and malignant lesions; most of them are computer-aided diagnosis systems. As the 
combination of various MR images creates large amounts of data, supportive techniques or tools, 
such as computer-aided diagnosis (CADx), are needed in order to make a clinical decision in a fast, 
effective, and reliable way.

In the past 10 years, computer-aided techniques have developed rapidly. Automated computer-
aided detection and diagnosis may help improve diagnostic accuracy of PCa, and reduce inter-
pretation variation between and within observers [13,14]. Prostate cancer diagnosis requires an 
experienced radiologist to read prostate MRI, and such expertise is not widely available. Addition 
of CADx may significantly improve the performance of less-experienced observers in prostate can-
cer diagnosis. When less-experienced observers used CADx, they reached similar performance 
as experienced observers [13]. In a more recent study, the use of CAD can also improve prostate 
mpMRI study interpretation in experienced readers [15]. For cases in which radiologists are less 
confident, they can get higher performance by using the computer output. A recent study showed a 
pattern recognition system enables radiologists to have a lower variability in diagnosis, decreases 
false negative rates, and reduces the time to recognize and delineate structures in the prostate [16]. 
The benefit of CADx also includes guiding biopsy using cancer location information from MRI [14]. 
Therefore, along with rapid development of MR technique, CADx of prostate cancer has become an 
active field of research in the last 5 years.
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This chapter starts with the review of MR image acquisition technology and then focuses on a 
comprehensive review of the state-of-the-art image quantification methods. The part on validation 
and clinical applications is a reference of the literature available in the clinical management of the 
disease. The chapter closes with a discussion and future perspectives.

MR IMAGE ACQUISITIONS

Contemporary MR imaging of the prostate combines anatomic images from high-resolution T1W 
and T2W sequences and functional information obtained from DWI, DCE, and MRS. The com-
bination of conventional anatomical and functional MRI is known as multiparametric MRI. The 
PI-RADS Prostate MR Guidelines published in 2012 suggest the use of T2W images plus 2 func-
tional techniques [10]. The anatomy of the prostate gland is visualized with T2W images; DWI and 
MRS add specificity to lesion characterization, while DCE-MRI has a high sensitivity in cancer 
detection. In the PI-RADS v2, the essential components of the mpMRI prostate examination are 
T2W, DWI, and DCE [12]. For the PZ, DWI is the primary determining sequence. For the TZ, T2W 
is the primary determining sequence. In order to obtain high and stable accuracy, a combination 
of anatomical and functional imaging is necessary in clinical practice. Recent studies showed an 
increasing interest in developing CADx systems to detect and characterize prostate cancer on the 
basis of an mpMR imaging approach [14,15,17,18]. T2W MR images are frequently used in mpMRI 
CADx systems. T2W plus DWI and DCE-MRI are also commonly used among the combinations.

T2WI AND T2 MAPPING

The anatomy of the prostate gland is best visualized with T2W images. The acquisition of high-
resolution T2W images of the prostate is the first and most important step in an mpMR imaging 
protocol. In T2W images, the peripheral zone of the prostate has hyperintense signal, whereas 
the central and transition zones have low signal, allowing the zonal anatomy of the prostate to be 
clearly delineated (Figure 15.1). In T2W images (Figure 15.2), PCa in the peripheral zone is usually 
depicted as a low-signal area. However, the growth pattern and the aggressiveness of the tumor can 

FIGURE 15.1 High-resolution T2-weighted MRI. T2-weighted MR images can differentiate the normal 
intermediate- to high-signal-intensity peripheral zone (Region 1) from the low-signal-intensity central and 
transition zones (Region 2).
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alter its appearance. T2W MR imaging has been advocated as an accurate technique in the detection 
of PCa in the transition zone [19,20]. The value of T2W MR images is also in predicting pathologi-
cal stage and extracapsular extension of PCa [21].

Because T2W MR images play an important role in both location and staging of PCa, T2W MRI 
is the basis and important sequence in CADx systems for PCa. In T2W MR images, the tumor region 
of interest (ROI) has more dark pixels than bright pixels, whereas the normal tissue ROI has more 
bright pixels than dark pixels. Different features, including fractal features, textural features, and sig-
nal intensity can be used by CADx. Because prostate cancers at the central gland and peripheral zone 
usually have significantly different texture on T2W MR images [22], and because the use of mpMRI 
may have challenges for detecting cancer at the transition zone [23], a CADx system that can analyze 
features based on the lesion’s location may be able to aid in the detection of suspicious lesions.

T2 maps offer quantitative T2 values. As the standard T2 mapping approach of performing mul-
tiple single spin-echo acquisitions with a range of TE settings requires excessive scan times, the T2 
mapping is not include in most clinical applications. Recently, some new sequences can provide an 
effective approach to speed up T2 quantification [24,25]. T2 values of histologically proven malig-
nant tumor areas were significantly lower than the suspicious lesions but nonmalignant lesions or 
normal areas [26]. The use of quantitative T2 measurement improves the specificity and/or sensi-
tivity of prostate cancer detection [27] and aggressiveness assessment [28,29]. There is a potential 
benefit of incorporating quantitative T2 values into CADx systems.

DYNAMIC CONTRAST-ENHANCED MRI (DCE-MRI)

DCE-MRI, which enables visualization of vascular permeability and perfusion, is an important tool 
in oncology to define tumor. DCE-MRI is sensitive to alterations in vascular permeability, extracel-
lular space, and blood flow. The clinical application of DCE-MRI for prostate cancer is based on 
data showing that malignant lesions show earlier and faster enhancement and earlier contrast agent 
washout compared with healthy prostate tissues (Figure 15.3) [30].

The DCE-MRI data can be analyzed with various semiquantitative or quantitative models to 
extract parameters related to vascular permeability, extracellular space, blood flow, and water 
exchange [31]. Semiquantitative DCE-MRI data are only relative to the patient; the baseline inten-
sity is highly variable depending on the patient and the MRI protocol. It is necessary to use indica-
tors relating to signal amplitude. The most commonly quantitative approach to analyzing DCE-MRI 

FIGURE 15.2 High-resolution T2-weighted MR images of prostate cancer. (a) There is a low-signal intensity 
lesion on the right peripheral zone (white arrows) at the mid-gland of the prostate. At prostatectomy, the lesion 
was classified as a Gleason grade 7 (4 + 3) prostate adenocarcinoma. (b) An ill-defined homogeneous low-
signal intensity area at the left transition zone (white arrows) at mid-gland of the prostate in another patient. 
TRUS-guided biopsy showed a Gleason grade 8 (4 + 4) prostate adenocarcinoma on the corresponding posi-
tion. (From Neto, J.A., and Parente, D.B., Magn. Reson. Imaging Clin. N. Am., 21, 409–426, 2013.)
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involves two-compartment pharmacokinetic (PK) models that can be used to generate pharmaco-
kinetic parameters such as Ktrans (transfer of gadolinium contrast from the vasculature to the tumor, 
representing forward vascular perfusion and permeability) and Kep (reverse transfer of contrast 
agent from the extracellular space back to the plasma, representing backward leakage) in order to 
quantify tumor enhancement and the contrast uptake and washout [32]. However, pharmacokinetic 
model implementation typically involves assuming some prior knowledge; and the arterial input 
function (AIF) estimation methodology can have significant effects on the parameters estimated by 
PK modeling [33]. The empirical approach based on phenomenological universalities (PUN) is able 
to reproduce experimental data from a DCE-MRI acquisition [34,35].

Different CADx systems have been developed to analyze the DCE-MRI data. Vos et al. devel-
oped a CADx system capable of discriminating PCa from nonmalignant disorders in the peripheral 
zone and achieved a diagnostic accuracy of 0.83 (0.75–0.92) [36]. They also developed an automated 
segmentation per patient calibration method to improve the diagnostic accuracy of CADx [37]. 
Puech et al. designed a prostate CADx software to provide a 5-level cancer suspicion score for suspi-
cious foci detected in DCE-MRI and T1-weighted images [38,39].

DCE-MRI usually has lower spatial resolution than other sequences, especially when DCE-MRI 
is performed rapidly in a short period of time. Limitations in the interpretation of DCE-MRI data 
include overlap in enhancement properties between benign and malignant regions in the transition 
zone. Benign prostatic hyperplasia and other benign inflammatory conditions within the transition 
zone also exhibit substantial hypervascularity [40]. Diagnostic models containing contrast enhance-
ment parameters have reduced performance when applied across zones, so zone-specific models 
can improve classification of prostate cancer on mpMRI [41].

DIFFUSION-WEIGHTED MR IMAGING (DWI)

The diffusion properties of tissue are related to the amount of interstitial free water and perme-
ability. In general, cancer tends to have more restricted diffusion than normal tissue, because of the 
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FIGURE 15.3 Dynamic contrast-enhanced MRI (DCE-MRI) of the prostate. (a) Axial T1 GRE unenhanced 
image. (b) After contrast agent administration, an area with early enhancement is seen on the right in the 
peripheral zone (ROI1) with significant washout in the late-phase image (c). (d) The curve (red) with early 
enhancement is a typical finding in the case of prostate cancer, while healthy prostate tissue is characterized 
by a steady slow enhancement (green). High transport constants Ktrans (e) and kep (f) can confirm suspicion of 
prostate cancer. Prostate adenocarcinoma with a Gleason score of 4 + 5 = 9 was diagnosed after prostatec-
tomy. (From Durmus, T. et al., Aktuelle Urol., 45, 119–126, 2014.)
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higher cell densities and abundance of intra- and intercellular membranes in cancer [42]. Diffusion-
weighted MRI images can be used to detect prostate cancer from differences in the diffusion of 
water molecules of the normal and tumor tissues (Figure 15.4) [42]. The diffusion-weighted image 
is usually generated with different b-values that can be used to calculate the apparent diffusion 
coefficient (ADC), and the ADC for each pixel of the image is displayed as an ADC map. Diffusion 
of water molecules in tumor tissue is thought to reflect tissue architecture such as cell density 
and nucleus/cytoplasm ratio, and reductions in ADC values. For these reasons, ADC values have 
received attention as a predictor of Gleason score in prostate cancer [43,44]. Studies show that DWI 
findings may indicate tumor aggressiveness [27,45,46].

Technologic advances enable performance of DWI at high b- or ultrahigh b-values (greater than 
1000 s/mm2). High b-value images can be obtained in one of two ways: either directly by acquiring 
a high b-value DWI sequence or by calculating (synthesizing) the high b-value image by extrapo-
lation from the acquired lower b-value data. Previous research has shown that high b-value DWI 
images allow for increased delineation between tumors and healthy tissue which makes the prostate 
cancer detection more robust [47,48]. Whereas contrast in ADC maps does not significantly change 
with different b-values, contrast ratios of DWI images are significantly higher at b-values of 1500 
and 2000 s/mm2 in comparison to b-values of 800 and 1000 s/mm2 [49]. Wang et al. have reported 
that DWI images and ADC maps using b = 1500 s/mm2 should be considered more effective than 
those at b = 2000 s/mm2 or b = 1000 s/mm2 for detecting prostate cancer at 3 T MRI [50].

DWI images and ADC maps are the key component of the prostate mpMRI exam. Several CADx 
systems adopting DWI images or ADC maps have been developed. DWI was mostly often combined 

FIGURE 15.4 Multiparametric MRI (mpMRI) of the prostate. Axial T2 TSE (a) and coronal T2 TSE (b) 
images show a well-defined T2 hypointense lesion in the peripheral zone (arrow) with corresponding high 
signal on DWI (c) and low signal on the ADC map (d). Biopsy of this region was positive for Gleason 4 + 3 
prostate cancer. (From Yacoub, J.H. et al., Radiol. Clin. North Am., 52, 811–837, 2014.)
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with T2W in these CADx systems. Peng et al. demonstrated that the combination of 10th percentile 
ADC, average ADC, and T2-weighted skewness with CADx is promising in the differentiation of 
prostate cancer from normal tissue [27]. Niaf et al. presented a CADx system based on T2W, DWI, 
and DCE for assisting cancer identification in the PZ [18]. Stember et al. develop a software system 
that identifies suspicious regions at the prostate TZ using signal and textural features on T2W and 
ADC maps, free of user input [51]. Kwak et al. recently designed a prostate CADx combined T2W 
and high b-value (b = 2000 s/mm2) DWI. They obtained an AUC of 0.89 [52].

MR SPECTROSCOPY (MRS)

In MRS, the position of each metabolite peak in the output graph reflects the resonant frequencies or 
chemical shifts of its hydrogen protons, and the area of each peak reflects the relative concentration 
of that metabolite [53]. The dominant peaks observed in prostate MRS are from protons in citrate 
(2.60 ppm), creatine (3.04 ppm), and choline compounds (3.20 ppm) (Figure 15.5) [53].

As a metabolic biomarker for PCa, MRS has not gained wide acceptance in routine clinical 
practice due to a variety of factors including the length and complexity of data acquisition, zonal 
anatomy, processing, and analysis. Visual interpretation of the spectra by a trained spectroscopist 
is time-consuming and requires accurate knowledge of prostate anatomy. Therefore, a method for 
automated analysis of prostate MRS data is necessary.

Over the last decade, with a view to assisting radiologists in interpretation and analysis of MRS 
data, several researchers have begun to develop CADx schemes for PCa identification from spec-
troscopy. Tiwari et al. developed an approach that integrated a manifold learning scheme (spectral 
clustering) with an unsupervised hierarchical clustering algorithm to identify spectra correspond-
ing to cancer on prostate MRS [54]. The scheme successfully identified MRS cancer voxels with a 
sensitivity of 77.8%, a false positive rate of 28.92%, and a false negative rate of 20.88% [54]. They 
also presented a CADx scheme that integrated nonlinear dimensionality reduction (NLDR) with 
an unsupervised hierarchical clustering algorithm to automatically identify suspicious regions on 
the prostate using MRS [55]. They introduced the use of wavelet embedding to map MRS and 
T2W texture features into a common space to identify the voxels that are affected by prostate can-
cer [56]. They recently presented a computerized decision support system called Semi Supervised 
Multi Kernel Graph Embedding (SeSMiK-GE) that may be developed into a powerful diagnostic 
and prognostic tool for distinguishing high- and low-grade PCa in vivo. Matulewicz et al. used an 

FIGURE 15.5 MR spectroscopy (MRS) of prostate cancer. (a) Axial T2-weighted MR images at the level 
of the prostate mid-gland to apex shows a large hypointense lesion on the left peripheral zone. (b) A 3D 
MRS shows a normal spectrum on the right peripheral zone (red box) with normal choline plus creatine-to-
citrate ratio of 0.48. In the voxel placed over the lesion on the left peripheral zone (blue box), the curve shows 
an increased choline peak and the citrate peak is markedly reduced. Random systematic biopsy showed a 
Gleason grade 9 (4 + 5) prostate adenocarcinoma on the left apex. (From Neto, J.A., and Parente, D.B., Magn. 
Reson. Imaging Clin. N. Am., 21, 409–426, 2013.)
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artificial neural network (ANN) model to automatically detect cancerous voxels from prostate MRS 
datasets and found that the additional information concerning the prostate’s zonal anatomy can 
improve the performance of the detection [57].

OTHER IMAGING METHODS

Although T2W, DWI, DCE-MRI, and MRS are more commonly used in mpMRI, some MRI meth-
ods, including diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and MR elas-
tography (MRE), have been investigated for characterizing prostate cancer [58–61]. Other MRI 
methods, including proton density-weighted (PD-W) image [62] and T1 map [14], have also been 
added for feature calculation purposes in some CADx system.

DTI has been widely used in clinical applications, especially in neuro- and musculoskeletal 
imaging. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values provided from 
DTI data reflect the degree of water diffusion restriction in different tissue. Pathological processes 
may cause change in normative FA values and disruption of fibers in tractography. The feasibility of 
performing DTI of the prostate had been demonstrated by some studies; and DTI tractography can 
successfully visualize fiber tracts around the prostate [58]. DTI tractography might be applicable 
to the estimation of structures of the prostate [59], the characterization of prostate cancer [60], and 
monitoring prostatic structural changes under radiotherapy [61].

The novel technique diffusion kurtosis imaging enables characterization of non-Gaussian water 
diffusion behavior. The DK model may add value in PCa detection and diagnosis, and DKI poten-
tially offers a new metric for assessment of PCa [63]. A recent study demonstrated no significant 
benefit of DKI for detection and grading of PCa as compared with standard ADC in the peripheral 
zone determined from b-values of 0 and 800 s/mm [64]. The mechanical properties of the tissue 
of interest are calculated from the wave fields and displayed as an image, commonly referred as an 
elastogram. In MR elastography (MRE), an external mechanical excitation is applied to the tissue of 
interest to induce tissue vibrations [65]. MRE has been shown to be of clinical value in MRI for its 
ability to detect tissue abnormalities in organs such as the liver [66], brain [67], and breast [68–70]. 
More recently, researchers have also focused on the development of MRE methods to detect pros-
tate cancer [71–73]. The resulting wave fields are imaged using a motion-sensitized MRI pulse 
sequence. Elastograms may add another dimension to current mpMRI techniques for diagnosing 
prostate cancer, and may further increase the sensitivity and specificity of such techniques.

T1 maps offer quantitative T1 values and can be produced by a variety of methods, such as mul-
tiple inversion or multiple repetition time acquisitions, typically requiring lengthy acquisition times. 
Another approach taken in the context of the prostate has been to employ spoiled gradient-echo 
(SPGR) sequences where it is possible to obtain T1 estimates in relatively short acquisition times 
by varying the radiofrequency (RF) flip angle [74]. The T1 mapping is not including in most CADx 
systems. Vos et al. [14] had presented a fully automatic CADx by combining a histogram analysis 
on mpMR images including T1, pharmacokinetic, T2, and ADC maps.

MR lymphography has been used for the investigation of the lymphatic channels and lymph 
glands. Different imaging techniques, including nanoparticle-enhanced [75,76] and non-contrast 
MR lymphography [77,78], had been developed for detection of nodal metastases. MR lymphogra-
phy is a noninvasive technique that is well suited for the examination of regional (intrapelvic) lymph 
node metastases in PCa.

MR IMAGE QUANTIFICATION METHODS

GENERAL FRAMEWORK

Development of computer-aided detection systems includes several aspects: image pre-processing, 
algorithm development, methodology for assessing CADx performance, validation using appro-
priate cases to measure performance and robustness, observer performance studies, assessing 
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performance with a clinical trial, and ultimately commercialization. The development must con-
front several challenges. Computerized image procedure may cover different aspects of segmenta-
tion, registration, feature extraction, and classifiers. A computer algorithm should be developed 
based on the understanding of image reading by radiologists, such as how radiologists detect certain 
lesions, why they may miss some abnormalities, and how they can distinguish between benign and 
malignant lesions. It is important to develop CADx systems that extracts quantitative data in a more 
accurate and automated fashion.

Many different types of CADx systems are produced to locate/diagnose prostate cancer in MR 
imaging, including T2W, DWI, DCE-MRI, and MRS. Considering the particularity of prostate can-
cer in anatomy, pathology and clinic, the core of a CADx system for the detection of prostate cancer 
is associated with its computerized algorithms. In general, the pipeline of the CADx system for 
prostate cancer is visualized schematically in Figure 15.6. In the initial stage, lesion candidates are 
selected within a likelihood map that is generated by a voxel classification of one or more images. 
Hereafter, the lesion candidates are segmented into a region of interest from which region-based 
features are extracted. Finally, the extracted information is fused by a classifier into malignancy 
likelihood. The following sections describe each step in detail.

PRE-PROCESSING

The purpose of pre-processing is to normalize the MR data or to transform the MR data to a domain 
in which prostate lesions can be easily detected.

For T2W MRI, the image intensities can vary, even using the same protocol and the same scan-
ner. The quality of images depends on the acquisition conditions such as temperature, calibration 
adjustment, B0 intensity, coil position, and the receiver gain value. In addition, the intensity varia-
tion will increase when different scanners are used. This relationship must be taken into account 
for MR image analysis. Collewet et al. [79] proposed four schemes for the intensity normalization. 
The most used method is that intensities are proportionally normalized by defining the median+2* 
(inter-quartile range).

ADC maps calculated from DWI are useful for detecting prostate cancer with a relatively high 
specificity. However, it has lower resolution than T2W MRI and is subject to magnetic susceptibil-
ity artifacts [17]. ADC represents a quantitative assessment of water diffusion. Lower ADC value is 
associated with higher rate of malignancy. Prostate cancer can be identified as a low signal region 
on ADC maps against a background of normal tissue with higher signal intensity [17].

Intensity inhomogeneity arises from the imperfections of the image acquisition, which can 
reduce the accuracy of segmentation, classification, and registration. The most intuitive method 
to correct intensity inhomogeneity is image smoothing or homomorphic filtering [80]. Vovk et al. 
[81] classify inhomogeneity correction methods into two categories, which are prospective and ret-
rospective. Prospective methods aim at the calibration and improvement of image acquisition pro-
cesses. Retrospective methods rely exclusively on the information of the acquired images or on a 
priori knowledge. Sled et al. [82] proposed a nonparametric nonuniform intensity normalization 

FIGURE 15.6 Flowchart for computer-aided detection of prostate cancer in mpMRI.
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(N3) method for inhomogeneity correction, which is independent of pulse sequence. Tustison et al. 
[83] proposed a variant of N3 for bias field correction. Similar to the N3, the source code, testing, 
and technical documentation are publicly available and the package is “N4ITK.” This algorithm is 
available to the public through the Insight Toolkit of the National Institutes of Health.

SEGMENTATION

The segmentation aims to reduce the burden of the classifier in the later stages. Therefore, the clas-
sifiers only focus on the prostate region obtained by segmentation methods. T2W imaging provides 
the best resolution and contrast to show the anatomy of the prostate and has a very high sensitivity 
for prostate cancer. Therefore, T2W MRI is the most useful image sequence in determining the 
contours of prostate.

Extensive studies were developed to segment the prostate from MR images [62,84–90]. It can be 
a challenging task to obtain accurate prostate volume in T2W MRI. First, the contrast between the 
prostate and the surrounding tissues can be low. Therefore, it may be difficult to accurately segment 
the boundary of the prostate. Second, the prostate shapes of different patients can be significantly 
different. Even for the same patient, the prostate motion at different patient positions can be large, 
which results in a shape difference on MR images. Third, MR image appearance, quality, and the 
presence of artifacts can be affected by different scanners, which in turn can have a large influence 
on the performance of computerized algorithms. All these aspects need to be considered when 
developing a robust and accurate segmentation method for prostate MR images.

Contour- and shape-based methods [91–95] exploit edge and shape features to segment the pros-
tate, which contains two categories. The first category is edge-based segmentation methods. The 
edge detection operators are used to produce edges on MR images. The candidate edges are picked 
up and then connected to obtain the prostate boundary. Zwiggelaar et al. [91] developed a semiauto-
matic method to segment the prostate in MRI data. Their method exploits the characteristics of the 
anatomical shape of the prostate when represented in a polar transform space. The edge detection 
and non-maximum suppression are used to track the boundary of the prostate.

The second category is deformable model-based segmentation methods. Kass et al. [96] pro-
posed an active contour model and used the image gradient to evolve a curve. The internal spline 
force pushes the curve toward the salient image feature, while external force is responsible for put-
ting the curve near the object. Chan and Vese [97] proposed a level-set algorithm of the piecewise 
constant variant of the Mumford-Shah model [98] for segmentation.

Atlas based methods are also used to segment the prostate in MR images [99]. An atlas consists 
of original image data and its corresponding manual segmentation. The atlas can be used as a refer-
ence to segment the prostate of a new patient. Klein et al. [99] proposed an automatic method for 
segmenting the prostate in 3D MR images. Their method is based on non-rigid registration of a set 
of pre-labeled atlas images. The label images of the deformed atlas are fused to yield a segmentation 
of images from a new patient.

Besides the above methods, a global optimization algorithm called graph cut [100,101] is becom-
ing more and more popular due to its efficient global minimization. The segmentation problem can 
be formulated as a minimization of an energy minimization. Egger [102] proposed a graph-based 
approach to automatically segment prostate based on a spherical template. The minimal cost on the 
graph is optimized by a graph cut algorithm, which can get the segmentation of the prostate vol-
ume. Mahapatra and Buhmann [85] proposed a fully automatic method for prostate segmentation 
using random forest classifiers and graph cuts. The prostate probability map was generated based 
on a random forest classifier. The negative log-likelihood of the probability maps was used as the 
penalty cost in an energy function, which was minimized by graph cuts. Tian et al. [103] proposed 
a supervoxel-based segmentation method for the prostate. The prostate segmentation problem was 
considered as assigning labels to supervoxels. An energy function with both data and smoothness 
terms was used to model the labels, which was minimized using graph cuts. The segmentation 
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results are shown in Figure 15.7. Other segmentation methods were also developed for the prostate 
[104,105]. Ghose et al. [105] reviewed segmentation methods for the prostate in TRUS, MR, and 
CT images. They studied the similarities and differences among the different methods, highlighting 
their advantages and disadvantages in order to assist in the choice of an appropriate segmentation 
method. They also provided a comprehensive description of the existing methods in all TRUS, MR, 
and CT images and highlighted their key points and features. They provided a strategy for choosing 
segmentation method for a given image modality.

A publicly available dataset called MICCAI Challenge Prostate MR Image Segmentation 
(PROMISE12) [104] can be used to evaluate the performances of the new proposed methods. This 
data set contains 50 cases with ground truths for training, and 30 cases without ground truths for 
test, which are 3D T2W MR transverse images of the prostate. The MR images were obtained from 
multicenter, multivendor, and different acquisition protocols (i.e., with/without endorectal coil, dif-
ferences in slice thickness).

REGISTRATION

Image registration is a process of aligning two or more images, which aims to find the optimal 
transformation that best aligns the structures of interest in the input images. Image registration is 
needed in order to integrate the features from different images of mpMRI such as DCE-MRI and 
T2W MRI. The registration of images requires the selection of the feature space, a similarity mea-
sure, a transformation type, and a search strategy [106]. The DICOM header of MR images can pro-
vide coordination and orientation information that are useful for registering T2W, ADC, and Ktrans 

maps. T2W-MRI is considered as the reference. Other modalities can be registered to T2W-MRI by 
aligning the coordinates of their origins, which are obtained from the DICOM header. If necessary, 
resolution adjustment is also performed after the alignment.

Registration is also used to validate in vivo MR imaging using ex vivo histologic images 
[107,108]. To obtain the reliable ground truth of the prostate cancer region, whole-mount histology 
is performed on ex vivo prostate. The pathologist labels the cancer region in the histology images. 
Based on the registration between the whole-mount histology and T2W MRI, the labeling of the 
cancer in histology can be mapped to T2W MRI for validation [107,108]. Kalavagunta et al. [108] 
proposed a method to register MRI and histology using local affine transformations guided by 

FIGURE 15.7 Prostate segmentation on MR images. (a) 2D MR image and segmentation results where 
the red curve represents the segmentation from a computer algorithm while the blue curve is the ground 
truth labeled by a radiologist. (b) 3D visualization after segmentation. The gold region is the prostate surface 
obtained by the computer algorithm while the red region is the ground truth.
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internal structures. First, the histologic and MR images are segmented, scaled, and translated. 
Second, the prostate capsule and internal structure masks are identified to constrain the pathology 
transformation. A transformation matrix is obtained by registering two images based on capsule 
and internal structure masks. Third, the pathology images are warped using a computed transfor-
mation matrix. Fourth, a transformation matrix is applied for each annotated cancer region. The 
warped cancer regions are superposed on registered pathology images. Last, the cancer regions 
in MRI can be obtained by mapping the cancer regions of pathologic images to MR images. In 
another study, Chappelow et al. [107] presented a new registration method that maximizes the 
combined mutual information shared by the intensity of the reference image and multiple represen-
tations of the floating images in multiple feature spaces. The method provides enhanced registra-
tion performance by combining the intensity information with transformed feature images from 
the images. These feature images are not as susceptible to intensity artifacts and provide additional 
similarity information regarding the reference image but not contained in the floating image. This 
method is particularly useful for registering MRI and histology.

FEATURE EXTRACTION

Feature extraction plays an important role in prostate MRI CADx systems. Classic features for 
medical images include intensity, shape, texture, and statistical features. For medical image clas-
sification, choosing the right features for a classifier is more important than choosing the classifier 
itself [62].

Litjens et al. classified the features into five types: intensity, pharmacokinetic, texture, blob-
ness, and anatomical features [62]. For the intensity feature, a T2-estimate map is generated by 
using the MR signal equation, the proton density image, and a reference tissue [88]. Anatomical 
features include the relative distance to the prostate boundary and the relative position feature. Both 
the relative distance and relative position features are calculated with respect to the prostate sur-
face obtained by segmentation methods. For the pharmacokinetic feature, the traditional analysis is 
incorporated in their CADx system by using a curve fitting technique to fit a bi-exponential curve to 
the time data, as presented in Huisman et al. [109]. For the texture feature, a Gaussian texture bank 
was used to capture the textural distortions [22]. For the blobness feature, it was found that prostate 
cancer tends to appear as a blob-like lesion in DWI and DCE-MRI. The blobness-filter presented 
by Li et al. was chosen as a blobness measure [110]. Blobness is calculated on the ADC, tau and 
LateWash images, and on the Ktrans and Kep images as well [110].

Shah et al. [17] created an mpMRI feature set for CADx systems (Figure 15.8). First, in order 
to reduce interpatient variability, normalized T2W maps were calculated from the transversal 
T2W intensities using the average fat signal adjacent to the prostate as a reference. Second, quan-
titative ADC maps were computed from the transversal DWI by fitting the dependence of the 
signal intensity in each pixel. Third, each dynamic curve was de-noised by using a wavelet filter 
for DCE-MRI. The pharmacokinetic parameters were extracted by using the generalized kinetic 
model (GKM) [111,112]. Then, the GKM was fitted to the measured concentration time curves, 
using the linear least squared method [112] to yield the volume transfer constant, Ktrans, and the 
rate constant, kep. Finally, the normalized T2W and ADC maps were resized to have a pixel reso-
lution equal to the T1 and Ktrans and kep maps in order to form the final feature set for the CADx 
system.

Niaf et al. extracted about 140 kinds of features for a CADx system [18]. Most of these features 
were chosen based on their proven efficiency between cancer and non-cancer. Two categories of 
features were proposed: image features and functional features. For image features, there were three 
types: gray-level features, texture features, and gradient features. The image intensity values of 
T2, DCE, and ADC maps were used as gray-level features. First order texture measurements were 
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computed for each pixel over a local window, which includes mean, median, standard deviation, and 
average deviation. Second order texture features were computed based on two neighboring pixels, 
which includes co-occurrence matrix. The Sobel and Kirsch filters and numerical gradient opera-
tors were used to compute gradient features (Figure 15.9).

Radiomics is an emerging field for the quantification of tumor phenotypes by applying a large 
number of quantitative image features [113,114]. Radiomics can provide complementary and inter-
changeable information to improve individualized treatment selection and monitoring. Since medi-
cal imaging technology is routinely used in clinical practice worldwide, radiomics may have a high 
clinical impact on future patient management. The workflow of radiomics consists of three steps 
[113]. The first step is the acquisition of standardized images for diagnostic or planning purposes. 
On the images, the tumor regions are extracted by an algorithm or an experienced radiologist. 
Second, quantitative imaging features are extracted from the tumor regions. These features involve 
tumor image intensity, texture, and shape and size of the tumor. Last, all the extracted features are 
analyzed and selected by a model. The most informative features are identified and incorporated 
into predictive models for treatment outcome. Radiomics, as a high-dimensional mineable feature 
space, can be used for prostate cancer. Cameron et al. constructed a comprehensive radiomics fea-
ture model to detect tumorous regions using mpMRI [115]. New radiomics-driven texture feature 
models have been developed for the detection of prostate cancer and for the classification of prostate 
cancer Gleason scores by utilizing mpMRI data [116–118].

FIGURE 15.8 Flowchart for a CAD system based on a mpMRI. The cancer probability map is the final 
outcome of the algorithm. (From Shah, V. et al., Med. Phys., 39, 4093–4103, 2012.)
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CLASSIFICATION

Image classification involves training and testing with features extracted from image data and its 
corresponding labels [62]. A classifier is usually trained by using the labeled image dataset and 
applied to unseen image datasets. Several classification techniques from the machine learning 
field have been developed for picking up discriminative features. Support vector machines (SVMs) 
and random forests could achieve good performance based on the positive and negative training 
samples [17,119]. A pixel classification provides a likelihood between 0 and 1 for each pixel, with 0 
indicating no suspicion of prostate cancer and 1 indicating high suspicion of cancer.

Litjens et al. [62] experimented with three different classifiers: a linear discriminate classifier, a 
GentleBoost classifier [120], and a random forests classifier [119] with regression trees. Shah et al. 
used SVM to create a classifier model [17]. Because real data are not linearly separable, the SVM 
implementation was used to allow relaxed constraint for misclassified points. SVMs’ “kernel trick” 
was also implemented to enable operations to be performed in the input space rather than the poten-
tially high-dimensional feature space [121].

(a) (b)

(c) (d)

(e) 1
500
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FIGURE 15.9 Image features for prostate cancer detection. (a) With prostate cancer superposed in green. 
(b) First order statistics (standard deviation). (c) Sobel-Kirsch feature. (d) Second order statistics (contrast inverse 
moment). (e) Corresponding time-intensity curves for PCa (red) and benign (blue) regions are shown based on 
DCE-MRI data. (From Viswanath, S. et al., Proc. Soc. Photo. Opt. Instrum. Eng., 7260, 72603I, 2009.)
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Chan et al. [122] investigated the use of a statistical classifier for detecting prostate cancer by 
combining information from MR images. SVM is used to predict the tumor likelihood in the 
peripheral zone using the derived features. For SVM training, they randomly sampled 10% of the 
PZ data and retained all the tumor data to confine the training dataset to a manageable size for SVM 
training convergence. The radial basis function kernel was used for SVM. These works indicate that 
the SVM classifiers and random forests work well on the problem of classifying prostate tumors on 
mpMRI.

VALIDATION

When developing a CADx system for prostate MRI, the accuracy of the “gold standard” is impor-
tant. Histopathology, as the ground truth, usually includes findings from prostatectomy specimens 
or biopsy specimens. The validation of CADx systems is summarized in Table 15.1.

(Continued)

TABLE 15.1
Validation of CADx Systems

Reference
Ground Truth on the 

Histology Candidate on MR Image Image Registration

Chan et al. (2003) [122] Biopsy MO NA

Puech et al. (2007) [39] Needle biopsy or 
prostatectomy

MO NA

Tiwari et al. (2007) [54] Biopsy Sextant location determined by 
radiologist

NA

Vos et al. (2008) [36] WMHS + MO MO 3D rendering mode

Viswanath et al. (2008) [140] WMHS + MO MANTRA Multimodal image 
registration

Viswanath et al. (2009) [129] WMHS MANTRA Multimodal image 
registration

Vos et al. (2009) [37] WMHS Not specified Not specified

Liu et al. (2009) [141] WMHS + MO MO + ex vivo MRI Manual

Tiwari et al. (2009) [55] WMHS + sextant 
boundaries

A joint review session of trial 
imagers and pathologists

NA

Artan et al. (2010) [142] WMHS + MO Tumor location is transferred to the 
in vivo MRI from histologic images + 
ex vivo MRI

NA

Vos et al. (2010) [143] WMHS + MO MO Mutual information 
registration

Viswanath et al. (2011) [144] WMHS + MO Registration from histologic images MACMI

Lopes et al. (2011) [145] WMHS + drawn by 
urologists

Drawn by urologists Manual 
correspondence

Liu and Yetik (2011) [26] WMHS + MO MO + ex vivo MRI Manual registration

Sung et al. (2011) [146] Radical prostatectomy + 
MO

The radiologist matched the 
pathologic slices with 
corresponding MRI

NA

Tiwari et al. (2012) [56] WMHS MO + ex vivo MRI Manual registration

Viswanath et al. (2012) [22] WMHS + MO Registration from histologic images Multimodal elastic 
registration

Vos et al. (2012) [14] Needle biopsy Combining the findings with 
histopathology of MR-guided 
samples by radiologist

NA
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In order to transfer the labels from pathology to MR images, MR images usually need to be 
registered with pathological sections of the prostate. An accurate registration of histologic and MR 
images serves as the bridge between in vivo anatomical information and ex vivo pathologic informa-
tion, which is valuable in developing a CADx system.

Whole-mount sections are generated from tissue slices and microscopic slices are stained with 
hematoxylin-eosin staining after being embedded in paraffin [111,123]. Pathologists outline each 
lesion on the microscopic slices. Gleason scores of different regions may also be provided on the 
microscopic slices. For correlation between MR images and histopathologic images, the  corre-
sponding anatomical landmarks and cancerous regions are manually labeled by an expert. The ure-
thra may serve as a guide for correlating the images. In order to improve the accuracy and efficiency 
of the correlation, some automatic methods have been developed [111,124].

There are several challenges in establishing automatic correlation between in vivo MR images 
and histopathologic images. The orientation of the specimen and its sections may be different 
from that of in vivo MR imaging. There are mismatches between MR imaging and histopathol-
ogy, which make it difficult to assess the true accuracy of MRI. Once the anatomic orientation in 
the body is lost, it may be difficult to section the prostate in the same plane as that of in vivo MR 
images. The specimen can be marked with separate colors on the left, right, and anterior aspects 
for anatomic orientation [111]. Using image processing, computer-aided design, and rapid proto-
typing technology, a customized mold has been used to process prostatectomy specimens for each 
patient [124]. The customized mold holds the prostate in the same position and the same shape as 
those of in vivo MR images and guides the cutting knife to obtain tissue blocks that correspond to 
the image slices.

The prostate is an easily deformable organ, hence, the gland deforms during and after prosta-
tectomy. Additionally, prostate MRI is often performed by using an endorectal coil, which further 
deforms the gland. Specimen formalin fixation and paraffin embedding also induce variable tissue 

TABLE 15.1 (Continued)
Validation of CADx Systems

Reference
Ground Truth on the 

Histology Candidate on MR Image Image Registration

Niaf et al. (2012) [18] WMHS + MO MO Manual registration

Artan et al. (2012) [147] WMHS + MO MO + ex vivo MRI Manual registration

Shah et al. (2012) [17] WMHS + MO Not specified PSM

Matulewicz et al. (2013) [57] WMHS + MO MO Manual registration

Hambrock et al. (2013) [13] WMHS + MO MO Manual registration

Tiwari et al. (2013) [148] WMHS + MO MO Manual registration

Peng et al. (2013) [27] WMHS MO Manual registration

Ginsburg et al. (2014) [149] WMHS + MO Registration from histologic images Nonlinear 
registration

Stember et al. (2014) [51] Needle biopsy Not specified NA

Niaf et al. (2014) [150] Prostatectomy + MO MO Manual registration

Garcia Molina et al. (2014) [16] Prostatectomy + MO MO Manual registration

Litjens et al. (2014) [62] Needle biopsy Not specified NA

Kwak et al. (2015) [52] Needle biopsy Determined by radiologists NA

Zhao et al. (2015) [151] Biopsy MO NA

Abbreviations:  MO: manual outlined regions of lesions; MANTRA: multi-attribute, non-initializing, texture reconstruction-
based ASM; MACMI: multi-attribute, higher-order mutual information-based elastic registration scheme; 
PSM: patient-specific molds; WMHS: whole-mount histological sections; NA: no registration was used.
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shrinkage. Deformable image registration provides a high degree of flexibility for registration of 
histologic images with in vivo/ex vivo MR images, and can assist in more accurate evaluation of 
MRI findings. Boundary landmarks and internal landmarks of the same prostate have been used in 
a deformable registration algorithm. Mazaheri et al. describe a semiautomatic method by using a 
free-form deformation (FFD) algorithm based on B-splines [125]. This method enabled successful 
registration of anatomical prostate MR images to pathologic slices. Jacobs et al. [126] proposed a 
method for the registration and warping of MR images to histologic sections. This method consists 
of a modified surface-based registration algorithm followed by an automated warping approach 
using nonlinear thin plate splines to compensate for the distortions between the datasets.

There are two general approaches to map ex vivo histological PCa extent to preoperative MR 
images. The first method, perhaps the more intuitive approach, is to reconstruct the 3D histologic 
volume, and then register the 3D histologic volume with the 3D MR volume [127,128]. The second 
approach is to register each 2D histology slice to its corresponding 2D MRI slice separately [107,129]. 
In the first approach, one critical prerequisite was the accurate reconstruction of the histologic vol-
ume; while in the second approach, the prerequisite was to determine the histology-MRI slice cor-
respondence. In some cases, the former prerequisite may not be achievable, hence the only solution is 
to take the second approach. There is an increasing interest in the registration of 3D histopathology 
with prostate MR imaging. Three-dimensional reconstruction of prostate histology facilitates these 
registration-based evaluations by reintroducing 3D spatial information lost during histology pro-
cessing [130,131]. Patel et al. [132] presented a scheme for the registration of digitally reconstructed 
whole-mount histology to preoperative in vivo mpMRI using spatially weighted mutual information. 
McGrath et al. [133] used reference landmarks that are visible in both datasets to assist 3D histo-
pathology reconstruction and thus can provide important information on the deformation effects 
of fixation, and hence improved registration accuracy. Histostitcher, a software system designed to 
create a pseudo whole-mount histology section from a stitching of four individual histology quadrant 
images, is another alternative for reconstructing pseudo whole-mount prostate images [134].

Registering pathologic information to mpMRI is a challenging problem in developing a 
CADx system for mpMRI (Figure 15.10). Chappelow et al. [135] described a method based on 
mutual information that registers T2W, DCE-MRI, and ADC. However, this method is based 
on 2D histology and requires considerable expertise to determine the correspondence between 
histologic and MR images. Orczyk et al. [136] described a method based on the present regis-
tration method  and were the first to create a 3D counterpart within the same reference space 

FIGURE 15.10 Registration between mpMRI and histology.
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between histology and both anatomical and functional sequences provided by prostate mpMRI 
(Figure 15.11). The method enables a true, deformable transformation and achieves an accuracy 
of 1–2 mm. The registration of different MR images is critical considering prostate motion, espe-
cially related to rectal peristalsis. Orczyk et al. [136] used rigid registration to correct motion 
between difference sequences.

Although whole-mount prostate histological analysis provides accurate label information for 
training a CADx system, whole-mount histology is expensive and registering whole-mount histo-
logic slices with 3D mpMRI is a challenging problem. Therefore, histologic interpretations from 
biopsy specimens are used to determine the ground truth in some studies [14,62,122,137,138]. In 
vivo biopsy can only label the pathology of the core inside the prostate. Radiologists must manually 
define lesion boundaries on mpMRI retrospectively based on the biopsy results.

Meyer et al. [139] reviewed the registration methods of 3D medical images and histopathology 
of the prostate. They examined the registration process and techniques for registering MRI or PET 
with whole-mounted prostatectomy specimens.

CLINICAL APPLICATIONS

DIAGNOSIS

The functional MR imaging data, like DCE-MRI and MRS, are more complex and larger in amounts 
than anatomic MR imaging. There are clinical needs to develop fast, cost-effective, supportive tech-
niques, such as computer-aided analysis tools, for easy and more reproducible diagnosis of prostate 
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FIGURE 15.11 Registration between MRI and histology. Top: Workflow for pathology-mpMRI registration 
in a surgical 3D space. Bottom: 3D deformable registration of virtual whole-mount histology (1), fresh speci-
men (2), T2 weighted MRI (3), perfusion (4), and diffusion (5) sequences (ADC) applied to prostate cancer. 
(From Orczyk, C. et al., Clin. Radiol., 68, e652–e658, 2013.)
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cancer. Researchers have focused on developing CADx methodology for automated prostate MRS 
classification and DCE-MRI analysis. Because all functional MR imaging techniques have their 
strengths and shortcomings, a single technique cannot adequately detect and characterize PCa. The 
combination of anatomic (T2W) images and functional techniques has been shown to increase the 
accuracy of MR imaging for diagnosis of PCa. Table 15.2 compares the performance of the major 
published prostate CADx systems [13,14,16–18,22,26,27,36,37,39,51,52,54–57,62,122,129,140–151]. 
Chan et al. were one of the first groups who implemented an mpMRI CADx system for the diagnosis 
of prostate cancer [122]. In their approach they used line-scan diffusion, T2, and T2-weighted images 
to identify predefined areas of the peripheral zone of the prostate for the presence of prostate cancer. 
Viswanath et al. [129] present an mpMRI CADx system for PCa detection by integrating functional 
and structural information obtained via DCE and T2W MRI. Liu et al. [141] present fuzzy MRF mod-
els for prostate cancer detection of multispectral MR prostate images. Tiwari et al. [55] investigated 
the use of MR spectroscopy in combination with T2W MRI to identify the voxels that are affected 
by prostate cancer. They also introduced the use of wavelet embedding to map MRS and T2W tex-
ture features into a common space. In a study by Peng et al. [27], the combination of 10th percentile 
ADC, average ADC, and T2-weighted skewness with CADx yielded an AUC value of 0.95 in dif-
ferentiating prostate cancer from normal tissue. The combination achieved higher accuracy than any 
MR parameter alone. In a more recent study by Litjens et al. [62], they developed a fully automated 
computer-aided detection system which consists of two stages. The first (detection) stage consists of 
segmentation of the prostate on the transversal T2W MRI, extraction of voxel features from the image 
volumes, classification of the voxels, and candidate selection. The second (diagnosis) stage consists of 
candidate segmentation, candidate feature extraction, and candidate classification. The system was 
evaluated on a large consecutive cohort of 347 patients, and yielded an AUC value of 0.889.

AGGRESSIVENESS

Treatment choice for prostate cancer is based on initial PSA level, clinical stage of disease, and 
Gleason score, together with baseline urinary function, comorbidities, and patient age [152,153]. 
Therefore, there is an urgent clinical need to detect high-grade cancers and to differentiate them 
from the indolent, slow-growing tumors. The Gleason system, using a rating system to determine the 
grade of prostate cancer, remains one of the widely used prognostic factors in prostate cancer. The 
higher-grade tumors have a tendency to grow quickly and to spread faster than lower-grade tumors.

DWI, DCE-MRI, and MRS are noninvasive assessment methods of PCa aggressiveness. The Gleason 
grading system is a fundamental indicator of the aggressive nature of prostate cancer. Studies found 
that ADC image features correlate with Gleason scores [27,28,46,154–156]. A study by Yamamura et 
al. found a highly significant negative correlation between ADC-value and the Gleason score, while 
MRS did not show a significant correlation [157]. Recently, Zhang et al. found that TRUS-guided, 
MRI-directed biopsies improved the prediction of PCa aggressiveness in comparison with 12-core 
TRUS-guided biopsies. DWI-directed biopsies had a superior performance when compared with MRS 
directed biopsies in the peripheral zone [6]. Diffusion of water molecules in tumor tissue was thought to 
reflect tissue architecture such as cell density and nucleus/cytoplasm ratio, and reductions in ADC val-
ues in tumor tissue in fact correlates well with increases in cellular density [158–160]. For these reasons, 
ADC value has received more attention as a predictor of Gleason score in prostate cancer.

DCE-MRI is based on the permeability of blood vessels and extravasation of contrast agent 
into the surrounding tissue. Investigators have observed that quantitative parameters (Ktrans and 
Kep) and semiquantitative parameters (wash-in and washout) derived from DCE-MRI have the 
potential to assess the aggressiveness of PCa. Oto et al. found a moderate correlation between kep 
and microvessel density of prostate cancer [154]. Peng et al. found Ktrans moderately correlate with 
Gleason scores [27].

In vivo MRS imaging has revealed a trend toward an increased (choline+ creatine)/citrate (CC/C) 
ratio with increased Gleason score [161,162]. This relationship has also been demonstrated by 
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ex vivo HR-MAS MRS [163]. However, other in vivo MRS imaging studies have found no correla-
tion between metabolite ratios and aggressiveness [164,165].

On T2W MRI, changes in signal intensity for prostate cancer detection have been associated 
with its aggressiveness [166]. In a large retrospective study with 220 patients [166], T2W MRI 
and MRS imaging scores based on a 3-point scale for clinical prostate cancer aggressiveness were 
significantly correlated to biologic markers such as androgen receptor levels, which were associ-
ated with PCa progression. In that study, the combination of biomarkers with T2W MRI and MRS 
imaging results did discriminate clinically unimportant prostate cancer. If mpMRI can potentially 
aid in identifying low-grade disease in vivo, this might allow PCa patients to opt for active surveil-
lance rather than immediately opting for aggressive therapy. Lee et al. demonstrated that the simple 
measurement of the diameter of suspicious tumor lesions on DWI could improve the prediction of 
insignificant prostate cancer in candidates for active surveillance therapy [167].

Although these MRI metrics are related to Gleason score, the power and threshold value of each 
metric are different and how to combine these anatomic and functional MRI information is still a 
problem. Developing a computerized decision support system may help in noninvasive assessment 
of PCa aggressiveness. Recently, the SeSMiK-GE system was developed to quantitatively combine 
T2WI and MRS data for distinguishing benign versus cancerous, and high- versus low-Gleason 
grade PCa regions in vivo [148].

BIOPSY GUIDANCE

TRUS-guided sextant or systematic prostate biopsy is the clinical standard for definitive diagnosis 
of prostate cancer. The Gleason score derived from biopsy specimens is important for appropriate 
treatment selection. However, PCa is often heterogeneous and multicentric [168]. In addition, the 
biopsy, which samples a small portion of the prostate, might not represent the whole gland effi-
ciently. Traditionally, it is believed that Gleason score in systematic random TRUS-guided biopsy 
tends to downgrade the surgical specimen because a less differentiated pattern may not have been 
sampled in the biopsy [169,170]. Systematic random TRUS-guided biopsies often require repeated 
biopsy procedures, which are associated with discomfort and potential morbidity [171]. In order to 
reduce the overtreatment and the number of biopsies, lesions must be accurately detected, charac-
terized, and targeted during biopsy. More effective imaging-guided targeted biopsy techniques are 
under investigation in order to improve the detection rate of prostate biopsies.

Optimization of prostate biopsy requires addressing the shortcomings of standard systematic TRUS-
guided biopsy, including false negative rates, incorrect risk stratification, detection of clinically insig-
nificant disease, and the need for repeat biopsy. MRI is an evolving noninvasive imaging modality 
that increases the accurate localization of prostate cancer at the time of biopsy, and thereby enhances 
clinical risk assessment and improves the ability to appropriately counsel patients regarding therapy.

Use of mpMRI for targeted prostate biopsies has the potential to reduce the sampling error 
associated with conventional biopsy by providing better disease localization and sampling, and also 
has a potential role in avoiding biopsy and reducing over detection/overtreatment. MRI-compatible 
biopsy systems were developed for this purpose [172]. More accurate risk stratification through 
improved cancer sampling may impact therapeutic decision making. Optimal clinical application of 
MRI-targeted biopsy remains under investigation.

There are three different manners in which an MRI-detected lesion can be targeted for biopsy: 
(1) direct targeting within the magnet using MR-compatible devices, also called in-bore MRI-guided 
biopsy; (2) use of fusion software to allow an MRI–defined lesion to be identified on ultrasound dur-
ing a TRUS-guided biopsy procedure (Figure 15.12); or (3) cognitive targeting, in which the physi-
cian reviews the MRI data before the procedure and attempts to target the suspected area during the 
TRUS-guided biopsy using anatomic landmarks as reference [173]. An MRI-guided robotic prostate 
biopsy system, named APT-MRI robotic biopsy, has been reported with an accuracy within 2 mm 
[174]. A real-time phase-only cross correlation (POCC) algorithm-based sequence has been used 
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in transrectal 3T in-bore MR-guided prostate biopsies [175]. Fusion of pre-biopsy MR images onto 
interventional TRUS images might increase the overall biopsy accuracy [176,177]. A novel method 
to identify the 2D axial MR slice from a pre-acquired MR prostate volume that closely corresponds 
to the 2D axial TRUS slice obtained during prostate biopsy has been reported by Mitra et al. [178].

TREATMENT PLANNING AND THERAPEUTIC RESPONSE ASSESSMENT

MRI-based techniques are used for computer-aided treatment procedures such as treatment plan-
ning of radiotherapy, MRI-guided radioactive seeds placement in prostate brachytherapy, and MRI-
guided local ablation procedures [179–190].

The excellent soft-tissue contrast of MRI means that the technique is having an increasing role in 
contouring the gross tumor volume (GTV) and organs at risk (OAR) in radiation therapy treatment 
planning systems (TPS). MRI-planning scans from diagnostic MRI scanners are currently incorpo-
rated into the planning process by being registered to CT data. The soft-tissue data from the MRI 
provides target outline guidance and the CT provides a solid geometric and electron density map for 
accurate dose calculation on the TPS computer [191].

A number of minimally invasive, focal, organ-preserving methods have been used in recent years 
as further alternatives to the radical treatment of prostate cancer [170]. The focal therapy methods 
used to date for the prostate include cryotherapy, high-intensity focused ultrasound, laser-induced 
thermal ablation, and radioactive seed placement. MpMRI makes it possible to determine the exact 
location of tumor foci that are generally accessible for ablation or radioactive seed placement. 

FIGURE 15.12 MRI and ultrasound fusion for targeted biopsy of the prostate. (a and b) Anterior lesion 
of the high suspicious lesion identified on mpMRI. (c) Real-time ultrasound targeting the corresponding 
lesion. (d and e) 3D models demonstrate the target (blue), prostate (brown), and biopsy cores (tan cylinders). 
(f) Radical prostatectomy pathology confirmed a 2.3 cm Gleason 8 (4 + 4) cancer centered in the right anterior 
prostate. (From Sonn, G.A. et al., Urol. Oncol., 32, 903–911, 2014.)
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Moreover, mpMRI can also monitor treatment during and after minimally invasive therapy. A CADx 
system for the prostate may have potential value in helping clinicians to target tumor foci during 
treatment.

MpMRI can also be used as an imaging biomarker for monitoring therapeutic response, includ-
ing radiotherapy of localized prostate cancer [191] and systemic therapy for metastatic disease. 
Successful treatment response to therapy is usually depicted by reductions in signal intensity accom-
panied by ADC increases [192–194]. There are clinical needs to develop mpMRI-based CADx sys-
tems for monitoring therapeutic response of the prostate in the future.

DISCUSSION AND FUTURE DIRECTIONS

Unlike breast and lung cancer, prostate cancer CADx systems for MR images have not been 
widely used in daily clinical work for detection or diagnosis. The majority of the prostate CADx 
systems reported the AUC in the range from 0.80 to 0.89 [179], while one reported AUCs of 0.96 
[46], which represented a high performance. However, most systems generated lesion candidates 
based on manually selected ROIs, which may be dataset dependent, and employed a relatively 
small dataset. Validation on a large-scale dataset with several hundred patients is required. A 
prostate CADx system should be tested in multicenter trials to make the systems widely usable 
in clinical work.

One challenge of prostate CAD is related to mpMRI protocols. Both 3T protocols and endorec-
tal coils have the advantage of increasing the signal-to-noise ratio (SNR). At 3T without the use 
of an endorectal coil (ERC), image quality can be comparable with that obtained at 1.5T with an 
endorectal coils [195]. Turkbey et al. found that dual-coil prostate MRI detected more cancer foci 
than non-endorectal coil MRI at 3T on T2W and DWI [196]. At 3T MRI, DWI images and ADC 
maps using b = 1500 s/mm2 should be considered more effective than those at b = 2000 s/mm2 
or b = 1000 s/mm2 for detecting prostate cancer [50]. Most members of the PI-RADS steering 
committee recommend 3T for prostate MRI. There is no consensus among experts concerning the 
potential benefits of the use of endorectal coils [12]. The impact of the mpMRI protocol on CADx 
systems should be considered and researched in the future. The combination of T2W, DWI, and 
DCE-MRI is the most commonly used set of parameters for the detection or diagnosis of pros-
tate cancer. MRS with other parameters is also used in some research. The introduction of new 
imaging modalities or new modality combinations for mpMRI may lead to better CADx systems. 
Combining CAD prediction and PI-RADS into a combination score has the potential to improve 
diagnostic accuracy [197]. The MR PI-RADS system may provide a platform for CAD system 
development in the future.

The diagnostic value of these parameters for discrimination between benign and malignant tis-
sue depend on the lesion’s location. The parameter values of PCa are in the range of those of non-
malignant diseases or conditions such as prostatitis, fibromuscular benign prostatic hyperplasia 
(BPH), post-biopsy hemorrhagic change, making for poor diagnostic value, especially in the tran-
sition zone. TZ and PZ cancer possess distinct quantitative imaging features on MRI. Computer-
extracted parameters may be useful for cancer detection in the PZ, but are not suited in the TZ. In 
recent years, research focus has shifted from PZ prostate cancer to whole prostate cancer. There 
are more challenges in developing a CADx system for both PZ and TZ lesions than for PZ lesions 
only. Applications of anatomical segmentation from MRI as an additional input to ANN improve 
the accuracy of detecting cancerous voxels from MRS imaging [198]. A CAD system, utilizing two 
MRI sequences, such as T2-MRI and high b-value (b = 2000 s/mm2) DWI, and texture features 
based on local binary patterns, is able to detect the discriminative texture features for cancer detec-
tion and localization, and the performance of the CADx system was not dependent on the specific 
regions of the prostate [52]. Future direction should also include whether zonal segmentation of the 
prostate is necessary when some new imaging sequences being used.
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Ex vivo whole-mount prostate histological analysis provides more accurate label information 
for training a CADx system. However, whole-mount histology is expensive, and registering whole-
mount histological slices with 3D mpMRI is a challenging problem. This is especially true during 
the preparation of the prostate histological data for training a CADx system. Pathologists must col-
lect a large amount of training data from many patients, apply reliable biomarkers for each patient, 
prepare blocks, scan a large number of histological slices, and manually define lesion boundaries 
on histological slices. However, these are laborious and time-consuming procedures. Therefore, 
the histological image preparation procedures need to be performed by some automatic methods to 
improve efficacy. A software system has been designed to create a pseudo whole-mount histology 
section [134]. A computer-aided system to automatically grade pathological images according to the 
Gleason grading system has also been investigated [199]. A scheme, including automatic diagno-
sis from histologic images, 3D histologic reconstruction, and registration, should be developed for 
ground truth definition in the future.

Image quantification methods, such as accurate image registration for motion correction, com-
partment modeling for functional parameters estimation, feature extraction in high-dimensional 
data, automatic image classification for differentiating cancer from normal tissue, and correlation 
analyses among radiological data and genomic information, will play key roles in the future devel-
opment of intelligent CAD systems.

Radiomics, as a high-dimensional extraction of large amounts of image features with high 
throughput from radiographic images, can provide valuable diagnostic, prognostic, or predictive 
information. Cameron et al. developed a quantitative radiomics feature model for performing pros-
tate cancer detection using mpMRI [115].

Khalvati et al. [118] present new texture feature models for radiomics-driven detection of prostate 
cancer utilizing mpMRI data. Radiomics are emerging as a useful tool for prostate cancer detection. 
Further work is needed to build radiomics-based CAD systems for prostate cancer diagnosis, treat-
ment planning, treatment prediction, and treatment response evaluation.

The Gleason grade of PCa is the most widely used prognostic factor for prostate cancer. MR met-
rics on T2W, DWI, DCE-MRI, and MRS imaging relate to microenvironment and microstructure. 
Therefore these MR metrics can predict the Gleason grade of the caner. Building a CAD system 
based on mpMRI and Gleason score is feasible. It can play a significant role in prognostic predic-
tion, guiding biopsy, identifying suitable patients under active surveillance, and making a decision 
of appropriate treatment. CAD systems for prediction of Gleason score should be developed in the 
future.

As anatomic information is important when analyzing functional data, T2W images are fre-
quently used in mpMRI CADx systems. T2W plus DWI and DCE-MRI are commonly used as the 
combinations. Chan et al. constructed a summary statistical map of the peripheral zone based on the 
utility of multichannel statistical classifiers by combining textural and anatomical features in PCa 
areas from T2W, DWI, proton density maps, and T2 maps [122]. Langer et al. included DCE-MRI 
and pharmacokinetic parameter maps as extra features to a CADx system for detecting prostate 
cancer at the peripheral zone [111]. They evaluated their system in predefined regions of interest, 
but on a per voxel basis. Vos et al. implemented a two-stage CADx system for prostate cancer using 
an initial blob detection approach combined with a candidate segmentation and classification using 
statistical region features [14]. Litjens et al. recently investigated a fully automated computer-aided 
detection system including a novel combination of segmentation, voxel classification, candidate 
extraction, and classification [62].

Promising preliminary results have been obtained with CADx systems that combine the analysis 
of statistical, structural, and functional MR imaging features and the use of an adapted classifica-
tion scheme. Likelihood maps have been obtained by combining information from mpMRI using 
mathematical descriptors. These studies showed the discrimination between benign and malignant 
tissues is feasible with good performances [62,111].
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CONCLUSION

In this chapter, we comprehensively reviewed mpMRI-based computer-aided technology for pros-
tate cancer detection. Prostate CADx systems are a complicated composition of pre-processing, seg-
mentation, registration, feature extraction, and classification modules. There are some challenges 
in accurate registration of MRI and histopathology, which is important for ground truth definition. 
Clinical applications of computer-aided systems include localization, diagnosis, staging, aggres-
siveness assessment, guiding biopsy, treatment planning, and therapeutic response assessment. 
Although the performance of some CADx systems is good, there is no such a system that has been 
wildly used in clinic. It is likely that more improvements in quantitative image analysis and computer-
aided methods would need to be made in order to meet the clinical needs in near future work.
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16 Computer-Aided Diagnosis 
of Prostate Magnetic 
Resonance Imaging
From Bench to Bedside

Valentina Giannini, Simone Mazzetti, 
Filippo Russo, and Daniele Regge

INTRODUCTION

Every 2 minutes, someone is diagnosed with prostate cancer (PCa) and every 6 minutes a per-
son dies from PCa in Europe [1]. PCa represents the most common solid neoplasm in men, 
with an incidence rate of 214 cases per 1000, outnumbering lung and colorectal cancer [1]. 
Because of the increase in size of the population and aging, the number of cases is projected 
to increase, even if the age-specific incidence rate is projected to decrease [2]. This will have 
major economic implications for the future: in 2009 expenditures on PCa diagnosis, treatment, 
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and follow-up were €8.43 billion in Europe [3], and they are projected to increase by 70% in 
2030 [2]. Treatment affects costs significantly. Indeed, with the current diagnostic workflow the 
vast majority of men with PCa undergo radical treatment, such as radical prostatectomy (RP) 
or radiotherapy, including a large portion that, if left untreated, would not compromise either 
quality or quantity of life [4].

A major breakthrough could be accomplished by improving the diagnostic pipeline of PCa. 
Currently PCa diagnosis is obtained by performing multiple ultrasound-guided prostate biopsies 
in patients with high circulating levels of prostate-specific antigen (PSA) and/or a suspicious 
digital rectal examination (DRE). Pathological evaluation is performed by defining the Gleason 
score (GS), a histopathological score that correlates with biologic activity and prognosis [5]. 
According to GS and tumor size, patients can be classified as high or low risk. Some authors 
now argue that PCa lesions with a low Gleason pattern (i.e., 3, or GS 6 [3 + 3]), should not even 
be considered malignant and therefore should not be treated [6]. Hence, ruling out clinically 
insignificant cancer would limit the number of patients undergoing radical treatments with their 
related complications, reduce patient anxiety for having cancer, and limit the costs derived from 
overtreatment.

Unfortunately, since biopsy sampling is performed randomly, even when adopting extended 
biopsy schemes, up to 30% of transrectal ultrasonography (TRUS)-guided biopsies give false 
negative results [7]. As a consequence, these cases require clinical and/or pathological follow-up 
to ensure that PCa was not missed, or that any suspected premalignant lesion will not progress 
to a frank adenocarcinoma [8,9]. In an additional 12% biopsy GS overstages disease, which may 
lead to substantial overtreatment and consequent problems in terms of quality of life and socio-
economic costs [10]. The magnitude of overdiagnosis is a critical issue if we compare a man’s cur-
rent lifetime risk of PCa, equal to 17%, with his approximate 3% risk of PCa mortality, providing 
one measure of the magnitude of wrong diagnosis of the disease (incidence-to-mortality ratio 
of 6:1) [11].

For these reasons, alternative modalities for imaging the prostate have been investigated. In the 
last decade, magnetic resonance imaging (MRI) has shown promise in the detection and staging of 
PCa because of its intrinsic high soft-tissue resolution [12]. T2-weighted (T2W) images allow clear 
visualization of the prostate anatomy: the central lobe can be easily distinguished from the periph-
ery of the gland, and the capsule is clearly discernible as a thin dark linear structure. Dynamic 
contrast-enhanced MRI (DCE-MRI) captures T1-weighted (T1W) images while a dose of contrast 
agent is injected, and tumors can be detected since they usually show a distinctive early signal 
enhancement followed by a washout in the delayed phases. Diffusion-weighted imaging (DWI) can 
measure the diffusion of water molecules in tissues and hence provides information on the structural 
organization of a tissue. However, each MR approach has some drawbacks, which can be implied 
from the large range of sensitivity and specificity reported in the literature, only partially explained 
by the different diagnostic criteria used in the various studies [12,13]. To overcome these limita-
tions, a multiparametric (mp) approach has been introduced, in which anatomical and functional 
information derived from different MRI sequences are combined to improve detection of PCas. 
MpMRI has been demonstrated to be very accurate in detecting clinically significant PCa, with a 
positive predictive value of 82% and a negative predictive value in excluding high-risk PCa greater 
than 95% [14,15]. As a consequence, the European Association of Urology (EAU) Guidelines have 
recently introduced mpMRI as strongly recommended examination before repeating biopsy when 
clinical suspicion of PCa persists [16]. Introducing mpMRI before prostate biopsy has the potential 
to improve selection of patients, and to make PCa sampling more efficient, since targeted cores con-
tain a more complete pathological representation of the entire tumor, resulting in more personalized 
treatments for patients [17–19], and, perhaps, changing the way we think about initially approaching 
patients who present with an elevated PSA [9].
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However, mpMRI has also some drawbacks: reporting is labor-intensive and time-consuming, 
requiring a steep learning curve. Indeed, interpretation requires experienced radiologists capable of 
analyzing data extracted from different MR sequences [20]. As for other consolidated applications 
[21–23], it has been hypothesized that computer-aided diagnosis (CAD) systems could increase the 
accuracy and efficiency of prostate MRI [24,25], by indicating suspicious regions and reducing 
oversight and perception errors [26], and, under certain conditions, also lower reading time [27]. 
The implementation of a fully automatic CAD system is not a trivial problem. In 2003, Chan et al. 
first implemented a CAD system for the diagnosis of peripheral zone (PZ) PCa, using a support 
vector machine (SVM) classifier [28]. In 2012, Vos et al. [25] developed a CAD scheme using mul-
tiple sequential steps, including an initial blob detection on apparent diffusion coefficient (ADC) 
maps followed by a local feature analysis by a supervised classifier. Similarly, Niaf et al. [29] used 
a SVM classifier combined with a t test feature-selection method, and achieved an area under the 
ROC curve (AUROC) equal to 0.82. Finally, Litjens et al. [30] included different stages in their 
CAD system, investigating a novel voxel classification step in combination with a candidate clas-
sification stage. More recently, Lemaitre et al. [31] assessed the stand-alone performance of more 
than 40 prostate CAD systems and reported sensitivities in the detection of PCa between 74% and 
100%, and specificities between 43% and 93% when imaging was performed at 1.5T. However, there 
are a few studies in literature that evaluate the impact of CAD systems for PCa detection on the 
radiologists’ performance, in particular in a condition where radiologists are not aware of disease 
prevalence, as it commonly happens in the daily clinical workflow.

In this chapter, we will describe a CAD for PCa detection using mpMRI and we will evaluate its 
application into clinical practice.

COMPUTER-AIDED DIAGNOSIS SYSTEM

STUDY POPULATION

The study population is composed of two different datasets: a training set used to develop and 
validate the CAD system, and a testing set on which the CAD performance was evaluated. 
Patients in the training set were enrolled at our Institute between April 2010 and November 2012. 
The following inclusion criteria were applied: (a) biopsy-proven PCa, (b) mpMRI examina-
tion including axial T2W, DW, and DCE-MR sequences, (c) radical prostatectomy (RP) within 
3 months of mpMRI, and (d) a clinically significant PZ lesion (tumor volume ≥0.5 cc) [32] at the 
whole-mount histopathologic analysis.

Patients in the testing set were selected from a group of subjects with PSA≥4 ng/mL and/or 
a positive DRE, consecutively enrolled in a clinical trial where mpMRI was performed to triage 
patients for either in-bore prostate biopsy (maximum of 3 cores withdrawn from each lesion) or 
TRUS-guided saturation biopsy (at least 28 cores withdrawn from each patient) (ClinicalTrials.gov 
identifier: NCT02678481). The selection process is detailed in Figure 16.1. Exclusion criteria were 
age <18 years, history of PCa, contraindication to MRI, or a positive finding at a previous prostate 
biopsy.

The local Ethics Committee approved the study design, and all participants signed informed 
consent forms. This study was in accordance with the Helsinki Declaration.

MRI PROTOCOL

Patients of the training set were acquired with a 1.5T scanner (Signa Excite HD, GE Healthcare, 
Milwaukee, WI) using a four-channel phased-array coil combined with an endorectal coil (Medrad, 
Indianola, PA). The testing set was composed of patients acquired with a 1.5T scanner (Optima 

http://www.ClinicalTrials.govidentifier:NCT02678481
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MR450w, GE Healthcare, Milwaukee, IL) using both 32-channel phased-array and endorectal 
coils (Medrad, Indianola, PA). Axial T2W, DW, and DCE sequences were obtained as detailed in 
Table 16.1. The DCE sequence was triggered to start simultaneously with the power injection of 
0.1 mmol/kg gadobutrol (Gadovist, Bayer Schering, Berlin, Germany) through a peripheral line at 
0.7 mL/s, followed by infusion of 20 cc normal saline at same rate. The average time to complete 
the whole MRI exam, including two additional T2W scans in the sagittal and coronal plane and an 
additional DW sequence with a higher b-value (i.e., 1400 or 2000 s/mm2), was 40 minutes. Imaging 
parameters satisfied the minimum scanning requirements for prostate imaging [33].

REFERENCE STANDARD

All patients belonging to the training set underwent RP within 3 months of mpMRI and the refer-
ence standard was created following the subsequent procedure. Each prostate specimen was step-
sectioned at 3 mm intervals perpendicular to the long axis (apical-basal) of the gland [34]. This 
confidently reproduces the inclination of axial T2W images, which were acquired perpendicular 
to the rear gland surface. The bases and the apexes were cut parasagittally. Five µm sections were 
then obtained and colored with hematoxylin eosin. An experienced pathologist (with 24 years of 
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214 men assessed for enrollment

45 patients with
PI-RADS < 3

54 negative patients

35 positive patients
(38 PCas)

yes

yes

yes

no

no

no

9 patients negative at
biopsy (benign or

in�ammation areas)

FIGURE 16.1 Flowchart showing case selection and the final distribution of study cases.
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experience in pathology, 20 attending uropathology) outlined each clinically significant PZ tumor 
on microscopic slices and assigned a pathological GS (pGS). The radiologist (F.R., with an expe-
rience of more than 500 prostate mpMRI studies interpreted per year for 7 years) in consensus 
with the pathologist, established the reference standard for PCa on T2W images drawing freehand 
regions of interest (ROIs) on cancer foci, following the outlines drawn by the pathologist on digital 
images of the pathologic slices. When pathological microslices and axial T2W images were not 
perfectly overlapped, usually due to modified prostate shape soaked by formaldehyde, the radiolo-
gist and the pathologist established the locations of tumors with respect to identifiable anatomic 
landmarks (e.g., adenoma nodule, urethra, ejaculatory ducts, and benign prostatic hyperplasia). If a 
lesion extended into more than one histopathologic slice, a ROI was drawn on each corresponding 
MR slice. For each patient, a ROI with extension similar to the tumoral one was also drawn on nor-
mal gland located in the contralateral PZ. This procedure is illustrated in Figure 16.2.

Conversely, the reference standard for the testing set was created following a slightly different 
approach, due to the fact that some patients did not undergo RP, but were treated with more conser-
vative approaches (i.e., radiotherapy, hormonotherapy). Therefore, when the RP was not available, 
tumors were mapped to axial T2W images using the information gathered from biopsies. When the 
in-bore biopsy was performed the exact match between CAD findings and tumors was guaranteed 
by the fact that the experienced radiologist who performed all the in-bore biopsies was the same one 
who retrospectively reviewed all MR positive cases. Therefore, he was able to perfectly map biopsy 
findings to the MR images, by tracing the position of the needle tip on MRI images. Conversely, 
when the saturation biopsy was performed, at least 28 cores were obtained and a detailed report was 
provided by the uropathologist in which core location, presence of tumor, and the corresponding 
GS were reported for each core. Therefore, the experienced radiologist was able to map the biopsy 
results to MRI according to this information.

TABLE 16.1

MRI Sequence Details for the Different Types of Acquisitions

Sequence ST (mm) FOV (cm) NEX AM RM TR/TE/FA Additional Information

T2W (fast 
spin 
echo—FSE)

3 16 × 16 2 384 × 288 512 × 512 3020/85/160°

DW (echo 
planar 
imaging—
EPI)a

3 16 × 16 6 128 × 128 256 × 256 7000/101/90° b-values: 0–1000 s/mm2

DW (single 
shot echo 
planar 
imaging—
FOCUS)b

3 16 × 16 16 140 × 70 256 × 256 3200/73/90° b-values: 0–800 s/mm2; 
%FOV = 50

DCE (3D 
spoiled 
gradient 
echo—
[SPGR])

3 20 × 20 0.5 224 × 192 512 × 512 3.6/1.3/20° Temporal 
resolution = 13 s; 26 
time points

a For acquisitions with Signa Excite HD (training set).
b For acquisitions with Optima MR450W (testing set).
Abbreviations:  ST = slice thickness; FOV = field of view; NEX = number of executions; NEX = number of excitations; 

AM = acquisition matrix; RM = reconstruction matrix; TR/TE/FA = repetition time/echo time/flip angle.
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CAD DEVELOPMENT

The CAD was conceived as a two-stage process. First, a parametric color-coded map of the 
prostate gland is created; colors are assigned to the map based on the likelihood of each voxel to be 
cancerous. Then, a candidate segmentation step is performed to highlight suspected areas. Different 
fully automatic steps, thoroughly described in the following subsections, compose each of these 
stages. All methods were implemented using C++ and the ITK libraries [35].

Image Registration
The first step to develop a CAD system which produces a voxelwise malignancy likelihood map of 
the prostate is image registration. This step aims to align all MRI sequences to the reference one, 
ensuring that different features, referring to the same voxel, may be correctly extracted. In  our 
method, the reference image was the T2W sequence, therefore image registration algorithms 
were applied to both DWI and DCE sequences. The whole method was previously described [36], 
however, we will briefly report the main steps here. Before applying the registration methods, both 
DCE volumes and DW images were upsampled to the T2W image resolution. In addition, DCE 
volumes were automatically cropped to match the same field of view of the T2W image.

To register each DCE volume to the T2W image, a multiresolution strategy was applied to avoid 
local minima and to decrease the computational time. This approach uses image pyramids, which 
consist in a sequence of copies of an original image in which both sample density and resolution are 
decreased in regular steps. In the developed method, spatial resolution is halved from one level to 
another, and both the moving and the fixed image pyramids are composed by three levels, that is, 
subsampling scale factor = 444 222 111. In this case, the registration is solved as an optimization 
problem with the goal of finding the optimal transformation T:(x,y,z) → (x′,y′,z′) which maps any point 
in the moving DCE dynamic image sequence I(x,y,z,t) at time t into its corresponding point in the 
reference image I(x,y,z,t0), that is, the T2W image. Since DCE sequences are not subjected to large 
elastic deformations, and it has been demonstrated that rigid-body registration of the prostate yields 
satisfactory results when images are acquired in the same position [37], a rigid-body registration, 
which is parametrized by 6 degrees of freedom, was preferred for its low computational costs [38]. 
The mutual information, which is a measure of statistical dependency between two datasets, was 
used as similarity metric and the regular step gradient descent algorithm was used as optimizer.

To register the DWI to the T2W image, a different approach was used, since in this case the algo-
rithm needs to cope with distortions introduced by the echo planar imaging (EPI)-DWI sequence, 

FIGURE 16.2 Flowchart illustrating the procedure used to create the reference standard.
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which manifest as either local stretching or compression in the acquired image. Therefore, a non-
rigid registration step was applied. To this scope, the endorectal coil was first automatically seg-
mented in both DWI and T2W images by a region growing algorithm, which starts from a seed 
point inside the coil, automatically found by a circular Hough transform. Then, for each slice where 
the coil is visible, two spline smoothing curves were fitted on the coil border points on the DWI and 
T2W images, and used to estimate the initial distance (di) between the two coil surfaces, which is 
the difference between the upper points of these spline curves. Afterward, a deformation field T was 
modeled as a linear decay field along the vertical direction (Equation 16.1): 
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Prostate Segmentation
Prostate segmentation is of key importance to reduce the computational burden of the CAD sys-
tem. In our method, we first automatically identify on each slice a rectangular region of fixed size 
(i.e., width = 7 cm, height = 6 cm). The rectangle is automatically generated in such a way that 
its posterior border is in contact with the anterior profile of the coil, which is segmented using the 
Hough transform on the T2W image, as detailed in the previous section. It may confidently enclose 
both a normal (size = 4 × 2 × 3 cm3) and an enlarged prostate [39]. Then, we extract the ADC map 
on this rectangular region and we apply, the multilevel Otsu threshold [40], that is, three levels. This 
method is able to select different threshold values by maximizing the between-class variance in a 
gray level image, thus separating the prostate from the darker background and the brighter coil. 
Once the thresholding has been applied, a 3-value map is provided, representing the three different 
classes of gray levels. Finally, we select all voxels belonging to the second class, which represents 
the prostate, and we apply some morphological operations to fill holes, that is, the darker voxels 
within the prostate, without enlarging the segmented prostate.

Feature Extraction and Classification
Once the prostate was segmented some quantitative features were extracted for each voxel belonging 
to the prostate region from each MRI sequence, as following detailed. 

 1. Normalized T2W signal intensities. Before extracting these parameters, some prepro cessing 
steps were applied. First, image inhomogeneities introduced by the  endorectal coil 
were corrected by using a variant of the popular nonparametric nonuniform intensity 
normalization (N3) algorithm, introduced by Tustison et al. [41], with the following 
parameters: FWHM =  0.5, Wiener =  0.1, convergence threshold =  0.001. Then, T2W 
images were normalized to reduce the differences between different patients. The nor-
malization was performed by dividing the signal intensities of each voxel with the signal 
intensity of the obturator muscle, automatically segmented by our system, as previously 
described [42].

 2. Image intensities from ADC maps. ADC maps, which give more standardized measure-
ments with respect to DWI sequences, were computed using a monoexponential model [43].

 3. Quantitative parameters from DCE-MRI sequences. First, we computed the signal intensity 
curves S(t) of the DCE sequences normalized as following detailed:
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where S(i) is the signal intensity at time i-th and S(0) is the signal intensity at time 0, i.e., the 
first DCE frame. Then, kinetic features were extracted using the Phenomenological Universalities 
(PUN) approach [44,45]. This approach was preferred to the Tofts pharmacokinetic model because 
it was demonstrated to achieve similar results in the discrimination between malignant and benign 
regions of the prostate [46], while overcoming some limitations. Indeed, Tofts pharmacokinetic 
model suffers from complexity, because of the required conversion of MR signal intensities into 
contrast agent concentration. Moreover, the PUN model showed good discrimination performance 
also in detecting tumors in the transition zone (Figure 16.3).

The PUN model is characterized by three fitting parameters, a0, β, and r, and the model equation 
is as follows:

 y r t a r t( ) = + −( ) ( ) −





PUN exp % exp
2
3

1β  (16.3)

in which a0 controls the steepness of the curve at t = 0 and, together with β, it primarily affects the 
growth rate of the curve in its first part; β is in inverse proportion to the time the system takes to 
reach the knee of the curve, and r determines the behavior of the second part of the curve where one 
can observe a further enhancement of the signal intensity or a washout phase [44]. Since a0 and β 
were highly correlated (Spearman’s correlation coefficient = −0.76), we decided to discard one of 
them to reduce overfitting problems. Therefore β, which had the lowest area under the ROC curve 
(0.57 vs. 0.65), was discarded.

Once these features were extracted, a four-dimensional vector of features was obtained for 
each voxel and it was fed into a SVM classifier, which uses the radial basis kernel and having the 
following parameters (C = 2 and γ = 0.002). Finally, a map was obtained, in which each voxel is 
represented by a likelihood between 0 and 1, 0 indicating no suspicion of PCa and 1 indicating very 
high suspicion of PCa.

Candidate Segmentation
On the likelihood map obtained during the previous step, we applied the second stage of the 
CAD pipeline to extract 3D candidates highly suspected to be cancers and reduce the number 
of false positive (FP) voxels. First, voxels having likelihood higher than 60% to be malignant 
were extracted from the voxelwise malignancy likelihood map, and connected regions with size 
<100 mm2 were discarded. Then, for each of the remaining voxels we computed the time-intensity 
curves from the DCE-MR dataset, and voxels having maximum contrast uptake within the first 
minute <1 were discarded.

FIGURE 16.3 Example of kinetic features extracted using Tofts and PUN models. (a) T2W image of the 
prostate. The tumor in the transiton zone has been outlined by the radiologist. (b) ktrans derived from the Tofts 
model. In this case, the tumor does not show high values of ktrans in the malignant region. (c) a0 parameter 
obtained from the PUN model. The tumor in the transition zone shows a suspected behavior in this map.
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CAD Validation and Testing
The CAD system was first validated on the training set using the leave-one-out (LOO) method, 
which involves training on all but one case, estimating the likelihood of malignancy of the voxels 
belonging to the left-out patient, and repeating the procedure until each case has been tested 
individually. Both the voxel classification and the candidate selection steps were evaluated. The 
ROC analysis was used to assess the ability of the CAD system in discriminating between normal 
and malignant tissue. Since the LOO strategy was used, the median value of the AUROC, the 
median sensitivity, and the median specificity were provided. The ROC analysis, however, misses 
information about the number of FP candidates since it is evaluated on predetermined ROIs and 
does not consider the whole prostate. Therefore, for the candidate selection step, we provided the 
per-lesion and per-patient sensitivity, and the number of FP in both the PZ and the whole prostate 
for each patient. A 3D connected region was considered a true positive (TP) if the Dice overlap 
between the segmentation and the ROI drawn by the radiologist was higher than 0.10, vice versa 
it was considered a FP. We evaluated the system both for the detection of all tumors and for the 
detection of high-grade tumors (pGS ≥ 7).

Similarly, the performance of the CAD system was evaluated on the testing set.

Clinical Application
Results obtained in the testing set were used to evaluate the potential of a fully automatic 
CAD scheme to improve reader performance in the detection of PCa at mpMRI. The aim of 
this step was to compare the per-patient sensitivity and specificity of experienced readers in the 
detection of PCa, using a color-coded map generated by a CAD scheme with that of unassisted 
interpretation of mpMRI. To this scope, three experienced radiologists in prostate MRI (reader 
1, 2 years’ experience and 200  reports/year; reader 2, 4 years’ experience and 120  reports/year; 
reader 3, 4 years’ experience and 200 reports/year), blinded to disease prevalence in this cohort, 
reported all examinations twice, more than 6 weeks apart to minimize recall bias. During the 
CAD reading phase, they were shown a 3D color-coded map of the prostate gland and were 
asked to classify as positive all CAD marks they considered suspicious for cancer. To discard 
findings outside the prostate gland or image artifacts, T2W images were transparently over-
laid to the CAD map, and readers were allowed to modify the transparency, using a dedicated 
software (MIPAV, http://mipav.cit.nih.gov). However, they were not allowed to discard any 
suspicious finding based on T2W signal intensities other than the above-mentioned. In order 
to evaluate the CAD system, the reader could not include any tumors that were not detected by 
the CAD system. In the second session, cases were re-ordered randomly and readers reported 
without the support of the CAD system. During the unassisted interpretation, radiologists used 
the same workstation (Advantage Workstation 4.6, GE Healthcare, Milwaukee, IL) and were 
allowed to review using their favorite reading protocol. For both reading sessions, radiologists 
characterized each abnormality, annotating lesion coordinates, lesion size, Prostate Imaging-
Reporting and Data System (PI-RADS) (only in the unassisted reading) and suggested a 5-point 
confidence score representing the subjective self-confidence that their finding was a tumor (1: 
absolutely not sure; 5: absolutely sure). Reader interpretation time was also recorded for both 
assisted and unassisted reading.

To assess the impact of CAD system in the clinical practice, per-patient sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV) of CAD interpretation with that 
of unassisted reading were compared. For unassisted reporting, patients were considered positive 
for PCa when at least one lesion with a score of PI-RADS 3 and maximum lesion diameter ≥7 mm, 
or any PI-RADS lesion 4–5 was detected; all others were classified negative. In the CAD-assisted 
mode, patients were classified as positive when the readers marked as PCa at least one CAD prompt. 
This determination was deemed either true positive, false positive, true negative, or false negative 
depending on whether or not the lesion detected by the radiologist or the CAD system matched the 

http://mipav.cit.nih.gov
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exact location of a biopsy confirmed PCa. Sensitivity was stratified according to GS (GS ≤ 6 vs. 
GS > 6) and lesion size (<10 mm vs. ≥10 mm). Per-lesion analysis was similarly obtained.

Per-patient and per-lesion assessments were compared using McNemar test; other com-
parisons were performed with Mann-Whitney test. The AUROC was generated for each reader 
using the confidence scores and pathology results. Statistically significance was set at p ≤ 0.05. 
Inter-observer agreement between reviewers was evaluated using Fleiss Kappa statistics on 
StatsToDo© [https://www.statstodo.com/CohenKappa_Pgm.php]. All other tests were conducted 
using MedCalc version 15.6.1.

RESULTS

The training set was composed of 58 patients, including 51 men (88%) with one clinically signifi-
cant PZ tumor focus, and 7 patients (12%) with two clinically significant PZ tumor foci, for a total 
of 65 clinically significant peripheral PCas. Patients and lesion characteristics are summarized in 
Table 16.2.

The testing set comprised 89 patients, including 35 patients with at least one clinically sig-
nificant tumor confirmed either by an in-bore biopsy (n = 16) or a TRUS-guided biopsy (n = 19). 
The total number of malignant lesions was 39. Patient and lesion characteristics are described in 
Table 16.3.

CAD VALIDATION

During the LOO validation of the CAD system using the training set, a median AUROC of 0.92 
(1st–3rd quartile; 0.85–0.97), a median sensitivity of 0.85 (1st–3rd quartile; 0.71–0.92), and a median 
specificity of 0.88 (1st–3rd quartile; 0.58–0.97) were reached in the voxel classification stage. In the 
candidate segmentation step, the system was able to detect at least one lesion in 56 out of 58 patients, 
reaching a per-patient sensitivity of 0.97 (95%CI: 0.88–0.99). Besides, the CAD system detected 
59 out of 65 lesions, leading to a per-lesion sensitivity of 0.91 (95% CI: 0.81–0.97), with a median 

TABLE 16.2
Patient Demographics, Clinical Characteristics, and Lesion Characteristics

Parameter Value

No. of patients included in the study 58

Patients median age [y] (1st–3rd quartile) 64 (60–69)

Median PSA at diagnosis [ng/mL] (1st–3rd quartile) 5.8 (4.8–8.6)

Median no. of days between biopsy and MR examination [d] (1st–3rd quartile) 92 (61–112)

Median time between MR imaging and prostatectomy [d] (1st–3rd quartile) 26 (13–47)

Median prostate volume [cc] (1st–3rd quartile) 44.8 (37.3–59.5)

No. of lesions with tumor volume ≥0.5 cc 65

Median volume (cc) (1st–3rd quartile) 1.6 (1.0–2.6)

Distribution of pathologic Gleason scores [no. of lesions]

 3 + 3 6 (9%)

 3 + 4 31 (48%)

 4 + 3 16 (24.5%)

 4 + 4 9 (14%)

 4 + 5 3 (4.5%)

https://www.statstodo.com/CohenKappa_Pgm.php
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number of FP per patient equal to 1 (1st–3rd quartile; 0–2), and 3 (1st–3rd quartile; 1–4) in the PZ 
and in the whole prostate, respectively. The per-lesion sensitivity increased to 0.95, if we consider 
only the high-grade tumors (pGS ≥ 7). Three of the 6 false negative (FN) lesions were pGS = 3 + 3 
tumors, having volume equal to 0.59, 0.75, and 1.55 cc, respectively. Three of the six missed lesions 
were secondary tumors in patients in which the primary lesion was correctly detected by the sys-
tem; one FN belonged to a patient with only one clinically significant tumor, while in one case the 
CAD missed both lesions belonging to a single patient.

Figure 16.4 shows the CAD output of a patient with two PCas. The index lesion (pGS = 3 + 4) was 
correctly detected by the system, while the secondary less aggressive tumor (pGS = 3 + 3) was missed.

TABLE 16.3
Patient and Lesion Characteristics. Two-Tailed p-Values Are Obtained Using 
Mann-Whitney Test

Patients All Positive (n = 35) Negative (n = 54) p

Age (y) 66.8 (63.0–73.0)a 68.5 (65.3–74.8)a 66.1 (61.4–72.9)a 0.0622

PSA (ng/mL) 7.50 (6.18–10.95)a 6.88 (5.89–12.29)a 7.77 (6.60–10.69)a 0.3801

Prostate volume (cc) 54.4 (38.1–82.2)a 40.2 (29.1–56.0)a 66.3 (47.5–88.9)a <0.0001
No. of previous negative biopsy
No. patients with previous negative biopsies

1 (1–2)a 1 (0–1)a 1 (1–2)a 0.0012

0 19 16 3

1 41 11 30

2 25 6 19

3 3 2 1

4 1 — 1

No. patients with PI-RADS score

1 23 — 23

2 22 — 22

3 8 3 5

4 20 16 4

5 16 16 —

Lesions All (n = 39)
Peripheral Zone 

(n = 30)
Transition Zone 

(n = 9)

No. lesions with GS

3 + 3 13 (33%) 12 (40%) 1 (11%)

3 + 4 11 (28%) 7 (23%) 4 (44%)

4 + 3 9 (23%) 7 (23%) 2 (22%)

4 + 4 4 (10%) 2 (7%) 2 (22%)

4 + 5 1 (3%) 1 (3.5%) 0

5 + 5 1 (3%) 1 (3.5%) 0

Size (mm) 10 (4–30)a 8 (4–25)a 18 (10–30)a

≤7 mm 13 (33.5%) 13 (43%) —

8–9 mm 6 (15%) 6 (20%) —

≥10 mm 20 (51.5%) 11 (37%) 9 (100%)

a Measurements are given as median (range).
Abbreviation: GS = Gleason score.
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CAD TESTING

When the CAD was applied on the testing set, at least one lesion was correctly detected in 33 of 
35 positive patients, leading to a per-patient sensitivity of 94.3% (95% CI: 80.8%–99.3%). One FN 
patient had a sole lesion in the PZ with maximum diameter of 6 mm and pGS = 3 + 3, while the 
other one had a single lesion in the transition zone (TZ) with maximum diameter of 18 mm and 
biopsy GS = 3 + 4 (Figure 16.5). The latter patient underwent hormonotherapy rather than RP. In 
addition, CAD missed four other lesions, all of them smaller than 10 mm (range 5–8 mm), leading 
to a per-lesion sensitivity of 84.6% (95% CI: 69.5%–94.1%). Table 16.4 shows per-lesion and per-
patient sensitivity of the CAD system stratified by lesion size and GS. Stratifying by lesion location, 
the CAD missed 5 out of 30 lesions in the PZ (sensitivity = 83.5%, 95% CI: 65.28%–94.36%) and 1 

FIGURE 16.4 Example of CAD result of a patient harboring two PCas. The index tumor had pGS = 3 + 4 
and volume = 1.55 cc (on the left), while the secondary had pGS = 3 + 3 and volume of 1.17 cc (on the right). 
The figure shows the manual masks of the tumors superimposed to (a) T2W image, (b) the ADC map, (c) the 
fourth enhanced frame of the DCE sequence, and (d) the DWI image. In (e), output of the CAD is superim-
posed to the T2W image. Reddish colors represent likelihood >80% to be cancerous. And (f) is the histopatho-
logical section of the prostate showing the ROIs drawn by the uropathologist.
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out of 9 lesions in the TZ (sensitivity = 87.5%, 95% CI: 47.4%–99.7%). There was no statistical dif-
ference between sensitivity in the PZ and in the TZ (p-value of the Chi-squared test = 0.78).

IMPACT OF THE CAD SYSTEM IN CLINICAL PRACTICE

Per-Patient Analysis
Per-patient analysis is summarized in Table 16.5. Across all readers, sensitivity of unassisted and 
CAD-assisted interpretation was 80.9% (95% CI: 72.1%–88.0%) and 87.6% (95% CI: 79.8%–93.2%; 
p = 0.105), respectively. In general, readers rejected a few TP marks (reader 1, n = 4; reader 2, 
n = 2; reader 3, n = 1). Figure 16.6 shows an example of a PCa correctly identified by all readers 
with the CAD and missed by all readers in the unassisted reading. Across all readers, sensitivity was 
higher using the CAD-assisted interpretation in patients with at least one GS > 6 lesion (81.2% vs. 
91.3%, p = 0.046) and in those with at least one lesion ≥10 mm (80.0% vs. 95.0%, p = 0.006). The 
reader with the lowest sensitivity when reporting unassisted improved the most by using the CAD 

FIGURE 16.5 Example of a false negative case obtained in the testing set. The tumor was located in the 
TZ and had maximum diameter of 18 mm and biopsy GS = 3 + 4. It was discarded since it lied outside the 
segmentation of the prostate. The manual mask drawn by the radiologist is superimposed to the (a) T2W 
image, (b) the ADC map, and (c) the likelihood map obtained by the CAD.

TABLE 16.4
Per-Lesion and Per-Patient Sensitivity of the CAD System for All Cases and 
Stratified by Lesion Size and GS

Per-Patient Per-Lesion

Sensitivity 33/35 (94.3%) [80.8%–99.3%] 33/39 (84.6%) [69.5%–94.1%]

Sensitivity for GS = 6 11/12 (91.7%) [61.5%–99.8%] 12/13 (92.3%) [64.0%–99.8%]

Sensitivity for GS >6 22/23 (95.6%) [78.1%–99.9%] 21/26 (80.8%) [60.7%–93.4%]

Sensitivity for max diameter 4–9 mm 14/15 (93.3%) [68.1%–99.8%] 14/19 (73.7%) [48.8%–90.9%]

Sensitivity for max diameter ≥10 mm 19/20 (95.0%) [75.1%–99.9%] 19/20 (95.0%) [75.1%–99.9%]

Note: Sensitivity is expressed as number of patient/lesions over the total number of patients/lesions, with 
percentages in parentheses and corresponding 95% CIs in brackets.
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(71.4% vs. 88.6%, p = 0.0155). Overall mean NPV for unassisted and CAD-assisted reading was 
85.9% (95% CI: 79.1%–91.2%) and 90.7% (95% CI: 84.6%–95.0%; p = 0.1055), respectively; mean 
PPV was 68.0% (95% CI: 59.1%–76.1%) and 72.4% (95% CI: 63.8%–80.0%; one-tailed p = 0.223), 
respectively. AUROC significantly increased with CAD for reader 2 (0.82 vs. 0.91; p = 0.012); no 
difference was observed for the other two readers (reader 1, 0.84 vs. 0.85, p = 0.8329; reader 3, 0.84 
vs. 0.88, p = 0.3328).

TABLE 16.5
Per-Patient Specificity and Sensitivity for All Lesions and Stratified by Lesion 
Size and GS for Unassisted and Assisted Reading

Unassisted Reading Assisted Reading p-Value

Sensitivity
Reader 1 28/35 (80.0) [63.1,91.6] 29/35 (82.9) [66.3,93.4] 0.5000

Reader 2 25/35 (71.4) [53.7,85.4] 31/35 (88.6) [73.3,95.8] 0.0155
Reader 3 32/35 (91.4) [76.9,98.2] 32/35 (91.4) [76.9,98.2] 0.5000

Average 85/105 (80.9) [72.1,88.0] 92/105 (87.6) [79.8–93.2] 0.1050

Sensitivity for GS = 6
Reader 1 11/12 (91.7) [61.5,99.8] 8/12 (66.7) [34.9,90.1] 0.1875

Reader 2 6/12 (50.0) [21.1,78.98] 10/12 (83.3) [51.6,97.9] 0.0625

Reader 3 12/12 (100.0) [73.5,100.0] 11/12 (91.7) [61.5,99.8] Not estimable

Average 29/36 (80.6) [64.0,91.8] 29/36 (80.6) [64.0,91.8] 0.5000

Sensitivity for GS > 6
Reader 1 17/23 (73.9) [51.6,89.8] 21/23 (91.3) [72.0,98.9] 0.1095

Reader 2 19/23 (82.6) [61.2,95.1] 21/23 (91.3) [72.0,98.9] 0.2500

Reader 3 20/23 (87.0) [66.4,97.2] 21/23 (91.3) [72.0,98.9] 0.5000

Average 56/69 (81.2) [69.9,89.6] 63/69 (91.3) [82.0,96.7] 0.0460
Sensitivity for max. diameter 4–9 mm

Reader 1 13/15 (86.7) [59.5,98.3] 10/15 (66.7) [38.4,88.2] 0.2265

Reader 2 10/15 (66.7) [38.4,88.2] 12/15 (80.0) [51.9,95.7] 0.2500

Reader 3 14/15 (93.3) [68.1,99.8] 13/15 (86.7) [59.5,98.3] 0.5000

Average 35/45 (77.8) [62.9,88.8] 37/45 (82.2) [67.9,92.0] 0.3870

Sensitivity for max. diameter ≥10 mm
Reader 1 15/20 (75.0) [50.9,91.3] 19/20 (95.0) [75.1,99.9] 0.0625

Reader 2 15/20 (75.0) [50.9,91.3] 19/20 (95.0) [75.1,99.9] 0.0625

Reader 3 18/20 (90.0) [68.3,98.8] 19/20 (95.0) [75.1,99.9] 0.5000

Average 48/60 (80.0) [67.7,89.2] 57/60 (95.0) [86.1,-99.0] 0.006
Specificity

Reader 1 41/54 (75.9) [62.3,86.5] 44/54 (81.5) [68.6,90.8] 0.2745

Reader 2 49/54 (90.7) [79.7,96.9] 48/54 (88.9) [77.4,95.8] 0.5000

Reader 3 32/54 (59.3) [45.0,72.4] 35/54 (64.8) [50.6,77.3] 0.3145

Average 122/162 (75.3) [67.9,91.7] 127/162 (78.4) [71.3,84.5] 0.2500

Note: Expressed as number of patient/total number of patients, with percentages in parentheses and corre-
sponding 95% CIs in brackets. One-tailed p-value was obtained with the McNemar Chi-Squared test.
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Per-Lesion Analysis
Per-lesion analysis is summarized in Table 16.6. With unassisted read, 21  PCa lesions were 
detected by all three readers, 7 lesions by two, 6 by one, and 5 by none. With CAD, 23 lesions 
were detected by all three readers, 8 by two, 1 by one, and 7 by none. Across all readers, we 
observed a marginal increase in the number of detected lesions when using CAD with respect to 
unassisted read (70.9% vs. 74.4%, p = 0.309). Two of the 6 CAD-missed lesions (33%), both with 
a GS = 3 + 4 and a diameter of 5 and 7 mm respectively, were picked up by at least two radiolo-
gists in the unassisted mode. Conversely, in the unassisted mode all three readers missed 5 PCa 
lesions detected by the CAD; two of the lesions had a diameter ≥10 mm (Figure 16.2). Across 
all readers, a sensitivity difference was observed in favor of CAD-assisted interpretation if only 
lesions ≥10 mm were considered (76.7% vs. 90%, p = 0.019). In the unassisted reading mode, 
readers 1, 2, and 3 reported 19, 9, and 42 FPs respectively, while using CAD first read FP were 
15, 13 and 35, respectively.

Reading Time and Inter-reader Agreement
Reading times are summarized in Table 16.7. Overall, the average reading time of the unassisted 
and CAD first read mode was respectively 220 s (1st–3rd quartile, 147–359 s) and 60 s (1st–3rd 
quartile, 35–110  s). When using the CAD-assisted modality, a marginal increase of inter-reader 
agreement was observed in both per-patient (0.55 vs. 0.63; p = 0.161) and per-lesion (0.46 vs. 0.57; 
p = 0.380) analysis (Table 16.8).

FIGURE 16.6 Example of a PCa with pGS = 4 + 4 and maximum diameter of 10 mm (red outline) that was 
correctly detected by all readers using the CAD and that was missed by all of them during the unassisted read-
ing. (a) T2W image, (b) ADC map, (c) 4th enhanced frame of the DCE sequence, and (d) output of the CAD 
superimposed to the T2W image.
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TABLE 16.6
Per-Lesion Specificity and Sensitivity for All Lesions and Stratified by Lesion 
Size and GS for Unassisted and Assisted Reading

Unassisted Reading Assisted Reading p-Value

Sensitivity
Reader 1 25/39 (64.1) [47.2–78.8] 28/39 (71.8) [55.1–85.0] 0.2905

Reader 2 26/39 (66.7) [49.8–80.9] 30/39 (76.9) [60.7–88.9] 0.1940

Reader 3 32/39 (82.1) [66.5–92.5] 29/39 (74.4) [57.9–87.0] 0.2745

Average 83/117 (70.9) [61.8–79.0] 87/117 (74.4) [65.5–82.0] 0.3090

Sensitivity for GS = 6
Reader 1 10/13 (76.9) [46.2,95.0] 9/13 (69.2) [38.6,90.9] 0.5000

Reader 2 6/13 (46.2) [19.2,74.9] 10/13 (76.9) [46.2,95.0] 0.1095

Reader 3 11/13 (84.6) [54.5,98.1] 9/13 (69.2) [38.6,90.9] 0.2500

Average 27/39 (69.2) [52.4–83.0] 28/39 (71.8) [55.1–85.0] 0.5000

Sensitivity for GS > 6
Reader 1 15/26 (57.7) [36.9–76.7] 19/26 (73.1) [52.2–88.4] 0.1445

Reader 2 20/26 (76.9) [56.3–91.0] 20/26 (76.9) [56.3–91.0] 0.5000

Reader 3 21/26 (80.8) [60.6–93.4] 20/26 (76.9) [56.3–91.0] 0.5000

Average 56/78 (71.8) [60.5–81.4] 59/78 (75.6) [64.6–84.6] 0.3390

Sensitivity for max. diameter 4–9 mm
Reader 1 11/19 (57.9) [33.5,79.7] 11/19 (57.9) [33.5,79.7] 0.5000

Reader 2 11/19 (57.9) [33.5,79.7] 12/19 (63.2) [38.4–83.7] 0.5000

Reader 3 15/19 (78.9) [54.4,93.9] 10/19 (52.6) [28.9,75.5] 0.0900

Average 37/57 (64.9) [51.1,77.1] 33/57 (57.9) [44.1–70.9] 0.2705

Sensitivity for max. diameter ≥10 mm
Reader 1 14/20 (70.0) [45.7–88.1] 17/20 (85.0) [62.1–96.8] 0.1875

Reader 2 15/20 (75.0) [50.9–91.3] 18/20 (90.0) [68.3–98.8] 0.1875

Reader 3 17/20 (85.0) [62.1–96.8] 19/20 (95.0) [75.1–99.9] 0.2500

Average 46/60 (76.7) [64.0–86.7] 54/60 (90.0) [79.5–96.2] 0.01950

Note: Expressed as number of patient/total number of patients, with percentages in parentheses and 
 corresponding 95% CIs in brackets. One-tailed p-value was obtained with the McNemar Chi-
Squared test.

TABLE 16.7
Interpretation Times for Unassisted and Assisted Reading 

Unassisted Reading p-Value Assisted Reading p-Value

Reader 1 410 (308–574) 85 (48–129) <0.0001
Reader 2 124 (74–184) 60 (40–101) <0.0001
Reader 3 210 (168–260) 48 (30–76) <0.0001
Average 220 (147–359) 60 (35–110) <0.0001

Biopsy + Biopsy − Biopsy + Biopsy −
Reader 1 405 (331–540) 420 (273–600) 0.4547 117 (91–155) 60 (31–110) 0.0002
Reader 2 157 (125–220) 95 (71–147) 0.0009 95 (71–126) 43 (33–69) <0.0001
Reader 3 225 (184–278) 200 (160–240) 0.0376 75 (40–128) 37 (20–59) <0.0001
Average 235 (172–360) 203 (122–345) 0.0187 100 (63–132) 44 (30–74) <0.0001

Note: Two-tailed p-value obtained with Mann-Whitney test was reported.



311Computer-Aided Diagnosis of Prostate Magnetic Resonance Imaging

DISCUSSION

In this chapter, we presented a two-stage CAD system providing both a voxelwise malignancy 
likelihood map of the entire prostate gland and segmentation of PCa candidates, with a possible 
application in a clinical scenario. The CAD system reached good performance both in the vali-
dation and in the testing phases. Using the training set composed of 58 patients, the AUROC of 
our CAD system was 0.92, while in the candidate segmentation step the per-patient sensitivity 
was 97%—that is, at least one PCa lesion was detected in 56 of the 58 patients—and the median 
number of FP per exam was 3 (1st–3rd quartile; 1–4). Other CAD systems relying on mpMRI for 
PCa detection showed slightly lower AUROC values (0.89 vs. 0.92) [25,29,30]. Recently, many 
CAD systems have been developed, showing different accuracies; however, comparison might be 
difficult for many reasons. First, CAD scheme accuracy may be influenced by the method used 
for drawing ROIs. Previously, only Langer et al. [47] computed the AUROC on ROIs drawn by an 
experienced radiologist using histopathology as the ground truth, obtaining an AUROC of 0.71, 
which is lower than our results. Conversely, authors who obtained AUROC similar to ours either 
adopted the overall lesion detection method [29,48] or considered only voxels belonging to an 
area with a predefined size, around the radiologist annotations [30]. The latter approaches tend to 
improve the apparent performance, since they do not take into consideration tumor heterogene-
ity and the overlying image noise; therefore, the ability to determine a strict threshold between 
tumor and normal values is increased [47]. The method implemented by our group, which relies 
on the analysis of every voxel belonging to the ROIs, may potentially extend the role of the CAD 
system to the evaluation of tumor aggressiveness, which might not be uniform within the lesion. 
The CAD system detected 59 of the 65 PZ PCas (per-lesion sensitivity of 91%). Three out of the 
six FNs lesions were tumors with a pGS of 3 + 3; 2 of the 3 patients had a second more aggres-
sive tumor that was correctly detected by the CAD system. Two cases had very high ADC values 
(>1.6 × 10−3 mm2/s and one lesion had no contrast-uptake. Recently, it has been argued that low GS 
lesions—that is, ≤6—should not be defined as cancers, due to their nihil propensity to metastatization 
[49] and therefore should not be treated with surgery. Indeed, missing such indolent lesions at imaging 
could be  beneficial, as it may reduce overtreatment which, in the conventional diagnostic pipeline, is 
estimated to occur in approximately 20% to 60% of cases [50].

Our CAD system has important strengths. First, the reference standard was established by using 
whole-mount pathological slices obtained from the prostate specimen, rather than relying on the 
radiologist’s annotations, even if confirmed by biopsy [25,30]. The latter approach has an important 
limitation as no information is available on regions annotated as normal by the radiologist that 
could actually harbor PCa. Indeed, in a recent paper, Le et al. [51] showed that radiologists can miss 

TABLE 16.8
Inter-observer Agreement between Reviewers Evaluated Using Fleiss Kappa Statistics. 95% 
CIs Are Reported in Brackets

Per-Patient Analysis Per-Lesion Analysis

CAD Paradigm Reader 1 Reader 3 Reader 1 Reader 3

Reader 2 0.561 (0.400–0.723) 0.679 (0.525–0.833) 0.494 (0.328–0.659) 0.655 (0.501–0.809)

Reader 3 0.647 (0.496–0.798) — 0.575 (0.417–0.732)

Fleiss Kappa 0.625 (0.505–0.745) 0.570 (0.456–0.684)

Unassisted Reader Reader 1 Reader 3 Reader 1 Reader 3

Reader 2 0.454 (0.301–0.607) 0.654 (0.500–0.808) 0.392 (0.240–0.544) 0.589 (0.427–0.751)

Reader 3 0.580 (0.420–0.741) 0.436 (0.272–0.600) —

Fleiss Kappa 0.549 (0.429–0.669) 0.455 (0.342–0.568)
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up to 40% of clinically significant PCas. Conversely, using the whole-mount sections as histologic 
reference standard provides more accurate label information for training a CAD system [52], as 
it assesses the ground truth for PCa extent, grade, and disease infiltration [53]. Previously, other 
authors used the whole-mount histology as gold standard [47,54], however our method includes an 
automatic registration method. Second, we introduced a registration step to align both the DCE and 
the DW images to the reference T2W image [36]. This step is of key importance to correct misalign-
ment due to both patient movements and image distortions that occur especially during DW images 
acquisition [52,55]. Most of the recent works describing the development of a CAD system did not 
apply a registration algorithm before feature extraction [29,30]. Previously, only Vos et al. [48] and 
Viswanath et al. [56] embedded a fully automatic registration algorithm into a CAD system for 
PCa on mpMRI. Vos et al. [48] aligned T2W and proton density (PD)-T1W images, from which 
they extracted pharmacokinetics maps, while Viswanath et al. [56] performed an affine registration 
between the T2W image and the fifth contrast-enhanced frame of the DCE acquisition. The latter 
approach does not consider that registration errors could occur due to patients’ movements [30]. 
Conversely, our method is able to align each contrast-enhanced frame to the T2W image. Moreover, 
neither Vos et al. [48] nor Viswanath [56] assessed a specific framework to correct for image distor-
tion and patients’ movements during EPI-DW imaging acquisitions.

Indeed, although the mpMRI is implicitly registered (all sequences are acquired in one go, without 
the patient leaving the scanner), image deformation on DW images and registration errors between the 
different DCE volumes could occur due to patient movement [30]. The latter may strongly influence 
parameter estimation and cause apparently extreme changes in enhancement [57]. The registration 
step, together with the features selection method, may account for the lower number of FPs obtained 
by our CAD system.

Third, a novel empirical approach has been used to describe DCE-MRI curves, which could 
overcome some limitations of Tofts model. First, the empirical model implemented does not require 
any conversion of the MRI signal into contrast agent concentration, since it directly fits signal-
intensity curves. Avoiding signal conversion to contrast agent concentration could reduce dramat-
ically acquisition times and patient discomfort. Second, the arterial input function (AIF) is not 
required. It is known that wrong estimation of the AIF could potentially lead to large errors in 
parameters estimation, with clear implications for clinical utility of the model [58]. Third, empirical 
mathematical models were demonstrated able to fit DCE-MRI curves over long periods of time, 
differentiating benign from malignant lesions of the spine, prostate, and brain [44,46,59]. Finally, 
since the introduction of CAD systems in clinical settings aims to automatically highlight cancer-
suspicious regions to the radiologist [29,30,48,60,61], it is not necessary anymore to implement 
biological-based models which produce as output tissue-related information. Indeed, all useful data 
are summarized in a likelihood map of malignancy.

One of the major strengths of the presented CAD is the fact that it was also tested on a different 
dataset, which was not used to train the system and which included also tumors located in the TZ. 
Using the testing set, the CAD obtained high per-patient sensitivity (94.3%), since it detected at 
least one lesion in 33 of 35 positive patients. Moreover, the CAD system detected 33 of 39 lesions 
(per-lesion sensitivity of 84.6%), and it was demonstrated that the sensitivity in the PZ was not sta-
tistically different from the sensitivity in the TZ. Most of FNs were secondary lesions smaller than 
10 mm, while only a primary lesion with GS > 6 and diameter >10 mm was missed by the CAD, 
because of an error in the prostate segmentation step. These results showed that our CAD was able 
to deal with an independent dataset reaching high performance in discriminating between malig-
nant from healthy voxels.

In addition, in this chapter, we demonstrated that the system could be integrated in the clinical 
practice, since we have shown that interpretation with CAD can significantly improve the sensitivity 
of MRI in detecting PCa in patients with at least one lesion with a diameter of 10 mm or more and 
for those with a GS > 6, while specificity is not altered.
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The use of CAD reduced the average operator reading time from 220 to 60 seconds. Surprisingly, 
each one of the three experienced operators in this study had a different reading behavior. Reader 2 
had the highest sensitivity gain by using CAD and retained the highest specificity; reader 3 reported 
with the highest sensitivity unassisted and no gain was observed by using CAD, but specificity was 
very low; reader 1 has a somewhat intermediate behavior, but took longer to report cases. We have 
hypothesized that reader 2 was trustier and leaned more on CAD, while reader 3 relied more on his 
personal experience and privileged sensitivity over specificity. The case that some TP CAD marks 
(n = 7) were rejected by readers is further evidence that operators where somewhat uncomfortable 
when using CAD. The above reported behavior patterns may have been determined by two rea-
sons: (a) operators not being accustomed to interpreting with CAD, being that only 10 cases were 
reviewed with CAD prior to entering the study, as part of the preliminary training; and (b) interpret-
ing prostate MRI on color-coded maps is something radiologists simply don’t do when reading MRI 
examinations. As for other CAD applications, the next step will be to test CAD/reader interactions 
using different reading paradigms—that is, second reader, concurrent, or first reader—in order to 
establish which yields the best performances. Regardless of which CAD system is used, ultimately 
the reader will make the decision on whether or not disease is present.

From a general standpoint, there is a strong rationale in developing CAD systems for PCa detec-
tion at MRI. First, MRI is now on the front end of PCa diagnosis. In Europe, the number of yearly 
prostate MRI studies is increasing at a very fast rate (source: Millennium Research Group [62]) and 
this will inevitably lead to an increase of the individual reporting throughput. Second, since readers 
have to analyze data from several MRI sequences in parallel, each one yielding different informa-
tion, reporting is time consuming and complex, requiring dedicated radiologists [24,25,63].

Further research should be conducted to validate these results and overcome some limitations. 
First, other readings protocol should be tested to avoid that readers rely only on CAD marks for 
diagnosis. Indeed, using only CAD findings, lesions missed by CAD were obviously ignored by 
operators. While planning the study we were aware that its design would limit the clinical usability 
of the CAD scheme. However, before testing other CAD paradigms we wanted to be confident that 
the CAD likelihood maps, which summarize the relevant information provided by mpMRI, could 
support radiologists in detecting PCa lesions. Therefore, in general our results add to the under-
standing of how radiologists interact with likelihood maps. Second, it would be useful to evaluate 
how the CAD impact on the performance of readers with less experience, that is, less than 5 years.

CONCLUSION

In conclusion, in this first study assessing interaction between CAD and experienced human opera-
tors reporting prostate MRI we have demonstrated that a CAD system, which reach high perfor-
mance in detecting PCas, can allow the detection of more patients with GS > 6 and/or diameter 
≥10  mm PCa lesions, additionally reducing overall reporting time. Since MRI will likely gain 
a leading role in PCa diagnosis, this finding may have a positive impact on clinical workflow. 
Multicenter studies involving a larger number of readers with different expertise will be necessary 
to deepen the knowledge of CAD/human interaction in this specific setting.
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INTRODUCTION

Prostate cancer (PCa) is the most common noncutaneous malignancy in the United States with an 
estimated 161,360 cases and 26,370 deaths in 2017.1 The choice of imaging modality for prostate 
cancer, including computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound 
(US), depends on the clinical stage and specific component of prostate cancer being investigated. 
The role of CT is predominately focused on nodal and metastatic staging of prostate cancer and 
US is predominately used to assist in prostate biopsy. Accuracy of US in the diagnosis of prostate 
cancer is poor with specificity and sensitivity of approximately 66% and 46%.2 MRI can be used 
for staging, surgical planning, radiation therapy planning, observation of patients on active surveil-
lance, and the detection of local recurrence after treatment. Some recent studies have suggested that 
multiparametric MRI of the prostate can even be used in place of prostate biopsy in some clinical 
scenarios. The focus of this chapter is to discuss the ability of MRI to detect prostate cancer.

Dooms and Hricak first described MRI prostate imaging in 1986 but stated, “One cannot dis-
tinguish benign from malignant processes.”3 This perception has changed significantly and MRI 
is now used to diagnosis prostate cancer and assist in surgical planning.4,5 In fact, the American 
Urologic Association and the Society of Abdominal Radiology in an joint consensus white paper 
recommend its use in men with elevated prostate-specific antigen (PSA) and a prior negative prostate 
biopsy.6 Prostate multiparametric magnetic resonance imaging (mpMRI) includes multiple imaging 
sequences, at 1.5 or 3.0 Tesla, with or without the use of an endorectal coil. The “workhorse” pulse 
sequences are T1- and T2-weighted imaging, diffusion-weighted imaging (DWI) with the apparent 
diffusion coefficient (ADC) map, and dynamic contrast-enhanced (DCE) imaging.
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T2-WEIGHTED IMAGING

T2-weighted imaging (T2WI) defines anatomy, assists in the detection of clinically significant can-
cer, and helps determine staging. Spin-echo T2WI has poor signal-to-noise and long imaging dura-
tion resulting in poor accuracy.2 The advent of turbo spin echo (TSE) and fast spin echo (FSE), 
however, improved the accuracy of T2WI by reducing scan time and increasing signal-to-noise.7 
T2WI imaging includes the external urinary sphincter to the seminal vesicles and is obtained in 
axial (perpendicular to the axis of the prostate), coronal, and sagittal planes. Three-dimensional 
T2WI, known by the vendor designations of VISTA, SPACE, XETA, and CUBE, allows for refor-
matted planes and may potentially save time by avoiding three separate planar sequences, but is 
more sensitive to motion. The use of 3D T2WI has been shown to have similar sensitivity and 
specificity of 84% and 89%.8

The image slice thickness should be no greater than 3 mm. An antiperistaltic agent, such as 
hyoscine butylbromide or glucagon, can be used to limit movement of bowel during scanning. The 
use of an endorectal coil (ERC) is controversial, however, it may improve image quality, pros-
tate cancer detection, and the accuracy of staging with T2WI in magnets of lower field strength.9 
Prostate Imaging Reporting and Data System (PI-RADS) v2 recommends the use of an ERC with a 
1.5T magnet if a 3T magnet is not available.10 The use of an ERC must be weighed against both the 
increased cost and patient discomfort with its use.

The prostate has no true fascial plane, however it does have a fibrous “capsule” which appears 
as a T2WI hypointensity encompassing the prostate posterior-laterally. Anteriorly the prostate can-
cer is covered by fibromuscular tissue which appears hypointense on T2WI.11  The neurovascular 
bundles appear on T2WI as hypointense structures at the posterolateral “5 and 7 o’clock” posi-
tions.12 The peripheral, central, and transition zones are easily characterized on T2WI. The healthy 
peripheral zone should be homogenously T2 hyperintense; the central zone, T2 hypointense; and 
the transition zone commonly of T2 hyperintensity owing to changes of prostatic hyperplasia. Axial 
T2WI is the primary diagnostic sequence; however, the coronal view is helpful to characterize 
tumors at the prostate base and seminal vesicles.

Prostate cancer characteristically appears as a distinct T2 hypointensity on MRI.13

This finding is not exclusive to prostate cancer with the differential diagnosis including hemor-
rhage, inflammation, calcification, or scar. In a meta-analysis evaluating the accuracy of T2WI in 
detecting prostate cancer, the sensitivity was in the range of 57%–67%, whereas the specificity was 
74%–78%.14 The use of mpMRI is important, however, with the accuracy of prostate cancer detec-
tion increasing when more than one sequence is used.15 Location of prostate cancer also will deter-
mine the weight of what sequence predominates the PI-RADS v2 score. Transition zone lesions are 
best characterized by T2WI, whereas peripheral zone lesions are better characterized by DWI and 
the ADC map.10

DIFFUSION-WEIGHTED IMAGING

Diffusion‐weighted imaging (DWI) evaluates the Brownian motion of water molecules in the pros-
tate. This sequence does little to delineate the anatomy of the prostate, and it is the workhorse for 
prostate cancer detection within the peripheral zone.10 When obtaining DWI, high b-values images 
and an apparent diffusion coefficient (ADC) map must be included. DWI sequences should be a 
free‐breathing spin echo EPI with fat saturation.

The TE should be less than or equal to 90 msec and TR should be greater than 3000 msec. The 
slice thickness should be at most 4 mm. The FOV should be the same as that used in the T2WI and 
DCE, generally 12–20 cm. The reason for a similar FOV is to ensure an accurate comparison of a 
finding on each sequence in the prostate mpMRI. There should be at least 2 b-values for calcula-
tion of the ADC, the highest at 800–1000 sec/mm2 and the lowest at 50–100 sec/mm2. Additional 
b-values between these values improves the accuracy of the ADC calculations.10 A high b-value 
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image, at least 1400 s/mm2, is also necessary for evaluation and can be natively acquired but is often 
more effectively calculated, which exploits the higher signal-to-noise ratio and shorter echo times of 
lower b-values. This sequence is highly susceptible to motion artifact and signal disturbance from 
orthopedic hardware within the prostate.

The appearance of prostate cancer will be hyperintense on a high b-value DWI and hypointense 
on the corresponding area on the ADC map on MRI. The differential diagnosis of these findings 
includes benign prostatic hyperplasia (BPH), in part due to diffusion restriction correlating with 
glandular and cell density, irrespective of the presence of hyperplasia or prostate cancer.16 However, 
when specifically evaluating the peripheral zone, DWI and ADC maps strongly correlate with the 
presence of prostate cancer.

Verma et al. found that the ADC value was negatively correlated with the Gleason score. In 
197  tumors detected in 110  men who underwent radical prostatectomy, ADC values less than 
750–900 μm2/sec correlated with greater aggressiveness of prostate cancer. This observation is only 
seen in prostate cancer within the peripheral zone and not the central/transition zone.17 This observa-
tion is likely secondary to the confounding mp MRI appearance of nonmalignant nodules of BPH. 
This is an important point to highlight as well-circumscribed, capsulated lesions that are hyperin-
tense on DWI and hypointense on the corresponding ADC map are presumed to be BPH nodules and 
do not warrant biopsy.

DWI and ADC maps are an integral component of prostate mpMRI and lesions identified on 
DWI must be compared to findings seen on T1WI, T2WI, and DCE. DWI has excellent accuracy in 
the detection of prostate cancer, particularly in the peripheral zone.

Standardized prostate mpMRI reporting with PI-RADS v2 uses the DWI and ADC maps as the 
primary determinate of the overall PI-RADS score in the peripheral zone.10

DYNAMIC CONTRAST-ENHANCED PERFUSION IMAGING

Unenhanced T1-weighted imaging is predominately used to evaluate hemorrhage within the pros-
tate as it can confound the detection of prostate cancer. It is not otherwise useful in the detection of 
prostate cancer. Dynamic contrast-enhanced (DCE) T1-weighted MRI evaluates the prostate gland 
before and after the intravenous administration of a gadolinium-based contrast agent. The specific 
technical considerations are as follows: 3D T1 gradient echo (GRE) sequences should be obtained 
for several minutes to determine enhancement pattern of the prostate. Prostate cancer usually dem-
onstrates early enhancement, hence temporal resolution is important. Subtracted imaging and fat 
supersession is helpful and advisable. The TR/TE should be less than 100/5 msec. A slice thickness 
of 3 mm with no gap is recommended with similar spatial parameters used for both T2 and DWI to 
allow for accurate comparisons.

The FOV should include the prostate and seminal vesicles. The duration of scanning needs to be 
greater than 2 minutes and the temporal resolution should be less than 10 seconds, preferably less 
than 7 seconds. The in-plane dimension should be ≤2 × ≤2 mm. The dose of gadolinium contrast 
is generally 0.1 mmol/kg with an injection rate of 2–3 cc/sec.

Prostate cancer will demonstrate early enhancement when compared to surrounding tissue. Ocak 
et al. demonstrated the sensitivity, specificity, PPV, and NPV of DCE to be 73%, 88%, 75%, and 
75%, respectively.18 Dynamic enhancement curves are frequently used when assessing cancers and 
consist of three curve types. Type I is progressive enhancement, with an increase in signal as time 
progresses. There is no plateau or washout in a Type I curve and generally this pattern is seen 
with benign tissue. Type II and type III curves are more concerning for potential cancer. A type 
II enhancement curve will have an initial increase in signal intensity and then plateau with no 
continued enhancement or washout. A type III enhancement curve demonstrates this same initial 
enhancement but instead of a plateau will have washout. Enhancement curves have been shown to 
add value in breast cancer diagnosis with breast imaging.19 The first version of PI-RADS recom-
mended reporting enhancement curves as it was initially believed to be helpful in diagnosis and 
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localization of prostate cancer sites. However, prostate cancer has very heterogeneous enhancement 
patterns and there is a lack of sufficient data demonstrating a benefit of curve analysis in prostate 
cancer diagnosis. Pharmacokinetic assessment with contrast wash‐in (Ktrans) and washout (kep) may 
provide utility for curve analysis in the future. Currently, no curve analysis is recommended to be 
used with prostate mpMRI.10

The specific suspicious finding on DCE MRI is a focal region of early enhancement with a cor-
relating finding on either T2WI or DWI/ADC map. Color maps can be used for assistance with DCE 
MRI evaluation, however the authors find assessment with fat sat T1 post contrast is sufficient for 
accurate analysis. DCE MRI is useful in assessing indeterminate findings found on either T2WI 
or DWI/ADC map, especially in the central zone, apex, and anterior fibromuscular stroma.20 False 
positives of DCE can be diffuse enhancement that is suggestive of prostatitis or marked enhance-
ment within the central zone which can be seen with BPH nodules. The corresponding T2WI and 
DWI/ADC will, however, correctly characterize these false DCE findings, which highlights the 
need for multiple sequences to accurately perform prostate mpMRI.

DCE improves the accuracy of prostate mpMRI for prostate cancer localization but must be 
interpreted with other sequences. A recent meta-analysis demonstrated this by showing combined 
DCE-MRI, DWI, and T2WI had a notably better AUC of 0.110, 0.103–0.117  than DCE with an 
AUC of 0.075, 0.069–0.081; than T2WI with an AUC of 0.078, 0.073–0.083; or than DWI alone that 
had an AUC of 0.088, 0.079–0.095.21 DCE MRI is an integral component of prostate mpMRI, but 
adds the least to suspicion characterization. Current PI-RADS v2 reporting uses DCE for suspicion 
assessment only for peripheral gland lesions of intermediate DWI suspicion.10

SPECTROSCOPY

Magnetic resonance spectroscopic imaging (MRSI) showed great promise in the detection of 
prostate cancer.22 However due to the complexity of the technique and difficulty in applying this 
technique to the general population MRSI is not a required component of the current PI-RADS ver-
sion.23 The specifics of MRSI will not be discussed in this chapter as it is not currently being used 
clinically to detect prostate cancer in prostate mpMRI.

PROSTATE CANCER STAGING

The American Joint Committee on Cancer stages prostate cancer according to the tumor (T), 
regional lymph node status (N), and evidence of distant metastasis (M). T stage may be defined 
either clinically or pathologically. Clinical T1 disease is nonpalpable disease, clinical T2 disease 
is palpable disease on digital rectal exam, clinical T3 disease means disease extends beyond the 
capsule, and clinical T4 disease means the tumor has invaded surrounding structures such as the 
pelvic side wall. There is no pathologic T1 disease. Pathologic T2 disease is organ-confined and 
subcategorized into pT2a, pT2b, and pT2c depending on the extent to which the tumor involves 
the prostate. Pathologic T3 disease means there is extraprostatic extension with pT3a classification 
denoting tumor invasion into the surrounding fascia and pT3b into the seminal vesicles. N staging 
assesses the presence of regional lymph nodes. M staging assesses the presence of nonregional 
lymph nodes (M1a), bones (M1b), or other sites (M1c). Prostate mpMRI has improved accuracy in 
T staging when compared to DRE and transrectal ultrasound (TRUS) biopsy.24

Rooij et al. performed a meta-analysis of prostate MRI in the local staging of prostate can-
cer.15 They reviewed a total of 75 studies that involved 9797 patients and assessed prostate MRI’s 
ability to determine overall stage T3 disease, extracapsular extension (T3a), and seminal vesicle 
invasion (SVI). For overall stage T3 disease the sensitivity was 0.61 (95% CI 0.54–0.67) and the 
specificity was 0.88 (95% CI 0.85–0.91). For T3a disease the sensitivity was 0.57 (95% CI 0.49–
0.65) and the specificity was 0.91 (95% CI 0.88–0.93). For T3b disease the sensitivity was 0.58 
(95% CI 0.47–0.68) and the specificity was 0.97(95% CI 0.95–0.98). When assessing field strength, 
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they noted improved sensitivity for T3a and overall T3 disease with 3.0 T when compared to 1.0 T or 
1.5 T. This meta-analysis found the use of an endorectal coil (ERC) was only beneficial in patients 
being scanned in 1.5 T magnets. In summary, both mpMRI with 3.0 T or 1.5 T imaging with an 
ERC appear to have comparable and effective accuracy in prostate cancer staging.

Overall this meta-analysis noticed improved sensitivity when using more than one MRI sequence, 
highlighting the necessity of multiparametric prostate MRI. This is in accordance with PI-RADS 
v2 guidelines that suggest the use of T2WI, DWI with ADC map, and DCE imaging.

PROSTATE CANCER DETECTION

Prostate mpMRI is accurate in the staging of prostate cancer and is now increasingly being used 
to detect clinically significant prostate cancer. Prostate cancer outcome is largely determined by 
the overall risk that is determined by PSA, clinical stage, and Gleason score. Clinically significant 
cancer is now generally defined as a Gleason score greater than 6, as the majority of men with low-
volume Gleason score 6 prostate cancers can be safely observed.

Clinically significant disease, which is generally viewed as when treatment for prostate cancer 
should occur, is commonly defined by prostate cancer of greater than Gleason score 6 or a tumor 
volume more than 1 cm. Prostate mpMRI is of particular value since it can help identify the majority 
of clinically significant prostate cancers and misses the majority of clinically insignificant disease.

Turkbey et al. evaluated 45  patients who underwent prostate mpMRI prior to prostatec-
tomy.25 These patients had a total of 342 prostate cancer foci and as expected 82% were found in 
the peripheral zone and 18% where found in the central gland. When assessing the sensitivity and 
specificity of T2WI, DCE, MRS, and DWI they found that the both the sensitivity and specificity 
of the MRI improved if the prostate cancer focus was greater than 5 mm in size and if the Gleason 
grade was greater than 7. Prostate cancer foci of Gleason score 6 which were less than 5 mm in size 
had the worst accuracy in all MRI sequences evaluated. This was one of the first papers to suggest 
that MRI is less likely to detect clinically insignificant disease.

Rosenkrantz et al. evaluated 49 patients who underwent prostate mpMRI prior to  prostatectomy 
to provide pathological characterization of MRI-visible lesions.26 Prostate mpMRI was done on 
at 1.5 T and included T1WI, T2WI, DWI, and DCE sequences. Lesions that were seen on MRI 
were then compared to lesions that were missed. This group found that size, Gleason score, and 
loose stroma were significant predictors of lesion detection on prostate mpMRI. The pathologist 
 identified 87 tumors in 49 patients; 53 lesions were found on MRI of which 45 represented true 
foci of prostate cancer. These 45 tumors seen on MRI had a median size of 13 m (5–40 mm) and 
median Gleason score of 7 (6–9). A total of 42 prostate cancer lesions were missed on mpMRI. 
These lesions were, on average, smaller (5 mm; 2–17 mm) and were more likely to have a Gleason 
score of 6. On univariate analysis, MRI visible tumors were more likely to be at least 1  cm 
(OR 15.7), have a Gleason score greater than 6 (OR 9.8), have solid tumor growth (OR 37.6), 
have  desmoplastic stroma, have a high ratio of malignant epithelium-to-stroma (OR 12.2), lack 
loose stroma (OR 0.078), and have an absence of intermixed benign epithelium (OR 0.14). 
Multivariate analysis demonstrated independent predictors of MRI-visible tumors were more 
likely to have a Gleason score greater than 6, be at least 1 cm in size, and have solid tumor growth 
pattern on histology.26

Tan et al. assessed 122 men who had prostate mpMRI and underwent a radical prostatectomy. 
This confirmed previous studies of what the histologic findings are of MRI-visible lesions.27  In 
these 122 patients, 285 prostate cancer foci were identified, of which the majority were missed 
(53.3%). The large majority of these missed lesions were Gleason score 6 (75%) with only 4% of 
Gleason score greater than 8 being missed. When specifically looking at Gleason score equal to 
or great than 7, only 73% of these lesions where detected. Of lesions that were 1 cm or larger, 
70% were detected. Interestingly, this study also suggested that apical lesions are harder to diag-
nose, with only 22% of apical lesions being detected, versus 52% in the midgland. As Turkbey 
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et al. showed, as the lesion size and Gleason score increased, so too did the sensitivity and specific-
ity of mpMRI for detection of these prostate cancers.

Le et al. evaluated the same patient population as Tan et al. but used the primary outcome of 
MRI’s ability to detect the index lesion. The index lesion theory, presumes, that despite the multifo-
cality of prostate cancer, the single, most advanced lesion determines the patient’s overall prognosis 
from prostate cancer. This assumption is based on studies suggesting that tumors size predicts 
biochemical recurrence,28 and that in multifocal disease, the dominant, index lesion (as determined 
by size or Gleason score) may predict overall oncologic outcome.29–31 When only assessing mean 
prostate cancer focus size, MRI-visible cancers had a mean size of 1.8 cm, whereas MRI-missed 
cancers were 0.8 cm, nearly a centimeter difference in size. Prostate cancer foci greater than 3 cm 
were all detected and 72% where detected if greater than 1 cm, however, only 14% of tumors 0.5 cm 
in size were detected. “Index lesions,” defined as a size greater than 1 cm and a Gleason score of 
7 or above, were identified on mpMRI 80% of the time.

When specifically evaluating the identification of an index lesion in multifocal disease, 77% were 
identified. Of those lesions missed, the majority were less than 1 cm (83%) and of Gleason score 6 
(79%). This study also showed that the presence of post biopsy hemorrhage and an increased pros-
tate weight resulted in lower prostate mpMRI accuracy.

The PROMIS study group evaluated the role of prostate mpMRI in detecting clinically sig-
nificant prostate cancer.32 Clinically significant prostate cancer was defined as any focus of cancer 
equal to or greater than Gleason 4 + 3 or a maximum cancer core length greater than 6 mm. They 
assessed 576 men who underwent prostate mpMRI and then had both a TRUS biopsy and transperi-
neal mapping (TPM) biopsy. The reason for the TPM biopsy is that it samples the entire prostate in 
5 mm increments. Prostate cancer was diagnosed in 71% (408/576) of men in which 40% (230/576) 
had clinically significant cancer. Prostate mpMRI was statistically more sensitive (93%) than TRUS 
biopsy (48%, p < 0.0001) in detecting clinically significant cancer. Prostate mpMRI was less spe-
cific (41%) than TRUS biopsy (96% p < 0.0001). The authors suggested that prostate mpMRI could 
be used to triage men who needed prostate biopsy for an elevated PSA and prevent about 25% of 
men from undergoing a TRUS biopsy.

MRI lesions that are visible are clearly histologically distinct from those that are not. These MRI 
lesions tend to be greater than 1 cm and have a higher Gleason score (greater than 6). However, it is 
important to note and stress that despite this improved accuracy in detecting clinically significant, 
larger, higher-grade prostate cancer, up to 20% of cancers will be missed.

MRI FUSION BIOPSY

Prostate mpMRI has been a game changer in the detection of prostate cancer by improving our abil-
ity to noninvasively identify sites at high risk of having prostate cancer present, as well as providing 
the opportunity for fusion images, combining TRUS with MRI. The standard TRUS systematic 
biopsy samples the base, mid, and apex of the prostate.

Although, in theory, such sampling reflects the entire prostate, over 30% of significant prostate 
cancers are missed.33  In-bore MRI-guided biopsy can be done but is costly and not available at 
many centers. MRI fusion biopsy brings the specificity of MRI to the office, allowing for accurate 
sampling of MRI lesions with a TRUS biopsy, which now reflects the standard of care for men being 
evaluated for prostate cancer. MRI fusion biopsy improves the accuracy of TRUS biopsy.34 MRI 
fusion biopsy can be done cognitively or with fusion software/hardware.

Cognitive fusion was the first application of MRI fusion biopsy, and it has been reported in stud-
ies at multiple institutions to be better than standard biopsies.35,36 Choyke and Pinto first reported 
on the utility of prostate mpMRI and fusion biopsy. They prospectively evaluated 583 patients who 
under mpMRI and then subsequent MR/US fusion-guided prostate biopsy. The mpMRI included 
T2WI, DWI, spectroscopy, and DCE. MRI findings were graded as either low, moderate, or high 
suspicion. The patient demographics were a mean age of 61.3 years, and a mean PSA of 9.9 ng/mL. 
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Univariate analysis demonstrated that age, PSA, prostate volume, and mpMRI suspicion were asso-
ciated with the diagnosis of prostate cancer. When assessing Gleason score they found that mpMRI 
had a sensitivity of 98% for detection of sites with Gleason score 8  and 94% for Gleason score 
7 detection. ROC analysis of mpMRI demonstrated an AUC of 0.64 for all prostate cancer, 0.69 for 
Gleason score greater or equal to 7, and 0.72 for Gleason score greater than or equal to 8.37 The 
report by Pinto’s group was one of the first published manuscripts to show that mpMRI of the pros-
tate has improved performance in detecting clinically significant disease.

Wegelin et al. performed a meta-analysis that evaluated the difference between MRI-guided 
biopsy (in-bore MRI biopsy, fusion biopsy, cognitive biopsy) and the standard TRUS- guided biopsy. 
They found no significant difference between MRI-guided biopsy and standard TRUS biopsy over-
all in detection of any cancer. However, when looking specifically at detection of clinically signifi-
cant prostate cancer, MRI-guided biopsy was significantly more likely to diagnose those clinically 
important prostate cancers.38 The finding is of a clear advantage to fusion software in the ability to 
target small lesions within larger prostates, an approach that could fail with cognitive fusion.

MRI-guided fusion biopsy leads to improved detection of clinically significant prostate can-
cer. The specific approach (cognitive, US fusion, or in-bore) for the biopsy doesn’t appear to be 
as important as the use of MRI-ultrasound fusion in the detection ofclinically significant prostate 
cancer. MRI-guided prostate biopsy provides a safe, accurate approach to diagnose clinically sig-
nificant prostate cancer.
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INTRODUCTION

Prostate cancer is the second most frequently diagnosed malignancy in men, and is the sixth most 
common cause of cancer-related male death worldwide [1]. Prostate cancer is also the most frequently 
diagnosed malignancy after skin cancer, and is the second primary reason of cancer-related death 
in American men after lung cancer. More than 180,000 new cases were diagnosed and about 26,120 
deaths among Americans were attributed to prostate cancer in 2016 [2]. By 2030, it is estimated that 
the number of diagnosed prostate cancer cases will increase globally to 1.7 million, and this type of 
cancer will be the reason for up to 0.5 million male deaths per year [3]. Fortunately, the introduction 
and spread of different screening tests, and improvements in treatment procedures have been resulted 
in declining mortality rates, especially, if prostate cancer is diagnosed in its early stages.

Although many researchers have investigated the different causes of prostate cancer, only an 
indistinct list of risk factors has been recognized. Those risk factors include, for example, family 
history, genetic factors, race, and body mass index (BMI) [4]. The likelihood of developing prostate 
cancer for a man with a first-degree relative who suffered from prostate cancer was found to be 
twice that of a man with no affected relatives [5]. Moreover, this likelihood increases as the number 
of affected relatives increases; for example, a man with two affected first-degree family members 
has more risk of developing prostate cancer than a man with one affected relative [6].
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The incidence of prostate cancer is also affected by race and ethnicity. For example, the inci-
dence rate of prostate cancer for African Americans is 1.6 higher than for European Americans. 
The mortality rate due to prostate cancer for African Americans is 2.4 higher than for European 
Americans. Additionally, African Americans have twice the risk of non-Hispanic whites for devel-
oping aggressive prostate cancer [7].

Genetic factors are also correlated with the incidence of prostate cancer. According to the 
research conducted by Agalliu et al. [8] on 979 cases of prostate cancer, protein-truncating muta-
tions BRCA2 genes have been associated with high Gleason score prostate cancer. Giovannucci 
et al. [9], examined 10 possible risk factors for prostate cancer using multivariate Cox regression. 
They found a statistically significant correlation between the incidence of prostate cancer and the 
African American race and the positive family history. Regarding aggressive prostate cancer, a 
statistically significant positive correlation was found with recent smoking history, higher BMI, and 
family history; while a negative correlation was found with vigorous exercise.

Rodriguez et al. [10] investigated the association between BMI and weight change with the inci-
dence of prostate cancer. They found that there was a positive correlation between BMI with the risk 
of aggressive prostate cancer and they also found weight loss decreases the risk of prostate cancer. 
Therefore, diet has been proposed as a noninvasive and cost-effective technique for decreasing the 
jeopardy of prostate cancer as well as its treatment [11].

CURRENT SCREENING TECHNIQUES

Currently, the well-established techniques used for diagnosing prostate cancer are digital rectal exam 
(DRE) [12], prostate-specific antigen (PSA) [13], and transrectal ultrasound (TRUS)-guided needle 
biopsy [14]. In the DRE screening, a physician manually examines the prostate through the rectum to 
find out any anomalies in its size or hardness. Through this screening, some peripheral zone tumors 
can be detected. However, tumors that are not large enough to be palpated, in addition to most central 
zone and transitional zone tumors, cannot be detected through the DRE. As a consequence, the experi-
ence and the skills of the physician have a significant effect on the accuracy of the DRE.

PSA screening is a blood-based screening that measures the PSA level in the blood. An increased 
value of PSA indicates a higher probability for prostate cancer. However, elevated levels of PSA may 
also signify other conditions, such as prostatitis or benign prostatic hyperplasia. If the blood PSA 
levels exceed four nanograms per millimeter (4 ng/mL), patients undergo further screening, such 
as biopsy, to confirm the presence or absence of the prostate cancer. Generally, the sensitivity and 
specificity of PSA screening are higher than the DRE screening [12].

In a TRUS-guided biopsy, small tissue specimens are acquired from the prostate gland to be 
examined by a pathologist. To analyze the sample, a number of scoring systems have been devel-
oped, including the Gleason [15], the modified Gleason and Mellinger [16] and the International 
Society of Urological Pathology (ISUP) modified Gleason system [17,18]. The ISUP modified 
Gleason system involves pathologists assigning a score between 1 and 5 based on the degree of 
each of the two tumor patterns, that is, architectural and neoplasm patterns. A score of 5 for the 
architectural pattern indicates that the tissue is the least differentiated typical of cancerous tissue; 
while a neoplasm score of 5 signifies that the tumor resembles the most prevalent neoplasm pattern. 
Summation of these two scores indicates the severity of the neoplasm where a score between 6 and 
10 means the tumor is cancerous [19]. TRUS-guided biopsy is an accurate technique for detecting 
cancer and determining its aggressiveness.

However, it is an expensive, highly invasive, and painful procedure. Moreover, as a result of the 
random strategy for acquiring the tissue samples, there is a possibility of missing some aggressive 
tumors. Thus, it is imperative that an accurate noninvasive method with high selectivity and speci-
ficity be developed.

Some of the major drawbacks with current prostate cancer screening are over diagnosis and over-
treatment [20]. For instance, in an investigation that extended for 11 years of follow-up to determine 
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the role of PSA and TRUS-guided biopsy in decreasing the mortality rate caused by prostate can-
cer, Schr̈oder et al. [21] found that to obviate one death from prostate cancer, more than 1000 men 
would need to be examined and 37 would need to be treated. These problems of overdiagnosis and 
overtreatment motivated research toward developing techniques to visualize such structures and 
their associated abnormalities.

IMAGING TECHNIQUES

The field of medical imaging technology has provided excellent tools for visualizing different body 
structures and their correlated anomalies. Particularly, ultrasound and magnetic resonance imaging 
(MRI) have been used extensively to visualize the prostate to determine the severity of the disor-
ders. As a consequence of the drawbacks associated with the current screening techniques previ-
ously described, in vivo image-based computer-aided diagnosis (CAD) systems have been utilized 
to identify and localize the size and extent of prostate cancer. In the following paragraphs, the uses 
and the advantages of both ultrasound and MRI are briefly described.

Transrectal ultrasound (TRUS) is the most commonly used prostate imaging technique since it 
is used primarily in guiding needle biopsies and identifying the prostate volume [22,23]. The fun-
damental advantages of TRUS are its portability, low cost compared to other imaging modalities, 
its ability to generate real-time imaging data, and absence of any type of radiation. On the other 
hand, it has some drawbacks: it produces low-contrast images that contain speckles, has low signal-
to-noise (SNR) ratio, and generates shadow artifacts [24]. Consequently, it is hard to detect tumors 
with a high level of accuracy and/or identify the stage of cancer using TRUS imaging techniques.

MRI offers the best soft-tissue contrast compared to other image modalities, such as computed 
tomography (CT) and TRUS. MRI does not involve radiation and is useful for determining the stage 
of cancer. However, MRI is not portable, is sensitive to noise and image artifacts, has difficulties to 
implement real-time imaging due to its relatively long and complex acquisition, and has a relatively 
high cost [22,25].

Several different MRI techniques have been extensively used in the prostate cancer CAD systems, 
such as T2-MRI, dynamic contrast-enhanced (DCE)-MRI, and diffusion-weighted (DW)-MRI. 
Even though T2-MRI provides good contrast between soft tissues, it lacks functional information. 
DCE-MRI is a technique that provides detailed information on the anatomy and function of differ-
ent tissues. It has gained wide attention due to the increased spatial resolution, the ability to yield 
information about the hemodynamics (i.e., perfusion), microvascular permeability, and extracellu-
lar leakage space [26]. DCE-MRI has been extensively used in many clinical applications [27–34] in 
addition to the detection of prostate cancer [35–41]. In DCE-MRI, a series of MR images are taken 
prior to and after administering a contrast agent into the bloodstream. Contrast agents significantly 
enhance the contrast between the different tissue types and ease visualization of the anatomical 
structures which have alternating magnetic properties in their vicinity. The acquired signal intensity 
is proportional to the concentration of contrast agent in each voxel. Several types of MRI contrast 
agents can be used depending on the application, such as paramagnetic agents, superparamagnetic 
agents, extracellular fluid space (ECF) agents, and tissue (organ)-specific agents.

DW-MRI is another MRI modality, which unlike DCE-MRI, does not involve the use of con-
trast agents and has been attracting researchers recently. DW-MRI is based on the measurement 
of micro-movements of water molecules inside the body [37–39,42]. It can be acquired in a short 
time and, as mentioned before, does not depend on any contrast agents. It can be classified into 
three major categories: diffusion-weighted imaging (DWI) [43,44], diffusion tensor imaging (DTI) 
[44–46], and diffusion spectrum imaging (DSI) [47,48].

Developing CAD systems for detecting prostate cancer is an ongoing research area [49]. Those 
CAD systems vary in their accuracy, speed, and level of automation. There are some common pro-
cessing steps shared by CAD systems used for diagnosing prostate cancer, such as segmentation, 
feature extraction, and classification. Several classification techniques can be utilized, including 
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neural networks [50,51], decision trees [52], support vector machines (SVM) [53,54], linear dis-
criminant analysis (LDA) [55], k-nearest neighbor (k-NN) [56], and others.

Several studies have targeted early detection of prostate cancer through building CAD sys-
tems that would aid physicians in its early diagnosis. For example, Firjani et al. [42] developed 
a DW-MRI-based CAD system for prostate cancer diagnosis. In their system, the prostate seg-
mentation was based on a maximum a posteriori (MAP) estimation that utilizes shape, spatial, 
and appearance information. A k-NN-based classifier used three intensity features to classify the 
prostate as benign or malignant. The first multiparametric CAD system was proposed by Chan 
et al. [57] using T2-MRI, T2-mapping, and line scan diffusion imaging (LSDI). In their system, the 
region of  interest (ROI) was manually segmented by a radiologist, then intensity-based and tex-
tural features were extracted from those regions, finally, a SVM-based classifier and a Fisher linear 
discriminant (FLD)-based classifier utilized the extracted features to detect potential peripheral 
zone (PZ) tumors. The results showed that the area under curve (AUC) was 0.761 ± 0.043 for the 
SVM-based classifier and 0.839 ± 0.064 for the FLD-based classifier. Litjens et al. [58] developed 
a multiparametric CAD system that used a combination of T2-MRI, DCE-MRI, and DWI-MRI. 
Prostate segmentation was based on appearance and anatomy models. A SVM-based classifier used 
ADC and pharmacokinetic parameters to classify the segmented prostate as malignant or benign. 
The system performance was 74.7% and 83.4% sensitivity at 7 and 9 false positives per patient, 
respectively. A  CAD system was developed by Niaf et al. [56] to detect prostate cancer in the 
peripheral zone. Four types of classifiers were trained and their performance was evaluated using a 
database of 30 sets of multiparametric MRI. The AUC was 0.89. A fully automated multiparametric 
CAD system for detecting prostate cancer was presented by Vos et al. [59]. The prostate segmenta-
tion was performed using the technique developed by Litjens et al. [58]. A combination of features 
(e.g., texture-based, ADC maps) was used by a LDA classifier to determine malignant and benign 
regions; 74% of all tumors at a FP level of 5 per patient were detected.

The main focus of this chapter is on developing a CAD system for diagnosing prostate cancer from 
DW-MRI using a deep learning technique. The chapter is organized as follows: “Method” describes 
the proposed framework focusing on the stage of extracting discriminatory features (subsection 
“Extracting Discriminatory Features”) and the classification stage (subsection “Stacked Nonnegatively 
Constrained Autoencoders (SNCAE)-based Classification”). Then, “Experimental Results” reports the 
experimental results. Finally, “Conclusions and Future Trends” provides conclusions and future trends.

METHOD

The proposed CAD system summarized in Figure 18.1 sequentially performs three steps. First, the 
prostate is segmented using our previously developed geometric deformable model (level-sets) as 
in McClure et al. [60]. The precise segmentation of the prostate is an essential step in diagnosing 

FIGURE 18.1 Schematic overview of a DW-MRI-based CAD system for diagnosing prostate cancer.
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prostate cancer. This accurate segmentation can be achieved if it is done manually by an experi-
enced radiologist. Nevertheless, manual segmentation is time-consuming, especially in the case 
of 3D volumes of MRI data, and also suffers from intra- and inter-observer variation. Therefore, 
an automatic segmentation model is used in the proposed CAD system. This model is guided by a 
stochastic speed function that is derived using nonnegative matrix factorization (NMF). The NMF 
attributes are calculated using information from the MRI intensity, a probabilistic shape model, and 
the spatial interactions between prostate voxels. The proposed approach reaches 86.89% overall 
Dice similarity coefficient and an average Hausdorff distance of 5.72  mm, indicating high seg-
mentation accuracy. Details of this approach and comparisons with other segmentation approaches 
can be found in [60]. Afterward, global features describing the water diffusion inside the prostate 
tissue are extracted based on apparent diffusion coefficient cumulative distribution functions (ADC-
CDFs). Finally, a two-stage structure of stacked nonnegativity constraint autoencoder (SNCAE) is 
trained to classify the prostate tumor as benign or malignant based on the cumulative distribution 
functions (CDFs) constructed in the previous step. The latter two steps of the proposed CAD system 
are discussed in the following sections.

EXTRACTING DISCRIMINATORY FEATURES

After the prostate is segmented, discriminatory features are estimated from the segmented DW-MRI 
data, which are used to distinguish between benign and malignant cases. In the proposed CAD sys-
tem, ADCs were used as discriminatory features to assess the tumor status, where the malignant 
tissues show a lower ADC at different b-values compared with benign and normal tissue due to the 
replacement of normal tissue [61]. According to a published study [62], the DW-MRI features result 
in superior accuracy in diagnosing prostate cancer that is comparable to a combination of features 
from T2-weighted MRI, DW-MRI, and DCE-MRI. The voxelwise ADC is computed according to 
Equation 18.1 to generate the ADC map at each b-value. 
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where S0 and S1 are the signal intensity acquired at the b0 and b1 b-values, respectively. Then, 
all ADC maps at a certain b-value for all subjects are normalized with respect to the maxi-
mum value of all of these maps to make all calculated ADC maps in the same range (between 
0 and 1) in order to use a unique color coding for all of them. The calculated ADC values 
are refined using a generalized Gauss-Markov random field (GGMRF) image model with a 
26-voxel neighborhood to remove any data inconsistency and preserve continuity. Continuity 
of the constructed 3D volume is amplified by using their MAP estimates. The CDFs of the nor-
malized ADCs of each subject are constructed. These CDFs are considered as global features 
distinguishing between benign and malignant cases. Instead of using the whole ADC volume, 
the resultant CDFs are used to train an SNCAE classifier using the deep learning approach. In 
our system, the CDFs for a training set of the DW-MR images are used for deep learning of a 
classifier with an SNCAE.

Experimental validation was performed using 53 (27 benign and 26 malignant) cases. The aver-
age training CDFs for the benign and malignant cases at six b-values, 100, 200, 300, 400, 500, 
and 700 s/mm2, are shown in Figure 18.2. Figure 18.2 shows the maximum difference and best 
separation between these subjects are for the b-value of 700 s/mm2. Therefore, the most accurate 
classification can be expected with the CDF at this b-value. The section titled “Diagnostic Results 
of the Single SNCAE Structure” will address this issue in more detail and present additional 
experiments.
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It is worth noting that conventional classification methods directly employing the voxelwise ADCs 
of the entire prostate volume as discriminative features encounter at least two serious difficulties. 
Various input data sizes require unification by either data truncation for large prostate volumes, or 
zero padding for small ones. Both ways may decrease the accuracy of the classification. Techniques 
like bag-of-visual-words (BoVW) can be employed to overcome the difficulty of various input data 
sizes but the data has to be aligned and the accuracy of the BoVW technique is a function of the 
data resolution and the size of the bag. In addition, large ADC data volumes lead to considerable 
time expenditures for training and classification. In contrast, our SNCAE classifier exploits only the 
100-component CDFs to describe the entire 3D ADC maps estimated at each b-value. This fixed 
data size helps overcome the above challenges and notably expedites the classification.

STACKED NONNEGATIVELY CONSTRAINED AUTOENCODERS (SNCAE)-BASED CLASSIFICATION

For the classification of prostates, our CAD system utilizes a deep neural network with a stack of 
autoencoders before the final softmax-regression-based classification layer that generalizes logistic 
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FIGURE 18.2 Average CDF of the 27 benign (dotted red) and 26 malignant (solid blue) cases at different 
b-values: 100 (a); 200 (b); 300 (c); 400 (d); 500 (e); and 700 (f) s/mm2.
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regression to more than two categories. Two different structures of SNCAE were used to classify 
prostates into malignant or benign: 

• The first structure uses a single SNCAE: Different combinations of b-values were exam-
ined to select the optimum b-value or values for the most accurate classification. SNCAE 
compresses the 100-component CDFs at some b-value inputted to it to capture the most 
noticeable variations and is built by linking the final hidden layer with a softmax classifier. 
SNCAE is first pre-trained one layer at a time using greedy unsupervised pre-training [63]. 
Then a supervised fine-tuning of all SNCAE layers is performed using error backpropaga-
tion to minimize the total loss for the given training data.

• The second structure uses a two-phase structure of SNCAE: In the first phase, seven 
SNCAE-based classifiers, one classifier for each of the seven b-values (100–700 s/mm2), 
are used to determine an initial classification probability of the prostate case. In the 
second phase, the resulting initial classification probabilities of the seven classifiers 
are then concatenated to form an initial classification probability vector that is fed into 
another SNCAE-based classifier to determine the final classification of the prostate 
case.

In the subsequent paragraphs, autoencoder (AE), the basic unsupervised feature learning algorithm 
is first introduced. Then, nonnegatively constrained autoencoders (NCAE), which imposes non-
negativity and sparsity constraints for learning robust feature representations is explained. Finally, 
SNCAE, the deep network architecture that is constructed by layer-wise stacking of multiple 
NCSAE is explained.

AE, the basic learning component of SNCAE, consists of three layers: input layer, hidden layer, 
and output layer. Each layer consists of a number of nodes. A node in a given layer is fully connected 
to all the nodes in the successive layer. The objective of AE is to learn a precise compressed repre-
sentation of input data that could be used at a later stage to reconstruct the input data. In general, 
AE has two steps: encoding and decoding. The encoding layers hierarchically decrease the dimen-
sion of their inputs into codes to capture the most essential representations, while the decoding 
layers try to restore the original input from the codes in the hidden layers. Each AE compresses its 
input data to capture the most prominent variations and is built separately by greedy unsupervised 
pre-training [63]. The softmax output layer facilitates the subsequent supervised backpropagation-
based fine-tuning of the entire classifier by minimizing the total loss (negative log-likelihood) for 
given training labeled data. Using the AEs with a nonnegativity constraint (NCAE) [64] yields both 
more reasonable data codes (features) during its unsupervised pre-training and better classification 
performance after the supervised refinement.

Let W W W={ , : , , ; , }j
e

i
d j s i n= =1 1   denote a set of column vectors of weights for encoding 

(e) and decoding (d) layers of a single AE in Figure 18.3a. Let T denote vector transposition. The 
AE converts an n-dimensional column vector u = [u1, ..., un]T of input signals into an s-dimensional 
column vector h = [h1, ..., hs]T of hidden codes (features or activations), such that s ≪ n, by uniform 
nonlinear transformation of s weighted linear combinations of signals: 
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where σ(...) is a certain sigmoid, that is, a differentiable monotone scalar function with values in 
the range [0, 1]. Then, AE tries to reconstruct an approximation of the original input from the hid-
den feature representation. To learn a compressed representation, which helps discover the latent 
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structure of data in a high-dimensional space, and to avoid trivial solution of the minimization 
of the loss function of Equation 18.2 such as identity transformation, it is necessary that the hid-
den layer dimension be less than the input dimension, that is, s ≪ n. Unsupervised pre-training of 
the AE minimizes total deviations between each given training input vector uk; k = 1, ..., K, and 
the same-dimensional vector, uW :k reconstructed from its code, or activation vector, hk. The total 
reconstruction error of applying such AE to compress and decompress the K training input vectors 
integrates the ℓ2-norms of the deviations: 
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uW :  (18.2)

Here, the average sum-of-squared-differences represents the reconstruction error. The mini-
mization of that reconstruction error indicates that the learned features preserve a significant 
amount of information about the input, which is a required criterion of precise representation 
of the original input. Inspired by nonnegative matrix factorization and by the proofs that neu-
ral activity in the human brain is sparse. NCSAE imposes two additional constraints on the 
basic AE, namely, nonnegativity constraint and sparsity constraint. The nonnegativity constraint 
enforces the autoencoder to learn additive part-based representation of the input data, while the 
sparsity constraint enforces the average activation of each hidden unit over the entire training 
dataset to be infinitesimal to improve the probability of linear separability. As suggested in 
Hosseini-Asl et al. [64], imposing the nonnegativity constraint on AE results in more precise 
data codes during the greedy unsupervised pre-training and improved classification accuracy 
after the supervised refinement. To reduce the number of negative weights and enforce sparsity 
of the NCAE, the reconstruction error of Equation 18.2 is appended, respectively, with qua-
dratic negative weight penalties, f(wi) =  (min{0, wi})2; i = 1, ..., n, and Kullback-Leibler (KL) 
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FIGURE 18.3 (a,b) Schematic overview of a DW-MRI-based CAD system for diagnosing prostate cancer.
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divergence, JKL(hWe; γ), of activations, hwe, obtained with the encoding weights We for the train-
ing data, from a fixed small positive average value, γ, near 0: 
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Here, the factors α ≥ 0 and β ≥ 0 specify relative contributions of the nonnegativity and sparsity 
constraints to the overall loss, JNCAE(W), and 
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Recent studies have shown that a deep architecture is capable of learning complex and highly 
nonlinear features from data. In order to learn high-level features from data, NCSAE is used 
as a building block to construct a multilayer architecture of NCSAEs. In this architecture, the 
output vector from a low-level NCSAE is used as input to a high-level NCSAE and the output 
of the final NCSAE is used as input to a softmax-regression classifier. A good technique to 
train such deep architectures that does not have the limitations associated with full supervised 
training is to first pre-train the network one layer at a time using the unsupervised greedy 
algorithm.

The classifier is built by stacking the NCAE layers with an output softmax layer, as shown in 
Figure 18.3a. Each NCAE is pre-trained separately in the unsupervised mode, by using the activa-
tion vector of a lower layer as the input to the upper layer. In our case, the initial input data consisted 
of the 100-component CDFs, each of size 100. The bottom NCAE compresses the input vector to 
s1 = 50 first-level activators, compressed by the next NCAE to s2 = 5 second-level activators, which 
are reduced in turn by the output softmax layer to s◦ = 2 values.

Separate pre-training of the first and second layers by minimizing the loss of Equation 18.3 
reduces the total reconstruction error, as well as increases sparsity of the extracted activations and 
numbers of the nonnegative weights. The activations of the second NCAE layer, h T2

2
1[ ]

[ ]
[ ]=σ( )W he , 

are inputs of the softmax classification layer, as sketched in Figure 18.3a to compute a plausibility 
of a decision in favor of each particular output class, c = 1, 2: 
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Its separate pre-training minimizes the total negative log-likelihood Jo(Wo) of the known training 
classes, appended with the negative weight penalties: 
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Finally, the entire stacked NCAE classifier (SNCAE) is fine-tuned on the labeled training data 
by the conventional error backpropagation through the network and penalizing only the negative 
weights of the softmax layer. In our experiments, a = 0.03, b = 3, and γ = 0.1.
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In the first phase of the two-phase structure of SNCAE, the initial input data to each of the seven 
SNCAE is composed of the 100-component CDFs at some b-value (100–700  s/mm2). The first 
NCSAE reduces the input vector dimension to s1 = 50 first-level features (codes), which are reduced 
by the subsequent NCAE to s2 = 5 second-level features (codes), which are finally decreased by 
the softmax layer to the goal s◦ = 2 values. In the second stage, each SNCAE’s output probability 
is extracted and fused by concatenation, resulting in a vector of fused probability ut = [g1, ..., g14] 
as shown in Figure 18.3b. To enhance the classification accuracy, this vector (ut) is fed into a new 
SNCAE to estimate the final classification as a class probability using the following equation: 
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EXPERIMENTAL RESULTS

Experiments were conducted on 53 DW-MRI data sets (27 benign and 26 malignant) obtained using 
a body coil Signa Horizon GE scanner in axial plane with the following parameters: magnetic field 
strength: 1.5 T; TE: 84.6 ms; TR: 8000 ms; bandwidth: 142.86 kHz; FOV: 34 cm; slice thickness: 
3 mm; inter-slice gap: 0 mm; acquisition sequence: conventional EPI; diffusion weighting directions: 
mono direction; the used range of b-values is from 0 to 700 s/mm2. On average, 26 slices were obtained 
in 120 s to cover the prostate in each patient with voxel size of 1.25 × 1.25 × 3.00 mm3. The ground 
truths are performed on a slice-by-slice basis and obtained by manual segmentation using Slicer© 
(www.slicer.org). All annotations were verified by an expert. All the subjects were diagnosed using a 
biopsy and the Gleason scores for the malignant cases ranged from 6 to 8. The cases were evaluated 
as a whole and not per tumor. The experimental results of both the single SNCAE structure and the 
two-phase structure of SNCAE are explained in the sections titled “Diagnostic Results of the Single 
SNCAE Structure” and “Diagnostic Results of the Two-Phase Structure of SNCAE,” respectively.

DIAGNOSTIC RESULTS OF THE SINGLE SNCAE STRUCTURE

To learn the statistical characteristics of both benign and malignant subjects, we trained our classi-
fier by 53 DW-MRI datasets (27 benign and 26 malignant). The features involved for classification 
are the CDF of the normalized ADC maps for 7 different b-values of the segmented prostate tissue, 
as shown in Figure 18.2. To assess the accuracy of our system, we performed a leave-one-out cross-
validation test with the whole 53 datasets. We tried many scenarios to choose the optimum b-value 
(or values) for the best classification results. After many trials and combinations, we reached the 
following result: among all available b-values, the b-value = 700 s/mm2 is optimal. It outperforms 
all other available b-values. Moreover, it is better than using all b-values combined. In other words, 
training our classifier using only b-value = 700 s/mm2 gives us a better classification result than 
taking the majority voting of all 7 b-values results. The overall diagnostic accuracy for different 
b-values are summarized in Figure 18.4. It is clear that b-value = 700 s/mm2 has the highest accu-
racy results. And this is coincided with what we get in Figure 18.2f.

To highlight the merit of using SNCAE-based classifier, a comparison between our classifier 
and four other ready-to-use classifiers (K*, k-NN, random forest, and random tree classifiers imple-
mented in Weka toolbox) [65] is summarized in Table 18.1. As demonstrated in this table and 
using b-value = 700 s/mm2 only, our classifier achieves an overall accuracy of 100% for all testing 
datasets. Also, the proposed framework outperforms the other alternatives and holds promise of the 
proposed CAD system as a reliable noninvasive diagnostic tool.

Additionally, we plot the receiver operating characteristics (ROC) curve for the developed CAD system 
and other classifiers to test the performance of our diagnostic tool. The results are depicted in Figure 18.5. 

http://www.slicer.org
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FIGURE 18.4 Classification accuracy of SNCAE classifier using DWI datasets with different b-values.

TABLE 18.1
Classification Accuracy, Sensitivity, and Specificity for Our 
CAD System and Different Classifiers from Weka Tool

Classifier Accuracy Sensitivity Specificity

SNCAE (proposed) 100% 100% 100%
K* (K-star) 94.3% 94.3% 94.4%
k-NN-classifier (IBK) 88.67% 88.6% 88.7%
Random forest 86.7% 86.8% 86.8%
Random tree 84.9% 85.1% 84.9%

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

SNCAE
K*
R. forest
KNN
R. tree

FIGURE 18.5 The ROC curve for different classifiers.
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As shown in this figure, the area under the ROC curve of the proposed classifier is the maximum and 
approaches 1 in comparison to other alternative.

DIAGNOSTIC RESULTS OF THE TWO-PHASE STRUCTURE OF SNCAE

To learn the statistical characteristics of both benign and malignant subjects, we trained 7 different 
SNCAE, one for each b-value, by 53 DW-MRI datasets (27 benign and 26 malignant). All training 
was done inside leave-one-subject-out cross-validation framework. The features involved for classi-
fication are the CDF of the normalized ADC maps for 7 different b-values of the segmented prostate 
tissue. To assess the accuracy of our system, we perform a leave-one-subject-out cross-validation 
test for each AE with the whole 53 datasets. The overall diagnostic accuracy for different b-values 
are summarized in Table 18.2.

In the last stage of the classification, we concatenated the output probabilities from the 7 AEs. 
This vector of the fused probabilities is fed into the prediction stage SNCAE. Our classifier achieved 
an overall accuracy of 98.11% for all testing data sets, which is higher than all reported accuracies 
in Table 18.2.

To highlight the merit of using the proposed system, a comparison between our classifier and 
four other ready-to-use classifiers (K*, K-nearest neighbor, random forest, and random tree classi-
fiers implemented in Weka toolbox) [65] is summarized in Table 18.3. The input features for each 
of those four classifiers are the 100-component CDFs. As demonstrated in Table 18.3, the proposed 
framework outperforms the other alternatives. The corresponding AUC of the receiver operating 
characteristics of those classifiers are shown in Figure 18.6. The AUC of the proposed classifier 
approaches 98.7%.

TABLE 18.2
Classification Accuracy of Our SNCAE Classifier at Different 
b-Values

Autoencoder Correct Instance Accuracy

SNCAE 1 (b-value = 100) 50 out of 53 94.34%
SNCAE 2 (b-value = 200) 48 out of 53 90.57%
SNCAE 3 (b-value = 300) 49 out of 53 92.45%
SNCAE 4 (b-value = 400) 47 out of 53 88.68%
SNCAE 5 (b-value = 500) 48 out of 53 90.57%
SNCAE 6 (b-value = 600) 49 out of 53 92.45%
SNCAE 7 (b-value = 700) 51 out of 53 96.23%

TABLE 18.3
Classification Accuracy, Sensitivity, Specificity, and AUC of Our 
SNCAE Classifier and Four Ready-to-Use Weka Classifiers

Classifier Accuracy Sensitivity Specificity AUC

SNCAE (proposed) 98.11% 96.15% 100% 98.7%
K* (K-star) 94.32% 94.33% 94.42% 92.6%
k-NN-classifier (IBK) 88.67% 88.63% 88.71% 88.7%
Random forest 88.64% 88.72% 88.60% 95.2%
Random tree 84.91% 85.13% 84.93% 85.1%
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CONCLUSIONS AND FUTURE TRENDS

In this chapter, we presented an image-based CAD system for early diagnosis of prostate cancer 
from DW-MRI. The framework includes NMF-based segmentation, diffusion parameters estima-
tion (CDFs of the ADC), and SNCAE-based classification. The proposed CAD system was tested on 
DW-MRI datasets from 53 subjects acquired at 7 different b-values (100–700 s/mm2). Applications 
of the proposed approach yielded promising results that could, in the near future, replace the use of 
current technologies to diagnose prostate cancer.

This work could also be applied to various other applications in medical imaging, such as the 
kidney, the heart, the lung, and the retina.

One application is renal transplant functional assessment. Chronic kidney disease (CKD) 
affects about 26 million people in United States with 17,000 transplants being performed each 
year. In renal transplant patients, acute rejection is the leading cause of renal dysfunction. Given 
the limited number of donors, routine clinical post-transplantation evaluation is of immense 
importance to help clinicians initiate timely interventions with appropriate treatment and thus 
prevent graft loss. Accurate assessment of renal transplant function is critically important for 
graft survival. Although transplantation can improve a patient’s well-being, there is a potential 
post-transplantation risk of kidney dysfunction that, if not treated in a timely manner, can lead 
to the loss of the entire graft, and even patient death. Thus, accurate assessment of renal trans-
plant function is crucial for the identification of proper treatment. In recent years, an increased 
area of research has been dedicated to developing noninvasive image-based CAD systems for 
the assessment of renal transplant function utilizing different image modalities (e.g., ultrasound, 
CT, MRI, etc.). In particular, dynamic and diffusion MRI-based systems have been clinically 
used to assess transplanted kidneys with the advantage of providing information on each kidney 
separately. A variety of studies can be consulted for more details about renal transplant func-
tional assessment [66–91].

The heart is also an important application for this work. The clinical assessment of myocardial 
perfusion plays a major role in the diagnosis, management, and prognosis of ischemic heart disease 
patients. Thus, there have been ongoing efforts to develop automated systems for accurate analysis 
of myocardial perfusion using first-pass images [92–108].

Another application for this work could be the detection of retinal abnormalities. The majority of 
ophthalmologists depend on visual interpretation for the identification of diseases types. However, 
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FIGURE 18.6 ROC curves for our SNCAE classifier and four ready-to-use Weka classifiers.
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inaccurate diagnosis will affect the treatment procedure which may lead to fatal results. Hence, 
there is a crucial need for computer automated diagnosis systems that yield highly accurate results. 
Optical coherence tomography (OCT) has become a powerful modality for noninvasive diagnosis 
of various retinal abnormalities such as glaucoma, diabetic macular edema, and macular degenera-
tion. The problem with diabetic retinopathy (DR) is that the patient is not aware of the disease until 
the changes in the retina have progressed to a level at which treatment tends to be less effective. 
Therefore, automated early detection could limit the severity of the disease and assist ophthalmolo-
gists in investigating and treating it more efficiently [109,110].

Abnormalities of the lung could be another promising area of research and a related appli-
cation for this work. Radiation-induced lung injury is the main side effect of radiation ther-
apy for lung cancer patients. Although higher radiation doses increase the radiation therapy 
effectiveness for tumor control, this can lead to lung injury as a greater quantity of normal 
lung tissues is included in the treated area. Almost a third of patients who undergo radiation 
therapy develop lung injury following radiation treatment. The severity of radiation-induced 
lung injury ranges from ground-glass opacities and consolidation at the early phase to fibrosis 
and traction bronchiectasis in the late phase. Early detection of lung injury will thus help to 
improve treatment management [111–151].

This work can also be applied to other brain abnormalities, such as dyslexia and autism. Dyslexia 
is one of the most complicated developmental brain disorders that affect children’s learning abili-
ties. Dyslexia leads to the failure to develop age-appropriate reading skills in spite of a normal 
intelligence level and adequate reading instructions. Neuropathological studies have revealed an 
abnormal anatomy of some structures, such as the corpus callosum, in dyslexic brains. There has 
been a lot of work in the literature that aims at developing CAD systems for diagnosing this disor-
der, along with other brain disorders [152–174].

This work could also be applied for the extraction of blood vessels from phase contrast (PC) 
magnetic resonance angiography (MRA). Accurate cerebrovascular segmentation using noninva-
sive MRA is crucial for the early diagnosis and timely treatment of intracranial vascular diseases 
[157,158,175,176].
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INTRODUCTION

Prostate cancer (PCa) is an adenocarcinoma of prostate glandular tissue that is most often local-
ized to the prostate. Rather than a solitary primary tumor focus, PCa is typically multifocal; it is 
estimated that nearly 80% of PCa cases have more than one tumor located within the prostate [1,2]. 
Generally, the prostate contains a dominant lesion demonstrating high oncologic activity as is evi-
denced by its increased size and higher grade. This lesion is termed the “index lesion” and accord-
ing to contemporary thinking, represents the oncologic engine driving malignant growth [3,4]. The 
other lesions comprising the multifocal character of this cancer are termed “satellite lesions.” They 
are often smaller, less active tumors located discontinuously throughout the prostate, which makes 
detection of satellite lesions especially challenging both preoperatively on imaging and biopsy, and 
postoperatively on final pathologic investigation [5]. Therefore, it is possible that rates of multifocal 
prostate adenocarcinoma are even higher than currently reported.

Given the tendency of PCa to produce multiple tumors within the prostate, spread of malignant 
cells beyond the prostate is of great concern. Fortunately, rates of invasive or metastatic PCa are 
low relative to localized PCa [6]. In recent years, the increase in public awareness about the need for 
PCa screening and the widespread adoption of prostate-specific antigen (PSA) as an effective, yet 
controversial screening method has dramatically improved the early detection and treatment of PCa 
to reduce rates of invasive or metastatic PCa [7].

The prostate gland is surrounded by the prostatic capsule, which is not a true capsule, but 
instead a fibromuscular layer on the exterior of the prostate. It is made up of an outer collagen 
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band with an inner smooth muscle component that together cannot be separated from the prostatic 
 tissue. The prostatic capsule covers the entire prostate with the key exceptions of the prostatic apex 
and the points of insertion for the ejaculatory ducts near the seminal vesicles [8]. Surrounding 
the prostate and the prostatic capsule is periprostatic adipose tissue. Furthermore, posterior to the 
prostate is the rectoprosatic fascia, also named Denonvilliers’ fascia. It functions as a physical bar-
rier between the prostate and the muscular rectum beneath.

If the capsule is breached and cancer is detected beyond its margins, then extraprostatic exten-
sion (EPE) is diagnosed. In staging, this is classified as T3 (or greater) cancer. Pathologic T3a (pT3a) 
cancer is defined as extension (either unilateral or bilateral) beyond the prostatic capsule and pT3b 
cancer is defined as invasion of one or both seminal vesicles (pT3b); pT4 cancer involves invasion 
of the bladder or rectum (Table 19.1) [9]. PCa staging also includes any potential involvement of 
regional lymph nodes or distant metastatic disease for TNM classification (Figure 19.1).

TABLE 19.1
Clinical Staging of Prostate Cancer
Clinical Staging of Prostate Cancer:

• T1 = undetectable on clinical exam
• T2 = palpable nodule without extraprostatic extension
• T3 = extends beyond prostate

• T3a = extension beyond prostatic capsule
• T3b = invasion of seminal vesicles

• T4 = extends to adjacent structures (other than seminal 
vesicles)
• T4a = invasion of bladder neck, external sphincter, or rectum
• T4b = invasion of floor or wall of the pelvis

Source: Partin, A.W. et al., JAMA, 277, 1445–1451, 1997.

FIGURE 19.1 Stages of prostate cancer progression.
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Cancer contained within the prostate is most often treated with radical prostatectomy (RP). 
In this procedure, the prostate (retained within the capsule) is excised along with the seminal 
vesicles and portions of the vas deferens. This has shown to be a very successful procedure 
because cancer localized within the prostatic capsule is completely removed and rates of PCa-
specific survival following 10  years are very high [10]. However, if the cancer has invaded 
beyond the capsule (T3 disease), the risks of pathologic complications and poor outcomes are 
significantly higher. Extraprostatic extension is shown to increase the rates of surgical margins 
positive for cancerous tissue (absolute risk increase [ARI] 20%) and biochemical recurrence 
(ARI 10% over 15 years), and decrease cancer-specific survival (absolute risk reduction [ARR] 
9% over 15 years) [11].

Due to these potential complications, extraprostatic extension is a dreaded finding for urolo-
gists. Its presence alters preoperative surgical planning, administration of neoadjuvant or adjuvant 
therapies, postoperative monitoring, and overall patient prognosis. It is therefore clear that accurate 
detection of pT3 disease is vital for oncologic management. This chapter will review the preop-
erative diagnosis of extraprostatic extension—specifically seminal vesical invasion—in primary 
prostate adenocarcinoma.

SEMINAL VESICLE INVASION

The seminal vesicles are extraprostatic structures located posteriolaterally to the prostate near the 
base of the prostate. They are glandular structures each comprised of a singular tube repeatedly 
folded on itself. The seminal vesicles have a thick muscular layer surrounding the luminal mucosa 
that is utilized for production and excretion of seminal fluid. During ejaculation, seminal fluid is 
pushed through the seminal vesicle lumen where it meets the ipsilateral vas deferens to form the 
ejaculatory ducts at the prostate. The seminal fluid moves through the ejaculatory duct as it passes 
through the prostate, mixes with prostatic fluid, and enters the prostatic urethra at the verumonta-
num where it is ultimately ejaculated as semen.

Questions remain about if the seminal vesicles are completely extraprostatic structures. There is 
evidence suggesting that the most proximal segments of the seminal vesicle do not abruptly transi-
tion to ejaculatory duct at the margin of the prostate, but instead invaginate into the prostatic base. 
This finding is termed invaginated extraprostatic space (IES) [12]. As mentioned above, the open-
ings of the ejaculatory ducts are not covered by the prostatic capsule. They are directly connected 
to prostatic stroma, providing a convenient method of cancerous extension beyond the prostate to 
the seminal vesicles.

SVI is reported in 3.1%–26% of radical prostatectomy specimens [13–17]. The mechanism of PCa 
invasion into the seminal vesicles is not uniform. Currently, SVI is categorized into three modes 
of cancerous invasion. Type I SVI describes spread via the IES/ejaculatory ducts into the seminal 
vesicles [15]. The precise route of spread is not totally understood. According to the 2009 International 
Society of Urological Pathology conference, SVI should only be diagnosed with cancerous invasion 
of the muscular wall of the extraprostatic part of the seminal vesicle, rather than possible exten-
sion into the seminal vesicle epithelium of IES, which is difficult to discern from ejaculatory duct 
epithelium [12,15,18–20]. Furthermore, seminal vesicle epithelium has also been shown to resemble 
prostatic intraepithelial neoplasia, atypical acinar proliferations, and prostatic adenocarcinoma [21]. 
Type II SVI describes invasion through the prostatic capsule and into the seminal vesicles. This is 
further subdivided into type IIa, which signifies invasion through the base of the prostate directly 
into the seminal vesicle, and type IIb, which signifies retrograde invasion into the seminal vesicles 
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via involvement of the periprostatic nerves [15,19,20]. Type III SVI describes discontinuous or meta-
static lesions in the seminal vesicles [15] (Table 19.2) (Figure 19.2).

Numerous studies have evaluated the prognostic importance of seminal vesicle invasion. Most 
importantly, SVI decreases long-term survival in radical prostatectomy patients. An early study on 
the natural history of pT3b disease without nodal involvement or metastases (T3bN0M0) demon-
strated that SVI decreased 7-year survival rate from 67% to 32% [22]. Looking at PCa progression, 
multiple studies demonstrated varying rates of 5-year biochemical recurrence-free survival. Rates 
ranged from 5% to 60% with a median value of 36% [23–30].

SVI is often found in cases of PCa characterized by other features independently associated 
with more aggressive cancer and worse prognosis. For example, incidence of SVI is associated with 
increasing tumor volume and increasing tumor grade as measured by Gleason score [15]. These 
features signify increased risks of extraprostatic extension, metastatic disease, biochemical recur-
rence, and PCa-related mortality [9]. However, the presence of SVI is associated with additional risk 
of extraprostatic extension and lymph node metastasis [15,31].

It is very important to note that the presence of SVI does not automatically portend a con-
sistently poor outcome. For example, the type of cancerous invasion is significantly correlated 
with prognosis. Type I spread is the most common form of SVI while type III is the least com-
mon, but type I SVI is associated with worse outcomes than type III [15,30,32]. In fact, type III 
SVI cancers had rates of 5-year progression-free survival similar to cancers with extrapros-
tatic extension but without SVI [15]. In addition, type II cancer invading directly through the 

TABLE 19.2
Patterns of Seminal Vesicle Invasion
Patterns of Seminal Vesicle Invasion:

• Type I—via IES/ejaculatory ducts
• Type IIa—via direct invasion through prostatic base
• Type IIb—via retrograde invasion of periprostatic nerves
• Type III—discontinuous/metastatic

Source: Ohori, M. et al.,  Am. J. Surg. Pathol., 17, 1252–1261, 1993.

Prostate

Vas Deferens

Seminal
Vesicle

Type I

Type IIa

Type IIb

Type III

FIGURE 19.2 Types of seminal vesicle invasion.
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prostatic capsule was found to have higher rates of lymph node involvement than type I, which 
suggests that the route of type II invasion through periprostatic soft tissue near the base of 
the prostate increases the likelihood of lymphatic involvement as compared to type I invasion 
through the ejaculatory ducts [15].

In addition, there is a difference in outcomes between intraprostatic invasion of the seminal 
vesicles (occurring at sites of invaginated extraprostatic space) and extraprostatic invasion of the 
seminal vesicles. In one study, patients with invasion limited to the intraprostatic seminal vesicle 
had a 5-year biochemical progression-free likelihood of 74%, which was similar to biochemical 
progression-free likelihood in patients without seminal vesicle invasion [19]. This was significantly 
higher than the less than 20% likelihood of 5-year biochemical progression-free survival for patients 
with extraprostatic invasion of the seminal vesicles [19].

The classification of T3b disease does not distinguish between bilateral and unilateral SVI, but 
research suggests that this distinction is also quite important for patient prognosis. In a study by Lee 
et al. [33], bilateral SVI was associated with markedly worse 5-year biochemical recurrence-free 
survival (4.3%) than unilateral SVI (19.8%).

CLINICAL DETECTION AND CLINICAL IMPLICATIONS OF SVI

Given the negative association of SVI with patient outcomes, clinical practice patterns for man-
agement of PCa are greatly influenced by discovery of SVI. Many surgeons consider the clinical 
diagnosis of SVI enough to justify excluding a patient from surgical candidacy. The argument is 
that rates of recurrence for cases with SVI are too high to justify exposing patients to the morbid-
ity of radical prostatectomy. A similar argument is made for patients with very high-risk (Gleason 
9 or 10) disease that may harbor subclinical metastases. Other considerations for the presence of 
T3 disease include the use of neoadjuvant or adjuvant androgen deprivation therapy, chemotherapy, 
or radiation; in addition to more careful postoperative monitoring for biochemical recurrence or 
local recurrence of PCa.

While SVI is a very significant feature for PCa staging, its detection poses a serious challenge. 
Historically, the gold standard for confirming SVI was either perioperative or postoperative patho-
logic analysis, but at this point the patient had already been exposed to the increased morbidity of 
an intensive surgical procedure. An early, accurate assessment of SVI for PCa staging is hugely 
beneficial to effectively and safely manage patients with PCa.

There is no one test to specifically identify SVI and traditional methods for diagnosing PCa 
are not ideal in this circumstance. Classically, even before the advent of PSA testing, the digital 
rectal examination was the standard-of-care screening method for PCa. In fact, the digital rectal 
examination is still a hallmark of PCa screening now used in conjunction with an elevated PSA 
value (generally considered to be >4.0 ng/mL) [34]. However, the digital rectal examination is 
limited in many ways. Primarily, a positive finding can only be detected in men with PCa of clinical 
stage cT2 or higher, which describes the presence of a palpable nodule suspicious for malignancy 
on the prostatic capsule (cT2 disease) or palpation of malignant extension to adjacent structures 
(cT3–4 disease) [9]. Any nonpalpable cancer (cT1 disease) will evade detection on digital rectal 
exam. Even cancers causing capsular bulges or extension may go undetected due to the inherent 
challenges presented by the prostatic anatomy relative to the rectum. A digital rectal examination 
preferentially samples the posterior aspects of the prostate while undersampling the apex, base, 
and anterior aspects [35]. If extraprostatic extension were to occur outside the region sampled by 
digital rectal examination, existing T3 disease may be mistakenly understaged as T1 disease. Given 
the location of the seminal vesicles in relation to the area commonly sampled by digital rectal 
examination, potentially palpable lesions of the seminal vesicles may often go undiagnosed with 
this screening method [36].
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ULTRASOUND IMAGING AND BIOPSY FOR SVI DETECTION

The most widespread and tested method for PCa diagnosis is the transrectal ultrasound (TRUS)-guided 
systematic biopsy (Figure 19.3). Using real-time ultrasound imaging, the prostate is visualized and a 
biopsy needle is passed repeatedly through the wall of the rectum and into the prostate via the posterior 
aspect of the gland. Common practice is to divide the prostate into six regions and sample each region 
twice, medially and laterally, to obtain 12 biopsy specimens. The systematic biopsy, also termed sextant 
biopsy, is effectively random. The biopsy cores do not target suspicious areas of the prostate preferentially, 
but instead sample the same six regions regardless of differences in pre-procedure screening or imaging.

TRUS imaging alone does have some utility in preoperative PCa staging. A study by Eisenberg 
et al. [37] compared the accuracy of PCa staging utilizing TRUS as compared to digital rectal exami-
nation. The authors found that of the 157 patients with evidence of extraprostatic extension on final 
pathologic analysis, only 2 were detected on digital rectal examination. Furthermore, 50 patients 
(22%) without palpable disease on digital rectal examination were found to have confirmed extrapros-
tatic extension on final pathology. These patients would be staged as cT1c (organ-confined disease) 
without ultrasound imaging. Regarding TRUS, an increase in suspicion for findings of extraprostatic 
extension correlated directly with likelihood of pathologic confirmation of pT3 disease. Of patients 
with no evidence of extraprostatic extension on ultrasound, 15.3% were found to have pT3 disease 
on final pathology as compared to 63.3% of patients with strong suspicion of extraprostatic extension 
on ultrasound [37]. Overall, the authors found that using TRUS to detect extraprostatic extension in 
nonpalpable tumors demonstrated an area under the receiver operator curve (AUC) of 0.88. Looking 
at long-term follow-up, the study also demonstrated a significantly improved 5-year biochemical 
failure-free rate for patients without evidence of extraprostatic extension on ultrasound (87%) as 
compared to those patients with any ultrasound evidence of extraprostatic extension (64%) [37]. For 
TRUS detection of SVI specifically, the authors recorded findings of 4% sensitivity, 99.8% specificity, 
67% positive predictive value, 93% negative predictive value, and an AUC of 0.76 [37].

In recent years, inherent inadequacies of the TRUS-guided systematic biopsy have come to light. 
Much of its shortcomings resemble those of the digital rectal examination because they share a rec-
tal approach to detect prostate pathology. Again, the apex, base, and anterior regions of the prostate 

FIGURE 19.3 Transrectal ultrasound (TRUS) of the prostate.
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are more difficult to sample via this biopsy approach. Additionally, TRUS-guided biopsies do not 
routinely sample areas outside the prostate, which includes the seminal vesicles.

However, research has demonstrated that certain preoperative characteristics indicate need for 
TRUS-guided biopsy of the seminal vesicles. For example, presence of bilateral samples of the pros-
tate base positive for cancer on systematic biopsy was most significantly correlated with malignant 
extension into the seminal vesicles. In a study conducted by Guillonneau et al., 73.33% of patients with 
bilateral positive basal prostatic biopsies had extraprostatic SVI confirmed on final pathology. In com-
parison, 10.25% of patients with unilateral positive basal prostatic biopsies and 0% of patients with 
negative basal prostatic biopsies had confirmed SVI [28]. Of note, this study did not find a significant 
association between PSA values and SVI [28]. In a separate study, Panache-Navarrete et al. [38] sug-
gest performing biopsy of seminal vesicles when the following are present: direct visualization during 
TRUS biopsy, PSA > 19.6 ng/mL, suspicious digital rectal exam findings, and small prostate volumes 
(<41 mL). To date, however, there is no consensus on when to biopsy seminal vesicles.

Ideally, a seminal vesicle lesion suspicious for malignancy would be visualized on TRUS imaging. 
A study by Wymenga et al. [39] detailed a model for targeting suspicious seminal vesicle lesions with 
TRUS-guided biopsy. On ultrasound, suspicious lesions are generally hypoechoic relative to the echo-
genicity of the peripheral zone of the prostate [39]. Once identified, the surgeon can direct the transrectal 
biopsy needle toward the proximal extraprostatic section of the seminal vesicle taking care to avoid 
sampling of the prostatic base and the distal seminal vesicle (Figure 19.4). As mentioned above, SVI can 
present bilaterally, which indicates a worse prognosis than unilateral SVI [33]. Therefore, it is prudent to 
biopsy both seminal vesicles when a suspicious lesion is identified. In this study, the surgeons success-
fully acquired seminal vesicle tissue in biopsies at a rate of 91%, but limited final pathology specimens 
were available for confirmation of seminal vesicle biopsies positive or negative for malignancy [39].

Taken together with the study conducted by Eisenberg et al. [37], this study demonstrates that use 
of TRUS imaging and biopsy is feasible for identification and sampling of lesions suspicious for SVI. 
However, the extremely low sensitivity value reported by Eisenberg et  al. raises the question as to 
whether TRUS dramatically under-visualizes possible SVI. Lending support to this question, Enlund 
et al. [40] reported that 60% of pT3 prostate tumors are missed with direct ultrasound visualization.

Without improved modalities to visualize and sample seminal vesicle lesions, final pathologic 
analysis is the only true determination of proof for SVI. If ultrasound and systematic biopsies 
routinely fail to identify possible SVI, patients may be inappropriately staged and allowed to 
defer definitive surgical treatment in favor of active surveillance, for example. Even in cases when 

Urethra
Base Apex

Anterior

Posterior

Ejaculatory
Duct

Bladder Neck
PROSTATE

SEMINAL
VESICLE

RECTUM
Biopsy
Needle

FIGURE 19.4 Transrectal seminal vesicle needle biopsy.
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 ultrasound does effectively diagnose T3b disease, there is little evidence suggesting it can effectively 
characterize the degree or type of SVI. As detailed above, the type of SVI has strong prognostic 
implications for disease-free survival and presence of lymph node metastasis. One can imagine how 
failure to detect SVI with a high degree of precision may have rippling clinical consequences. There 
is a clear need for more sensitive detection of SVI.

MRI FOR DETECTION OF PCa AND EXTRAPROSTATIC EXTENSION

Despite the virtually universal adoption of ultrasound imaging and guidance for prostate biopsies, 
magnetic resonance imaging (MRI) has gained ground as a highly effective modality for detecting 
and characterizing prostate lesions. More specifically, multiparametric MRI (mpMRI) has garnered 
attention for this purpose [41].

In present clinical practice, mpMRI incorporates T2-weighted images, diffusion-weighted images 
(DWI), and dynamic contrast-enhanced (DCE) MR perfusion to best assess for suspicious lesions in the 
prostate. T2-weighted imaging provides the highest spatial resolution and the clearest anatomy of the 
prostate and can identify lesions that are hypointense relative to the benign high-intensity signal tissue. 
Additionally, higher-grade PCa shows lower signal intensity on T2 imaging [41,42]. DWI measures the 
random movement of water molecules in tissue and can detect intraprostatic lesions as hyperintense due 
to the increased density of tumor tissue [42,43]. DWI can be used to calculate the apparent diffusion 
coefficient (ADC), which acts as a proxy to represent the capillary perfusion and diffusion character-
istics. The numerical value gives the radiologist insight into the macroscopic architecture of the lesion 
[41]. DCE measures the movement of contrast agent through vasculature in rapid sequences; aberrant 
hypervascularity in prostate tumors results in early and pronounced enhancement distinct from benign 
prostatic tissue [44]. Gadolinium contrast alone is insufficient to differentiate PCa from benign tissue 
due to the highly vascular nature of the gland [41]. T1-weighted images are often utilized to detect the 
prostate contour, possible hemorrhage, or regional nodal disease (Table 19.3) [45].

Multiparametric MRI has improved detection of clinically significant PCa (Gleason score ≥7) 
well beyond the bounds of ultrasound imaging. It better estimates the tumor location, size, and 
grade; and multiple clinical studies have demonstrated high sensitivities (44%–87%) and very high 
negative predictive values (92%–94%) [46–50]. To aid in standardizing the correlation between 
mpMRI features and likelihood of clinically significant PCa, the Prostate Imaging Reporting and 
Data System, version 2 (PI-RADS v2) was created [51]. This is based on integration of information 
from each parameter of mpMRI to generate an overall risk assessment on a per-lesion basis.

In addition, mpMRI has also proven to be a successful modality for detection of extraprostatic 
extension via capsule invasion. In a study conducted by Raskolnikov et al. [52] on mpMRI detec-
tion of extraprostatic extension, specificity was 73.9% with a negative predictive value of 82.8%. 
Sensitivity for imaging identification of extraprostatic extension remains an opportunity for addi-
tional improvement [52]. However, additional research on mpMRI for pathologically confirmed 
extraprostatic extension reported sensitivity, specificity, positive predictive value, and negative 

TABLE 19.3
mpMRI Modalities and Associated PCa Findings

MRI Modality Imaging Function PCa Lesion Trait

T2-weighted Displays anatomy in high resolution Hypointense focus

DWI Detects tissue density Hyperintense focus

DCE Measures vascularity Early enhancement

MRS Detects metabolite resonance in 3D Elevated choline-plus-creatine-to-citrate ratio

T1-weighted Detects hemorrhage and nodal disease Not used for lesion assessment

Source: Hoeks, C.M. et al., Radiology, 261, 46–66, 2011.
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predictive value as 70.7%, 90.6%, 57.1%, and 95.1%, respectively [53]. PI-RADS v2 has also proven 
effective over the prior criteria (PI-RADS v1) in detecting extraprostatic extension by demonstrat-
ing increased negative predictive value (96.3%–97.1% for PI-RADS v2  versus 84.9%–89.1% for 
PI-RADS v1) [54]. Therefore, mpMRI continues to reduce the risk of preoperative understaging.

Research by Radtke et al. [55] retrospectively investigated how integration of mpMRI technol-
ogy would change the detection of extraprostatic extension and clinical management according 
to well-established National Comprehensive Cancer Network (NCCN) criteria. The authors deter-
mined that mpMRI in moderate- and high-risk cohorts yielded a positive predictive value of 90.0% 
and 88.9%, respectively. Furthermore, the authors found that use of an mpMRI-based prognostic 
measure would have altered the initial surgical plan in 31.1% of cases [55]. There is also research 
evaluating imaging features such as distance to prostatic capsule and length of tumor contact with 
prostatic capsule to better predict pathologic extraprostatic extension [56,57].

MRI FOR DETECTION OF SVI

Due to the high resolution and functional capabilities of mpMRI, detection of SVI is an active area 
of research. The principles that make mpMRI such an attractive imaging option for visualization of 
prostatic lesions hold true for imaging of seminal vesicle lesions, as well. On MRI, the seminal vesi-
cle lumen, septations, and seminal fluid are all visualized. The tissue composition appears similar to 
that of the prostate (benign tissue has high signal intensity on T2-weighted imaging) with the addi-
tion of high-signal intensity seminal fluid on T2-weighted MRI [58]. The similarities between benign 
prostate and benign seminal vesicle tissue aid in identifying malignant extension of prostate tissue.

For SVI, a set of diagnostic criteria guide detection of this pathologic feature (Table 19.4). Loss 
of normal seminal vesicle architecture and presence of a seminal vesicle enlargement or mass with 
hypointensity on T2 MRI are key in diagnosis of SVI [59,60]. Loss of seminal vesicle architecture 
is the most specific feature for SVI on MRI and hypointense focus on T2 MRI is the most sensitive 
(Figure 19.1). Predictive utility of mpMRI increases when evidence of capsular invasion is observed 
at the prostatic base [59]. Loss of visualization of the angle between the prostate and the seminal 
vesicles is also suggestive of SVI [59,61].

Magnetic resonance spectroscopy (MRS) has also been investigated for the detection of SVI. MRS 
images are derived from the unique resonance frequencies of protons in metabolites of selected tissue. 
In malignant cells, cellular metabolism is altered, which in prostate tumor tissue manifests as decreased 
production of citrate by epithelial cells. In addition, increased cell turnover results in increased choline-
containing molecules that are involved in cell membrane maintenance. In total, the primary biomarker 
visualized on MRS for PCa detection is choline-plus-creatine-to-citrate ratio [41]. While MRS is able 
to visualize PCa in three-dimensions and may characterize tumor grade, its application is significantly 
limited for seminal vesical imaging [41,62]. This is because seminal vesicles have naturally elevated 
levels of choline and decreased levels of citrate thereby mimicking the pattern abnormality of intrapros-
tatic lesions [63]. Furthermore, MRS demands a high level of expertise and significant time investment 
by patients and practitioners, which together limits its clinical practicality [41] (Table 19.5).

TABLE 19.4
mpMRI Criteria for Identification of SVI

• Loss of normal seminal vesicle architecture
• Hypointense focus on T2-weighted MRI
• Loss of visualization of angle between prostatic capsule and seminal vesicles

Source: Sala, E. et  al., Radiology, 238, 929–937, 2006; Claus, F.G. et  al., 
Radiographics, 24, S167–S180, 2004; Tyloch, J.F. et al., J. Ultrason., 17, 
43–58, 2017.
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The measured dimensions of the seminal vesicles can show rather significant variability. In a 
series of 82 patients who underwent radical prostatectomy, the average length was 31 ± 10.3 mm. 
However, the measured lengths were not associated with age, body mass index (BMI), prostate size, 
presence of prostatic adenoma, or sexual or urinary functional metrics (e.g., sexual health inven-
tory for men (SHIM) and international prostate symptoms score (IPSS) scores) [64]. Therefore, the 
inherent anatomical variability makes seminal vesicle size an unreliable method for detection of 
abnormal growth or invasion. On the contrary, the manner in which the composition of the com-
ponents of the seminal vesicles is displayed on mpMRI (e.g., septations, seminal fluid) is relatively 
consistent. For example, in a study conducted by Maeda et al. [65], abnormal signal hyperintensity 
on T1-weighted MRI in the seminal vesicles was observed in only 1.7% of the screening population 
and no associated clinical significance was found. Examinations of signal intensity or architecture 
on mpMRI are therefore better indicators of seminal vesicle malignancy.

LITERATURE REVIEW FOR MRI DETECTION OF SVI

A number of clinical studies have attempted to measure the diagnostic impact of mpMRI in prostate 
cancer staging (Table 19.6). Those that specifically address SVI are reviewed here.

In a single-center retrospective review, Soylu et al. [66] used an experienced radiologist (9 years) 
and an inexperienced radiologist (2 years) to read mpMRIs of the seminal vesicles in 131 patients. 
They compared accuracy of the reads using T2-weighted alone, T2+DWI, T2+DWI+DCE, and agree-
ment between readers. They found that T2-weighted, when combined with DWI imaging, improved 
sensitivity and positive predictive value in both radiologists (sensitivity 65%–78% and 56.5%–61%, 
PPV 60%–82%, 52–82) [66]. Adding DCE imaging to the combined T2-weighted and DWI MR 
images showed no improvement in detection of SVI with either radiologist [66]. Lastly, they note that 
the major limitation to diagnosing SVI on MRI is that the criteria for diagnosis relies heavily on lumi-
nal extension of the tumor. Microscopic invasion of the seminal vesicle wall or microscopic foci are 
nearly impossible to detect without a luminal component [66]. This potentially limits the radiologist’s 
ability to diagnose SVI in addition to creating areas for discordant reads among different practitioners.

There are several additional equipment, physician, and patient considerations to note when 
looking at the role of MRI in predicting SVI. As mentioned above, mpMRI is the most accurate 
modality with which to visualize the prostate and diagnose SVI [41].

Second, radiologist experience and expertise should be considered. In a single-center analysis 
of 56 patients, Allen et al. reported that an expert radiologist can increase reporting accuracy when 
compared to radical prostatectomy specimen (sensitivity of EPE detection increased from 50% to 
72%; specificity remained the same) [67].

TABLE 19.6
Pathologies Mimicking SVI on mpMRI

SVI Mimic Cause mpMRI Features Similar to SVI
mpMRI Features 

Different from SVI

Hemorrhage Localized trauma T2 hypointensity T1 hyperintensity 
indicative of bleeding

Amyloidosis Aging, chronic 
inflammation

Narrowed/thickened seminal vesicles, 
T2 hypointensity

Absence of restricted 
diffusion on DWI

Calculi Unknown Focal T2 hypointensity Low-signal DCE-MRI

Seminal vesiculitis Prostatitis Diffuse, focal wall thickening Diffuse wall enhancement

Seminal vesicle atrophy Post-radiation therapy Fibrotic seminal vesicle wall thickening Usually bilateral and 
symmetric

Source: Reddy, M.N. and Verma, S., J. Clin. Imaging Sci., 4, 61, 2014.
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Third, the use of endorectal coils versus surface coils has been discussed with the consensus 
being that endorectal coils are more accurate but that surface coils can be an acceptable alternative 
[68–70]. The use of endorectal coils was first detailed by Schnall et al. in 1989 to better visualize 
conditions in the prostate, periprostatic tissues, and seminal vesicles. In a series of 15 patients they 
reported increased spatial and contrast resolution, which showed promise in a more accurate assess-
ment of tumor volume and extracapsular extension [68]. MRI technology has improved signifi-
cantly since the 1980s and the practice of employing of endorectal coils to provide better resolution 
persists.

In a single-center retrospective analysis of 238 patients, Ghafoori et al. reported the sensitivity, 
specificity, negative predictive value, and positive predictive values of endorectal coils to be 97%, 
98%, 99%, and 94%, respectively [69].

In a separate single-center retrospective review, Kim et  al. reported that in 31  patients with 
elevated risk of extracapsular extension, the use of a surface coil attained a sensitivity, specificity, 
negative predictive value, and positive predictive value of 83.3%, 92.3%, 96%, and 71.4%, respec-
tively. The authors surmised that while this is less accurate that endorectal coils, it is an acceptable 
alternative in centers without access to endorectal coils [70].

Lastly, the effects of fluid volume in the seminal vesicle must be considered when evaluat-
ing the seminal vesicles on imaging. Diagnosis of SVI requires the luminal component of the 
tumor to be visible [66]. When the lumen is collapsed, it may not be possible to view tumor 
extension into the lumen or to adequately access the seminal vesicle walls. In a single-center 
prospective study of 15 healthy male patients, the effects of ejaculatory abstinence were stud-
ied. Volunteers underwent 3T MRI at baseline, 1, 2, and 3 days post-ejaculation. The authors 
reported that seminal vesicle volume was significantly reduced 24 hours post-ejaculation and 
remained lower than baseline at day 2, but the volumes significantly increased over the next 
2 days post-ejaculation. The authors also note that the average seminal vesicle volume was 
12.47 cm3 and that ADC values reduced as volume reduced. They concluded that a period of 
abstinence of 3 days should be recommended for a complete exam. They also noted that stan-
dardization of pre-mpMRI procedures may reduce variability of ADC values and improve the 
quality and analysis of mpMRI imaging [71].

In a retrospective study of 238 patients, Kabakus et al. sought to explore the effects of absti-
nence on seminal vesicle volume and diagnosis of seminal vesical invasion in a clinical set-
ting [72]. Patients were divided into groups of ejaculatory abstinence (ejaculation >3 days prior, 
n = 196) and non-abstinent (most recent ejaculation within 3 days of MRI, n = 42). They found 
that abstinent patients had statistically significantly larger seminal vesical volumes than non-
abstinent (6.0 mL vs. 8.8 mL, p = 0.011). Additionally, they reported that in men over 60 years 
old who did not abstain from ejaculation starting 3 days before imaging, there was a higher risk in 
having a non-diagnostic study. They concluded that in men over 60, abstinence from ejaculation 
starting 3 days before mpMRI resulted in larger seminal vesicle volumes and decreased rates of 
non-diagnostic studies [72].

The study and review of seminal vesicle invasion in the clinical setting is highly important, 
but does not come without challenges. SVI is usually reported as a smaller component in a 
broader study, rather than the primary focus of studies. Studies that do focus or report on SVI 
typically have low numbers of enrolled patients when compared to the relatively large numbers 
of other prostate cancer studies. There also exist wide ranges of reported NPV (50%–90%), PPV 
(74%–98.3%), sensitivity (33%–97%), and specificity (92.3%–98%) in the detection of SVI with 
MRI [66,69,70,73,74].

There are several equipment, physician, and patient components that offer sources of variability 
that may complicate reporting on SVI consistently. Although consensus was reached that mpMRI is 
the best imaging modality for the seminal vesicles in 2011, there was a wide variety of techniques 



361MRI Imaging of Seminal Vesicle Invasion (SVI) in Prostate Adenocarcinoma

being used before then [41]. There are differences in magnetic field strength (1.5T vs. 3T) between 
the machines used, as well. Experience of the radiologist also plays a role as more experienced 
radiologists can increase the accuracy of reporting on conditions inside the seminal vesicles [67]. 
Components of the MRI (endorectal and surface coils) also offer variability in the detection of SVI. 
Although endorectal coils are considered more accurate, surface coils are used as an alternative in 
centers for a variety of reasons [68–70].

In addition, patient factors play a role in the rate of non-diagnostic evaluations of the seminal 
vesicles. The amount of fluid in the seminal vesicles, which is impacted by recent ejaculation, leads 
to a smaller volume of fluid in the seminal vesicles and higher rates of non-diagnostic examinations 
[72]. Overall, the technology and practices for evaluating conditions within the seminal vesicles are 
continuing to improve, but greater standardization of methodologies is needed before larger conclu-
sions can be drawn.

DIFFERENTIAL DIAGNOSIS FOR ABNORMAL SEMINAL VESICLE MRI FINDINGS

The loss of seminal vesicle architecture or the presence of a hypointense lesion are suggestive of 
SVI, but can be found in association with other benign conditions (Table 19.7).

Hemorrhage into the seminal vesicles can create a localized hypointensity on T2-weighted MRI 
that resembles a malignant invasion [75]. Specifically, low signal intensity on T2 imaging likely rep-
resents fresh bleeding, whereas high signal intensity is more strongly correlated with old bleeding 
[76]. It is common to see hemorrhage in patients being worked up for PCa due to the local trauma 
caused by prostate needle biopsy. Most urologists defer post-biopsy MRI for at least 4 weeks to 
reduce the incidence of hemorrhage, but prostate hemorrhage can persist up to 4 months [75,77]. 
T1-weighted MR images will reveal this lesion as hemorrhage as opposed to malignancy due to the 
marked high-signal intensity from methemoglobin that is not normally seen in the seminal vesicles 
or SVI (Figure 19.2) [65,75,78].

Amyloidosis of the seminal vesicles can also resemble SVI and is relatively common in elderly 
men. Amyloidosis in the seminal vesicles is generally asymptomatic, but on mpMRI shows nar-
rowed and thickened seminal vesicles lumens, and hypointensity on T2 MRI—features shared by 
SVI [79]. However, seminal vesicle amyloidosis will not show the restricted diffusion on DWI that 
is characteristic of prostate malignancy [75].

Although rare, seminal vesicle calculi can also mimic SVI with focal hypointensity [75]. They 
are usually symptomatic causing hematospermia and dysorgasmia [80]. Unlike SVI, seminal vesicle 
calculi display a low signal on DCE-MRI (Figure 19.3).

Additional pathologies that may resemble SVI include seminal vasculitis and seminal vesicle 
atrophy [81]. Fortunately, the multiple modalities of mpMRI and the consistent features of SVI help 
distinguish evidence of T3b PCa from less significant pathologies.

TABLE 19.7
Key Take Away Points of PCa Recurrence in Seminal Vesicles

• mpMRI is a very reliable imaging tool to detect local PCa recurrence in patients with BCR after primary treatment
• mpMRI after RP is indicated to diagnose small local cancer recurrence
• mpMRI can be used to more effectively target the recurrent PCa nodule with salvage RT, while minimizing 

complications
• Preoperative PSA and Gleason score are likely to be predictive of progression in patients with isolated SVI while 

positive surgical margins and capsular invasion may not necessarily be associated with progression in these patients
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MRI-TRUS FUSION-GUIDED BIOPSY OF THE SEMINAL VESICLES

Although mpMRI has vastly improved the visualization of seminal vesicle lesions, the addition of 
tissue sampling provides more substantial evidence of SVI. TRUS biopsy of the seminal vesicles is 
severely limited by the low sensitivity of detecting suspicious seminal vesicle lesions on ultrasound. 
Instead, an MRI-based biopsy approach makes use of improved detection and characterization of 
intra- and extraprostatic lesions. This advantage has spurred the development of targeted biopsies.

In brief, an mpMRI-TRUS fusion-guided biopsy combines the high spatial resolution provided 
by mpMRI with the real-time imaging of the ultrasound during biopsy. While some practitioners 
are able to visualize the mpMR and ultrasound images separately to guide biopsy target location 
(termed “cognitive fusion”), this technique is heavily influenced by practitioner experience and 
does not make use of the full breadth of information provided by mpMRI [82]. Another approach, 
in-gantry MRI for transperineal prostate biopsies, was developed to utilize real-time MRI find-
ings, but it is a resource- and time-intensive procedure. Instead, multiple software-device platforms 
digitally combine the mpMRI with the real-time ultrasound (termed “fusion biopsy”) to aid in 
overcoming potential learning curves and more precisely sample lesions [48,82]. Targeted biopsies 
more accurately sample clinically significant PCa lesions and decrease the risk of cancer upgrading 
on final pathology to better inform therapeutic approaches [46,83,84].

As discussed earlier, systematic biopsies rely on a sextant strategy that may undersample lesions 
in the anterior, apical, or basal prostate in addition to the seminal vesicles. Fusion biopsies allow for 
histologic confirmation of those patients who require investigation of the seminal vesicles.

A study by Raskolnikov et al. [63] set forth a model for seminal vesical biopsy via a fusion plat-
form. Between 2007 and 2013, 25 out of 822 scanned patients were found to have lesions suspicious 
for SVI based on mpMRI. In this protocol, mpMRI of the prostate was performed on a 3 T MRI 
machine with use of an endorectal coil. Sequences included tri-planar T2-weighted, DCE, DWI, 
and MRS. Patients then underwent a TRUS-guided systematic biopsy in addition to targeted biop-
sies of each lesion visible on MRI in the same biopsy session. When clinically indicated, patients 
underwent robotic-assisted radical prostatectomy and specimens were analyzed by a single geni-
tourinary pathologist. Thirty-one lesions suspicious for SVI were identified within the 25 selected 
patients; 20/31 (65%) lesions had targeted biopsy findings positive for SVI, 6 sampled benign tis-
sue, and 5 contained only fibroadipose tissue. Although only four patients underwent both targeted 
seminal vesical biopsy and radical prostatectomy, all four of these patients had agreement of SVI on 
biopsy and final pathology [63].

In a case study presented by Somwaru et al. [85], fusion biopsy was able to successfully detect 
a focus of malignant ectopic prostate tissue in one seminal vesicle. Repeat 12-core sextant biop-
sies yielded benign prostatic tissue (including at the prostatic base), but with use of mpMRI-TRUS 
fusion-guided biopsy, a suspicious lesion was visualized in the left seminal vesicle and sampled to 
confirm Gleason 7 (4 + 3) primary PCa arising in the seminal vesicle without glandular or trans-
capsular involvement. This was staged as T3b disease and the patient was treated with external 
beam radiation plus androgen deprivation therapy [85]. The repeated benign systematic biopsies 
may have merely indicated follow-up PSA testing without intervention.

By extending the established principles of mpMRI-TRUS fusion-guided prostate biopsy to 
include lesions of the seminal vesicles, SVI can potentially be detected with greater accuracy and 
confidence than with systematic biopsies or mpMRI alone.

PREDICTIVE NOMOGRAMS FOR SVI RISK ESTIMATION

Predictive nomograms have been developed in order to assign risk of SVI (and other pathologic 
features) to a patient through consideration of various sources of information including demo-
graphic, clinical, and pathologic data. Prior to adoption of mpMRI in PCa staging, clinicians 
sought to bridge the gap in predicting extraprostatic extension and associated clinical outcomes 
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with nomograms. Widely used nomograms for prediction of SVI prior to radical prostatectomy 
include the 2007 update of Partin tables, the European Society for Urologic Oncology (ESUO), the 
Gallina nomogram, the Kattan staging nomogram, and the Cancer of the Prostate Risk Assessment 
(CAPRA) score [74,86–89]. Together these models utilize preoperative PSA, age, clinical staging, 
and systematic biopsy data such as Gleason score and percentage of positive cores. In comparing the 
relative value in predicting SVI between the 2007 Partin, ESUO, and Gallina nomograms, the AUC 
for each was found to be 0.805, 0.792, and 0.692, respectively. All of the nomograms demonstrated 
high sensitivities, but low specificities and extremely low positive predictive values [90].

Of note, none of the three nomograms above utilize imaging data as part of their predictive mod-
eling. Wang et al. [89] studied the potential effect of imaging on predictive capability by including 
MRI with the Kattan staging nomogram. Using a 1.5T endorectal MRI, the authors established that 
the AUC for MRI plus Kattan nomogram (0.87) was significantly improved over either the Kattan 
nomogram (0.80) or MRI (0.76) alone [89].

In a separate study, Morlacco et al. [74] evaluated the predictive effect of adding preoperative 
1.5T endorectal MRI to the Partin and CAPRA nomograms. They identified that the AUC for 
predicting SVI with was markedly improved when using the Partin table with MRI (0.82 vs. 0.75) 
and the CAPRA score with MRI (0.83 vs. 0.75) versus the nomograms alone [74]. Based on these 
findings, there is clear opportunity for improvement in predictive capabilities of nomograms by 
formally incorporating MRI information and even seminal vesicle targeted biopsy data.

USE OF MRI FOR DETECTION OF PCa RECURRENCE IN THE SEMINAL VESICLES

The role of mpMRI is not only limited to detection, localization, and staging of prostate cancer but 
also extends to cases of active surveillance, patients refusing biopsy, targeted biopsy, and diagnosis 
of recurrence after treatment [91]. The definition of biochemical failure (BCR) differs between radi-
cal prostatectomy (RP), defined as two consecutive PSA values > 0.2 ng/mL, and radiation therapy 
(RT), defined as a PSA increase >2 ng/mL higher than the initial PSA nadir value [92,93]. However, 
it is important to note that BCR detected through a persistently elevated PSA does not necessarily 
imply local recurrence but can also be due to distant metastases or residual glandular healthy tis-
sue in the post-prostatectomy bed. Therefore, an imaging procedure is often carried out in patients 
with BCR after primary treatment to distinguish between local PCa recurrence and distant spread 
of disease [94]. Compared to other imaging modalities such as PET/CT, which has a poor detection 
rate of small lesions, mpMRI possesses superior contrast and spatial resolution and is emerging as 
a promising modality for evaluation of recurrent PCa [95].

Salvage RT is generally performed when post-RP local recurrence is recognized. The accurate 
identification of local recurrence with mpMRI represents an emerging modality for evaluation of 
the prostatic fossa after RP, potentially improving the effectiveness of salvage RT by allowing for a 
targeted increase in radiation dose in areas of known disease recurrence [96]. Local recurrence in the 
seminal vesicles appears similar to SVI on mpMRI (Table 19.4). This is apparent with cases of failed 
focal therapy or brachytherapy for which the prostate is not excised (Figure 19.4). Following RP with 
removal of the prostate and seminal vesicles, however, a recurrent PCa can be recognized as an area 
of slightly increased T2 signal intensity relative to adjacent musculature in a soft tissue mass in the 
surgical bed, with rapid wash-in and washout, as well as restricted diffusion on DCE [97].

Common sites of local recurrence are retrovesical, at the vesicourethral anastomosis around the 
urinary bladder or membranous urethra, at the resection site of the vas deferens and at the anterior 
or lateral surgical margins of the prostatectomy bed. After RP, fibrosis and atrophic remnants of 
seminal vesicles are observed in approximately 20% of patients and must be distinguished from 
local relapse. Fibrotic remnants of seminal vesicles demonstrate very low signal intensity. In cases 
where a seminal vesicle shows an area of focally increased T2 signal intensity, it may be mimicking 
a local recurrence. However, retained seminal vesicles would not demonstrate diffusion restriction 
or rapid contrast wash-in and washout on DCE as a recurrent PCa would [98].
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Local salvage therapy should be undertaken early in patients with local recurrence after RT, 
as the median time to development of distant metastases is approximately 3 years [99]. Salvage 
therapies in patients with local recurrence after RT include additional irradiation of the prostate, 
RP, cryosurgery, transrectal high-intensity focused ultrasound (HIFU), and laser ablation [100]. In 
order to perform focal salvage therapies more effectively, there is an increased need for imaging 
techniques to be able to identify and localize recurrent PCa.

Currently, mpMRI is considered to be the gold standard imaging technique in localizing recur-
rent PCa in patients with BCR after RT. Compared to recurrent PCa after RP, which shows a lightly 
high signal intensity in T2-weighted images, recurrent PCa after radiotherapy shows a low signal 
intensity on T2 MRI. However, the findings on DWI and DCE are the same for both recurrent PCa 
after RT and recurrent PCa after RP with restricted diffusion on DWI and rapid wash-in and wash-
out on DCE.

In addition to the finding of decreased signal intensity on T2-weighted images, the entire prostate 
and the seminal vesicles are decreased in size after RT and the peripheral, central, and transition 
zones appear less distinct from each other [98,101]. RT induces glandular atrophy and fibrosis that 
may result in changes in PCa such as decreased size, reduced capsular bulging, capsular irregular-
ity, or decreased extracapsular extension as well as changes in the appearance of adjacent anatomic 
structures including increased bladder or rectal wall thickness, thickening of the perirectal fascia, 
and increased signal intensity of the pelvic side wall musculature. Because both the recurrent tumor 
and the normal surrounding parenchyma appear hypointense on T2 MRI, T2 MRI alone is limited 
in its ability to detect recurrent PCa after RT [102]. It is hypothesized that detecting PCa recurrence 
after RT may still be possible on T2 MRI alone if the PCa recurrence produces an additional focal 
reduction in signal intensity [103,104]. However, it may be easier to identify a recurrent disease 
using DCE than with T2 MRI because of the different patterns between recurrence and post-radi-
ation fibrosis on DCE. Recurrent tissue presents as a hypervascular early enhancing homogenous 
nodule after RT, whereas the surrounding prostatic tissue has homogenous, slow and low enhance-
ment [94]. Due to an increase in perfusion and blood volume as a result of inflammation after RT, 
DCE should be performed at least 3 months after RT.

Using TRUS-guided biopsy as the standard of reference, Roy et al. [105] evaluated the sensitiv-
ity in the detection of post-RT local PCa recurrence of the three types of functional MRI. Thirty-
two patients with local recurrence after external beam radiation therapy (EBRT) were enrolled in 
this study. The sensitivity was highest for T2+DWI+DCE (100%) followed by, in decreasing order: 
T2+DWI, DCE alone, and DWI alone (94%); T2+DCE (91%); T2+DWI+DCE+MRS (76%); T2WI 
and MRSI alone (74%); and lastly T2+MRSI (44%).

RISK FACTORS FOR PROGRESSION AFTER RP WITH SVI

There have been several studies attempting to evaluate the risk factors for progression after RP in 
patients with SVI. Epstein et al. [106] demonstrated that in a group of 45 patients with SVI, Gleason 
score of the RP specimen, capsular invasion, as well as surgical margin status were independent risk 
factors for progression. However, when the analysis was restricted to tumors with seminal vesicle 
invasion without lymph node involvement, the surgical margin and the Gleason score were not sta-
tistically significant predictors. Tefilli et al. [29] demonstrated in a study of 93 patients with isolated 
SVI that positive surgical margins, Gleason score greater than 7, and preoperative PSA level greater 
than 10 ng/mL were independent predictive factors for progression. In another study of 137 patients 
with isolated seminal vesicle invasion without lymph node involvement, Salomon et al. [107] found 
that preoperative PSA and Gleason score of the RP specimen were independent factors for progres-
sion. Neither capsular invasion nor positive surgical margins predicted progression.

In addition to Salomon et al. [107] and Epstein et al. [106], Debras et al. [108], Ohori et al. [30], 
and Sofer et al. [109] also found that positive surgical margins are not an independent risk factor 
for progression in patients with isolated SVI without lymph node involvement. In their study of 
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52 patients, Debras et al. [108] distinguished between proximal invasion of the seminal vesicles 
from invasion of the free part of the seminal vesicle. On multivariate analysis, they found that inva-
sion of the free, distal part of the seminal vesicle as well as the Gleason score of the RP specimen 
were the only independent factors predictive of progression. According to this model, the tumor 
volume, extracapsular extension, and surgical margin status were not significant predictive factors 
of progression [108].

If positive surgical margins are not predictive of progression in patients with isolated SVI after 
RP, it may be because SVI is per se a poor prognostic factor [107]. Despite SVI being associated 
with a poor prognosis, it is not equivalent to having metastatic disease; for example, 34% of patients 
in the study by Salomon et al. [107] were free of biochemical progression at 5 years, 65% of the 
patients with SVI and negative surgical margins were progression free 5 years after RP in the study 
by Tefilli et al. [29], and 53% of the patients were progression free after approximately 4 years in the 
study by Sofer et al. [109].

CONCLUSIONS

As the urologic oncology community moves further into an era of MR imaging for PCa assessment, 
the ability of MRI to stage PCa for extraprostatic extension will have great utility. Based on the success 
of mpMRI and fusion-guided targeted biopsy to improve diagnosis of PCa, MRI-based detection of 
extraprostatic pathologic features shows significant potential. At present, formalization of this clinical 
practice is still in a relatively nascent stage, while MRI technology is advancing at a rapid pace.

Current literature presents a wide range of results regarding the effectiveness of MRI for SVI 
detection, which makes determination of the best imaging parameters challenging. Previous studies 
have established that mpMRI detection of SVI is feasible and displays many advantages over tradi-
tional imaging modalities. One example of this is the potential utilization of fusion-guided targeted 
biopsies to obtain seminal vesicle samples for presurgical histopathologic confirmation. However, 
while the management implications of incorrectly staging PCa are apparent and significant, addi-
tional studies capturing a greater number of patients are needed to better understand how MRI will 
truly impact clinical decisions and outcomes.

Greater adoption of MRI is consistently hampered by the resource and financial demands of this 
technology. PCa is a common malignancy that is being treated in various healthcare settings, not 
solely in large academic medical centers, so access to MRI is not consistent. As more clinical stud-
ies measure the accuracy of SVI detection via MRI, future work should aim to identify the financial 
and quality-of-life implications of this PCa staging approach. Given the wide-ranging impact of 
initial clinical decisions, which may be based on incorrect staging, and the dramatic consequences 
of extraprostatic extension on long-term prognosis, there is great potential for MRI staging to reduce 
these painful (and potentially avoidable) outcomes.

As is true with other urologic malignancies, MRI for SVI detection shows promise. With con-
tinued development, MRI may be able to diagnose extraprostatic extension with the same degree of 
sophistication as is seen for diagnosis of intraprostatic lesions.
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