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Introduction

Stephan Ulmer

1

Within the past two decades, functional magnetic reso-
nance imaging (fMRI) has developed tremendously, 
from initial descriptions of changes in blood oxygen-
ation that can be mapped with MRI (Ogawa) using 
T2*-weighted images to very basic investigations per-
forming studies of the visual and motor cortex. From 
there, it has further evolved into a very powerful research 
tool and has also become an imaging modality of daily 
clinical routine, especially in presurgical mapping. 
This book focuses on these clinical applications start-
ing from the basics and the backgrounds leading to 
current concepts and their application in a clinical 
environment.

Understanding brain function and localizing func-
tional areas has ever since been the goal in neuroscience, 
and fMRI is a very powerful tool to approach this aim. 
Studies on healthy volunteers usually have a different 
approach and often a very complex study design, while 
clinical applications face other problems most com-
monly related to the limited compliance of the patients. 
Therefore, the application of fMRI in a clinical setting is 
a different challenge refl ected in the study designs as 
well as in the analysis of algorithms of the data.

Besides the classical defi nition of functional areas 
that might have been shifted through a lesion or could 
be present in a distorted anatomy prior to  neurosurgical 
resection, further clinical applications are  mapping of 
recovery from stroke or trauma, cortical reorganiza-
tion, if these areas were affected, and changes during 
the development of the brain or during the course of a 
disease. For psychiatric disorders fMRI offers new 
horizons in understanding the disease.

Coming back to the issue of reduced compliance of 
patients, the results obtained with our tool require the 
knowledge of basic neuroanatomy, an understanding of 
the physiology that lies behind it, especially the possible 
pathophysiology of the disease that might affect the 
results to start with. The results in volunteers are manda-
tory to understand the results in patients, and they can 
only be as good as the design. There is a need to monitor 
the patient in the scanner to guarantee that the results 
obtained will refl ect activation caused by the stimula-
tion, or to understand that reduced, or even missing acti-
vation, could have hampered the results, and to analyse 
how they were generated. Obviously, we have to realize 
that while the patient is still in the scanner, a repetition 
of the measurement can be enabled or an unnecessary 
scan can be avoided if the patient is not capable of per-
forming the task. Performing motor tasks seems pretty 
straight forward, because the patient can be seen in the 
scanner. Cognitive and language tasks are more chal-
lenging. Also, a vascular stenosis or the steal effects of a 
brain tumor or an arteriovenous malformation (AVM) 
might corrupt the results. There are some sources of dis-
turbance of the results that might depict no activation in 
a patient, e.g., in language tasks that usually depict reli-
able results in volunteers. It is mandatory to have a per-
son with expertise in training and testing patients on the 
cognitive tasks involved, such as a neuropsychologist or 
a cognitive neurologist.

Task performance and development of a paradigm 
usually follows a graduated scheme. Initially, experi-
ments are performed in healthy volunteers. This, how-
ever, has the disadvantage that our volunteers are most 
likely healthy students or staff who are used to the scan-
ner environment and can therefore, focus unrestrictedly 
on the task while patients could be scared or too ner-
vous with regard to their disease and about what might 
happen in the near future (like a brain tumor resection). 

S. Ulmer
Institute of Neuroradiology, Neurocenter, University Hospital of 
Schleswig-Holstein, Schittenhelmstr. 10, 24105 Kiel, Germany
e-mail: ulmer@email.com



4 S. Ulmer

The same paradigm has to be used in less affected 
patients fi rst, to confi rm the feasibility in this setting 
that might become more specifi c after some experience. 
Test-retest reliability fi nally enables clinical application 
to address specifi c questions. Passive or “covert” tasks 
might be helpful; however, at least in cognitive studies 
performance cannot be measured. Semantic and cogni-
tive processes continue during passive conditions, includ-
ing rest and other passive baseline conditions. Regions 
involved will therefore be eliminated in the analysis 
when such conditions are used as a baseline. 

Mapping children represents a twofold challenge. 
Normative data is not available, and compliance is lim-
ited. In early childhood or in cognitively impaired chil-
dren, or just simply during brain development, cognitive 
tasks need to be modifi ed individually, and that again 
causes problems in analyzing the data and interpreting 
the results.

Analysing data is a science on its own. Fortunately, 
there is a variety of software solutions available free of 
charge for the most part. Manufacturers also offer 
analysing software. Task-synchronous or singular vol-
untary head motion during the experiment might cor-
rupt the data tremendously, to an extent that excludes a 
reliable interpretation of the data. Better than any avail-
able motion correction is avoidance of head movement 
altogether. As already stated, absence of an expected 
activation represents a real challenge and raises the 
question of the reliability of the method per se. 
Suppression of activation or task-related signal inten-
sity decrease has also not been fully understood. 
Missing activation in a language task could mislead the 
neurosurgeon to resect a low-grade lesion close to the 
inferior frontal lobule and still cause speech disturbance 
or memory loss after resection of a lesion close to the 
mesial temporal lobe, and therefore – depending on 
the close cooperation between the clinicians – healthy 
skepticism and combination with other  modalities like 

direct cortical stimulation might be advisory. Hemi-
spheric (language) dominance is only the tip of the ice-
berg and we have to ask ourselves again how sensitive 
our method and paradigm is to depict minor defi cits. 
The same is true for clinical bedside testing and thus 
questions “silent” regions in the brain.

Sequence selection is important in terms of what 
we want to see and how to achieve it. Prior to the intro-
duction of echo planar imaging, temporal resolution 
was restricted. Spatial resolution requirements are 
much more important in individual cases than in a 
healthy control group, especially in the presurgical 
defi nition of the so called “eloquent areas.”

For clinical applications, there is a variety of ques-
tions to be answered. To address specifi c questions, 
complex study designs are necessary. Integration of 
complex designs into a clinical setting can be diffi cult. 
Analysing data is very time consuming; therefore, 
push-button solutions to analyse the data would be 
welcomed as time has become so short in our daily 
routine. Higher fi eld strengths might enable us to 
depict more signals, but possibly more noise as well in 
the data. From a clinician’s point of view, reliability of 
individual results is desired. This aspect will be dis-
cussed, and a comparison to other modalities of map-
ping brain functions will also be covered in detail.

It is interesting to see how fMRI became a clinical 
application over recent years of which the neurosur-
geons were very suspicious in the initial phase of fi rst 
clinical experiments in presurgical mapping. Its accep-
tance can be recognized based on increased numbers 
of studies performed on demand.

With this book we try to answer some questions and 
give an overview on how fMRI can be applied for clini-
cal purposes. It is a great honor for me to have this board 
of experts in the fi eld involved in this project. I hope that 
you as a reader will enjoy this book as much as I have, 
and that it will help you in your own daily work.
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Neuroanatomy and Cortical Landmarks

Stephan Ulmer

2

2.1  Neuroanatomy and Cortical 
Landmarks of Functional Areas

Prior to any type of functional mapping, a profound 
knowledge of neuroanatomy is mandatory. Focusing on 
the clinical applications of fMRI, this chapter will pres-
ent methods to identify characteristic anatomical land-
marks, and describe the course and shape of some gyri 
and sulci and how they can be recognized on MR imag-
ing. As anatomy will be presented in neuro-functional 
systems, some redundancy is desired in order to course 
over cortical landmarks. If fMRI is not performed during 
clinical routine imaging, usually a 3D data set is acquired 
to overlay the results. Nowadays, fMRI is performed 
using echo planar imaging (EPI) with anisotropic distor-
tion, whereas 3D T1-weighted data sets, such as MPRage 
(magnetization prepared rapid acquisition gradient echo) 
or SPGR (spoiled gradient recalled acquisition in steady 
state) sequences, are usually isotropic. Normalization of 
the fMRI data may reduce this systemic error to some 
extend that is more pronounced at the very frontal aspect 
of the frontal lobe and the very posterior aspect of the 
occipital lobe. However, for individual data, normaliza-
tion and overlaying fMRI results on anatomy remains 
crucial. No two brains, not even the two hemispheres 
within one subject, are identical at a macroscopic level, 
and anatomical templates represent only a compromise 
(Devlin and Poldrack 2007). Usage of templates like the 
Talairach space (based on the anatomy of one brain) or 
the MNI template (based on 305 brains) can cause 

registration error as well as additional variation, and 
reduce accuracy; indeed, it does not warrant the shammed 
anatomical precision in the individual case.

2.1.1 Sensorimotor Cortex

2.1.1.1 Transverse Sections

There are various methods to identify the precentral 
gyrus (preCG; [3]), the central sulcus (CS) and the post-
central gyrus (postCG; [4]). From a craniocaudal point-
of-view, the sensorimotor strip follows (from the apex 
to the Sylvian fi ssure [35b]) a medial–posterior–supe-
rior to lateral–anterior–inferior course. The precentral 
gyrus [3] fuses with the superior frontal gyrus (SFG; 
[1]) at the very upper convexity (Ebeling et al. 1986; 
Kido et al. 1980; Naidich et al. 1995; Ono et al. 1990). 
This can be well depicted on transverse sections (see 
Figs. 2.1 and 2.2). The precentral gyrus [3] is the most 
posterior part of the frontal lobe that extends  inferiorly 
to the Sylvian fi ssure [35b]. The precentral gyrus [3] is 
thicker than the postcentral gyrus [4] in anterior–poste-
rior (ap) dimension (Naidich et al. 1995) as is the grey 
matter (Meyer et al. 1996). At the apex, the pre- [3] and 
 postcentral gyri [4] form the paracentral lobule [b] as 
they fuse. Making a little detour to a lateral view (see 
Fig. 2.3), the cingulate sulcus [5] ascends at the medial 
interhemispheric surface dorsal to the paracentral lob-
ule (pars marginalis) [b], and thus separates it from the 
precuneus [6]. This intersection can be appreciated on 
axial sections as the “bracket”-sign (see Fig. 2.2; 
Naidich and Brightbill 1996) that borders the postcen-
tral gyrus [4]. Somatotopographically, the apex harbours 
the cortical representation the lower extremity (Penfi eld 
and Rasmussen 1950). Following its course along the 

S. Ulmer
Institute of Neuroradiology, Neurocenter, University Hospital 
of Schleswig-Holstein, Schittenhelmstr. 10, 24105 Kiel, 
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Fig. 2.1 Overview of the used sections. The numbers are explained within the text as well as in the other fi gure legends in detail
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superfi cial convexity (from medial–posterior–superior 
to lateral–anterior–inferior), the cortical surface of the 
precentral gyrus increases at its posterior margin, build-
ing the omega-shaped motor hand knob ([a]; Yousry 
et al. 1995, 1997). Within this primary motor cortex (M1) 
of the hand, there is an additional somatotopic order of 
the individual digits (with interindividual overlap and 
variation). From medial to lateral, the hand is organized 
beginning with digit 5 (D5), to the thumb representation 
(D1) being the most lateral (Dechent and Frahm 2003). 
The motor hand knob [a] is another typical landmark of 
the precentral gyrus [3]; however, as the CS and the 
postcentral gyrus [4] follow this course, there is also an 
omega-shaped structure in the postcentral gyrus (har-
boring the somatosensory hand area). However, as 
described above, the ap-dimension of the postcentral 
gyrus [4] is smaller compared to the precentral gyrus 
[3], thus often enabling a differentiation. Somatotopo-
graphically, the cortical somatosensory representation 
follows the distribution of the precentral gyrus [3] 
(Penfi eld and Rasmussen 1950; Overduin and Servos 
2004). Lateral to the SFG [1], the medial frontal gyrus 
[2] zigzags posteriorly and points towards the motor 
hand knob [a]. Beginning at this “junction” and lateral–
inferior to this landmark, the ap-diameter of the PreCG 
[3] decreases, but it increases again along the lower con-
vexity. This has already been recognized by Eberstaller 
(1890). Using modern imaging techniques, the diameter 
had been measured and the previous fi ndings validated 
that the biggest diameter of the preCG [3] is found at 
the lower portion of the gyrus adjacent to the Sylvian 
fi ssure [35b] (Ono et al. 1990). This is the primary 
motor cortex (M1) of lip representation and tongue 

movements. In the axial sections, there is neither a typi-
cal shape or landmark of the gyrus, nor does measuring 
from the motor hand area or the ac (anterior commis-
sure) help us to describe the location precisely. This can 
be solved on sagittal sections (see below).

Previously, the anatomy of the frontal lobe has been 
described partially. As the course of the medial frontal 
gyrus [2] can be followed nicely on axial sections, the 
lateral inferior aspect of the frontal lobe represents 
the inferior frontal gyrus. Anterior to the preCG [3] the 
prefrontal motor areas can be found. The inferior frontal 
gyrus borders and overhangs the insula [19] anteriorly. 
This part is the frontal operculum [9] harbouring the 
motor speech area of Broca (see below sagittal sections).

The lateral ventricles with its anterior and posterior 
horn can easily be depicted on axial sections due to its 
typical form and typical signal caused by cortico- spinal 
fl uid (CSF, see Figs. 2.1, 2.5 and 2.6). Their shape is 
formed through, the head of the caudate nucleus [10] 
lateral to the anterior horn, the thalamus [11] lateral at 
its waist (III. ventricle) and posteriorly by the fi bers of 
the anterior–posteriorly running optic radiation [21] 
and left–right running fi bers of the splenium [20] (see 
Figs. 2.5 and 2.6). Lateral to these structures, descend-
ing corticospinal fi bers pass the internal capsule [16] 
and follow a certain somatotopic organization. The 
internal capsule is framed medial by the head of the 
caudate nucleus [10], the third ventricle and the thala-
mus [11] (at the posterior aspect of the third ventricle) 
and lateral by the globus pallidum [17]. From medial to 
lateral towards the insula [19] the globus pallidus, 
putamen and claustrum within the lentiform nucleus 
[17] can be differentiated. In the anterior limb and the 

Fig. 2.2 Axial T2-weighted 
TSE MR images. 1 superior 
frontal gyrus; 2 medial 
frontal gyrus; 3 precentral 
gyrus; 4 postcentral gyrus; 
5 “pars bracket,” cingulate 
sulcus; 6 precuneus, parietal 
lobe; 7 intraparietal sulcus; 
8 interhemispheric fi ssure; 
a hand knob; b paracentral 
lobule
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genu of the internal capsule, [16] corticospinal fi bers 
from the tongue, lip and face descend, whereas, in the 
posterior limb, fi bers from the upper extremity, body 
and fi nally lower extremity are found.

2.1.1.2 Sagittal Sections

Previously sagittal sections have been described at the 
interhemispheric surface (see Fig. 2.3). The corpus cal-
losum [20, 22, 23] represents the biggest connection 
between the two hemispheres. The frontal aspect is the 
genu [22], the medial part is the the body [23] and the 
most rostral part is the splenium [20]. The corpus callo-
sum encases the lateral ventricles. At the base the ante-
rior commissure (ac; [24]) can be identifi ed as a roundish 
structure. Sometimes, the posterior commissure (pc) can 
also be defi ned, which represents a bundle of white fi bers 
crossing the midline, at the dorsal aspect of the upper 
end of the cerebral aqueduct. Previously slice orientation 
of most fMRI studies had been performed according to 
this ac-pc line in order to have a reference system.

From the base to the apex, the corpus callosum is 
abutted by the callosal sulcus and the cingulate gyrus. 
The gyrus abutting the cingulate sulcus [5] is the medial 
part of the SFG [1]. In the region (at the medial cortical 
surface) framed by vertical lines perpendic ular to the ac 
(Vac) or pc (Vpc; see Fig. 2.3) the sup plementary motor 
area (SMA) is harboured in the cigulate gyrus and 

superior frontal gyrus. As described above, the cingulate 
sulcus [5] ascends at the medial  interhemispheric surface 
(see Fig. 2.3) dorsal to the paracentral lobule ([b];pars 
marginalis) and thus separates it from the precuneus [6]. 
This intersection can be nicely appreciated on axial sec-
tions as the “bracket”-sign (see Fig. 2.2; Naidich and 
Brightbill 1996) that borders the postcentral gyrus [4]. 
The postcentral gyrus is already a part of the parietal 
lobe. The precuneus [6] is located dorsal to the postcen-
tral sulcus. There is another important landmark that 
separates the parietal lobe from the occipital lobe (cuneus 
[26]), the parieto-occipital sulcus [25]. It can be easy 
recognized in sagittal views (see Fig. 2.3), as the dorsal 
sulcus that follows an inferior–anterior to superior– 
posterior course, posterior to the ascending part of the 
cingulate sulcus [5]. It is advisable to follow one of these 
structures moving laterally through the brain in sagittal 
sections. Once the Sylvian fi ssure [35b] can be identi-
fi ed, anatomical landmarks are again easy to defi ne.

In mid-sagittal sections (see Fig. 2.6) the motor 
hand knob [a] can again be recognized as a “hook” that 
rises out of the parenchyma and points dorsally. 
Further, laterally the sensorimotor cortex overhangs 
the insula [19]. The Sylvian fi ssue [35b] that separates 
the frontal lobe and the temporal lobe has an inferior–
anterior to superior–posterior course. At its anterior 
margin, it ascends into the anterior horizontal ramus 
[35c], and more dorsally into the anterior ascending 
ramus [35d] of the frontal operculum, [9] that also 
overhangs the anterior aspect of the insula [19]. The 
anterior horizontal ramus [35c] separates the pars 
orbitalis [40] from the pars triangularis [39], whereas 
the anterior ascending ramus [35d] separates the pars 
triangularis [39] from the pars opercularis [9] of the 
frontal operculum of the inferior frontal gyrus and thus 
form a “M” (Naidich et al. 1995). The pars opercularis 
[9] of the frontal operculum of the inferior frontal lobe 
harbours  Broca’s area. At its posterior margin, the 
pars opercularis is delimited by the anterior subcentral 
sulcus. At the base of the sensorimotor strip the pre-
central [3] and postcentral gyrus [4] fuse (Eberstaller 
1890, Ono et al. 1990). This junction is delimited dor-
sally by the posterior subcentral sulcus. Movement of 
the lips or tongue induce an increase in BOLD signal 
at this portion (Fesl et al. 2003, own observations). The 
base of the sensorimotor area has, depending on ana-
tomical variations, a “K”- or “N”-shape that is built by 
the anterior subcentral sulcus and inferior precentral 
sulcus, the precentral gyrus, posterior subcentral 

Fig. 2.3  Sagittal FLAIR image at the midline. 1 superior fron-
tal gyrus; 5 “pars bracket,” cingulate sulcus; 6 precuneus, pari-
etal lobe; 23 body of the corpus callosum; 24 anterior 
commissure; 25 parieto-occipital sulcus; 27 calcarine fi ssure; b 
paracentral lobule; 28 cuneal point
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sulcus, postcentral gyrus and postcentral sulcus that 
again borders the angular gyrus [38] (Eberstaller 1890, 
Ono et al. 1990, own observations; see Fig. 2.6). The 
posterior part of the Sylvian fi ssure separates - follow-
ing its superior–posterior course - ascends into the 
posterior ascending ramus [35a] fl anked by the ante-
rior and posterior aspect of the supramarginal gyrus 
[37] that has a horseshoe appearance.

2.1.2 The Insula

The insula [19] is covered by the superior temporal 
gyrus [34], the frontal operculum [9] and the base of 
the sensorimotor strip. Its anatomy is best depicted in 
sagittal sections (see Fig. 2.6).

2.1.2.1 Sagittal Sections

The insula [19] is separated by the CS [36] that runs 
from the superior–posterior towards the inferior–ante-
rior located apex of the insula into an anterior lobule 
and a posterior lobule (see Fig. 2.6). The anterior lob-
ule consists of three gyri (anterior, medial and poste-
rior short insular gyri), the posterior lobule consists of 
two gyri, the anterior long insular gyrus and the poste-
rior long insular gyrus separated by the postcentral 
gyrus (Naidich et al. 2004).

From a neurofunctional point of view, the insula has 
various functional areas. The anterior lobule was found 
to cause word fi nding diffi culties during electrical stim-
ulation in epilepsy surgery (Ojemann and Whitaker 
1978a, b), and to be responsible for speech planning 
(Wise et al. 1999; Price 2000). Speech apraxia is induced 
through lesions in the left precentral gyrus of the insula 
(Dronkers 1996; Nagao et al. 1999) whereas the right 
anterior lobule becomes activated during vocal repeti-
tion of nonlyrical tunes (Riecker et al. 2000). Stimulation 
of the right insula increases sympathetic tone and stim-
ulation of the left insula increases parasympathetic tone 
(Oppenheimer 1993), possibly playing a role in cardiac 
mortality in left insular stroke. Finally visual-vestibular 
interactions have been found (Brandt et al. 1998) to 
name a few systems.

2.1.2.2 Transverse Sections

The insular cortex [19] is delimited medially by the 
globus pallidus, putamen and claustrum (lentiform 
nucleus [17]) and separated by a small border of white 
matter (extreme capsula [18]). The gyri can be differ-
entiated by counting each knob starting ventrally at the 
anterior peri-insular sulcus that abuts the pars opercu-
laris [9] of the frontal operculum of the inferior frontal 
gyrus (see Figs. 2.4 and 2.5). Five knobs can be defi ned 
(anterior, medial and posterior short insular gyrus; 
anterior and posterior long insular gyrus).

Fig. 2.4 Sagittal FLAIR images. 1 superior frontal gyrus; 3 pre-
central gyrus; 4 postcentral gyrus; 5 “pars bracket,” cingulate 
sulcus; 6 precuneus, parietal lobe; 7 intraparietal sulcus; 9 pars 
opercularis, inferior frontal lobe, frontal operculum; 19 insula 
(anterior, posterior short insular gyri, anterior and posterior long 

insular gyri); 33 medial frontal gyrus; 35a posterior ascending 
ramus of the sylvian fi ssure; 35b sylvian fi ssure; 35c anterior 
horizontal ramus of the sylvian fi ssure; 35d anterior ascending 
ramus of the sylvian fi ssure; 36 central sulcus of the insula; 37 
supramarginal gyrus; 38 angular gyrus; a hand knob
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2.1.3 Speech Associated Frontal Areas

2.1.3.1 Transverse Sections

In axial sections the insula [19] can be found easily 
(see Figs. 2.5 and 2.6). From medial (ventricles) to lat-
eral, the globus pallidus, putamen and claustrum, 
within the lentiform nucleus, [17] can be differentiated 
followed by the extreme capsula [18] and the cortex of 
the insula [19]. The sylvian fi ssure [35b] separates the 
insula [19] from the temporal lobe. As stated above, 
the insula – taking anatomic variations into account – 
has four to fi ve knobs (anterior, medial and posterior 
short insular gyrus divided, by the CS, from the ante-
rior and posterior long insular gyrus). The insula [19] 
is covered by the superior temporal gyrus [34], the 
frontal operculum [9] and the base of the sensorimotor 
strip. After identifying the anterior short gyrus of the 
anterior lobule of the insular cortex, on a transverse 
view, the anterior border between the insula and infe-
rior frontal lobe is the anterior peri-insular sulcus. It 
abuts the insula [19] on one hand and the pars opercu-
laris [9] of the frontal operculum of the inferior frontal 
gyrus on the other. The pars opercularis [9] has a trian-
gular shape in axial sections and covers the anterior 
part of the insula [19]. It can be followed into the ante-
rior cranial fossa where it abuts the gyrus orbitalis that 

runs parallel to the gyrus rectus. The convolution ante-
rior to the pars opercularis [9] on the lateral surface is 
the pars triangularis [39], separated by the anterior 
ascending ramus [35d] of the sylvian fi ssure.

2.1.3.2 Sagittal Sections

Beginning at the lateral border of the brain (in sagittal 
views, see Figs. 2.4 and 2.5) there is the sylvian fi ssure 
[35b] that runs anterior–inferior to posterior–superior. 
Previously, the posterior margins have been described 
(see above). The Sylvian fi ssure separates the temporal 
lobe from the frontal lobe. At its anterior margin, it 
ascends into the anterior horizontal ramus [35c] and 
more dorsally into the anterior ascending ramus [35d] 
of the frontal operculum [9] that also overhangs the 
anterior aspect of the insula [19]. The anterior horizon-
tal ramus [35c] separates the pars orbitalis [40] from 
the pars triangularis [39], whereas the anterior ascend-
ing ramus [35d] separates the pars triangularis [39] 
from the pars opercularis [9] of the frontal operculum 
of the inferior frontal gyrus that form an “M” (Naidich 
et al. 1995). The pars opercularis of the frontal opercu-
lum of the inferior frontal lobe harbours Broca’s area. 
At its posterior margin the pars opercularis is delim-
ited by the anterior subcentral sulcus.

Fig. 2.5 Axial T2-weighted TSE MR and sagittal FLAIR images. 
3 precentral gyrus; 4 postcentral gyrus; 7 intraparietal sulcus; 8 
interhemispheric fi ssure; 9 pars opercularis, inferior frontal lobe, 
frontal operculum; 10 Heschl’s gyrus; 11 Heschl’s sulcus; 12 pla-
num temporale; 13 superior temporal sulcus; 14 head of the cau-
date nucleus; 15 thalamus; 16 internal capsule; 17 globus pallidum, 
putamen, claustrum (lentiform nucleus); 18 extreme capsule; 19 

insula (anterior, posterior short insular gyri, anterior and posterior 
long insular gyri); 34 superior temporal gyrus; 35a posterior 
ascending ramus of the sylvian fi ssure; 37 supramarginal gyrus; 
38 angular gyrus; 39 pars triangularis, frontal operculum, inferior 
frontal gyrus; 40 pars orbitalis, frontal operculum, inferior frontal 
gyrus; 41 medial temporal gyrus
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2.1.4  Auditory Cortex and Speech 
Associated Temporo-Parietal Areas

2.1.4.1 Transverse Sections

From medial to lateral (see Figs. 2.5 and 2.6) towards 
the insula [19] the globus pallidus, putamen and claus-
trum within the lentiform nucleus [17] can be differen-
tiated. Between the lentiform nucleus [17] and the 
cortex of the insula [19] the extreme capsula [18] is 
depicted as a small rim of white matter. The sylvian 
fi ssure [35b] separates the insula [19] from the tempo-
ral lobe. This is an easy defi nable landmark on axial 
views. The insula – taking anatomic variations into 
account – has four to fi ve knobs (anterior, medial and 
posterior short insular gyrus divided by the CS [36] 
from the anterior and posterior long insular gyrus). 
Posterior to the convolution that represents the section 
of the posterior long insular gyrus, a gyrus in the supe-
rior temporal lobe can be identifi ed with a dorso-medial 
to anterior–lateral course, called the transverse tempo-
ral gyrus or Heschl’s gyrus [10]. This is the primary 
auditory cortex (Mukamel et al. 2005, Devlin et al. 
2007). Number and size may vary (Penhune et al. 
1996; Rademacher et al. 2001); however, this is another 
good landmark that is easy to defi ne. Heschl’s gyrus 

[10] might be interrupted by the sulcus intermedius of 
Beck. Two gyri on the right and only one on the left 
hemisphere can be found frequently (Shapleske et al. 
1999). Heschl’s sulcus [11], which borders Heschl’s 
gyrus [10] posteriorly is the anterior border of the pla-
num temporale [12]. Although direct cortical stimula-
tion intraoperatively may cause speech disturbances in 
this area (Sanai et al. 2008, Shapleske et al. 1999), the 
planum temporale [12] represents, more likely, the 
auditory association cortex. The planum temporale 
[12] extents on the superior surface of the temporal 
lobe and is delimited laterally by the superior temporal 
sulcus [13], posterior by the posterior ascending ramus 
and/or descending ramus of the sylvian fi ssure and 
medially in the depth of the sylvian fi ssure, which is 
less well defi ned (Shapleske et al. 1999). These bor-
ders are easier depicted in sagittal views; however, in 
transverse sections, remaining in the same plane in 
which Heschl’s gyrus [10] can be found, the superior 
temporal sulcus [13] is the next biggest sulcus poste-
rior to Heschl’s sulcus [11]. Heschl’s gyrus [10] bulges 
into the sylvian fi ssure [35b]. The sylvian fi ssure can 
therefore also be followed in ascending axial images. 
At the parieto-temporal junction, sulci such as the syl-
vian fi ssure or the superior temporal sulcus [13] ascend 
whereas the sulcus intermedius primus descends. This 

Fig. 2.6 Axial T2-weighted TSE MR and sagittal FLAIR 
images. 1 superior frontal gyrus; 3 precentral gyrus; 4 postcen-
tral gyrus; 5 “pars bracket,” cingulate sulcus; 6 precuneus, pari-
etal lobe; 7 intraparietal sulcus; 8 interhemispheric fi ssure; 9 
pars opercularis, inferior frontal lobe, frontal operculum; 10 
Heschl’s gyrus; 12 planum temporale; 14 head of the caudate 

nucleus; 15 thalamus; 16 internal capsule; 17 globus pallidum, 
putamen, claustrum (lentiform nucleus); 18 extreme capsule; 19 
insula (anterior, posterior short insular gyri, anterior and poste-
rior long insular gyri); 33 medial frontal gyrus; 34 superior tem-
poral gyrus; 35a posterior ascending ramus of the sylvian fi ssure; 
36 central sulcus of the insula
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hampers anatomical description in axial sections. 
Ascending in axial slice order, the superior temporal 
sulcus [13] diminishes. As Heschl’s gyrus [10] bulges 
into the sylvian fi ssure [35b], the sylvian fi ssure can be 
followed on its course as posterior ascending ramus 
[35a] up to the level of the cella media of the lateral 
ventricles (in bicommissural orientation), as a big 
intersection posterior to Heschl’s sulcus [11]. The pos-
terior ascending ramus [35a] of the sylvian fi ssure is 
imbedded in the supramarginal gyrus [37] which again 
is separated from the angular gyrus [38] by the sulcus 
intermedius primus. Descending in axial slice order, 
pre- and postcentral gyri can be identifi ed as described 
above. The next sulcus dorsal to the postcentral sulcus 
is the intraparietal sulcus [7] which can be followed 
from the medial apical surface, laterally and dorsally 
in the parietal lobe [6]. Laterally, it ends above the sul-
cus intermedius primus and abuts the angular gyrus 
[38]. Size of the planum temporale [12] varies depend-
ing on sex, handedness and hemispherical dominance 
(Shapleske et al. 1999). Activation in functional imag-
ing studies was found in verb generation tasks (Wise 
et al. 1991), listening to tones, words and tone 
sequences (Binder et al. 1996, 1997, 2000).

2.1.4.2 Sagittal Sections

According to its dorso-medial to anterior–lateral course 
(see Fig. 2.6), the transverse temporal gyrus or Heschl’s 
gyrus [10] abuts the base of the inferior sensorimotor 
strip (most likely the postcentral gyrus) at the lateral 
aspect and the posterior long gyrus of the insula [19] in 
more medially located sections. It is erected into the 
sylvian fi ssure [35b]. Heschl’s sulcus [11], which bor-
ders Heschl’s gyrus [10] posteriorly, is the anterior 
border of the planum temporale [12]. The planum tem-
porale [12] extends on the superior surface of the tem-
poral lobe and is delimited laterally by the superior 
temporal sulcus [13], posteriorly by the posterior 
ascending ramus and/or descending ramus of the syl-
vian fi ssure and medially in the depth of the sylvian 
fi ssure, which is less well defi ned (Shapleske et al. 
1999). The sylvian fi ssure can be followed from the 
anterior ascending [35d] and horizontal rami [35c] in 
the frontal operculum [9] of the inferior frontal gyrus, 
dorsally to the ascending [35a] and descending rami at 
the temporo-parietal junction. Medially it is fl anked by 
the insula [19], laterally by the superior temporal gyrus 

[34] and inferior parts of the pre- and postcentral gyrus. 
Parallel to the sylvian fi ssure [35b], the superior tem-
poral gyrus [34] also demonstrates an anterior–poste-
rior course. The posterior ascending ramus [35a] of the 
sylvian fi ssure is imbedded in the supramarginal gyrus 
[37] which has a horseshoe appearance. Posterior to the 
supramarginal gyrus [37], the superior–inferior running 
sulcus intermedius primus separates it from the angular 
gyrus [38]. The superior temporal sulcus [13] ascends 
at its posterior end and diminishes.

2.1.4.3 Coronal Sections

In coronal views, the sylvian fi ssure separating the 
temporal lobe from the insula and the frontal lobe can 
easily be seen. Originating from the temporal lobe, 
Heschl’s gyrus points towards the insula (not shown).

2.1.5 Visual Cortex

2.1.5.1 Sagittal Sections

At the medial surface of the occipital lobe, there is a 
sulcus that zigzags anterior–posteriorly called the cal-
carine sulcus [27], along which the visual cortex is 
located. The calcarine sulcus [27] separates the superior 
lip from the inferior lip of the visual cortex.
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Spatial Resolution of fMRI Techniques
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3

3.1 Introduction

Following its introduction over a decade ago, functional 
magnetic resonance imaging (fMRI) based on the blood 
oxygenation level dependent (BOLD) contrast (Ogawa 
et al. 1990) has become the tool of choice for visualiz-
ing neural activity in the human brain. The conventional 
BOLD approach has been extensively used for pin-
pointing functional foci of vision, motor, language and 
memory in normal and clinical patients. Intraoperative 
localization of functional foci will greatly improve sur-
gical planning for epilepsy and tumor dissection, and 
potentially, for deep brain stimulation. Therefore, it is 
critical to understand the spatial resolution of fMRI 
relative to the actual neural active site (see review arti-
cles, (Kim and Ogawa 2002; Kim and Ugurbil 2003) ).

In order to reliably determine the functional foci, high 
signal-to-noise ratio (SNR), which can be achieved using 
optimized imaging techniques, is critical. However, high 
SNR of fMRI techniques is not suffi cient for high- 
resolution functional mapping if the signals that are 
being imaged do not have a high specifi city to the local 
neural activity. Therefore, it is important to understand 
the signal source of BOLD fMRI and its fundamental 
limit of spatial resolution. Increased neural activity 
induces an increase in tissue metabolic demands. Thus, 
imaging the metabolic change (e.g., 2-fl uorodeoxyglu-
cose positron emission tomography) will yield high spa-
tial specifi city as metabolism will occur at the tissue 
at the site of the neuronal activity, and not in the vascu-
lature. Changes in neural activity and metabolism 

could directly or indirectly modulate the hemodynamic 
responses, including the cerebral blood fl ow (CBF), 
the cerebral blood volume (CBV), and the venous oxy-
genation levels. It has been well-established that the 
magnitude of CBF change is well-correlated with that 
of metabolic change. Thus, CBF mapping can pinpoint 
the most active spot of neural activity even if the exact 
spatial extent of the CBF response is controversial 
( (Malonek and Grinvald 1996) vs. (Duong et al. 
2001) ). The most commonly used BOLD technique is 
sensitive to paramagnetic deoxyhemoglobin (dHb), 
which is located at the capillaries and the venous drain-
ing vascular system (Ogawa et al. 1993), reducing spa-
tial specifi city of the gradient-echo BOLD signal. 
Often in fMRI studies, higher resolution BOLD images 
appear localized to large venous vessels because of 
larger contributions of venous signals due to the 
reduced partial volume of tissue.

To understand the spatial resolution of hemody-
namic responses, functional changes of different vas-
cular origins should be carefully considered. In this 
chapter, we will discuss the intrinsic limitations and 
the improvements of spatial resolution.

3.2  Vascular Structure 
and Hemodynamic Response

As all fMRI signals originate from changes in hemo-
dynamics, it is important to examine vascular struc-
ture. Detailed human brain vasculature was studied 
anatomically by Duvernoy (Duvernoy et al. 1981). In 
short, vessels can be classifi ed into pial and parenchy-
mal vessels. Superfi cial pial arterial and venous  vessels 
are numerous; arterial vessels with ~40–280 mm diam-
eter have lesser branches than venous vessels with 
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a ~130–380 mm diameter. These vessels can run a few 
centimeters and even longer. At the surface of the cor-
tex, pial vessels connect to penetrating arteries and 
emerging veins at a right angle.

Parenchymal vessels can be divided into arteries, 
veins and capillary network. Capillaries with ~5 mm 
average diameter and ~100 mm length are most abun-
dant at the middle of the cortex (Pawlik et al. 1981). 
Intracortical arteries and veins can be further classifi ed 
into their cortical depths (Duvernoy et al. 1981); group 
1 and 2 vessels (with 10–25 mm diameter for arterial 
vessels and 20–30 mm for venous vessels) reach the 
upper cortical layers (layer 2–3), group 3 (with 15–30 mm 
for arterial vessels and 45 mm for venous vessels) the 
middle of the cortex (layer 3–5), group 4 (with 30–40 mm 
for arterial vessels and 65 mm for venous vessels) the 
lower cortical region (layer 6), and group 5 (with 
30–75 mm for arterial vessels and 80–125 mm for venous 
vessels) the white matter. The number of intracortical 
arteries is ~4 times the number of intracortical veins 
(Duvernoy et al. 1981).

The intrinsic limit of spatial specifi city of hemody-
namic-based fMRI can be dependent on how fi nely 
CBF and CBV are regulated. Blood in each intracorti-
cal artery will supply a certain tissue volume, which is 
referred to as “the volume of arterial unit;” the volume 
of arterial unit is a volume with 0.33–0.5 mm diameter 
around a vessel for group 2–3 and for 0.5–2 mm for 
group 5 (Duvernoy et al. 1981). If an individual intrac-
ortical artery can be independently controlled, spatial 
resolution can be 0.33–0.5 mm if arterial vessels or cap-
illary changes are detected. Our fMRI studies suggest 
that intrinsic CBF and CBV changes are reasonably 
specifi c to sub-millimeter functional domains (Duong 
et al. 2001; Zhao et al. 2005), which are in the order of 
0.5–0.7 mm diameter in cats. If the regulation point 
exists at precapillary arterioles, then spatial resolution 
is even better. Recent papers indicate that precapillary 
arterioles indeed dilate during stimulation via astro-
cyte-capillary signaling (Zonta et al. 2003; Mulligan 
and MacVicar 2004; Metea and Newman 2006). In fact, 
the capillary network responds precisely in regions of 
 neural activity in rat olfactory bulb, suggesting that spa-
tial resolution of ~100 mm is achievable (Chaigneau 
et al. 2003).

When an imaging technique is sensitive to changes 
in intracortical veins, its spatial resolution is deter-
mined by the volume of tissue draining to each vein, 
which is considered to be “the volume of venous unit.” 

The volume of venous units is a volume with 0.75–1 mm 
diameter around a vessel for group 3–4 vessels, and 
1–4 mm diameter for group 5 (Duvernoy et al. 1981). 
Thus, spatial resolution can not be better than 0.75 mm 
even if one single intracortical artery regulates pre-
cisely and downstream vessels respond. Intracortical 
venous vascular structures can be visualized with MRI. 
Figure 3.1 shows venographic images of cat brain, 
which were obtained using the BOLD contrast at 9.4 T. 
Venous vessels appear as dark lines or dots because 
venous blood has short T

2
* relative to tissue and arterial 

blood. Furthermore, blood susceptibility effect extends 
to tissue, enlarging apparent venous vessel size. Clearly, 
group 3–5 intracortical veins can be easily visualized, 
and group 3 are most numerous. Typical distance 
between intercortical veins is ~0.5–1 mm (Fig. 3.1).

3.3 Spatial Resolution of BOLD fMRI

Since blood travels from capillaries to intracortical 
veins, and fi nally pial veins, a change in dHb concen-
tration in blood can also occur far away from the actual 
gray matter region with increased neural activity, 
reducing effective spatial resolution. However, there is 
considerably more dilution of dHb change at farther 
downstream from the neuronally active region due to 
larger blood contribution from inactive regions. This 
dilution issue is also closely related to strength and 
spatial extent of neural activity; stronger and spatially 
larger neural activity induces more dHb change, and 
results in less effective dilution.

Conventional BOLD response is related to a change 
in dHb contents within a voxel, thus directly correlated 
with (baseline dHb content) time (oxygenation change). 
Since a pixel with draining veins has high baseline dHb 
content, the BOLD response is particularly sensitive to 
large draining veins. Thus, spatial resolution of con-
ventional BOLD signal can be much worse than that 
determined by the volume of venous unit. It is a rea-
sonable assumption that conventional BOLD-based 
high-resolution fMRI may mostly detect the function-
ally less-specifi c large-vessel contribution. To precisely 
localize functional foci, it is desirable to remove or 
minimize large vessel contributions.

In order to understand which size of venous vessels 
can be detected by BOLD fMRI, we review the source 
of BOLD fMRI signals. Detailed biophysical models 
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and explanations can be found in others (Ogawa et al. 
1993; Weisskoff et al. 1994; Kim and Ugurbil 2003). 
The BOLD contrast induced by dHb arises from both 
intravascular (IV) and extravascular (EV) components. 
Since exchange of water between these two compart-
ments (typical lifetime of the water in capillaries 
>500 ms) is relatively slow when compared with the 
imaging time (echo time <100 ms), MRI signals from 
these can be treated as separate pools.

The IV component is considered to be uniform 
within vessels because water rapidly exchanges between 
red blood cells (RBC) with paramagnetic dHb and 
plasma (average water residence time in RBCs = ~5 ms) 
and travels through space by exchange and diffusion. 
Thus, “dynamic” time-averaging occurs over the many 
different fi elds induced by dHb. All water molecules 
inside the vessel will experience similar dynamic aver-
aging, resulting in reduction of blood water T

2
 in the 

venous pool. At high magnetic fi elds, venous blood T
2
 

can be shorter than tissue T
2
 because R

2
 (=1/T

2
) of 

venous blood is quadratically dependent on magnetic 

fi eld (Thulborn et al. 1982). Thus, at a higher magnetic 
fi eld, IV contribution can be reduced by setting echo 
time much longer than blood T

2
 (or T

2
*) (Lee et al. 

1999; Jin et al. 2006). Alternatively, the IV signal can 
be reduced by applying bipolar gradients (as employed 
in diffusion-weighted images), which, with a “b” value 
of ~30 s/mm2, are expected to leave only the microvas-
cular/extravascular contribution (Le Bihan et al. 1986).

The EV BOLD phenomenon has two biophysical 
sources (Ogawa et al. 1993; Weisskoff et al. 1994); one 
is due to intra-voxel dephasing of the magnetization in 
the presence of susceptibility-induced gradients, and the 
other is due to diffusion across the steep, susceptibility-
induced gradients around small vessels (capillaries and 
venules). The fi rst component induces high percentage 
signal changes around large venous vessels, regardless 
of magnetic fi eld strength. Since fi eld gradient 
decreases by (r/a)2 where r is the distance from vessel 
to the region of interest and a is the vessel radius, the 
dephasing effect around a larger vessel is more spa-
tially widespread. However, the dephasing effect of the 

1.25 mmCoronal

5 mm

Axial

Fig. 3.1 Visualization of venous vessels in a cat brain. A 3-D 
T

2
*-weighted MR image was obtained at 9.4 T with 78 mm 

isotropic resolution and fi eld of view of 2 × 2 × 4 cm3. A gra-
dient echo time of 20 ms was used to maximize the contrast 
between venous vessels and tissue. Data acquisition and pro-
cessing methods were reported elsewhere (Park et al. 2008). 
1.25 mm-thick slabs were selected, and minimum intensity 
projection was performed to enhance the contrast of venous 

vessels. As a surface coil was used, the ventral section in the 
coronal slice (top left) had poor signal-to-noise ratio (SNR), 
and thus vessels could not be detected in that region. White 
matter areas (contours in right) can be distinguished from 
gray matter. Dotted yellow box in the coronal image was 
expanded 4 times into right. Yellow arrows, cerebrospinal 
fl uid (CSF) areas; red arrows, venous vessels draining from 
white matter, which are “group 5”
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static fi eld can be refocused by the 180° radiofrequency 
(RF) pulse. Therefore, the EV contribution of large 
vessels can be reduced by using the spin-echo tech-
nique (which is similar to T

2
-weighting in diagnostic 

imaging). The second component induces small signal 
changes in diffuse areas around capillaries and small 
venules. The reason is that tissue water around capil-
laries and small venules will be “dynamically” aver-
aged over the many different fi elds during TE, similar 
to the IV component. This effect is larger at a higher 
magnetic fi eld due to an increased susceptibility gradi-
ent within the water diffusion distance during TE. The 
dynamic diffusion-induced signals can be detected by 
either GE or SE approach. It is conceivable that the 
T

2
-based BOLD technique is better localized to neu-

ronal active region than T
2

*-based BOLD if the IV 
component of large vessels is removed (Zhao et al. 
2004; Zhao et al. 2006). However, the sensitivity of 
spin-echo techniques is less than gradient-echo BOLD 
signal.

To examine the spatial resolution of GE and SE 
BOLD fMRI, we used cortical layers as a model 
because layer 4 has the highest metabolic and CBF 
responses during neural activity as well as the highest 
synapse density and cytochrome oxidase activity 
(Woolsey et al. 1996). If the fMRI technique is highly 
specifi c to metabolic response and/or neural activity, 
the middle of the cortex should have the highest signal 
change. Figure 3.2 shows GE and SE BOLD fMRI 
maps of one isofl urane-anesthetized cat obtained dur-
ing visual stimulation at 9.4 T (Zhao et al. 2006). 

To view the cortical cross- section within-a plane reso-
lution of 156 × 156 mm2, a 2-mm thick imaging slice 
was selected perpendicular to the cortical surface. In 
both GE and SE BOLD maps, signal intensities 
increased during visual stimulation, indicating an 
increase in venous oxygenation. In conventional GE 
BOLD fMRI (Fig. 3.2), the highest percentage signal 
changes (yellow pixels) were seen in the CSF space 
(within the green contours), where pial veins are 
located. This large vessel contribution to BOLD sig-
nals is reduced using the SE technique (Fig. 3.2) 
because the dephasing around large vessels refocuses. 
This result is consistent with previous high-fi eld SE 
BOLD observations (Lee et al. 1999; Yacoub et al. 
2003; Zhao et al. 2004).

SE BOLD fMRI is an excellent alternative approach 
if high spatial resolution is required and high magnetic 
fi eld (such as 7 T) is available. Otherwise, conventional 
GE BOLD fMRI should be used with postprocessing 
approaches to remove or minimize large vessel contri-
butions. Location of large pial venous vessels can be 
determined from venographic images obtained with 
high-resolution T

2
*-weighted MR techniques (see 

Fig. 3.1) or from anatomical structures such as sulci 
and CSF. Large venous vessel areas tend to induce 
large BOLD percent change (see also Fig. 3.2) (Kim 
et al. 1994), delayed response (Lee et al. 1995), signifi -
cant phase change (Menon 2002), and large baseline 
fl uctuations (Kim et al. 1994). Although these criteria 
are subjective, they are effective in detecting and 
reducing large vessels contamination.

Fig. 3.2 High resolution GE and SE BOLD fMRI maps of cat 
brain during visual stimulation overlaid on anatomical EPI 
images (Zhao et al. 2006). Coronal 2-mm thick images with 
156 × 156 mm2 in-plane resolution were acquired using the four-
shot EPI technique at 9.4 T with gradient-echo time of 20 ms and 

spin-echo time of 40 ms. To determine statistically signifi cant 
pixels, Student’s t-test was performed on a pixel-by-pixel basis 
with a t-value threshold of 2.0. Then, percentage signal changes 
were calculated for statistically active pixels. Green contours,  
CSF area; black contours, white matter

SE

0.3

3.0

GE

2 mm
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3.4 Perfusion-Based fMRI Approaches

Alternative to the BOLD approach, CBF-weighted 
techniques which are sensitive mainly to parenchyma 
should be considered for mapping functional foci. CBF-
weighted functional images can be obtained using MR 
by employing arterial blood water as an endogenous 
fl ow tracer. Arterial spin labeling (ASL) can be achieved 
by RF pulse(s). Then, labeled spins move into capillar-
ies in the imaging slice and exchange with tissue water 
spins. To obtain only perfusion-related images, two 
images are acquired, one with ASL and the other with-
out labeling. The difference between the two images is 
directly related to CBF, and relative CBF changes due 
to physiological perturbations can be measured. Most 
of the labeled water molecules extract into tissue and 
the remaining labeled water lose most of their labeling 
by the time they reach the draining veins due to its rela-
tively short half-life (i.e., T

1
 of blood). Thus, CBF-

weighted MRI signals predominantly originate from 
tissue/capillary as well as arterial vessels (Ye et al. 1997; 
Lee et al. 2002; Kim and Kim 2005). Sensitivity of per-
fusion-weighted signals increases with magnetic fi eld 
strength due to an increase in arterial blood T

1
. ASL 

techniques include continuous ASL (Detre et al. 1992), 
fl ow-sensitive alternating inversion recovery (FAIR) 
(Kim 1995; Kwong et al. 1995), and various other tech-
niques (Edelman et al. 1994; Wong et al. 1998).

Perfusion-based MR techniques have been used for 
fMRI studies. The spatial specifi city of CBF-based 
fMRI is superior compared to GE BOLD techniques 
(Duong et al. 2001). Figure 3.3 shows BOLD and CBF 
functional maps during fi nger movements obtained at 
4 T (Kim et al. 1997). The FAIR technique was used 
with inversion time of 1.4 s; the BOLD map was obtained 
from nonslice selective inversion recovery images, 
while the CBF map was from subtraction of nonslice 
selective from slice-selective inversion recovery images. 

CBF fMRI

BOLD fMRI

Fig. 3.3 BOLD and CBF functional maps of left hand fi nger 
opposition, overlaid on T

1
-weighted EPI (Kim et al. 1997). The 

fl ow-sensitive alternating inversion recovery (FAIR) technique 
was used to acquire BOLD (top) and CBF (bottom) contrast 
simultaneously at 4.0 T. BOLD maps were obtained from non-
slice selective inversion recovery (IR) images, while CBF maps 
were calculated from differences between slice-selective and 
nonslice selective IR images. A cross-correlation value of 0.3 

was used for threshold. For BOLD images, each color increment 
represents a 1% increment starting from the bottom 1%, while 
for CBF images, each color increment represents a 10% incre-
ment starting from the bottom 10%, The oblique arrow at the 
middle slice, indicating the right (contralateral) central  sulcus, 
shows no activation in the CBF map, but large signal increase in 
the BOLD map, suggesting BOLD is sensitive to large draining 
veins



20 S.-G. Kim et al.

Generally, activation areas are consistent between the 
maps measured by both techniques. However, pixel-
wise comparison shows discrepancy between the two 
maps. Large signal changes in BOLD are located at 
draining veins indicated by arrows in the middle slice, 
while no signal change was observed in CBF. Tissue 
areas with high percent CBF changes have low BOLD 
signal changes. This indicates that the CBF approach is 
more specifi c to tissue than GE BOLD fMRI. To further 
confi rm human fMRI results, BOLD and CBF fMRI 
were also compared in the cat’s layer model. Figure 3.4 
shows GE BOLD and CBF fMRI maps obtained during 
visual stimulation at 9.4 T. CBF data were obtained 
using the FAIR technique with inversion time of 1.25 s, 
while gradient BOLD data were obtained with TE of 
20 ms. The highest GE BOLD signal changes occur at 
the surface of the cortex, while the highest CBF changes 
occur at the middle of the cortex. This again demon-
strates that perfusion-based fMRI technique is superior 
to GE BOLD for pinpointing functional foci precisely.

Proper CBF contrast is achieved only when enough 
time is allowed for the labeled arterial water to travel 
into the region of interest and exchange with tissue 
water. This makes it diffi cult to detect changes in CBF 
with a temporal resolution greater than T

1
 of arterial 

blood water. Acquisition of a pair of images can fur-
ther reduce temporal resolution and consequently 

SNR. Thus, it is diffi cult to obtain whole brain fMRI 
rapidly. However, baseline CBF value can be obtained, 
in addition to quantitative functional response. An 
additional advantage is less sensitivity to baseline sig-
nal drifts because slow non-activation-related signal 
changes can be removed by the pair-wise subtraction, 
and it is more stable to low-frequency stimulation 
compared to BOLD. Therefore, perfusion-based fMRI 
techniques are preferable for repetitive measurements 
over a long time period such as weeks and months, 
allowing investigations of functional reorganization 
and development. In clinical applications of fMRI 
where precise mapping is required around abnormal 
regions, the CBF-based fMRI technique is most appro-
priate because parenchymal signals are dominant.
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The Electrophysiological 
Background of the fMRI Signal

Christoph Kayser and Nikos K. Logothetis

4

4.1 Introduction

The ability to non-invasively study the architecture and 
function of the human brain constitutes one of the most 
exciting cornerstones for modern medicine, psychology 
and neuroscience. Current in vivo imaging techniques 
not only provide clinically essential information and 
allow new forms of treatment, but also reveal insights 
into the mechanisms behind brain function and mal-
function. This supremacy of modern imaging rests on 
its ability to study the structural properties of the ner-
vous system simultaneously with the functional changes 
related to neuronal activity. As a result, imaging allows 
us to combine information about the spatial organiza-
tion and connectivity of the nervous system with infor-
mation about the underlying neuronal processes and 
provides the only means to link perception and cogni-
tion with the neural substrates in the human brain.

Functional imaging techniques build on the inter-
connections of cerebral blood fl ow (CBF), the brain’s 
energy demand and the neuronal activity (for reviews 
on this topic see for example (Heeger and Ress 2002; 
Logothetis 2002; Logothetis and Wandell 2004; Lauritzen 
2005) ). Indeed, elaborate mechanisms exist to couple 
changes in CBF and blood-oxygenation to the mainte-
nance and restoration of ionic gradients, and the syn-
thesis, transport and reuptake of neurotransmitters. 
More than 125 years ago, Angelo Mosso had already 
realized that there must be a relation between energy 
demand and CBF, when he observed increasing brain 

pulsations in a patient with a permanent skull defect 
performing a mental task (Mosso 1881). Similar obser-
vations on the coupling of blood fl ow to neuronal 
activity (from experiments on animals) led Roy and 
Sherrington to make the insightful statement that “…
the chemical products of cerebral metabolism con-
tained in the lymph that bathes the walls of the arteri-
oles of the brain can cause variations of the caliber of 
the cerebral vessels: that is, in this reaction, the brain 
possesses an intrinsic mechanism by which its vas-
cular supply can be varied locally in correspondence 
with local variations of functional activity” (Roy and 
Sherrington 1890).

Nowadays, there is little doubt about the usefulness 
of imaging to basic research and clinical diagnosis. In 
fact, with the wide availability of magnetic resonance 
imaging (MRI), functional imaging has become a self 
sustaining branch of neuroscience research. Yet, and 
despite all this progress, it is still not clear how faith-
fully functional imaging replicates the patterns of neu-
ronal activity underlying the changes in brain perfusion. 
Debating over the spatial and temporal precision of the 
imaging signal, researchers have compared it to more 
direct measurements of electrical neuronal activity from 
electrophysiological approaches. This holds especially 
true for the blood-oxygenation level-dependent signal 
(BOLD-fMRI), which is probably the most widely 
used functional imaging technique (Ogawa et al. 1998). 
As direct measurements of neuronal activity can be 
obtained from mesoscopic recordings of electrical poten-
tials on the scalp (EEG) as well as from spatially local-
ized recordings using fi ne microelectrodes, they offer a 
wide variety of signals that characterize neuronal pro-
cesses. Hence, before reviewing the neurophysiologi-
cal basis of the functional imaging signal, it is worth 
considering the properties of the signals recorded using 
electrophysiological methods.
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4.2 The Compound Neural Signal

Electrophysiological studies at the systems level typi-
cally record extracellular signals, defi ned by the super-
position of local currents. In contrast to the intracellular 
recordings that directly assess the membrane potential 
of individual neurons, extracellular signals can arise 
from a number of sources and are more diffi cult to 
interpret. Neurons are embedded in the extracellular 
medium, which acts as a volume conductor, allowing 
the passive spread of electrical signals across consider-
able spatial distances. For an extracellular recording 
point, the infl ow of positively charged ions into the 
active sites of a neuron appears as a current sink (inward 
currents), while inactive membrane sites act as a source 
(outward currents) for the active regions. Given the 
resistive nature of the extracellular medium, these cur-
rents generate so-called extracellular fi eld potentials 
(EFP) (Freeman 1975). The signal measured by an 
electrode placed at a neural site represents the mean 
EFP from the spatially weighted sum of sinks and 
sources along multiple cells at this particular site. In 
addition, by the superposition principle, the EFPs from 
multiple cells add up linearly throughout the volume 
conductor. Thus, for cells, or cell compartments, with 
diametrically opposite orientations currents of equal 
magnitude but opposite polarity will generate potentials 
that tend to cancel each other; while for well aligned 
and elongated processes of neural elements the currents 
add, resulting in a strongly oriented electric fi eld. 
Despite these diffi culties in interpreting the measured 
signals, EFP remain the most important tool for the sys-
tems neurophysiologist, as they convey a great deal of 
information about the underlying brain function.

If a small-tipped microelectrode is placed suffi -
ciently close to the soma or axon of a neuron, then the 
measured EFP directly reports the spike (action poten-
tials) of that neuron, and possibly also of its immediate 
neighbours The fi ring rates of such well isolated neu-
rons have been the critical measure for comparing neu-
ral activity with sensory processing or behaviour, ever 
since the early development of microelectrodes (Adrian 
and Zotterman 1929). Indeed, measuring fi ring rates 
has been the mainstay of systems neuroscience for 
decades. Although a great deal has been learned from 
this measure of neuronal activity, the single unit tech-
nique has the drawback of not providing information 
about subthreshold integrative processes or associa-
tional operations taking place at a given site. In 

addition, this recording technique suffers from a bias 
toward certain cell types and sizes (Towe and Harding 
1970; Stone 1973). For large neurons the active and 
passive regions are further apart, resulting in a substan-
tially greater fl ow of membrane current and a larger 
extracellular spike than for a small cell. As a result, 
spikes generated by large neurons will remain above 
noise level over a greater distance from the cell than 
spikes from small neurons. It follows that typically 
measured spiking activity mostly represents the small 
population of large cells, which are the pyramidal cells 
in the neocortex . This bias is particularly pronounced 
in experiments with alert behaving animals or humans, 
in which even slight movements of the subjects make 
it extremely diffi cult to record from smaller neurons 
for a suffi ciently long time (Fried et al. 1997; Kreiman 
et al. 2000). As a result, most of the experiments using 
single-unit extracellular recordings report on the activ-
ity of large principal cells, which represent the output 
of the cortical area under study.

If the impedance of the microelectrode is suffi ciently 
low, or when no clear signal from individual neurons 
can be isolated, then the electrode can be used to moni-
tor the totality of the action potentials in that region. 
Often, the multi-unit activity (MUA) is characterized as 
compound electrical signal in a frequency range above 
300–500 Hz. This signal has been shown to be site spe-
cifi c (Buchwald and Grover 1970) and to vary system-
atically with stimulus properties, in the same way as the 
activity of single neurons (e.g. Kayser et al. (2007a)). 
There is good evidence that MUA activity refl ects varia-
tions in the magnitude of extracellular spike potentials, 
with large-amplitude signal variations in the MUA 
refl ecting large-amplitude extracellular potentials. Over-
all, the MUA seems to incorporate signals from a sphere 
with a radius of 150–300 mm, depending on the detailed 
electrode properties (Buchwald and Grover 1970; Legatt 
et al. 1980; Gray et al. 1989). Typically, such a region 
will contain thousands of neurons, suggesting that the 
MUA is especially sensitive to the synchronous fi rings 
of many cells, which is further enhanced by the  principle 
of superposition mentioned above.

While the fast, high-frequency, components of the 
aggregate fi eld potentials mostly refl ect the spiking 
activity of neighbouring neurons, the slower compo-
nents of the EFP seem to refl ect a different kind of 
activity. The so called local fi eld potential (LFP) 
is defi ned as the low-frequency component of the 
EFP, and represents mostly slow events refl ecting 
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cooperative activity in neural populations. In contrast 
to the MUA, the magnitude of the LFP does not cor-
relate with cell size, but instead refl ects the extent and 
geometry of local dendrites (Fromm and Bond 1964; 
Buchwald et al. 1966; Fromm and Bond 1967). A 
prominent geometric arrangement is formed by the 
pyramidal neurons with their apical dendrites running 
parallel to each other and perpendicular to the pial sur-
face. They form a so called open fi eld arrangement, 
in which dendrites face in one direction and somata 
in another, producing strong dendrite-to-soma dipoles 
when they are activated by synchronous synaptic input. 
The spatial summation of the LFP has been suggested 
to refl ect a weighted average of synchronized den-
drosomatic components of the synaptic signals of a 
neural population within 0.5–3 mm of the electrode tip 
(Mitzdorf 1985, 1987; Juergens et al. 1999). The upper 
limits of the spatial extent of LFP summation were 
indirectly calculated by computing the phase coher-
ence as a function of inter-electrode distance in experi-
ments with simultaneous multiple-electrode recordings 
(for example see Fig. 4.1). Combined intracellular and 
fi eld potential recordings also suggest a synaptic/den-
dritic origin of the LFPs, representing locally averaged 
excitatory and inhibitory postsynaptic potentials, which 

are considerably slower than the spiking activity (Steriade 
and Amzica 1994; Steriade et al. 1998). In addition, 
the LFP can also include other types of slow activity 
unrelated to synaptic events, including voltage-dependent 
membrane oscillations (Juergens et al. 1999) and spike 
after potentials (Buzsaki et al. 1988).

In summary, three different signals can commonly 
be extracted from extracellular microelectrode record-
ings, each partially covering a different frequency 
regime of the acquired signal. Representing fast events, 
the MUA refl ects the averaged spiking activity of pop-
ulations of neurons, with a bias for the larger, principal 
(projection) neurons. Covering the same frequency 
range the single-unit activity reports mainly on the 
activity of the principal neurons that form the major 
output of a cortical area. In contrast, and representing 
slower events, the LFP refl ects slow waveforms such 
as synaptic potentials, afterpotentials, and voltage-
gated membrane oscillations that mostly refl ect the 
input of a given cortical area as well as its local intrac-
ortical processing.

4.3  The Passive Electric 
Properties of the Brain

To better understand how the signal picked up by a 
microelectrode emerges from the underlying neuronal 
processes, especially with regard to the distinction of 
the different frequency regimes, it is important to 
know the basic electrical properties of brain tissue. 
The extracellular microenvironment consists of nar-
row gaps between cellular processes, probably not 
more than 200 Å wide on average. These spaces form 
a complex three-dimensional mosaic fi lled with extra-
cellular fl uid. Theoretical considerations suggest that 
currents and ions spread within this fl uid, but not 
through the cells (Robinson 1968). As a result, the 
resistance to electrical currents of this space depends 
on the detailed spatial layout of neuronal tissue, 
 possibly resulting in an un-isotropic current fl ow that 
does not necessarily behave like that in a simple saline 
bath (Ranck 1963a, b; Mitzdorf 1985). Especially, 
from these considerations it is unclear whether corti-
cal  tissue behaves like an ohmic resistor, or whether 
signals of different frequencies experience frequency-
 dependent attenuation, i.e. whether the tissue behaves 
like a capacitive fi lter.
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A frequency dependent behaviour was suggested by 
the fact that the activity of the slow wave measured by 
the EEG is largely independent of spiking responses, 
suggesting strong frequency-fi ltering properties of the 
tissue overlying the sources of the activity (Ajmone-
Marsan 1965; Bedard et al. 2004, 2006). In addition, in 
extracellular unit recordings the shape and amplitude 
of recorded spikes depends on the spatial position of 
the electrode relative to the neuron (Gold et al. 2006), 
while slow potentials show much less sensitivity to 
position and correlate over large spatial distances. 
Since the lower frequencies of the fi eld potentials typi-
cally correlate over larger spatial distances than the 
higher frequencies of the same signal (Fig. 4.1), this 
can be interpreted as strong evidence for the cortical 
tissue to behave as a capacitive fi lter (Destexhe et al. 
1999). Such a frequency-dependent impedance spec-
trum could selectively attenuate electric signals of some 
frequencies more than those of others, for example, 
high-frequency spiking events more than low-frequency 
potentials.

To clarify whether the brain’s tissue behaves like an 
ohmic or a capacitive medium we recently quantifi ed 
the passive electrical spread of different signals in the 
brain in vivo. These measurements were conducted in 
the primary visual cortex, a typical model system for 
sensory processing, and on the scale of hundreds of 

micrometers to several millimetres, i.e. the scale rele-
vant to the typical functional imaging techniques such 
as fMRI-BOLD (Logothetis et al. 2007). At this scale, 
theoretical considerations suggest that the extracellular 
medium can be considered as largely homogenous and 
mostly isotropic (within the grey matter). Our results 
confi rmed this, and more importantly, demonstrated 
that the cortical tissue does not behave like a capacitive 
fi lter, but acts like an ohmic resistor, attenuating signals 
of different frequencies in the same manner.

In detail, we measured the voltage drop across two 
neighbouring electrodes induced by an injected cur-
rent of pre-defi ned frequency (Fig. 4.2). Our measure-
ments employed a four point electrode system, allowing 
highly accurate and unperturbed measurements of 
resistance of cortical tissue in vivo. Over a wide range 
of current frequencies, and for all tested spatial arrange-
ments of the electrodes, the brain’s grey matter tissue 
behaved like an isotropic and ohmic resistor. The white 
matter in contrast, showed directional anisotropies, 
with lower resistance in one and higher resistance in 
the orthogonal direction. Yet, as for the grey matter, 
the white matter also behaved like an ohmic resistor. 
Altogether, our measurements clearly rejected the 
notion that the cortical tissue behaves like a frequency 
dependent fi lter, at least on the spatial scale relevant to 
the typical functional imaging applications.
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As a consequence of this fi nding, one has to con-
clude that some of the properties of the fi eld potentials 
noted above, such as the different degree of spatial cor-
relations in different frequency bands, are not the result 
of passive electrical spread in the tissue. In contrast, 
our fi ndings suggest that the long-range correlations of 
the low frequency signals, such as the theta or beta 
rhythms, result from properties of the generators of 
these signals, i.e. from the spatial patterning of the 
connections mediating these oscillations, and hence 
might be a property that is also refl ected in the func-
tional imaging signal.

4.4  The Neural Correlate 
of the BOLD Signal

Given the distinction of the different signals that can be 
obtained from extracellular recordings, one can ask 
which signal best explains the activity patterns seen in 
functional imaging experiments? Or stated otherwise, 
which signal correlates best with the functional imag-
ing signal? A growing body of work addresses this 
important question with two complementary approaches. 
An indirect approach asks whether both methodologies 
yield similar answers to a typical neuroscientifi c ques-
tion, such as whether a certain region in the brain 
responds to a given stimulus. A direct approach, on the 
other hand, measures both signals at the same time, to 
directly correlate the functional imaging activation with 
the different signals of neuronal activity.

A typical example for an indirect comparison was 
provided by Rees et al. who compared human fMRI 
measurements with electrophysiological data from 
single-unit recordings in monkeys (Rees et al. 2000). 
Both datasets were obtained from the motion-specifi c 
areas of the respective species and refl ected how much 
the respective signal changed as a function of the stim-
ulus’ motion coherence. Comparing the slope of both 
signals, the authors concluded that the BOLD signal 
was directly proportional to the average fi ring rate, 
with a constant of proportionality of approximately 
nine spikes per second per percentage BOLD increase. 
Using the same strategy, but focusing on the signal 
increase in primary visual cortex as a function of stim-
ulus contrast, Heeger et al. confi rmed such a linear 
relation of spiking activity and the BOLD signal, albeit 
with a smaller proportionality constant of 0.4 spikes 

per percentage BOLD increase (Heeger et al. 2000). 
While these results suggest a good correlation of the 
BOLD signal and fi ring rates in the same cortical 
region, they already indicate that the details of this 
relation, here the constant or proportionality, depends 
on detailed characteristics of each area.

While the above studies focused only on fi ring rates, 
another study on primary visual cortex extended this 
approach to a wider range of stimuli and physiological 
signals (Kayser et al. 2004). Studying the cat visual 
system, the BOLD signal was obtained from one group 
of animals, while MUA and fi eld potential responses 
were recorded in a second group of animals. As a met-
ric of comparison, the authors asked which of the dif-
ferent electrophysiological signals would yield similar 
relative responses to different stimuli as found in the 
BOLD signal. Stated otherwise, if stimulus A elicits a 
stronger BOLD response than stimulus B, which of the 
electrophysiological signal obeys the same relation 
across a large fraction of recording sites sampled in the 
same region of interest, from which the BOLD signal 
is sampled (Fig. 4.3)? Overall, the MUA provided a 
worse match to the BOLD signal than did the LFP, 
although the latter showed strong frequency depen-
dence. The best match between LFP and BOLD was 
obtained in the frequency range of 20–50 Hz, while 
slower oscillations generally showed a poor concor-
dance with the imaging data. Noteworthy, this study 
also showed that the precise results of an indirect com-
parison can depend strongly on the specifi c stimuli 
employed: when the contrast involved grating stimuli, 
which elicit strong gamma band responses, a good 
match between the gamma band of the LFP and the 
BOLD was obtained. However, when the contrast 
involved only stimuli with less distinct activation pat-
terns in the LFP, the correlation of LFP and BOLD 
also showed less frequency dependence.

While these studies only compared the average 
response strength of each signal, another extended the 
comparison to the temporal dimension and correlated 
the average time course obtained from fMRI with that 
obtained from neuronal responses (Mukamel et al. 
2005). Using the human auditory cortex as a model 
system, these authors correlated the average fMRI 
responses obtained in a group of healthy subjects with 
intracortical recordings obtained from a group of epi-
lepsy patients monitored for surgical treatment. While 
the BOLD signal again correlated well with the LFP, it 
showed an even stronger correlation with neuronal 
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fi ring rates, contrasting the above result from visual 
cortex.

As these examples demonstrate, the results of an 
indirect comparison between the BOLD signal and neu-
ronal responses may vary depending on the particular 
experimental paradigm and stimuli involved. In fact, an 
indirect comparison can only be conducted after the 
responses in the two measurements have each been 
highly averaged over trials. While such averaging will 

result in a robust estimate of the stimulus related 
response, it will also remove the trial to trial variability 
of neuronal responses, the infl uence of the mental state 
and other brain state fl uctuations that are not locked to 
the stimulus used to align the responses. As a result, one 
compares two “artifi cial” signals that do not necessarily 
resemble the pattern of neuronal activity seen during 
normal brain function. In addition, the temporal resolu-
tion of the imaging signal is often quite low, especially 

Fig. 4.3 Indirect comparison 
of BOLD and neurophysi-
ological signals in cat 
primary visual cortex. The 
upper panel displays the 
average BOLD responses to 
the three kinds of stimuli 
used in this study, while the 
middle panel displays the 
average responses in the LFP 
and MUA. The lower panel 
displays the comparison 
between signals. This was 
done by counting the fraction 
of neurophysiological 
recording sites where the 
activity obeyed the same 
relations as found in the 
BOLD signal (noise > natural 
and gratings > natural). This 
comparison was performed 
separately for each LFP 
frequency band and MUA. 
For details see (Kayser et al. 
2004)
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in human studies, resulting in a blurred signal which 
cannot be adequately compared to the fast changes of 
neuronal activity (see also below). An indirect compari-
son of functional imaging and neuronal activity can 
hence only speak about a certain, stimulus driven aspect 
of the signals, but does not generalize the complex 
interactions of feed-forward and feed-back processing 
that occur during normal conditions, where each activ-
ity pattern might be unique and non-repeatable.

To overcome the limitations of these indirect com-
parisons, our lab examined the relationship of the 
BOLD signal to neural activity directly by simultane-
ously acquiring electrophysiological and fMRI data 
from the same animals. To this end we developed a 4.7 
T vertical scanner environment specifi cally for com-
bined neurophysiology and imaging experiments, 
including novel methods for interference compensa-
tion, microelectrodes and data denoising (Logothetis 

et al. 2001). Our measurements showed that the fMRI-
BOLD response directly refl ects a local increase in 
neural activity as assessed by the EFP signal. For the 
majority of recording sites, the BOLD signal was found 
to be a linear but not time-invariant function of LFPs, 
MUA, and the fi ring rate of individual neurons (Fig. 4.4, 
upper panel). After stimulus presentation, a transient 
increase in power was typically observed across all LFP 
frequencies, followed by a lower level of activation 
that was maintained for the entire duration of stimulus 
presentation. The MUA, in contrast, often showed a 
more transient response, suggesting a lower correla-
tion to the BOLD response. This hypothesis was con-
fi rmed using system identifi cation techniques: while in 
general both LFPs and MUA served as good predictors 
for the BOLD, LFPs on average accounted for 7.6% 
more of the variance in the fMRI response than the 
MUA. This difference, albeit small, was statistically 

Fig. 4.4 Simultaneous measurement of BOLD and neurophysi-
ological signals in the monkey primary visual cortex. In the upper 
row, the left panel displays the electrode location in V1, together 
with the functional response near the electrode (red–yellow color 
code). The middle panel displays the simultaneously recorded 
BOLD and neuronal signals. The right panel, fi nally, displays the 
temporal correlation of both signals, once at high temporal 

 resolution (TR = 250 ms), and once using a smoothed, low resolu-
tion signal (TR = 3 s). The lower row displays a dissociation of 
BOLD, MUA and LFP induced by the application of a serotonin 
agonist, which suppresses the fi ring of pyramidal neurons. During 
drug application, BOLD and LFP responses persist, while the 
MUA response ceases. For details see (Logothetis et al. 2001; 
Goense and Logothetis 2008; Rauch et al. 2008)
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signifi cant across experiments. In further experiments 
we confi rmed the same fi ndings in alert animals, dem-
onstrating that the correlation of BOLD and LFP holds 
good also during more complex, natural situations 
(Goense and Logothetis 2008). On the one hand, these 
fi ndings confi rm and extend the previous studies sug-
gesting an analogy between spiking responses and the 
BOLD signal, while on the other, they reveal the strong 
contribution of fi eld potentials to the BOLD signal, 
thereby suggesting that a direct translation of changes 
in the BOLD signal into changes in fi ring rates is mis-
leading. Rather, we suggested on the basis of these 
observations,that the BOLD signal refl ects the input to 
a local region and its local processing, as refl ected by 
the aggregate synaptic activity, more than its output, 
as refl ected in the spiking activity of the principal 
cells.

A recent study in the cat visual cortex confi rmed 
these fi ndings by combining optical imaging to mea-
sure hemodynamic responses with simultaneous micro-
electrode recordings (Niessing et al. 2005). Along the 
lines of previous results, they found a frequency depen-
dent match between the imaging signal and LFPs. 
Especially, frequency bands below 10 Hz showed neg-
ative correlations with the imaging signal, i.e. reduced 
fi eld potential during increased blood fl ow response. 
Higher frequencies, especially between 50 and 90 Hz 
showed good correlation with the imaging signal, and 
importantly, stronger correlations than observed for 
the MUA.

It is worth noting that the exact strength of the cor-
relation between LFP, MUA and BOLD depends on the 
detailed properties of the paradigm and data acquisi-
tion. Especially, the different acquisition rates for func-
tional imaging signals and neuronal responses can have 
profound infl uences, as can easily be demonstrated 
(Fig. 4.4, middle panel). Starting from a BOLD signal 
which was acquired using a temporal resolution of 
250 ms, we subsequently decimated all signals to an 
effective temporal resolution of 3 s, the typical temporal 
resolution of human imaging studies. While the “fast” 
BOLD signal exhibits the well-established differential 
correlation of LFP and MUA with the BOLD, the 
“slow” signal shows an overall stronger correlation and 
less of a difference between LFP and MUA. Decreasing 
the temporal resolution effectively smoothes a signal 
and increases the coherence between LFP frequency 
bands; hence the increased correlation. Not surprisingly, 
the correlation coeffi cients did not increase uniformly 

across frequency bands; the fi ltering particularly affected 
the high-frequency bands (>60 Hz), which are typically 
modulated on faster timescales. As a result, the smooth-
ing unavoidably increases the correlation of MUA to 
the BOLD response as well. Such simple differences of 
the temporal resolution of the acquired signals can 
explain the different degree of correlations found in 
ours and in indirect human studies, since the latter heav-
ily relied on temporally smoothed signals and subject-
averaged signals (Mukamel et al. 2005). To conclude, 
care must be taken when interpreting correlations of 
hemodynamic and neuronal signals, as apparent con-
fl icts can simply arise from methodological artefacts 
rather than true differences.

4.5  The Coupling of Synaptic 
Activity and CBF

A reason for the more gradual differences between LFP 
and MUA in their relation to the BOLD signal is that 
under many conditions, MUA and LFPs will vary 
together. In other words, in many stimulation conditions 
the output of any processing station in sub-cortical and 
early cortical structures is likely to refl ect the changes 
of the input, and the LFP-MUA relationship will be 
“tight” and both will be well correlated with BOLD. 
Yet, this scenario might be an “exception” when gener-
ating cognitive maps during complex tasks, as in such 
cases, the subject’s “mental” state might be instantiated 
in diverse feed-forward and feed-back processes that do 
not necessarily increase the net-output of cortical micro-
circuits. Hence, conditions might exist during which 
there is a dissociation of these signals, for example a 
condition in which an increase in local input (LFP) 
results in a reduction in local output activity (MUA). 
Clearly, such situations could reveal important insights 
into the different processes underlying the different sig-
nals and their mutual relations. A powerful example of 
such a dissociation was provided by Mathiesen et al. 
(Mathiesen et al. 1998; Mathiesen et al. 2000; Thomsen 
et al. 2004). These authors nicely exploited the synaptic 
organization of the cerebellar cortex, where electrical 
stimulation of the parallel fi bres causes monosynaptic 
excitation of the Purkinje cells and disynaptic inhibition 
of the same neurons through the basket cells. This 
results in inhibition of the spiking activity in the Purkinje 
cells, while at the same time increasing the synaptic 
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input to these cells. Combining electrophysiological 
recordings with laser Doppler fl owmetry to measure 
changes in CBF, Mathiesen et al. demonstrated a pow-
erful dissociation of the spiking activity and the CBF. 
Both LFPs and CBF increased while spiking activity 
ceased, clearly demonstrating that increases in CBF or 
BOLD do not allow to make inferences about potential 
increases or decreases in the spiking activity of the 
stimulated region (Lauritzen and Gold 2003).

A similar dissociation of the imaging signal and 
neuronal fi ring rates could be seen in our studies 
(Logothetis et al. 2001). Often, the single or multi-unit 
activity showed strong response adaptation during the 
fi rst few seconds, with a subsequent decay of the fi ring 
rates to baseline. In contrast to this, the BOLD signal 
and the LFP did persist above baseline throughout the 
stimulation period. As a result, during the sustained 
period of the stimulus only the fi eld potential can be 
associated with the imaging signal, but not the spiking 
activity. Importantly, there was no condition or obser-
vation period during which the opposite was observed. 
In addition to this naturally occurring dissociation, 
similar situations can be induced pharmacologically. 
For example, the application of a serotonin receptor 
agonist, which causes persistent hyperpolarization of 
pyramidal neurons, leads to a ceasing of the MUA 
responses (Fig. 4.4, lower panel). However, at the very 
same time both the LFP and the BOLD signal still 
respond to visual stimulation, again demonstrating that 
the BOLD signal is not necessarily coupled to neu-
ronal spiking responses (see (Rauch et al. 2008) for 
further results along this line).

Is the CBF signal then linearly coupled to synaptic 
activity? While this indeed seems to hold good under 
some conditions, other conditions produce a nonlinear 
relation between afferent input and the hemodynamic 
response (Mathiesen et al. 1998; Norup Nielsen and 
Lauritzen 2001). Especially for very low or high levels 
of synaptic input, the CBF response can be decoupled 
from the input. For example, inducing deactivation of 
neuronal responses by either functional deactivation or 
application of TTX resulted in only a small reduction 
in baseline CBF (Gold and Lauritzen 2002). During 
such instances of neuron-vascular decoupling the 
imaging data does not refl ect all the changes in synap-
tic afferents, clearly highlighting the limited dynamic 
range of functional imaging. Such non-linear relation 
between synaptic activity and CBF might, for exam-
ple, arise from the unequal contribution of different 

receptors and channels to synaptic potentials and blood 
fl ow. For example, glutamatergic NMDA channels 
contribute to CBF but only little to the LFP (Hoffmeyer 
et al. 2007). As a result, blood fl ow responses might 
also exist in the absence of large changes in the LFP, 
providing strong evidence that it is not the extracellu-
lar current that causes increase in CBF, but the intrac-
ellular signalling cascades related to neurotransmitter 
release, uptake and recycling. Indeed, while the hemo-
dynamic response provides supplies of glucose and 
oxygen, it is not the processes that require the energy 
that call for an increase in CBF, but rather,the pro-
cesses triggered in a feed-forward manner by neu-
rotransmitter related signalling (Lauritzen 2005).

The notion that functional imaging measures the 
aggregate synaptic input to a local area also resolves a 
number of apparently confl icting results from imaging 
and electrophysiological experiments. Being sensitive 
to the synaptic input, functional imaging “sees” modu-
latory lateral and feed-back projections, which might 
not be strong enough to induce signifi cant changes in 
neuronal fi ring rates, but nevertheless provide a larger 
proportion of the total synaptic input. For example, 
human imaging revealed infl uences of spatial attention 
in many visual areas, including primary visual cortex. 
At the same time, such attentional infl uences have 
been persistently diffi cult to demonstrate using single-
neuron recordings, or turned out to be much weaker 
than expected from human imaging (Luck et al. 1997; 
Kastner and Ungerleider 2000; Heeger and Ress 2002). 
Given that attentional infl uences are supposedly medi-
ated by feed-back projections from higher visual and 
fronto-parietal regions, they might provide exactly this 
kind of input that is visible only using functional imag-
ing. Along the same lines, it has been much easier to 
see cross-modal interactions, i.e. infl uences of one 
sensory modality on another, using functional imaging 
than using electrophysiology (Calvert 2001; Kayser 
and Logothetis 2007). For example, functional imag-
ing demonstrated that auditory cortex can be modu-
lated and even activated by visual or somatosensory 
stimuli (Kayser et al. 2007b), while the same effects 
are only weakly present at the level of single neuron 
fi ring rates. However, in full agreement with the above, 
visual modulation was well evident at the level of fi eld 
potentials recorded in auditory cortex, again demon-
strating a closer correspondence of the BOLD signal 
with fi eld potentials than with fi ring rates (Kayser 
et al. 2008).
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4.6 Conclusions

The hemodynamic responses characterized by func-
tional imaging better refl ect the aggregate synaptic 
activity and local processing that is characterized by 
the LFPs, rather than providing information about the 
typical fi ring rates in the same region. This partly 
results from the mechanisms that drive increases in 
blood fl ow, which reside upstream from the axo-
somatic level and near the synaptic-dendritic level. 
The collective fi ndings of many studies provide good 
evidence for the notion that functional imaging refl ects 
the input into a local region but not necessarily the out-
put of the same. Under many normal conditions, the 
input and output of a local region will be related, and 
hence functional imaging will provide information 
about the typical neuronal fi ring rates in the same 
region. As a result of this sensitivity to synaptic input, 
functional imaging signals are more susceptible to 
modulatory feed-back input, which often might pro-
vide only a minor contribution to the response strength 
of large principal neurons. However, for a priori and 
most experimental conditions, it is unclear what rela-
tionship to expect between in- and output, and hence 
feed-forward and feed-back related activations cannot 
be distinguished. As a result, it can sometimes be mis-
leading, if not dangerous, to make direct inferences 
from imaging results about the underlying neuronal 
processes. Especially for applications with immediate 
consequences, such as clinical diagnostics and surgical 
planning, it seems prudent to establish well defi ned 
paradigms in which the neural correlates of the imag-
ing signal have been validated using combined electro-
physiological and imaging approaches.
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High-Field fMRI
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5

5.1 Introduction

In recent years, functional magnetic resonance imaging 
(fMRI) has become a widely used approach for neuro-
science. However, this method has the potential to be 
improved with regard to both spatial and temporal reso-
lution. The blood-oxygenation level-dependent con-
trast (BOLD) represents signal changes in T2 or T2* 
weighted images. These sequences are presumed to be 
well suited to high magnetic fi eld strength, as fMRI 
sequences benefi t from higher signal-to-noise ratio 
(SNR) and higher signal in BOLD contrast images 
(Vaughan et al. 2001). However, their sensitivity to sus-
ceptibility also causes problems, e.g. in-plane dephas-
ing and signal dropouts near tissue-air boundaries.

To achieve greater insights into brain function, 
high-fi eld fMRI has been applied in some studies to 
attain higher spatial resolutions (Duong et al. 2003; 
Pfeuffer et al. 2002a). These studies focused on high-
resolution images which can be acquired rapidly and 
with good temporal resolution. Additionally, the signal 
increase advantage in high-fi eld MRI has been studied 
(Pfeuffer et al. 2002b). Nearly all of these studies, 
therefore, accepted restrictions in the fi eld-of-view and 
the number of slices for 7 T imaging and avoided areas 
near tissue-air boundaries. For broader application and 
for analysing cognitive functions, however, a more 
extended coverage of the brain is needed to reveal net-
work activation involving multiple areas. This chapter 

will give insights into the pros and cons of high- and 
ultra-high-fi eld fMRI and into ongoing developments 
to overcome the restrictions referred to and improve 
the benefi ts.

5.2  Benefi ts and Limitations 
of High- and Ultra-High-Field MRI

The introduction of ultra-high-fi eld MRI systems has 
brought MRI technology closer to the physical limita-
tions, and greater development effort is required to 
achieve appropriate sequences and images. 3 T MRI 
systems are high-fi eld systems maintaining a relatively 
high comfort level for the user similar to 1.5 T MRI 
systems (Alvarez-Linera 2008; Norris 2003). Theoreti-
cally, the SNR at high-fi eld MRI should, according to 
the Boltzmann equation, show a linear increase with 
increasing magnetic fi eld strength. But, the interactions 
of the magnetic fi eld and other infl uencing factors, e.g. 
relaxation times, radio frequency (RF) pulses and coils 
performance during image acquisition, are very com-
plex. One important factor is the change in RF pulses 
in higher magnetic fi eld strengths. Changing the fi eld 
strength from 1.5 to 3 T results in a fourfold increase in 
the required energy, resulting in an increase in specifi c 
absorption rate (SAR) (Ladd 2007). The increase in 
SAR leads to limitations in image acquisition, as the 
absorption of energy in the tissue cannot be allowed to 
exceed certain thresholds. Therefore, restric tions in the 
number of slices and achieving homo genous excitation 
of the nuclei increase with higher fi eld strength.

Current 3 T scanners have been signifi cantly improved 
since their introduction, especially with regard to coil 
developments; therefore, today the advantages, such as 

E. R. Gizewski
Department of Diagnostic and Interventional Radiology
and Neuroradiology, University Hospital Essen,
Hufelandstrasse 55, 45127 Essen, Germany
e-mail: elke.gizewski@uni-due.de



36 E. R. Gizewski

faster acquisition time and/or higher resolution, are 
greater than the disadvantages, such as higher costs and 
in some cases, instability in running the systems (Scheef 
et al. 2007). For higher fi eld strength, e.g. 7 T, the devel-
opments are still in the process of  improvement.

Another important point is the magnet design. Espe-
cially at 7 T, the magnet is very long compared to a 
typical 1.5 T magnet. The bore is 60 cm as at 1.5 T, but 
due to the length gives a narrow impression (Fig. 5.1). 
Therefore, anxiety is again a problem for imaging. A 
fi nal important point is the contraindication of every 
metal implant at 7 T. Even non-ferromagnetic material 
can be infl uenced due to induced electrical currents. 
When located in the centre of imaging, such material, 
e.g. a surgical calotte fi xation, would lead to disturbing 
artefacts.

5.3 Special Aspects of High-Field fMRI

BOLD contrast images are normally acquired using a 
gradient echo-planar technique (EPI). Optimal sequence 
design has to take into account echo times and sam-
pling period; the variation in sensitivity between tissues 
with different baseline T2*, the effects of physiological 
noise, and non-exponential signal decay are relevant 
infl uencing factors (Gowland and Bowtell 2007). In 
high-fi eld fMRI the optimal TE is shorter than at 1.5 T. 
The shortening of T2* is proportional to the magnetic 
fi eld (Okada et al. 2005). The TE used in optimized 3 T 
fMRI imaging is between 30 and 35 ms (Preibisch et al. 
2008). The optimum TE for 7 T has been reported to be 
around 25 ms in focused fMRI in the occipital cortex 
(Yacoub et al. 2001).

As mentioned above, the SNR should increase with 
the magnetic fi eld strength. Some studies have revealed 
a BOLD signal increase up to fi vefold in 7 T fMRI com-
pared to 1.5 T BOLD signals. Studies focussing on an 
increase in resolution and small fi eld-of-view (Pfeuffer 
et al. 2002c) could reveal a higher signal increase at 7 T 
than studies with whole-brain coverage (Gizewski et al. 
2007). This variability can be explained taking into 
account the above mentioned factors infl uencing the 
SNR. Additionally, the impact of these factors increase 
with higher fi eld strength, resulting in a greater variabil-
ity of BOLD signal between different measurements 
and subjects at 7 T compared to 1.5 T. The relatively 
wide range of relative BOLD signal changes compared 
to 1.5 T and even 3 T may also be explained by the dif-
fi culty in achieving a uniform static magnetic fi eld shim 
and a uniform RF excitation fi eld at 7 T. The fMRI 
experiments at 7 T are therefore more dependent on 
fi eld inhomogeneities, and these have to be taken into 
account during image analysis.

The BOLD effect at higher fi eld strength increases 
less in vessels larger than the voxel size and is thus 
more pronounced in vessels smaller than the voxel 
size. By using smaller voxels at higher fi eld strength 
compared to 1.5 T, the BOLD signal can become more 
specifi c and reliable (Shimada et al. 2008; Zou et al. 
2005). Therefore, the signal changes should be more 
closely linked to the cortical activity. With the increas-
ing signal and enhanced stability of the BOLD signal 
at higher fi eld strength, the repetition of events can be 
reduced. At ultra-high fi elds even single events can 
give reliable BOLD signal.

Fig. 5.1 7 T MR scanner with a bore of 60 cm and a length of 
3.50 m. The MR is surrounded by 425 tonnes of steel. The upper 
fi gure shows a person before positioned feed fi rst into the scanner. 
The second fi gure shows a person head fi rst in the scanner with 
the head in the iso-centre, the feet covered with a sheet
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A main problem at high fi eld strength is the achieve-
ment of good response functions even in areas suffering 
from, for e.g., in-plane dephasing and signal dropouts 
near tissue-air boundaries. A further central problem is 
the increasing chemical shift, proportional to the mag-
netic fi eld strength. All these limitations lead to errors 
when reading the echo. Therefore, the optimization of 
scanning parameters and coil construction is of much 
greater importance than in routine 1.5 T scanners. The 
following paragraphs will give some examples of devel-
opments in ultra-high-fi eld BOLD imaging.

The shimming, especially at 7 T, should be per-
formed manually by the user. Although the standard 
shimming algorithm may be used, multiple repetitions 
should be performed with close verifi cation of the 
result before starting the EPI sequence. At higher fi eld 
strengths, a per slice shimming may be necessary to 
account for increased B0 distortions. Additionally, the 
phase correction parameters can be calculated slice by 
slice using three non-phase-encoded navigator echoes 
before the EPI readout (Heid 1997).

Nevertheless, there are increased susceptibility 
artefacts at 3 and 7 T compared to 1.5 T. Signifi cant 
improvement can be reached by using more advanced 
head coils than circularly polarized (CP) coils. Multi-
channel coils allow application of parallel acquisition 
techniques (Mirrashed et al. 2004). Multiple channels 
provide further increases in SNR and, coupled with 
parallel imaging, reduce artefacts e.g. due to suscepti-
bility differences near tissue-air boundaries as is known 
from experience at 1.5 T. It has been demonstrated that 
the use of parallel imaging at 3 T results in an increase 
of BOLD signal depending on the employed parallel 
imaging method and its implementation (Preibisch 
et al. 2008). At 7 T the coil equipment has to be newly 
developed, as the 7 T MRI systems require combined 
transmit and receive (t/r) coils. First t/r coils were CP 
designs which did not enable parallel imaging tech-
niques, but multi-channel designs with up to 32 receiver 
channels are now available.

A further disadvantage at high fi eld could be a 
restriction in the number of slices due to SAR restric-
tions and inhomogeneous resolution over the brain 
(Wiggins et al. 2005). Therefore, the coils and  sequences 
have to be chosen depending on the paradigms to be 
applied. Again, parallel imaging can be useful for 
reducing the RF load on the tissue and enabling more 
slices. It was shown that at 3 T a reduction factor of 2 

in parallel imaging can be used with only little penalty 
with regard to sensitivity (Preibisch et al. 2008).

Some problems in image distortion can be solved 
using spin-echo instead of gradient-echo EPI sequences, 
but they are not routinely used. The blood contribution 
that dominates Hahn spin-echo (HSE)-based BOLD 
contrast at low magnetic fi elds and degrades specifi city 
is highly attenuated at high fi elds because the apparent 
T2 of venous blood in an HSE experiment decreases 
quadratically with increasing magnetic fi eld. In con-
trast, the HSE BOLD contrast increases supralinearly 
with the magnetic fi eld strength. Yacoub et al. report 
the results of detailed quantitative evaluations of HSE 
BOLD signal changes for functional imaging in the 
human visual cortex at 4 and 7 T (Yacoub et al. 2003). 
They used the increased SNR of higher fi eld strengths 
and surface coils to avoid partial volume effects. Fur-
thermore, they could show that high-resolution acqui-
sitions lead to a CNR increase with voxel sizes <1 mm3. 
It was concluded that the high-fi eld HSE fMRI signals 
originated largely from the capillaries, and that the 
magnitude of the signal changes associated with brain 
function reached suffi ciently high levels at 7 T to make 
it a useful approach for mapping on the millimetre to 
submillimetre spatial scale.

The problem that thermal and physiological noise 
dominates the SNR of the fMRI time-course at high 
spatial resolutions at high fi eld strengths can be a 
prom inent issue if a high-resolution matrix and a thin 
slice thickness are used. The problem is acquiring data 
at lower resolution, which is then dominated by physi-
ological noise. A solution would be to acquire data at 
high resolution and smooth the data back to the desired 
lower resolution. In such cases the physiological noise 
can limit some benefi ts of high-fi eld acquisition, since 
increases in image SNR produce only small increases 
in time-course SNR if the 1.5 T resolution is used 
(Triantafyllou et al. 2006). But, some problems even at 
3 T remain; low frequency periodic fl uctuations were 
found to have increased as well as the time-dependent 
increase in noise, especially in long EPI sessions 
(Shimada et al. 2008).

Normally, gradient-echo EPI sequences are used for 
fMRI, especially for clinical applications. Therefore, 
the optimization of EPI sequences and reduction in 
artefacts is of great importance. Multi-channel coils 
are basically an array of surface coils with higher sig-
nal in the periphery than in the centre. At higher fi eld 
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strength, the signal even in the centre of multi-channel 
coils is higher compared to 1.5 T. Results obtained at 
3 T using a combination of multi-channel coil and 
 parallel imaging showed that BOLD sensitivity 
improved by 11% in all brain regions, with larger gains 
in areas typically affected by strong susceptibility arte-
facts. The use of parallel imaging markedly reduces 
image distortion, and hence the method should fi nd 
widespread application in functional brain imaging 
(Poser et al. 2006).

In summary, an extended optimization of sequences 
and new coil developments, especially new transmit-
receive coils, will be necessary to exploit all of the out-
standing possibilities and advantages of ultra-high-fi eld 
MRI (Scheef et al. 2007).

5.4  Ultra-High Field fMRI and Possible 
Clinical Applications

3 T fMRI is increasingly used in clinical and experi-
mental studies in most countries. In addition to devel-
opments in coil technology, 3 T MRI provides an 
excellent solution for higher resolution and/or signal 
changes with an acceptable increase in susceptibility 
artefacts (Alvarez-Linera 2008).

3 T fMRI has been used in a variety of experiments 
so far. The initial dip in the motor and visual areas was 
examined simultaneously using a visually-guided fi n-
ger-tapping paradigm (Yacoub and Hu 2001). Other 
experiments could show that fMRI measurements quan-
tifying the strength of activity and centres of mass in 
response to tasks offer sensitive measurements of change 
over repeated imaging sessions. Therefore, fMRI at high 
fi eld strength can be used for serial investigations of 
individual participants using simple motor and cognitive 
tasks in a simple block design (Goodyear and Douglas 
2008). These results are very promising in respect to 
advanced clinical use of high-fi eld fMRI. At 1.5 T, one 
main problem is the restriction in obtaining individual 
activation maps due to lack of sensitivity and specifi city. 
This can be overcome with the more stable hemody-
namic response function and higher BOLD signal at 3 T 
and, even more at higher fi eld strength, e.g. 7 T.

The fi rst 7 T studies were performed to demonstrate 
the feasibility of BOLD fMRI using EPI and to charac-
terize the BOLD response in humans at 7 T using visual 
stimulation. These results indicate that fMRI can be 

reliably performed at 7 T and that at this fi eld strength 
both the sensitivity and spatial specifi city of the BOLD 
response are increased. These studies suggest that ultra-
high-fi eld MR systems are advantageous for functional 
mapping in humans (Yacoub, Shmuel et al. 2001).

Decreasing the voxel size at high fi eld strength and 
simultaneously obtaining high temporal resolution is a 
major challenge and is mainly limited by gradient per-
formance. Pfeuffer et al. used an optimized surface coil 
setup for zoomed functional imaging in the visual cor-
tex (Pfeuffer et al. 2002c). With a single-shot acquisi-
tion at submillimetre resolution (500 × 500 mm2) in the 
human brain and a high temporal resolution of 125 ms, 
activation of single-trial BOLD responses were obtained. 
There fore, the possibilities of event-related functional 
imaging in the human brain were expanded.

Further experiments have addressed retinotopic 
maps at 7 T. An identifi cation of visual areas in the 
occipito-parietal cortex was found (Hoffmann et al. 
2009). It was demonstrated that the mean coherence 
increased with magnetic fi eld strength and with voxel 
size. At 7 T, the occipital cortex could be sampled with 
high sensitivity in a single short session at high resolu-
tion. Therefore, retinotopic mapping at 7 T opens the 
possibility of detailed understanding of the cortical 
visual fi eld representations and of their plasticity in 
visual system pathologies.

For clinical use, the activation in eloquent areas such 
as the sensory–motor areas and coverage of larger brain 
volumes are of great importance. One study at 7 T 
revealed activation in all sensory–motor areas at 7 T: SI, 
MI, SII, SMA, thalamus, and contralateral cerebellar 
areas involved in sensorimotor processing (Gizewski 
et al. 2007). Even when using a t/r CP coil, the signal 
change was a factor of 2–5 higher at 7 T than at 1.5 T. At 
7 T, susceptibility artefacts were present especially in 
the basal brain structures, but a well-fi tted response 
curve could be detected in all sensory–motor areas at 7 
T, even in areas suffering from susceptibility such as the 
cerebellum (Fig. 5.2). In contrast to the results at 1.5 T, 
thalamic activation was found in all subjects and revealed 
an excellent response function. Even single block analy-
ses at 7 T revealed similar or even higher response 
strength than multi-block measurements at 1.5 T. These 
results indicate that fMRI can be robustly performed at 
7 T covering the whole brain using a t/r CP head coil 
with higher signal and increased stability of the 
 hemodynamic response curve. The excellent response 
 functions and signal change elevations shown in this 
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study using a well-established, simple sensory–motor 
paradigm indicate that even in susceptibility problem-
atic brain regions ultra high-fi eld fMRI is possible.

The signal increase in ultra-high-fi eld fMRI depends 
on many factors, not only on the magnetic fi eld 
strength. Some studies have revealed a signal increase 
of up to fi vefold using imaging parameters focused on 
increased spatial resolution and small fi eld-of-view 
(Pfeuffer  et al.  2002a, b). The sensitivity is somewhat 
constrained by the SNR characteristics if a CP head 
coil is used in conjunction with standard voxel sizes 
from 1.5 T. It has been shown that a reduction in voxel 
size leads to an improvement in time series SNR 
through a decrease in physiological noise (Triantafyllou 
et al. 2005). The relatively small BOLD changes in 

certain brain areas in the CP study might be explained 
by this effect, but the use of larger voxels allows whole-
brain coverage.

It is likely that many future studies will not strive 
for exceptional resolution in one area of the brain but 
be targeted at analysing complex networks. Especially 
cognitive functions will require more slices and cover-
age of extended brain areas. Furthermore, some inter-
esting structures such as the hippocampal region can, 
as in the cerebellum, suffer from signal dropouts near 
tissue-air boundaries.

In respect to more direct clinical application, fi rst 
experiments with a speech paradigm could reveal the 
advantages of 7 T fMRI combined with an eight- 
channel head coil and a parallel acquisition technique 
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Fig. 5.2 (a) Plot of fi tted response function at the main cluster in 
the cerebellar sensory–motor areas at 1.5 T (representative sub-
ject). Statistical parametric maps of activation within all subjects 
performing the fi nger tapping task compared with rest period at 
1.5 T. Task-related increase in MR signal is superimposed on 
coronal section of a 3D T1-weighted standard brain. Statistically 
corrected threshold is p < 0.05. Results show main activation in 

cerebellum. (b) Plot of fi tted response function at the main clus-
ter in the cerebellar sensory–motor areas at 7 T (representative 
subject). Statistical parametric maps of activation within all sub-
jects performing the fi nger tapping task compared with rest 
period at 7 T. Statistically corrected threshold is p < 0.005. 
Results show main activation in cerebellum
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(Fig. 5.3).  Even using the parallel acquisition tech-
nique, an increase in BOLD signal could be obtained 
and a more extended activation and detection of lateral-
ization could be found. Further more, the application of 
parallel imaging led to a signifi cant reduction of arte-
facts (Fig. 5.4). Therefore, a reliable co-registration of 
high-resolution structural images with the EPI images 
could be performed. Figure 5.5 shows a patient with a 
cavernoma scanned pre-surgically at 1.5  T (a) and 7 T 
(b). The speech paradigm was a verb generation task 
in both measurements in a block design. The activation 
maps are superimposed on susceptibility-weighted 
images (SWI) at 1.5 and 7 T. In addition to the higher 
BOLD signal and the more extended activation at  7 T, 
the higher spatial resolution of the structural images 
confers further benefi t for surgical planning.

Further studies will have to also address cognitive 
functions involving more challenging brain areas. One 
recent study evaluated BOLD responses due to visual 
sexual stimuli at 7 T (Walter et al. 2008). This study 
could demonstrate that fMRI at high fi elds provides an 
ideal tool to investigate functional anatomy of subcor-
tical structures. Furthermore, due to an increased SNR, 
functional scans of short duration can be acquired at 
high resolution.

Besides fundamental experimental interests, e.g. 
for cognitive studies, clinical indications of 7 T fMRI 
can be imagined. Pre-surgical fMRI in patients with 
brain tumours could benefi t from either higher resolu-
tion or faster imaging. Even patients impaired with 
respect to motor function are for the most part able to 
perform a short fi nger movement suffi cient for a single 
block examination.

Fig. 5.4 EPI images are very 
sensitive for susceptibility 
artefacts using a t/r CP head 
coil (a). Parallel acquisition 
techniques can reduce these 
artefacts, especially at 
high-fi eld MRI (b). Both 
images show patients with a 
brain tumour performing a 
fi nger-tapping task compared 
to rest. Using the parallel 
imaging technique also allows 
the acquisition of a higher 
resolution (matrix 128 × 
128 m2 in this case) than the 
sequence applied with the CP 
head coil

Fig. 5.3 Statistical parametric maps of activation within all sub-
jects performing the verb generation task compared with rest 
period at 1.5 T (a) and 7 T (b) superimposed on a standard brain 
in transverse orientation. Statistically corrected threshold is 
p < 0.005. Activated areas of Broca and Wernicke regions are 
shown at both fi eld strengths but with more extended clusters 
and higher signal change at 7 T
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Fig. 5.5 Statistical parametric maps of activation within one 
patient performing the verb generation task compared with rest 
period at 1.5 T (a) and 7 T (b) superimposed on SWI images. 
Statistically corrected threshold is p < 0.005. Activated areas of 
Broca and Wernicke regions are shown at both fi eld strengths but 

with more extended clusters and higher signal change at 7 T. 
Furthermore, the structural images have a higher in-plane reso-
lution at 7 T with enhanced tumour-brain differentiation and 
superior depiction of the inner structure of the cavernoma
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6.1 Introduction

Analyses of fMRI data is a science on its own. There is 
a variety of software packages available – shareware 
for the most part – that offers multifarious possibilities 
to analyze the data. AFNI, BrainVoyager, FSL or spm2” 
are the most commonly used packages to name a few. 
As they also offer options to analyze very complex 
study designs, they tend to be time consuming even in 
analyses of block-designs, which are the most com-
monly used paradigms in clinical routine. Integration 
of fMRI into clinical routine, therefore, requires either 
a team that focuses on the performance of the scan and 
analyses of the data, or fast and reliable solutions that 
enable doing that along with the pace of a busy sched-
ule. Most institutions do not have dedicated work 
groups (besides those for research purposes); so, there 
is a need for “press-button” solutions. The idea is not 
new (Möller et al. 2005), and all manufacturers offer 
software packages to analyze fMRI data. Recently, it 
has been shown that most of the commonly used pack-
ages are similar in terms of fi nding areas that have been 
programmed into the data (Morgan et al. 2001; Cheng 
et al. 2006); so, the choice of software seems to be 
determined by the user’s preference. However, a com-
parison of the various software packages provided by 
the manufacturers has not been performed to date.

6.2 Material and Methods

6.2.1 Overview

Our institution is equipped with 1.5 and 3 T MR scanners 
from Philips (Best, The Netherlands). For preoperative 
mapping, we perform fMRI to locate the motor strip and 
speech related areas (Ogawa et al. 1990). Patients per-
form a fi st-grasp task in a block design at an external 
given pace alternating for both hands, with a rest period 
in between. Foot motion is performed in the same setting 
with patients being told and trained to wiggle their toes 
in order to avoid too strong movements of the body and 
therefore, also the head. For tongue movements, patients 
are told to circle the tip of the tongue at the back of the 
front teeth keeping the mouth shut, again with rest peri-
ods in between. For language mapping, we perform 
silent naming with three different tasks. In the fi rst task, 
the patients are instructed and trained to name words that 
start with a given letter. The second task is a verb genera-
tion task and the third is a group membership task that 
also covers word comprehension and production. 
Language tasks are also performed in block design. The 
side of the body that is supposed to move, the pace of 
the movement or the  stimuli for the language tasks are 
all presented using the IFIS-SA fMRI system (Invivo, 
Orlando, FL, see Fig. 6.1) with a head-mounted display 
 fi xated on the eight channel head coil. All the experi-
ments are performed at the 3 T scanner. The stimulation 
paradigm was programmed with E-Prime (Psychology 
Software Tools Inc., Pittsburgh. PA).

To compare the different software packages, we 
performed fMRI in ten healthy right-handed male stu-
dents (mean age 24, range: 21–25 years) and selected 
ten consecutive patients who had recently undergone 
fMRI preoperatively. All ten volunteers performed all 
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six tasks in random order to avoid bias through mental 
or physical fatigue; the patients performed either lan-
guage or motor tasks depending on the location of their 
lesion. Comparison of the software packages was 
always done one-by-one. Analysis of the data was per-
formed using the original T2*-weighted images as 
underlying anatomy to avoid overlay errors due to 
anisotropic voxels of the EPI-sequence compared to 
isotropic voxels in T1-weighted images. As spm2 is 
used for most research studies in our institution, we 
called it the Gold-standard to defi ne the functional 
areas. In all the subjects, we performed the motion cor-
rection for translation and rotation, a non-rigid nor-
malization (realignment) and used the general linear 
model (GLM; t-test). Activity was defi ned as a color-
coded blob that was depicted by either software. We 
defi ned true positive activity as areas that were detected 

by both software packages that were then being com-
pared. If these areas differed, we analyzed the time 
course of the signal intensity changes over the period 
of the measurement in this region of interest (ROI). 
False positive activity was only detected with spm2 
additionally proven by the time course. False negative 
activity was only found by the other software proven 
by the signal intensity changes. Activity that was found 
with either software but did not show the warranted 
signal intensity changes was defi ned as an artefact.

The threshold for each task was defi ned in the sub-
ject with the lowest activity at this task to still depict 
the primary motor area and ipsilateral cerebellar 
 activity, or activation in the frontal operculum and pos-
terior speech associated language areas for language 
tasks, respectively. These thresholds were used through-
out the study for all the subjects. For each task and 

Fig. 6.1 Photograph of the preoperative setting. The patient/
volunteer lies in a supine position with the head being placed in 
the eight channel coil. On top of the coil there is the head-

mounted display used to present the stimuli generated by the 
again IFIS workstation (Invivo, Orlando, FL) being outside the 
magnet room
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 software, we thus defi ned a threshold (Table 6.1). The 
results of the different software packages were then 
compared – slice by slice – in each  individual case.

Besides the obtained results, the software packages 
were also judged in terms of speed and  user-friendliness. 
All the manufacturers were contacted and informed 
about this comparison.

Connected through a network DICOM data was 
transferred to the workstations. We used k-PACS 
(IMAGE Information Systems Ltd., London) as a 
server for the data.

6.2.2  Software Packages 
(in Alphabetic Order)

6.2.2.1 BrainLAB

BrainLAB offers iPlan3.0, which is primarily designed 
for neuronavigation. There is a tool in the package 
called “BOLD MRI Mapping” that analyzes fMRI 
data. The data can be loaded and is automatically 
 recognized as a BOLD study. Loading is fast and 
 semi-automatic. Gaussian smoothing and a motion 
correction are offered that correct for rotation and 
translation in three planes. BOLD MRI Mapping opens 
the data set and creates three orthogonal planes. These 
planes are reconstructions from the original data (also 
the axial orientation). A T1-weighted data set can be 
used instead for neuronavigation purposes. The used 
paradigm can be created easily with three scroll bars 
(block-design only) defi ning task and rest length. Once 
created, it can be used for all studies. For statistical 
analyses the GLM and a t-test are performed. A thresh-
old bar allows for setting a defi ned statistical threshold 
based on the t-value. Having three orthogonal planes, 
activations can be seen also in coronal or saggital views 

(such as in spm2) that sometimes eases anatomical 
allocation. To see the signal intensity changes each 
voxel (and rectangles of 3 × 3 voxels) can be defi ned as 
ROI by  simply clicking on it in a frame called “time 
series view”. The stimulation paradigm is overlayed 
to ease  decision making.

iPlan is (compared to spm2) fast in loading and ana-
lyzing the data. Analysis of the signal intensity changes 
in defi ned ROIs is possible at all times and everywhere 
in the brain. Screen shots are available for documenta-
tion. If the data is corrupted by head motion that can 
not be corrected for there is an option to yield only 
areas defi ned by the investigator (after proving the cor-
rect signal intensity changes over time in these voxels) 
to still allow its use for neuronavigation. This, how-
ever, also offers to manipulate the data. iPlan obviously 
offers the advantage of having the data local on the 
navigation computer and can merge these data with 
anatomical sets for neuronavigation rather than inte-
grating bitmaps into MPR or T1 data sets. The results 
can also be sent back to PACS.

6.2.2.2  NordicNeuroLab (NNL)/
NordicImagingLab (NIL)

NordicNeuroLab offers NordicIce that can also ana-
lyze DTI or perfusion data. As spm2, nordicICE can be 
run on a PC, however, no additional software (like 
MATLAB) is required. Loading of the data is fast and 
easy. The BOLD module to be selected from a pull-
down menu opens a new window guiding the investi-
gator through the steps. Being familiar with the steps in 
spm2 is helpful as the design is modelled on the spm2 
design; however, the steps are almost self-explaining. 
Activity and rest conditions are specifi ed either by sec-
onds or time points offering also the option to vary the 
length of each condition within a measurement. It is 
however also primarily designed for block designs. 
Once created, these designs can be used for all studies. 
A variety of pre-processing steps (slice-time correc-
tion, movement correction, Gaussian smoothing and 
high-pass fi ltering) can be modifi ed as desired. Our 
impression was that using the default parameter worked 
pretty well. Again the GLM is used for statistics that 
however offers to modify hemodynamic response func-
tion (HRF), temporal smoothing and data thresholding. 
For each of the above mentioned steps there are default 
options available.

paradigm spm2 Iview 
Bold

nordicIce iPlan 
cranial 3.0

Hand  8.2 0.47 6.1 8.0
Foot 10.5 0.6 8.2 9.0
Tongue  8.2 0.65 9.9 4.0
LBS  8.2 0.4 7.9 5.4
Verb genera tion  8.2 0.4 7.9 5.4
Word groups  6.9 0.4 6.5 7.7

Table 6.1 Thresholds of the various programs used. Note the 
differences between the programs using identical data.
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Analyzing of the data is very fast and could not be 
beat by any other “press-button” solution. After analyz-
ing the data a simple drag and drop enhances the  activity 
that obviously can also be overlaid onto any other 
 anatomical data set. Thresholding again is a mouse 
click away and can be done either by using a scroll bar 
or by typing the T-value. To analyze the signal intensity 
change over time various ROI shapes can be defi ned 
and the time course can be displayed from any region or 
voxel. Additionally the graph of the motion correction 
initially performed can be reviewed at any time to also 
depict motion related activity. Results and graphs can 
be saved and copied into any other image analyses 
 program and furthermore the color-coded maps can be 
sent back to PACS. From there integration into a neuro-
navigation system is also possible.

6.2.2.3 PHILIPS

The PHILIPS tool to analyze fMRI data is called 
IViewBOLD. It runs on the console that controls the 
scanner and can thus be analyzed while the patient or 
volunteer is still in the scanner even in an online mode. 
There is therefore no need to load any data or transfer it 
from a server as long as the data is still on the hard disc. 
The investigator has the option to select or deselect a 
motion correction; however, no graph can be seen or 
analyzed afterwards. Compared to the other tested soft-
ware packages, IViewBOLD is the only one to use a 
cross correlation for statistical anaylsis. Handling is fast 
and easy. The paradigm can be created using a pull down 
menu and periods of activation and rest be thus defi ned.

Thresholding is performed through changing the 
cross-correlation coeffi cient. The activity can be over-
laid onto the T2* or any other anatomical image that is 
acquired in the same orientation and fi eld of view 
(FOV). Results can be stored either as screenshots or 
as bitmaps that can be sent to PACS. From there the 
data can be integrated into a neuronavigation device. 
ROIs can be defi ned everywhere and analyzed in terms 
of the signal intensity changes over time. Each time a 
calculation of each timepoint is performed separately 
that makes analyses of various areas tiring.

6.2.2.4 spm2

After being on the market for more than a decade now, 
there is so much information about spm2 available 

that could hardly be summarized in short. spm2 is free 
software that can be downloaded from the spm2 web-
site (Wellcome Department, London; www.fi l.ion.ucl.
ac.uk/spm2) (Friston et al. 1994). It however requires 
the commercially available program MATLAB (The 
MathWorks, Natick, MA).

There are various websites that discuss the options 
that spm2 offers. Instructions can be found easily and 
there are dedicated training courses for spm2, so that 
the approach to describe what the program is capable 
to do would certainly go beyond the scope of this 
chapter. To cut a long story short, spm2 offers the big-
gest variety to analyze fMRI data (from this chosen 
selection). Its motion correction is superb. Prior to 
analysis the image data has to be converted into the 
ANALYZE format.

Offering so many options, handling of spm2 is thus 
complicated/awkward. As it was never meant to be a 
tool for clinical applications speed and user-friendli-
ness was not the main scope of the developers. For 
clinical purposes however, it can only be used if a group 
within the department/team focuses solely on that.

One major drawback is the fact that – even though 
signal intensity curves can be analyzed – this is only 
possible in the local maxima of signifi cance defi ned 
by the program. If one would expect activity some-
where in the brain that is not depicted by the pro-
gram, changes of the signal intensity over time can 
not be analyzed or thresholds have to be changed 
accordingly.

Another drawback is that results in spm2 can not be 
sent back to PACS and therefore the analysis has to be 
done offl ine or a satellite solution has to be pro-
grammed. Neuronavigation based on fMRI results 
achieved by spm2 is thus burdensome and only achiev-
able taking a few detours (Fig. 6.2).

Results

As already stated under the individual subheadings, 
analysis of fMRI data with either software package 
was regarded to be more user-friendly compared to 
spm2. NordicICE was the fastest tool tested.

Motion correction seems to be the key issue. If 
subjects remained perfectly still during the scan, 
results were pretty much comparable independent of 
the software used. However, in volunteers and even 

www.fi l.ion.ucl.ac.uk/spm2
www.fi l.ion.ucl.ac.uk/spm2
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worse in patients there is always head motion and the 
quality of the results was strongly dependent on the 
motion correction. In spm2 there was almost no data 
that demonstrated the typical rim-shaped artefact 
resulting in task related motion. Overall there were 
fewer areas activated in spm2 than with the other 
packages with nordicICE being neck to neck. False 
positive areas (only detected by one software package 
other than spm2 proven by the signal intensity time 
course) were extremely rare and only found in nordi-
cICE. Most of the areas elucidated by any other soft-
ware than spm2 turned out to be an artefact and quite 
frequently task related. False negative areas (only 
detected by spm2) occurred sometimes. Some data-
sets were corrupted by motion making a reliable anal-
ysis impossible.

Language tasks activated more regions besides the 
expected language areas than motor tasks did. This is 
somewhat surprising on one hand as silent naming was 
performed, which should thus not necessarily lead to 
head movements. On the other hand language stimuli 
will activate wide distributed networks and besides “clas-
sical defi ned speech areas” there are more structures 
involved. Language remains tricky and as long as the 
problem of performing active speaking has not over-
come, we still map something like language or lan-
guage related areas at best.

In most tasks expected activity could be found in 
either software however there were many additional 
areas in those “press-button” packages. Only the signal 
intensity time courses could distinguish between real 
activity and artefact.

Fig. 6.2 Screenshots of the software packages used. (a) 
BrainLAB: three orthogonal views can be seen. In the upper 
part of the image there is the curve of the signal intensity 
change over time superimposed with the blocks of activity in 
pink. (b) NordicNeuroLab: screenshot of analyzed data and 

tool boxes including a HRF-function. Overlays can be done in 
various orientations. (c) Screenshot from the scanner. 
IViewBOLD analyzes the data while the subject is still in the 
scanner and presents the data overlayed in axial views. (d) 
spm2 – the Gold standard
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6.3 Discussion/Future Aspects

Press button solutions represent a quick and easy 
tool to perform analysis for fMRI. However, they 
require the cooperation of the subject and little head 
motion – not task related if possible. This is the major 
drawback of these solutions, as patients are usually 
impaired to some extent or have less compliance. 
Clinicians therefore have to lower their sights. If the 
patient does not move much, the results are pretty 
much the same independent of the software used. If 
this is not the case, fi ltering of artifi cial false positive 
areas becomes the issue i.e. to guide the neurosurgeon 
and tell him which color-coded blob is real. As 
BrainLAB offers a fading of artefacts for the neuro-
navigation it would be more reasonable to avoid 
appearance of these voxels completely. Some datasets 
were corrupted by motion making a reliable analysis 
impossible. These datasets, however, are the bottle-
neck of these tools. In clinical routine patients hardly 
follow criteria used to include healthy motivated vol-
unteers. Any press-button solution should defi ne real 
activity besides being user-friendly and fast, which 
was the case in all packages tested. Each package has 
its advantages and disadvantages. Comparing the tools 
IViewBOLD is obviously the fastest tool as it analyzes 
the data while the subject is still in the scanner. Motion 
correction is worse compared to other  packages and 
analyzing signal intensity time courses becomes tiring. 
NordicICE was found to be the fastest tool (after trans-
ferring the data over the network) depicting the areas 
most reliably (compared to spm2) and also elucidating 
false positive areas that were proven to be valid by the 
signal intensity time course. All packages (except for 
spm2) offer the option to transfer the data into PACS to 
discuss the cases interdisciplinary prior to neurosurgi-
cal resection.

Whatever press-button software is used, if the data 
is corrupted by head motion, we strongly suggest to 
additionally use another software such as spm2 or sim-
ilar to exclude false positive results. We would never 
rely on any “activity” presented by any software (not 
even spm2) as long as we have not proven that the 
depicted activity is real. The fact that it is not intended 
in spm2 to analyze any voxel in the brain is a major 
drawback especially in a clinical setting as we would 
sometimes like to know, why there is no activity in 

expected anatomical structures i.e. caused by misun-
derstanding of the subject what to do.

Even almost two decades after the initial description 
of the BOLD effect and published methods to analyze 
the data it still always comes back to very simple review 
of the raw data. The only truth is the signal intensity 
change according to the paradigm in an area close to 
the neuronal activity. Knowledge and understanding of 
the signal intensity course is mandatory for all fMRI 
analysis and will remain the mainstay of the analysis.

New software solutions will be presented that have 
to maintain their ground against already available 
tools. The approach to ease the analysis is highly 
appreciated for clinical routine. We highly recommend 
putting maximum effort in the motion correction of 
these tools that will fi nd their spot in clinical routine. 
As of now caution is still warranted using these pro-
grams if one will not perform a comparison of results 
as done here. Experience with an additional package is 
helpful if results are inexplicable, but analysis of the 
signal intensity changes remains mandatory.
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7

7.1  Rationale for fMRI in Rolandic 
Neurosurgery

Surgery in or around the “central region” entails a high 
risk for intraprocedural damage of the precentral and 
postcentral gyrus with consecutive motor and sensory 
defi cits that can impact the patient’s quality of life con-
siderably. By noninvasively providing a precise local-
ization of the different representations of the human 
body in relation to the surgical target, BOLD-fMRI 
facilitates the selection of candidates for surgery as 
well as the planning and performance of more aggres-
sive, but safe and function preserving resections 
(Petrella et al. 2006). This also implies that fMRI plays 
a role in identifying those patients who are not the 
ideal candidates for surgery and who may profi t more 
from less invasive therapeutic options like radiation or 
chemotherapy. Such patients often present with dif-
fusely infi ltrating or recurrent malignancies of the 
brain, and a complete resection and a surgical cure 
cannot be achieved. In this situation, defi cits associ-
ated with the treatment should be kept to a minimum. 
Prior to treatment, fMRI provides important diagnos-
tic information to evaluate the risks and chances on an 
individual basis and to optimize the therapeutic strat-
egy accordingly. In addition, functional landmarks are 
helpful to plan partial resections or biopsies. This also 
applies for awake craniotomies or epilepsy surgery. 
Hence, the majority of preoperative fMRI studies is 
performed in patients with brain tumors and epilepsies 

to preserve the adjacent eloquent brain areas. In nonre-
sective neurosurgery also fMRI can be applied, for e.g., 
in patients with medically intractable chronic pain. 
Here, it has been demonstrated that fMRI  facilitates the 
placement of stimulation electrodes over the motor 
cortex (Pirotte et al. 2005). Ideally, preoperative fMRI 
studies are conducted for  functional neuronavigation, 
and in combination with diffusion tensor imaging, 
(DTI) to also visualize important fi ber bundles during 
surgery, e.g., the pyramidal tract (Nimsky et al. 2006).

It is important to note that the central region can be 
localized easily and reliably on the basis of morpho-
logical images of the brain using different anatomical 
structures as landmarks (for details see Chap.2) (Fig. 
7.1). The most robust anatomical landmark is the “hand 
knob” of the precentral gyrus, representing the struc-
tural correlate of the motor hand area on transverse 
crossectional images, (Yousry et al. 1997) which also 
corresponds to the “precentral hook” on sagital images. 
The existence of these morphological landmarks sub-
stantiates the controversy whether functional imaging 
is necessary at all for rolandic neurosurgery. This view, 
however, does not account for the important limita-
tions of morphological brain imaging in the presence 
of anatomical variants or under pathological condi-
tions (e.g., mass effects, infi ltration, destruction, post-
operative state in recurrent malignancies, etc.), both 
precluding proper identifi cation of the different gyri 
and sulci. More importantly, the motor hand area is the 
only functional area that can be identifi ed reliably 
using anatomical criteria alone. All other representa-
tions of the human body can be identifi ed only by 
using functional neuroimaging (Fesl et al. 2003), both 
in the primary motor cortex (M1) and in the primary 
somatosensory cortex (S1). A substantial body of 
research supports the role of fMRI as a valid and valu-
able preoperative imaging modality (Stippich 2007). 
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University Hospital of Basel, Petersgraben 4, 4031 Basel, 
Switzerland
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Hence, the rationale for preoperative fMRI results 
largely from the limitations of structural brain imaging 
(Rolls et al. 2007). Furthermore, neuroplasticity and 
functional reorganization induced by the lesion or by 
the treatment can be assessed using fMRI (Shinoura 
et al. 2006), for e.g., in patients with motor and soma-
tosensory defi cits that are not explained conclusively 
by anatomical consideration and in patients who are 
candidates for repeated neurosurgery because of recur-
rent malignancies.

Taken together, the rationale for carrying out pre-
surgical fMRI is often based on the limitations of 
imaging morphology, clinical and electrophysiological 
diagnostics and the need to include data on physiologi-
cal and neuroplastic changes or pathologic (e.g., epi-
leptic) activation of the brain in treatment planning. 
This diagnostic information may be generated by fMRI 
in a single investigation before treatment by means of 
a combined visualization of anatomy, pathology and 
function. Combination of other modern methods of 
MRI, for example by mapping fractional anisotropy 

(FA) or DTI, may be helpful in depicting important 
fi ber pathways such as the pyramidal tract (Schonberg 
et al. 2006) (Fig. 7.2).

7.2 Review of Literature*

Mapping the primary motor cortex in patients with rolan-
dic brain tumors has been the fi rst clinical application of 
fMRI (Jack et al 1994). Shortly after the fi rst reports on 
BOLD fMRI in healthy subjects (Belliveau et al. 1991; 
Bandettini et al. 1992; Kwong et al. 1992; Ogawa et al. 
1993), the potential usefulness of functional imaging 
techniques in clinical context, and particularly in presur-
gical identifi cation of motor and somatosensory cortices 
was postulated. The fi rst description of presurgical fMRI 
as a clinically useful application dates from 1994, when 

Fig. 7.1 Anatomical landmarks on morphological MRI accord-
ing to Naidich and Yousry in transverse (upper row) and sagittal 
(lower row) views. White arrows indicate the relevant anatomi-

cal structures. The “hand knob” and “hook” are synonyms for 
the “precentral knob.” Reprinted from Stippich (2007, p 90) with 
permission

*Acknowledgement:
We thank Dr. Maria Blatow for her substantial contribution to 
the review of literature.
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Jack et al. provided proof of principle in two patients 
with brain tumors in the sensorimotor cortex, validating 
their preliminary results with established electrophysio-
logical techniques (Jack et al. 1994). Soon after, several 
case studies (Baumann et al. 1995; Cosgrove et al. 1996) 
and reports with small numbers of patients, (Puce et al. 
1995; Pujol et al. 1996; Mueller et al. 1996; Krings et al. 
1998) harboring glial tumors or arteriovenous malforma-
tions (AVM), confi rmed technical and practical feasibil-
ity of fMRI using motor and sensory tasks in the clinical 
context, and stressed the high potential value of this new 
upcoming technique for preoperative risk assessment, 
therapeutic decision making and surgical planning.

During the following years investigations with 
larger numbers of tumor patients (up to 50) were  carried 
out, claiming their results to represent an important 
factor for surgical decision (Schlosser et al. 1997; 
Pujol et al. 1998). Comparisons of presurgical fMRI 
data with the established reference procedure intracor-
tical stimulation (ICS) were numerous and only those 
specifi cally dealing with brain tumor patients will be 
mentioned here, since a detailed description of valida-
tion studies is offered in Chap. 11 and 12. Virtually all 
studies report highly concordant data of presurgical 
fMRI and ICS in patients with lesions around the cen-
tral sulcus (Dymarkowski et al. 1998; Achten et al. 
1999; Roux et al. 1999a, b) with agreement between 
fMRI and ICS data ranging from 83% in 33 patients 
(Majos et al. 2005) to 92% in 60 patients (Lehericy 
et al. 2000). Task sensitivity for identifi cation of the 
sensorimotor region estimated in large groups of tumor 
patients was 85% in 103 patients (Krings et al. 2001) 

or 97% in 125 patients (Hirsch et al. 2000). Furthermore, 
it should be briefl y noted, that various groups focused 
on the correlation of fMRI results in patients with cen-
tral lesions with those of other functional imaging pro-
cedures, for e.g., PET (Bittar et al. 1999).

One of the fi rst attempts to evaluate the impact of 
fMRI on neurosurgical planning was published by Lee 
et al. The authors applied preoperative fMRI sensorim-
otor mapping in 32 tumor patients and reported that the 
results were used to determine feasibility of surgical 
resection in 55%, to aid in surgical planning in 22% 
and to select patients for invasive surgical functional 
mapping in 78%. Overall, the fMRI results were useful 
in one or more of these surgical decision making cate-
gories in 89% of all examined tumor patients (Lee et al. 
1999). A similar range was documented by Ternovoi 
et al., who found that presurgical fMRI results had an 
infl uence on therapeutic tactics in 69% of 16 tumor 
patients (Ternovoi et al. 2004). Other investigators tried 
to establish a functional risk predictor for postoperative 
clinical outcome. Haberg et al. examined 25 patients 
with primary brain tumors near sensorimotor regions. 
In 80% of the patients, successful fMRI measurements 
were obtained, out of which 75% were used in preop-
erative planning. The risk of postoperative loss of func-
tion was signifi cantly lower, when the distance between 
tumor periphery and BOLD activation was 10 mm or 
more (Haberg et al. 2004). Similarly, Krishnan et al. 
who evaluated BOLD activation in 54 patients, found 
that a lesion-to-activation distance of less than 5 mm 
and incomplete resection were predictors of new post-
operative neurological defi cits and recommended 

Fig. 7.2 Integration of BOLD-fMRI and DTI-tractography for 
functional neuronavigation. 3D-surface projections (left: ante-
rior – posterior, right: top – down) and 2D-navigation view (mid-
dle). The spatial relationship of the cortical toe (red ), fi nger 
(orange) and tongue (pink) motor representations and of the 

pyramidal tract (green) to the segmented brain tumor (purple) is 
clearly depicted. The tumor affects the superior parietal lobule, 
invades the postcentral gyrus extending towards the cortical 
motor representation of the lower extremity
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cortical stimulation within a 10-mm range (Krishnan 
et al. 2004). In patients with medial frontal lesions, pre-
operative fMRI was used to establish the area at risk for 
resection of specifi c parts of the supplementary motor 
area, associated with transient postoperative motor def-
icits and speech disorders (Krainik et al. 2001; Krainik 
et al. 2003; Krainik et al. 2004). In a recent study the 
authors used fMRI-guided resection in 16 patients with 
low grade gliomas. Since these tumors are generally 
not contrast enhancing, resec tion borders are particu-
larly diffi cult to establish based on morphological 
imaging alone. Using fMRI for the determination of 
resection borders, no permanent neurological defi cits, 
and no radiographic tumor progression, within a median 
follow-up time of 25 months, were observed (Hall et al. 
2005). However, the data available to quantify a safe 
distance between functional activation and resection 
borders with respect to surgically induced neurological 
defi cits are still very limited and do not justify any gen-
eral conclusion or recommendation.

Overall, although the above mentioned studies clearly 
demonstrated feasibility of presurgical fMRI in clinical 
environment and postulated a contribution of the obtained 
additional clinical information to pretherapeutic decision 
making, an effect on the decrease in posttherapeutic mor-
bidity was not corroborated. In order to achieve this, con-
trolled clinical trials using optimized and standardized 
protocols would be required. Although most investiga-
tors agree on the necessity of a standardized routine, and 
several methodological studies presenting optimized pro-
tocols for clinical use were published (Hirsch et al. 2000; 
Ramsey et al. 2001; Rutten et al. 2002; Stippich et al. 
1999; Stippich et al. 2000; Stippich et al. 2002; Stippich 
et al. 2004; Stippich et al. 2005), no large scale clinical 
trials addressing actual benefi t for the patient, in terms of 
decrease in morbidity have been undertaken so far.

Although sensorimotor areas are identifi ed with high 
success rates using fMRI in patients with central lesions 
by most investigators, a frequently encountered phe-
nomenon is an altered pattern of activation as compared 
to the normal brain function, currently denominated as 
lesion-induced reorganization or plasticity. In an early 
study in seven patients with intracerebral gliomas of the 
primary sensorimotor cortex, activation was found to be 
displaced or reduced (Atlas et al. 1996). Roux et al. cor-
related the type of activation with histologic tumor 
characteristics in 17 patients. In infi ltrating tumors, 
intratumoral activation was detected, which was dis-
placed and scattered correlated with the degree of infi l-
tration, whereas in noninfi ltrating tumors activation 

showed extra-tumoral shift. In tumors at a distance from 
the motor cortex, no intratumoral activation was mea-
sured (Roux et al. 1997). Likewise, a PET study with 51 
patients describes that central lesions are more fre-
quently associated with altered patterns of activation 
than lesions in noncentral locations (Bittar et al. 2000). 
Other studies found signifi cant BOLD signal decrease 
in areas adjacent to tumor tissue in motor and sensory 
cortices as compared to the contralateral side. This 
effect was present in glial tumors, most pronounced in 
glioblastoma and presumably related to tumor induced 
changes in local cerebral hemodynamics (Holodny et al. 
1999; Holodny et al. 2000; Krings et al. 2002), while in 
nonglial tumors (metastasis, cavernoma, abscess, AVM, 
meningeoma) no BOLD signal decrease was found 
(Schreiber et al. 2000). A recent report on 33 patients 
with different intra- and extra-axial tumors, established 
the infl uence of tumor type and distance from eloquent 
cortex on activation volumes in fMRI (Liu et al. 2005). 
In addition to displacement or reduction of activation in 
the primary sensorimotor cortex harboring the tumor, 
other patterns of lesion-induced reorganization encom-
pass activation of solely the contralesional cortex or an 
enhanced activation of nonprimary sensorimotor areas 
with increasing degree of paresis (Alkadhi et al. 2000; 
Carpentier et al. 2001; Krings et al. 2002). Also in 
patients with prior surgery (Kim et al. 2005) or newly 
acquired central paresis after resection (Reinges et al. 
2005), signifi cant decreases in BOLD activation are 
observed. One possible explanation for this tumor-
induced BOLD signal loss was lately proposed by an 
fMRI study where tumor blood volume and perfusion 
were measured. The authors concluded that the BOLD 
amplitude correlates with total intratumoral blood vol-
ume and thus, reduced peritumoral perfusion due to a 
tumor aspirating perfusion (steal phenomenon) goes 
along with reduced BOLD activation (Ludemann et al. 
2006). Of note is however, that resection of glioma with 
preoperative edema may cause transient increase of 
BOLD activation ipsilateral to the tumor, presumably 
by a decrease of pressure on the brain (Kokkonen et al. 
2005). Lesion-induced functional reorganization may 
refl ect the recruitment of plastic neuronal networks to 
compensate for sensory or motor impairment. On the 
level of a functional diagnosis in presurgical fMRI these 
reorganization phenomena are of major clinical signifi -
cance for the planning of resections, since they can 
potentially cause false negative results.

During the past few years the use of combined pre-
surgical fMRI and DTI techniques for tractography 
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was suggested to provide a better estimate of proximity 
of tumor borders to eloquent cortex than fMRI mea-
surements alone. In particular, for space-occupying 
lesions affecting the central region, visualization of the 
origin, direction and functionality of large white matter 
tracts allowing imaging of functional connectivity, was 
put forward to improve surgical outcome and to prom-
ise a decrease in patient morbidity (Krings et al. 2001; 
Parmar et al. 2004; Ulmer et al. 2004; Shinoura et al. 
2005; Stippich et al. 2003; Holodny et al. 2001).

Very recently, fi rst reports on the application of real-
time fMRI in clinical environment were published. This 
novel technique enables quick preliminary online anal-
ysis of fMRI data, which is particularly useful in surgi-
cal diagnostics, considering that fMRI data acquisition 
and processing are very time consuming. Möller et al. 
demonstrated the technical feasibility of presurgical 
real-time fMRI examination in ten patients with central 
area tumors immediately prior to surgery (Moller et al. 
2005). In another study, motor and language tasks were 
used for real-time fMRI in 11 tumor patients. The 
authors reported satisfactory activation for hand motor 
tasks, weaker activation for foot motor tasks, and no 
useful activation for language tasks at the chosen 
threshold, concluding that the procedure needed to be 
optimized, but was generally feasible in clinical routine 
(Schwindack et al. 2005). Furthermore, Gasser et al. 
lately achieved the recording of intraoperative fMRI in 
four anesthetized patients with lesions in the vicinity of 
the central region. Using a passive stimulation para-
digm and analyzing the data during acquisition by 
online statistical evaluation, they obtained intraopera-
tive identifi cation of eloquent brain areas taking brain 
shift into account (Gasser et al. 2005).

Finally, with the introduction of higher magnetic fi eld 
scanners to clinical diagnostics, practicability of presurgi-
cal fMRI at 3 T was established in patients with brain 
tumors (Roessler et al. 2005; Van Westen et al. 2005; 
Feigl et al. 2008). Today the clinical implementation of 
preoperative fMRI is possible also in regional hospitals 
(Geerts et al. 2007). For a general review on the role of 
imaging in disease management and the development of 
improved image-guided therapies in neurooncology see 
also the latest article by Jacobs et al. (Jacobs et al. 2005).

Note: Very recently the American Medical Association 
(www.ama-assn.org) has released CPT-codes (Current 
Procedural Terminology) for clinical fMRI applications. 
General instructions for clinical fMRI can be found in 
the Current Protocols for Magnetic Resonance Imaging 
(Thulborn 2006).

7.3 General Considerations

Motor cortex mapping is the predominant preoperative 
application of fMRI because of its easy implementa-
tion in a clinical setting and the robust and valid func-
tional localizations. Typically, a simple block-design 
consisting of three to fi ve stimulation-baseline cycles 
is applied while the patients perform selfpaced move-
ments with the tongue or lips, hand or fi ngers and foot 
or toes, to investigate the motor cortex somatotopy.

Essentials for the success of clinical fMRI examina-
tions are (1) motor tasks that are feasible also in patients 
with paresis, (2) reduction of motion to a minimum and 
(3) short scanning times. Under these conditions, BOLD 
activations in the primary motor cortex are generally very 
reliable. This can be achieved, when the “most feasile” 
motor tasks have been selected from clinical testing, 
when patient positioning and head fi xation is optimal dur-
ing the fMRI scans, when appropriate motion correction 
is applied for data processing and when the fMRI scan-
ning protocols have been evaluated in volunteers for 
robust functional localization, high BOLD-signal yield 
and low scanning time. For the diagnostic interpretation 
of clinical fMRI data it is indispensable, that the whole 
fMRI procedure is fully standardized (scanning, data pro-
cessing and evaluation), that normative data are available 
for all applied fMRI scanning protocols (ideally includ-
ing data for important infl uencing factors like handed-
ness, etc.) as well as a precise assessment of each patient’s 
neurological defi cits at the time of the preoperative fMRI 
measurement. For the latter, the importance of the indi-
vidual training of the investigator with each patient before 
the actual fMRI measurement cannot be overestimated. 
To control for incorrect task performance, a video moni-
toring during the fMRI measurements is highly recom-
mended. In uncooperative patients, it may even be 
necessary that the investigator is inside the scanner room 
to give instructions directly (e.g., by tapping the hand 
when the movement is started and stopped). All erroneous 
measurements must be excluded from evaluation and 
repeat measurements must be performed.

The investigation of patients with pareses can be chal-
lenging, however. Dedicated paradigms based on soma-
tosensory stimulation (Stippich et al. 1999, 2004, 2005) 
or complex fi nger movements of the unimpaired hand 
(Stippich et al. 2000) may help to overcome the problem. 
A somatosensory stimulation can also be useful in unco-
operative or sedated patients and in children. Automated 
devices deliver reproducible stimuli and are ideal for fol-
low up measurements under standardized conditions 

www.ama-assn.org
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(Golaszewski et al. 2002; Kurth et al. 1998; Stippich 
et al. 1999). For more details see paragraphs Sect. 7.6 
and 7.7. A review of literature regarding the various 
fMRI paradigms for motor and somatosensory function 
is beyond the scope of this chapter. We refer the reader to 
the extensive database available. It is of note that most 
manufacturers offer online data processing software for 
functional BOLD-imaging with their MR-imagers today, 
providing easy access to the method.

7.4 Diagnostic Aims

The primary diagnostic aims of preoperative fMRI are 
to localize the primary motor cortex and/or the primary 
somatosensory cortex in relation to the surgical target 
and the different cortical representations of the human 
body of the precentral gyrus and/or postcentral gyrus. 
The secondary aims include, the detection of neuroplas-
tic changes and functional reorganization prior to treat-
ment in patients with neurological defi cits and in patients 
scheduled for repeated neurosurgery, investigating the 
natural course of brain activation in patients with rolan-
dic pathologies, or the effects of a specifi c (surgical or 
alternative) treatment on brain function may represent 
further diagnostic aims of follow up measurements.

7.5  Selection of Candidates 
for Preoperative fMRI

Most patients referred to preoperative motor and soma-
tosensory fMRI present with rolandic brain tumors, 
metastases, AVM’s and epileptogenic lesions. In gen-
eral, patients with meningeomas and other (non infi l-
trative) extraaxial masses should not be considered for 
fMRI, except for diffi cult cases on request of the sur-
geon. fMRI is also not necessary for patients with 
frontal or parietal pathologies that do not involve the 
central region directly.

As a basic principle, candidates for preoperative 
fMRI should be selected by anatomical consideration 
fi rst using morphological MR images, and on the basis 
of clinical fi ndings (motor and/or sensory defi cit), both 
clearly indicating an involvement of the primary motor 
and/or somatosensory cortex. The appropriate exam-
ination protocol should be selected accordingly. 

Depending on the site and extent of the lesion, a single 
fMRI reading can suffi ce; however, it is often neces-
sary to examine the entire motor and, where appropri-
ate, somatosensory somatotopy.

Preoperative fMRI studies are justifi ed when the 
following anatomical criteria apply: (1) Complete 
destruction of the rolandic anatomy precluding identi-
fi cation of the precentral gyrus, central sulcus and 
postcentral gyrus. (2) Compression or displacement of 
the precentral gyrus precluding reliable localization of 
the hand knob – the MR-morphologic reference of the 
motor hand area is absent as an orientation point for 
the somatotopic organization of the precentral gyrus. 
(3) The surgical target lies below or above the hand 
knob and a precise localization of the cortical face or 
lower extremitiy representations is warranted. (4) The 
surgical target is postcentral – a somatosensory stimu-
lation may be applied. Other (nonanatomical) criteria 
include (5) suspected neuroplastic changes/functional 
reorganization with respect to neurological signs and 
symptoms and (6) repeated neurosurgery.

Note: The size of the BOLD-clusters and the center 
of gravity varies with the statistical threshold applied for 
data evaluation. As a consequence, fMRI studies should 
not be performed to determine resection borders or a 
“safe” distance between lesion and functional area. In a 
strict sense, this is not possible to date on the basis of 
fMRI data as the material published on that topic is very 
limited (Haberg et al. 2004; Krishnan et al. 2004; Hall 
et al. 2005). Furthermore nonstandardized measure-
ments in “interesting cases” are not feasible for clinical 
decision making and should be avoided. However, such 
patients may be enrolled in research trials.

7.6  Paradigms for Clinical Motor 
and Somatosensory fMRI

When designing motor paradigms in a block design, it 
is of principal importance to establish whether only the 
primary motor cortex activation needs to be measured, 
or secondary areas should also be considered. In the 
case where only the primary motor cortex is the tar-
get, paradigms can also include movements in both 
sides of the body (e.g., right hand vs. left hand). Since 
unilateral movements lead to activation of secondary 
areas in both hemispheres, secondary areas are active 
during alternating movements of the right and left 
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Fig. 7.3 Variation of paradigms to localize the motor hand area 
results in different activation patterns. Left: complex fi nger oppo-
sition of the right hand vs. rest; strong activation of cortical 
motor network in both hemispheres. The large contralateral clus-
ter (left) covers the primary sensorimotor cortex (1), premotor 
cortex (2) and parietal cortex (4). Bilateral supplementary motor 
activation (3, 3) is displayed in the midline, as well as ipsilateral 
(right) premotor activation (2), primary sensorimotor  coactivation 

(1) and parietal activation (4). Middle: complex fi nger opposition 
of the right vs. left hand; strong contralateral (left) primary sen-
sorimotor activation (1), but no activation of secondary areas. 
Right: complex fi nger opposition of the right hand vs. right toe 
movements and tongue movements; strong contralateral (left) 
primary sensorimotor activation (1) and ipsilateral primary sen-
sorimotor coactivation (1), but no activation of secondary areas. 
Reprinted from Stippich (2007, p 106) with permission

body side throughout the entire measurement, but 
continuous activation is not shown in the statistical 
evaluation of fMRI data, acquired using conventional 
block designs, due to the lack of “contrast” between 
the various stimulation blocks. If information needs to 
be obtained regarding secondary motor activation, 
paradigms with strictly unilateral movements of a 
single body part should be applied, with “resting” as 
the control condition. Alternatively, three different 
stimulation conditions could be integrated in the para-
digm, i.e., right movement – rest – left movement. 
However, the number of blocks per paradigm is then 
increased, and consequently, the examination time 
and susceptibility to motion artifacts also increases. 
In addition, it should be borne in mind that informa-
tion on brain activation in the tumor-unaffected hemi-
sphere is largely insignifi cant for treatment. Also, 
paradigms enabling the examination of several corti-
cal body representations are problematic in brain 
tumor patients (e.g., foot – hand – face). Although scan 
time could be reduced compared to three individual 
measurements, the time needed is still substantially 
longer than for each individual measurement alone. 

Particularly in the case of agitated patients or patients 
with paresis, the likelihood of motion artifacts 
increases, subsequently affecting all functional local-
izations. Only secondary functional areas which are 
exclusive to the respective movement can be localized. 
All jointly recruited areas escape detection on diagnos-
tic fMRI. In conclusion, paradigms with movements of 
a single part of the body alternating with true rest that 
provide short scan times are most appropriate for pre-
operative fMRI (Fig. 7.3).

Clinical feasibility tests, carried out on neurosurgi-
cal patients with and without tumor-related pareses or 
sensory disturbances, showed that self-triggered move-
ment tasks are better suited to preoperative fMRI than 
controlled paradigms, since only in this way each 
patient can perform within his or her ability. To keep 
the likelihood of motion artifacts to a minimum (Hoeller 
et al. 2002; Krings et al. 2001), the following  movement 
tasks were chosen each with “rest” as control  condition: 
repetitive tongue movements with the mouth closed, 
opposition of fi ngers D2–D5 to D1 with free choice of 
sequence, repetitive fl exion and extension of all fi ve 
toes without moving the ankle (Stippich et al. 2002) 
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(Fig. 7.4). Alternatively, in the case of mild paresis of 
the upper extremity, fi st clenching/releasing can be 
tested. Face, arm and leg movements, or movement of 
the feet, can often lead to poor diagnostic evaluation of 

data due to strong motion artifacts; therefore, they are 
not recommended for clinical fMRI. A paradigm with a 
block duration of 20 s and three repeat cycles (four rest 
conditions alternating with three stimulation condi-
tions), adding to an examination time of 140 s, is a suit-
able compromise between robust functional localization 
of the primary motor cortex, high BOLD signals and 
short scan time (Fig. 7.5).

Determination of motor function with preoperative 
fMRI is limited in patients with high-grade paresis 
(Pujol et al. 1998; Krings et al. 2002). In the case where 
the fMRI protocol is based solely on self-triggered 
movements contralateral to the tumor, a reliable preop-
erative fMRI diagnosis is not guaranteed – the pareses 
are result of insuffi cient residual function of the primary 
motor cortex, which can lead to weak, or even absent, 
BOLD signals. Nevertheless, many patients with tumor-
related paresis can be successfully examined by activat-
ing the primary somatosensory lip, fi nger and toe 
representations of the postcentral gyrus (Stippich et al. 
1999). While most investigators apply somatosensory 
stimuli manually (e.g., brushing the palm), automated 
devices provide reproducible and standardized stimula-
tion conditions. Electric (Kurth et al. 1998; Kampe et al. 
2000; Golaszewski et al. 2004), tactile (Stippich et al. 
1999; Wienbruch et al. 2006) or vibrotactile (Golaszewski 
et al. 2002; Golaszewski et al. 2006) stimulators are 
in use. The fully automatic pneumatically driven 24-  
 channel tactile stimulation used in our institution, works 
artifact-free, produces reproducible stimuli and consis-
tent examination conditions for comparative and out-
come studies. The whole unit can be set up and removed 

Fig. 7.4 (a–c) Recommended self-paced movements to investi-
gate sensorimotor somatotopy in clinical fMRI. (a) Complex 
fi nger opposition of digits 2–5 against the thumb in a random 
order. Movement frequency ~3 Hz. (b) Toe up and down move-

ments, frequency >1 Hz. (c) Tongue up and down movements 
with the mouth closed. Movement frequency ~3 Hz. Reprinted 
from Stippich (2007, p 106) with permission

Fig. 7.5 Clinical standard protocol for motor paradigms. The 
block-designed paradigm consists of four rest periods (light 
grey) alternating with three stimulation periods (white), each 
20 s in duration. The BOLD-signal time course of the motor 
hand area activation (red line) shows task related increases in 
regional hemodynamics. The black line indicates the hemody-
namic reference function (hrf). Reprinted from Stippich 2007, 
p  107 with permission
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within 5 min (Fig. 7.6). Scan times per measurement are 
66 s for S1 (Stippich et al. 2004) or 105 s for S2 (Stippich 
et al. 2005). The  S1-paradigm consists of fi ve repeat 
cycles (six rest conditions alternating with fi ve stimula-
tion conditions, duration 6 s each), the S2-paradigm of 
three repeat cycles (four rest conditions alternating with 
three stimulation conditions, duration 15 s each). For the 
latter paradigm S1 activation is also robust.

As a further adjunct to investigate paretic patients, 
complex fi nger opposition of the nonparetic hand (ipsilat-
eral to the pathology) can be used for the standard motor 
paradigm (140 s) to elicit robust premotor activation as 
an additional functional landmark for the precentral 
gyrus on the lesion side (Stippich et al. 2000) (Fig. 7.7).

7.7  Preoperative fMRI in Patients 
with Rolandic Brain Tumors

7.7.1  Somatotopic Mapping 
of the Primary Motor Cortex 
(Standard Protocol)

Somatotopic mapping of the motor cortex is the 
most frequently used preoperative fMRI protocol in 

patients with rolandic lesions (Stippich et al. 2002). 
The protocol contains three different fMRI measure-
ments with a scanning time of 140 s each. Typical 
paradigms include tongue movements, fi nger and toe 
movements contralateral to the lesion to localize the 
motor homunculus in relation to the surgical target 
(Fig. 7.8). Even in case of complete destruction of the 
rolandic anatomy, fMRI provides three functional 
landmarks for different body representations (face, 
upper and lower extremities). This diagnostic infor-
mation is relevant to confi rm the indication to operate 
and to plan and implement safer surgery. The same 
holds true for lesions that preclude proper identifi ca-
tion of the hand knob as the anatomical reference for 
the motor hand area by compression or displacement 
(Fig. 7.9). In patients with small lesions that are – by 
anatomical consideration – not critical for all body 
representations, it seems appropriate to shorten the 
protocol by leaving the least relevant body representa-
tions unexamined (Fig. 7.10). However, the examina-
tion of a single body representation alone, e.g., the 
motor hand representation, is often not suffi cient to 
provide the required diagnostic information. Soma-
totopic mapping enables also to assess plastic changes 
of cortical motor activation, e.g., in patients with 
recurrent malignancies prior to repeated surgical 
 treatment (Fig. 7.11).

Fig. 7.6 Fully automated 
pneumatically driven tactile 
stimulation. Flexible 
membranes (4D 
Neuroimaging, Aachen, 
Germany) connected to 
pressure resistant pneumatic 
tubes transmit the stimuli to 
the lips, fi ngers or toes (not 
shown). Upper left: the 
24-channel high precision 
electromagnetic valve system 
was designed to investigate 
somatosensory somatotopy. 
Reprinted from Stippich 
2007, p 94 with permission
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Fig. 7.8 Standard presurgical fMRI protocol: Somatotopic 
mapping of the motor cortex (same patient as in Fig. 7.2). The 
cortical foot representation (F) is closely related to the left pari-

eto-postcentral anaplastic glioma. BOLD-activation of the motor 
hand area (H) is localized at the hand knob and the bilateral 
tongue representations (T) at the level of the ventricular roof
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Fig. 7.7 Typical cortical activation pattern of complex fi nger 
opposition (right hand). Premotor activation ipsilateral to the 
moving hand (red arrow) serves as a functional landmark for the 
precentral gyrus in hemiparetic patients (a clinical case is pre-
sented in Fig. 7.13). Premotor activation is typically localized at 
the anterior wall of the precentral gyrus directly adjacent to the 

junction of the precentral sulcus with the superior frontal sulcus. 
It is important to note that this functional landmark does not 
localize the motor hand area! In the drawing of the cortical 
motor and somatosensory network (right) numbers indicate 
Brodmann areas. Reprinted from Stippich 2007, p 113 with 
permission
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Fig. 7.9 Somatotopic fMRI mapping of the motor cortex in a 
patient with a left precentral glioblastoma precluding identifi ca-
tion of the motor hand area using morphological landmarks. 

fMRI clearly indicates the position of the motor hand area  during 
contralateral hand movements (H) as well as the cortical foot (F) 
and tongue representations (T)

Fig. 7.10 Somatotopic fMRI mapping of the upper motor cortex 
in a patient with a left central metastasis indicating the spatial 
relationship to the cortical hand (H ) and foot (F ) representation. 

The latter is also displayed in coronal view (Fc). Additional 
fMRI localization of the motor tongue representations was not 
necessary by anatomical consideration
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7.7.2  Somatotopic Mapping 
of the Primary Somatosensory 
Cortex

This fMRI protocol was designed to localize the differ-
ent somatosensory body representations of the postcen-
tral gyrus (Stippich et al. 1999). The somatosensory 
stimuli are transmitted to the lips, fi ngers and toes con-
tralateral to the brain lesion. In presurgical fMRI soma-
totopic somatosensory mapping is mostly used as 
diagnostic adjunct, when motor paradigms are diffi cult 
to apply – e.g., in uncooperative, sedated or hemiparetic 
patients or in children, but there is also potential for 
standardized follow up measurements on neuroplastic 
changes of the somatosensory system. This presurgical 
fMRI protocol enables a fully automated assessment of 
the spatial relationship between brain tumors and the 
postcentral gyrus, facilitating the estimation of possible 
postoperative sensory defi cits (Fig. 7.12). Diagnostic 
information about the spatial relationship between the 
central sulcus or precentral gyrus and precentral or 
frontal brain tumors can be obtained rather indirectly as 
both anatomical structures are directly adjacent to the 
postcentral gyrus in the anterior direction.

7.7.3  Localization of the Precentral 
Gyrus in Patients with Paresis

This special protocol was designed in volunteers to 
help localize the precentral gyrus in patients with con-
tralateral paresis (Stippich et al. 2000). The clinical 
application is still experimental and requires own vali-
dation. In these patients the primary motor cortex is 
commonly infi ltrated by the tumor or severely com-
pressed precluding both, reliable identifi cation of the 
rolandic anatomy on morphological images and proper 
performance of contralateral movements for presurgi-
cal fMRI. However, as a basic principle, residual con-
tralateral motor function and passive somatosensory 
stimulation should be used fi rst for the functional 
localization of the pre and postcentral gyrus. As a fur-
ther adjunct, complex fi nger opposition of the nonpa-
retic hand ipsilateral to the brain tumor can be used to 
activate the whole cortical motor network in both 
hemispheres. The premotor activation on the tumors 
side, may serve as an additional functional landmark 
for the precentral gyrus, by localizing the anterior wall 
of the precentral gyrus near the junction of the precen-
tral sulcus with the posterior part of the superior 

Fig. 7.11 Presurgical fMRI somatotopic mapping of the motor 
cortex in a hemiparetic patient with a recurrent left rolandic 
astrocytoma prior to repeated surgery. Foot, hand and tongue 
movements revealed robust fMRI activation of the respective 
primary motor cortex body representations (yellow arrowheads). 

Note the increased activation in secondary areas (red arrow-
heads): in the supplementary motor area during toe and fi nger 
movements and in the whole cortical motor network in both 
hemispheres during fi nger movements, Reprinted from Stippich 
2007, p 111 with permission
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frontal sulcus (Fig. 7.13). It is important to note that 
the risk of surgery related motor defi cits cannot be esti-
mated using premotor activation as a functional land-
mark! However, in healthy volunteers, primary motor 

coactivation can be observed frequently localizing the 
motor hand area ipsilateral to the moving hand 
(Stippich et al. 2007). Our initial clinical experience 
indicates, that ipsilateral primary motor coactivation 

Fig. 7.12 Presurgical fMRI somatotopic mapping of the primary 
somatosensory cortex (S1) in a left parietal malignant glioma 
indicated compression of the upper postcentral gyrus at the level 

of the foot representation and tumor growth into the lower post-
central gyrus with dorsal displacement of the S1 hand representa-
tion. Reprinted from Stippich 2007, p 112 with permission

Fig. 7.13 Presurgical fMRI protocol for patients with preexist-
ing paresis. This protocol may serve as an adjunct to the stan-
dard protocol using movements contralateral to the brain tumor. 
The application is still experimental and requires own valida-
tion. In this hemiparetic patient (grade 3/5) with a left malignant 
glioma only weak BOLD activation was available from contral-
ateral (right) hand movements precluding reliable localization 
of the motor hand area (not shown). By using complex fi nger 

opposition of the unimpaired hand ipsilateral to the tumor (left) 
and fully automated tactile stimulation of the right digits BOLD 
activation is achievable in the motor hand area (1), premotor cor-
tex (2) and primary somatosensory cortex (3) on the tumors side. 
Note the corresponding activations in the unimpaired hemi-
sphere (right) associated with the left fi nger movements (white 
numbers). Bilateral supplementary motor activation is in the 
midline
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may be supportive to localize the motor hand area on 
the tumor side in hemiparetic patients.

Note: For all preoperative fMRI protocols presented 
here, the combination with anisotropic diffusion 
weighted MRI or DTI (FA-mapping, DTI-tractography) 
is highly recommended to also delineate the effects of 
the rolandic pathologies on the pyramidal tract 
(Stippich et al. 2003).

7.8 Limitations and Pitfalls

Traditionally, functional areas are electrophysiologi-
cally mapped intraoperatively to reliably assess the spa-
tial relationship between brain tumor and functional 
cortex (Ojemann et al. 1989; Duffau et al. 1999). 
Intraoperative EcoG is considered very reliable, but the 
sensitivity to detect motor function in the proximity 
of rolandic brain tumors can be low (Shinoura et al. 
2005) and the method comprises several disadvantages. 
Surgery time can be substantially prolonged or patients 
need to be subjected to awake craniotomy. Furthermore, 
it is possible to derive activations only from the brain 
surface, while the by far larger portion of the cortex 
deep in the cerebral convolutions remains inaccessible 
(Cosgrove et al. 1996). Another signifi cant disadvan-
tage of EcoG is that the information is not available 
preoperatively and can not be implemented in the 
assessment of the indication to operate and the planning 
of function-preserving surgery. After all, morphologi-
cal imaging provides very detailed information about 
intracranial pathologies (Osborn 2004), but not about 
brain function. fMRI is capable of overcoming these 
disadvantages of the “traditional diagnostic procedures” 
by visualizing anatomy, pathology, and function nonin-
vasively in a single examination even prior to surgery.

When carried out in a standard way, fMRI is basi-
cally capable of providing a clinical “functional diagno-
sis” for individual patients (Thulborn 2006). Functional 
landmarks help to estimate possible therapy-related def-
icits and are thus particularly useful in providing patient 
information, verifying the indication and selecting a 
sparing therapeutic procedure. Once the operation has 
been decided upon, careful planning and appropriate 
selection of incision, trepanation, surgical access and 
resection margins are essential to function-preserving 
surgery. Intraoperatively, functional localizations facil-
itate surgical orientation, although inaccuracies 

resulting from displaced brain tissue need to be taken 
into consideration (Stippich et al. 2002; Stippich et al. 
2003). All these factors increase patient safety and 
reduce the risk of postoperative defi cits which addition-
ally reduce quality of life.

According to current knowledge, one can assume 
that presurgical fMRI is able to contribute to a reduc-
tion of invasive diagnostic procedures both before and 
during neurosurgical interventions in patients with 
brain tumors. Whether fMRI can have a positive effect 
on surgery-related morbidity and disease-related mor-
tality remains to be determined in prospective studies. 
Prerequisites for this include a consensus on perfor-
mance, analysis and medical appraisal of presurgical 
fMRI, as well as the delineation of recommendations 
and guidelines by the assigned medical societies.

Preoperative fMRI has limitations imposed by 
patient-specifi c and methodological factors. Despite 
intensive patient training, optimized examination proto-
cols and appropriate head fi xation, some patients cannot 
be examined due to poor cooperation or marked rest-
lessness. When motor paradigms are used, undesirable 
continuation of movement during resting periods, 
mostly uncontrolled and interspersed accompanying 
movements in other parts of the body, can signifi cantly 
compromise the quality of the examination, even if indi-
vidually adjusted evaluation is used to register the error 
precisely. In the end, after this time-consuming process, 
examination results often need to be discarded. The 
same holds true for strong motion artifacts which cannot 
be corrected at later data processing stages. Stimulus-
related motion artifacts can simulate activations, leading 
to false high BOLD signals or even to incorrect localiza-
tion (Hajnal et al. 1994; Krings et al. 2001; Hoeller et al. 
2002; Steger and Jackson 2004). With regard to the 
appearance of motion artifacts, tongue and toe move-
ments, as well as fi nger opposition tasks are less critical 
than hand, foot and lip movements.

The problems associated with investigating motor 
function in patients with tumor-related hemipareses 
have already been addressed (see Sect. 4.4.6). In most 
cases, functional localization of the pre and postcentral 
gyrus can be achieved by using residual motor function 
in the affected extremities and applying special para-
digms (Stippich et al. 2003). Compared to motor fMRI, 
BOLD signals are signifi cantly weaker on tactile stim-
ulation. Particularly in the lower extremities, tactile 
stimulation does not always achieve suffi cient activa-
tion. This is accounted for by the lower number of 
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receptors in toe tips, the comparatively small cortical 
toe representation and ill defi ned compressed air pulses 
when long pneumatic tubes are used.

The BOLD signals based on fMRI originate mainly 
in the capillary bed of the activated brain area and 
downstream veins (Frahm et al. 1994; Menon 
et al. 1995). Thus, fMRI measures a hemodynamic 
secondary phenomenon and not neuronal activity 
directly. Possible localization errors due to BOLD 
signals from draining veins can be identifi ed by 
superimposing functional image data onto contrast-
enhanced anatomical T1-weighted image sequences 
(Krings et al. 1999). Careful analysis of the signal-
time curves of functional raw data helps to distin-
guish between parenchymatous and venous activation, 
since these rise at different rates (Krings et al. 2001). 
By causing vessel compression and pathological 
changes in vascular autoregulation, brain tumors can 
affect the localization and intensity of the BOLD sig-
nals measured (Holodny et al. 1999; Holodny et al. 
2000; Krings et al. 2002; Ulmer et al. 2003; Ulmer 
et al. 2004; Kim et al. 2005; Liu et al. 2005; Hou et al. 
2006; Ludemann et al. 2006). Whether artifi cial acti-
vations can occur due to their neovascularization 
remains to be clarifi ed. For this reason, activations 
within contrast-enhanced tumor portions should be 
assessed as artifacts until reliable study results are 
available. Such activations should not be used for risk 
assessment, surgery planning or functional neuronav-
igation. The same is true for BOLD signals in strongly 
vascularized cerebral metastases AVM (Lazar et al. 
1997; Alkadhi et al. 2000; Lehericy et al. 2002; 
Ozdoba et al. 2002).

Investigator-dependent inaccuracies occur in man-
ual superposition of EPI data, distorted by the method, 
onto anatomical 3D data sets. As a precaution, a pos-
sible localization error of approximately 0.5 cm should 
always be assumed (Stippich et al. 2003). Improvements 
are expected in the future when distortion corrections 
for EPI data sets are available for clinical application 
(Weiskopf et al. 2005; Liu and Ogawa 2006; Priest 
et al. 2006), enabling superposition routines to be 
 automated. We consider defi ning resection margins in 
presurgical diagnostics on the basis of fMRI data as 
unreliable, since the spatial extent of activated areas 
depends on the evaluation parameters chosen and can 
therefore vary. In addition, the position of brain struc-
tures can change intraoperatively (“brain shift”), with 
the result that data obtained preoperatively no longer 

accurately refl ect the intraoperative situation (Wirtz 
et al. 1997; Wittek et al. 2005; Nimsky et al. 2006). 
Effl uent cerebrospinal fl uid alone can lead to shifts of 
several millimeters after opening of the dura. Moreover, 
there is often a sharp shift in the position of the brain 
due to tissue resection. For these reasons, preoperative 
fMRI cannot replace intraoperative mapping of brain 
function completely. Irrespective of functional imag-
ing, additional technical inaccuracies must be taken 
into consideration in neuronavigation and referencing.

Text and fi gures have been reproduced in part from 
Stippich 2007 with permission.
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The Functional Anatomy of Speech 
Processing: From Auditory Cortex to 
Speech Recognition and Speech Production

Gregory Hickok

8

8.1 Introduction

Lesion-based research has been successful in providing 
a broad outline of the neuroanatomy of speech/language 
processes (Dronkers et al. 2000; Hillis 2007), and contin-
ues to play a crucial role in the development of func-
tional anatomic models of cognitive processes (Fellows 
et al. 2005). However, lesion studies lack the spatial reso-
lution to assess more detailed functional anatomical 
hypotheses. Functional imaging methods such as fMRI, 
when appropriately, guided and constrained by lesion 
and other methods, can provide much needed information.

In this chapter, we will review evidence regarding 
the functional anatomy of the human auditory cortex 
as it relates to speech recognition and speech produc-
tion. Fig. 8.1 displays an organizational framework for 
this discussion.

8.2  Hierarchical Organization 
of Auditory Cortex

The monkey auditory cortex is organized hierarchi-
cally with a core region at the center, a belt region sur-
rounding the core, and a parabelt region surrounding 
the belt area, each containing subdivisions. The core 
corresponds to the primary auditory cortex, showing a 
distinct primary-type cytoarchitecture and robust sin-
gle unit responses to pure tones, with sharp tuning 
curves relative to belt regions. Both the core and the 

belt areas receive inputs from the medial geniculate 
nucleus (MGN), although from different subregions, 
MGv and MGd, respectively. The parabelt also receives 
direct ascending auditory input from MGd, but is dis-
tinguished from the belt area in that it does not receive 
direct input from the core. Instead, information reach-
ing the parabelt from the core, appears to be mediated 
by the belt region which projects heavily to the para-
belt (Kaas and Hackett 2000; Kaas et al. 1999).

The human auditory cortex appears to be similar in 
its hierarchical organization. Simple acoustic stimula-
tion, such as noise bursts or tones, activates the audi-
tory cortex in and around heschl’s gyrus. In addition, 
more complex stimuli, such as speech, activate a 
broader region, including the superior temporal sulcus 
(STS) (Binder et al. 2000).

In both human and nonhuman primates, there is evi-
dence for two broad projection streams, sometimes 
referred to as the ventral and dorsal pathways (Hickok 
and Poeppel 2000, 2007; Rauschecker 1998; Romanski 
et al. 1999; Scott 2005). There is a general agreement that 
the ventral stream supports recognition of the content of 
auditory information (a “what” pathway), but there is dis-
agreement regarding the nature of the dorsal stream, 
with some authors promoting a location-based function 
(“where” pathway) (Rauschecker 1998), and others an 
auditory-motor integration function (Hickok et al. 2003; 
Hickok and Poeppel 2000, 2007; Warren et al. 2005). 
These hypotheses are not necessarily incompatible.

8.3  STS Supports Phonological Aspects 
of Speech Recognition

A number of studies have found that portions of the 
STS are important for representing and/or process-
ing phonological information (Fig. 8.1, yellow) 
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Via higher-order frontal networks
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Fig. 8.1 The dual-stream model of the functional anatomy of 
language. (a) Schematic diagram of the dual-stream model. 
The earliest stage of cortical speech processing involves some 
form of spectrotemporal analysis, which is carried out in audi-
tory cortices bilaterally in the supratemporal plane. These 
spectrotemporal computations appear to differ between the two 
hemispheres. Phonological-level processing and representation 
involves the middle to posterior portions of the superior tempo-
ral sulcus (STS) bilaterally, although there may be a weak left-
hemisphere bias at this level of processing. Subsequently, the 
system diverges into two broad streams, a dorsal pathway 
(blue) that maps sensory or phonological representations onto 
articulatory motor representations, and a ventral pathway (pink) 
that maps sensory or phonological representations onto lexical 
conceptual representations. (b) Approximate anatomical loca-
tions of the dual-stream model components, specifi ed as pre-
cisely as available evidence allows. Regions shaded green 
depict areas on the dorsal surface of the superior temporal 
gyrus (STG) that are proposed to be involved in spectrotempo-

ral analysis. Regions shaded yellow in the posterior half of the 
STS are implicated in phonological-level processes. Regions 
shaded pink represent the ventral stream, which is bilaterally 
organized with a weak left-hemisphere bias. The more poste-
rior regions of the ventral stream, posterior middle and inferior 
portions of the temporal lobes correspond to the lexical inter-
face, which links phonological and semantic information, 
whereas the more anterior locations correspond to the proposed 
combinatorial network. Regions shaded blue represent the dor-
sal stream, which is strongly left dominant. The posterior 
region of the dorsal stream corresponds to an area in the Sylvian 
fi ssure at the parietotemporal boundary (area Spt), which is 
proposed to be a sensorimotor interface, whereas the more 
anterior locations in the frontal lobe, probably involving 
Broca’s region and a more dorsal premotor site, correspond to 
portions of the articulatory network. aITS anterior inferior tem-
poral sulcus; aMTG anterior middle temporal gyrus; pIFG pos-
terior inferior frontal gyrus; PM premotor cortex. Reprinted 
with permission from Hickok and Poeppel (2007)

(Binder et al. 2000; Hickok and Poeppel 2004, 2007; 
Indefrey and Levelt, 2004; Liebenthal et al. 2005; Price 
et al., 1996). The STS is activated by several tasks that 
tap phonological information such as, speech percep-
tion, speech production (Indefrey and Levelt 2004), 

and the active short-term maintenance of phonemic 
information (Buchsbaum et al. 2001; Hickok et al. 
2003). Functional activation studies that have used 
subtraction methodologies to isolate phonological pro-
cesses have found activation along the STS (Liebenthal 
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et al. 2005; Narain et al. 2003; Obleser et al. 2006; 
Scott et al. 2000; Spitsyna et al. 2006; Vouloumanos 
et al. 2001), as have studies that manipulate psycholin-
guistic variables that tap phonological networks 
(Okada and Hickok 2006). Although a common view 
is that the phonological system is strongly left domi-
nant, both lesion and imaging evidence (Hickok and 
Poeppel 2007) suggests a bilateral organization.

One currently unresolved question is the relative 
contribution of anterior vs. posterior STS regions in 
phonological processing. A majority of functional 
imaging studies targeting phonological processing in 
perception have highlighted regions in the posterior 
half of the STS (Hickok and Poeppel 2007). Other 
studies, however, have reported anterior STS activa-
tion in perceptual speech tasks (Mazoyer et al. 1993; 
Narain et al. 2003; Scott et al. 2000; Spitsyna et al. 
2006). These studies involved sentence-level stimuli 
raising the possibility that anterior STS regions may be 
responding to some other aspect of the stimuli such as 
its syntactic or prosodic organization (Friederici et al. 
2000; Humphries et al. 2001, 2005, 2006; Vandenberghe 
et al. 2002). Lesion evidence indicates that damage to 
posterior temporal lobe areas is most predictive of 
auditory comprehension defi cits (Bates et al. 2003). 
The weight of the available evidence, therefore, sug-
gests that the critical portion of the STS, that is involved 
in phonological-level processes, is bounded anteriorly 
by the anterolateral-most aspect of Heschl’s gyrus and 
posteriorly by the posterior-most extent of the Sylvian 
fi ssure (Hickok and Poeppel 2007).

8.4  Access to Conceptual-Semantic 
Information May Involve Middle 
Temporal Regions

Comprehension of speech involves more than just pro-
cessing and recognizing phonological information in 
speech. It crucially involves using speech sound infor-
mation to access conceptual-semantic representations. 
Although the organization of semantic knowledge in 
the brain is far from understood, a common view is 
that conceptual-semantic information is widely dis-
tributed throughout the cortex (Damasio and Damasio 
1994; Gage and Hickok 2005; Hickok and Poeppel 
2000, 2004, 2007; Martin 1998; Martin and Chao 
2001; Mesulam 1998; Squire 1986). Access to this 
system via auditory-linguistic channels, however, may 

be more focal. The posterior, middle and ventral tem-
poral lobe (~BA 37) appears to be an important node in 
the interface between auditory/speech systems and 
conceptual-semantic knowledge (Fig. 8.1, posterior 
pink-shaded area). This conclusion is supported by 
lesion evidence showing that damage to this region 
results in semantic-level defi cits in both comprehen-
sion and production (Chertkow et al.1997; Hart and 
Gordon 1990; Hickok and Poeppel 2004, 2007).

Functional imaging studies have implicated these 
same regions in lexical-semantic processing. For 
example, Binder and colleagues asked subjects to 
make semantic decisions about auditorily presented 
words (Binder et al. 1997). In comparison to a tone-
decision control task, semantic decisions strongly acti-
vated portions of the STS and middle temporal and 
inferior temporal gyri (in additional to frontal and pari-
etal regions), but did not activate the superior temporal 
gyrus (STG). In the context of studies on phonological 
level processes discussed above, a reasonable interpre-
tation is that, the STS activation refl ects phonological 
aspects of word processing, whereas the more ventral 
activations, which do not show up reliably in studies of 
phonological processing, refl ect postphonemic mecha-
nisms involved in processing or accessing lexical-
semantic information.

Similar conclusions are derived from studies of lex-
ical semantic processing that use different approaches. 
Some studies have found greater activation in inferior 
posterior temporal regions for words compared to non-
words (Binder et al. 2005; Rissman et al. 2003). This 
contrast should emphasize lexical-semantic processes 
as nonwords have minimal lexical-semantic associa-
tions. Posterior middle temporal regions have also 
been implicated in processing semantically ambiguous 
words. Rodd et al. found that listening to sentences that 
contained high levels of lexical ambiguity produced 
more activation in the left posterior MTG (Rodd et al. 
2005).

Imaging studies of semantic priming, which also 
should highlight regions involved in lexical-semantic 
processing, have, however, led to a different conclu-
sion. These studies (Copland et al. 2003; Rissman 
et al. 2003) have found a more anterior middle tempo-
ral site that shows a reduction in activation for seman-
tically related, compared to semantically unrelated 
word pairs (priming is typically refl ected as a reduc-
tion of brain activity (Henson, 2003) ). The implica-
tion of anterior temporal regions is not consistent with 
stroke-based lesion studies, as noted above. However, 
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it is consistent with recent claims derived from studies 
of semantic dementia, that the anterior temporal lobes 
play a critical role in the representation of conceptual 
knowledge (Hodges and Patterson 2007; Patterson 
et al. 2007).

Much work remains to be done in understanding the 
functional anatomy of semantic-related processes, par-
ticularly the relation between the posterior and anterior 
regions which have been implicated. It is possible to 
make the generalization that while phonemic-level 
processes involve auditory-responsive regions in the 
STS, higher-level lexical- and conceptual-semantic 
processes involve regions surrounding the STS both 
ventrally and posteriorly.

8.5  Sensory Systems Participate 
in Speech Production

There is unequivocal evidence that posterior sensory-
related cortex in the left, but not right, hemisphere par-
ticipates in speech production. For example, damage to 
the left posterior temporal lobe often results not only in 
comprehension defi cits, but also in speech  production 
defi cits (Damasio 1991, 1992; Geschwind 1971; 
Goodglass 1993; Goodglass et al. 2001). Disruption to 
phonological systems appears to account for some of 
these production defi cits. Damage to the left dorsal STG 
and/or the supramarginal gyrys/temporal-parietal junc-
tion is associated with conduction aphasia, a syndrome 
that is characterized by good comprehension, but with 
frequent phonemic errors in speech production, naming 
diffi culties that often involve  tip-of-the-tongue states 
(implicating a breakdown in phonological encoding), 
and diffi culty with verbatim repetition (Damasio and 
Damasio 1980; Goodglass 1992)1. Con duction aphasia 
has classically been considered to be a disconnec-
tion syndrome involving damage to the arcuate fascic-
ulus (Geschwind 1965). However, there is now good 
evidence that this syndrome results from cortical 

dysfunction (Anderson et al. 1999; Hickok et al. 2000). 
Thus, conduction aphasia provides  evidence for the 
involvement of left posterior auditory-related brain 
regions in phonological aspects of speech production 
(Hickok 2000; Hickok et al. 2000).

Functional imaging evidence also implicates left 
superior posterior temporal regions in speech produc-
tion generally (Hickok et al. 2000; Price et al. 1996), 
and phonological stages of the process in particular 
(Indefrey and Levelt 2004; Indefrey and Levelt 2000). 
With respect to the latter, the posterior portion of the 
left planum temporale region, which is within the dis-
tribution of lesions associated with conduction apha-
sia, activates during picture naming and exhibits 
length effects (Okada et al. 2003), frequency effects 
(Graves et al. 2007), and has a time-course of activa-
tion, measured electromagnetically, that is consistent 
with the phonological encoding stage of naming 
(Levelt et al. 1998).

Taken together, the lesion and physiological evi-
dence reviewed in this section make a compelling 
argument for the involvement of left posterior superior 
temporal regions in phonological aspects of speech 
production.

8.6  The Posterior Planum Temporale 
Supports Sensory-Motor Integration

If left posterior superior temporal regions are involved 
in phonological aspects of speech production, there 
must be a mechanism for interfacing posterior and 
anterior brain regions. The need for such a mechanism 
has long been acknowledged, and in classical models 
was instantiated as a simple white matter pathway, the 
arcuate fasciculus (Geschwind 1971). More recent 
proposals have argued, instead, for a cortical system 
that serves to integrate sensory and motor aspects of 
speech (Hickok et al. 2000, 2003; Hickok and Poeppel 
2000, 2004, 2007; Warren et al. 2005), which is con-
sistent with much research on sensory-motor integra-
tion systems studied in the context of the monkey 
visual system (Andersen 1997; Colby and Goldberg 
1999; Milner and Goodale 1995).

A series of studies over the last several years has 
identifi ed a cortical network for speech and related 
abilities (e.g., music), which has many of the proper-
ties exhibited by sensory-motor networks studied in 

1Although conduction aphasia is often characterized as a disorder 
of repetition, it is clear that the defi cit extends well beyond this 
one task (Hickok et al. 2000). In fact, Wernicke fi rst identifi ed 
conduction aphasia as a disorder of speech production in the 
face of preserved comprehension (Wernicke 1874/1969). It was 
only later that Lichtheim introduced repetition as a convenient 
diagnostic tool for assessing the integrity of the link between 
sensory and motor speech systems (Lichtheim 1885).
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other domains. These properties include, sensory-
motor responses, connectivity with frontal motor sys-
tems, motor-effector specifi city, and multisensory 
responses (Andersen 1997; Colby and Goldberg 1999). 
The speech-related network with these response prop-
erties includes an area (termed Spt) in the left posterior 
planum temporal (Okada & Hickok, 2009) region 
(Fig. 8.1, posterior blue-shaded region), that has been 
argued to support sensory-motor integration for speech 
(Hickok et al. 2003). We will review the evidence for 
this claim below.

Spt exhibits sensory-motor response properties. A 
number of studies have demonstrated the existence of 
an area in the left posterior planum temporale that 
responds both during the perception and production of 
speech, even when speech is produced covertly (sub-
vocally) so that there is no overt auditory feedback 
(Buchsbaum et al. 2001, 2005a, b; Hickok et al. 2003). 
Spt is not speech-specifi c, however. It responds equally 
well to the perception and (covert) production via 
humming of melodic stimuli (Hickok et al. 2003; Pa 
and Hickok 2008).

Spt is functionally connected to motor speech areas. 
Spt activity is tightly correlated with activity in frontal 
speech-production related areas, such as the pars oper-
cularis (BA 44) (Buchsbaum et al. 2001) suggesting 
that the two regions are functionally connected. 
Furthermore, cortex in the posterior portion of the pla-
num temporale (area Tpt) has a cytoarchitectonic 
structure that is similar to BA44. Galaburda writes, 
“area Tpt “…exhibits a degree of specialization like 
that of Area 44 in Broca’s region. It contains promi-
nent pyramids in layer IIIc and a broad lamina IV…. 
the intimate relationship and similar evolutionary sta-
tus of Areas 44 and Tpt allows for a certain functional 
overlap” (Galaburda 1982).

Spt activity is modulated by motor effector manipu-
lations. In monkey, parietal cortex sensory-motor inte-
gration areas are organized around motor effector 
systems (e.g., ocular vs. manual actions in LIP and AIP; 
(Andersen 1997; Colby and Goldberg 1999) ). Recent 
evidence suggests that Spt may be organized around the 
vocal tract effector system: Spt was less active when 
skilled pianists listened to and then imagined playing a 
novel melody than when they listened to and covertly 
hummed the same melody (Pa and Hickok 2008).

Spt is sensitive to speech-related visual stimuli. Many 
neurons in sensory-motor integration areas of the mon-
key parietal cortex are sensitive to inputs from more 

than one sensory modality (Andersen 1997). The  planum 
temporale, while often thought to be an auditory area, 
also activates in response to sensory input from other 
modalities. For example, silent lip-reading has been 
shown to activate auditory cortex in the vicinity of the 
planum temporale (Calvert et al. 1997; Calvert and 
Campbell 2003). Although these studies typically report 
the location as “auditory cortex” including primary 
regions, group-based localizations in this region can be 
unreliable. Indeed, a recent fMRI study using individual 
subject analyses has found that activation to visual 
speech and activation using the standard Spt-defi ning 
auditory-motor task (listen then covertly produce) are 
found in the same regions of the left posterior planum 
temporale. Thus, Spt appears to be sensitive also to 
visual input that is relevant to vocal tract actions.

In summary, Spt exhibits all the features of sensory-
motor integration areas as identifi ed in the parietal cor-
tex of the monkey. This suggests that Spt is a 
sensory-motor integration area for vocal tract actions 
(Pa and Hickok 2008), placing it in the context of a 
network of sensory-motor integration areas in the pos-
terior parietal and temporal/parietal cortex, which 
receive multisensory input and are organized around 
motor-effector systems (Andersen 1997). Although 
area Spt is not language-specifi c, it counts sensory-
motor integration for phonological information as a 
prominent function.

8.7 Summary

Data from functional imaging studies has augmented a 
long history of language-brain research based on tradi-
tional neuropsychological methods. This work con-
verges on several broad conclusions that are particularly 
relevant to an understanding of the neural organization 
of speech processing. Human auditory cortex is hierar-
chically organized with early areas primarily involved in 
the spectrotemporal analysis of acoustic signals. Higher-
order representations/processes, such as those involved 
in the analysis of phonological information involve 
auditory-related regions in the STS, which are probably 
several steps downstream from primary  auditory cortex. 
Beyond these high-level auditory-related systems in the 
STS, portions of the middle and  inferior temporal gyri 
are important for mapping auditory-related representa-
tions onto conceptual-semantic systems. These systems, 
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involved in mapping acoustic input onto conceptual-
semantic representations, comprise the ventral stream, 
and is bilaterally organized in its early stages, becoming 
somewhat left dominant at the level of conceptual-
semantic access. A dorsal stream connects portions of 
the auditory system to articulatory-motor systems, thus 
enabling speech production and related functions. This 
circuit involves the posterior planum temporale (area 
Spt), which may function as a sensory-motor interface 
system for the vocal tract.
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Use of fMRI Language Lateralization 
for Quantitative Prediction of Naming 
and Verbal Memory Outcome in Left 
Temporal Lobe Epilepsy Surgery

Jeffrey R. Binder

9

Partial removal of the anterior temporal lobe (ATL) is 
the most commonly performed surgical procedure for 
intractable epilepsy. ATL resection is highly effective 
for seizure control, resulting in long-term cure rates 
of 60–80% (McIntosh et al. 2001; Jeong et al. 2005;. 
Tellez-Zenteno et al. 2005). The undeniable benefi t of 
ATL surgery is partially offset by the occurrence of 
neuropsychological morbidity in some patients receiv-
ing this treatment. Evidence suggests a 30–60% inci-
dence of anomic aphasia (Hermann et al. 1994 Hermann 
et al. 1999a; Hermann et al. 1999b; Langfi tt and Rausch 
1996; Bell et al. 2000b; Sabsevitz et al. 2003) and a 
similar risk for decline in verbal memory ability (Chelune 
et al. 1993; Helmstaedter and Elger 1996; Martin et al. 
1998; Sabsevitz et al. 2001; Stroup et al. 2003; Gleissner 
et al. 2004; Baxendale et al. 2006; Lineweaver et al. 
2006; Binder et al. 2008b) after left ATL surgery. 
Patients are generally aware of these defi cits, which 
adversely affect quality of life and employability 
(Perrine et al. 1995; Helmstaedter et al. 2003; Stroup 
et al. 2003; Lineweaver et al. 2004; Langfi tt et al. 
2007). Cognitive defi cits from right ATL resection 
have been much less consistently observed (Loring 
et al. 1990a; Loring et al. 1995b; Pigot and Milner 
1993); Pillon et al. 1999; Lee et al. 2002; Binder et al. 
2008). Though the fi rst priority in treating intractable 
epilepsy is seizure control, the importance of cognitive 
side effects for some patients undergoing left ATL sur-
gery should not be underestimated or denied. Indeed, 
considerable resources have been devoted to developing 
methods for predicting and preventing cognitive mor-

bidity, and many such methods are used routinely in the 
evaluation of surgical candidates despite ongoing con-
troversy regarding their effectiveness.

This chapter focuses on the recent advances in the 
prediction of postoperative language and verbal mem-
ory defi cits using preoperative fMRI. The clinical 
value of such risk assessment is that it provides the 
patient and the physician additional information that 
can be useful in deciding whether to proceed with 
treatment in elective situations. The use of fMRI acti-
vation maps intraoperatively for defi ning surgical 
resection boundaries is a separate issue that will not be 
addressed in detail here.

9.1  Use of fMRI for Predicting 
Naming Outcome

9.1.1 Measuring Language Lateralization

The intracarotid amobarbital (Wada) test was developed 
to assess the risk of language decline in patients under-
going resective brain surgery (Wada and Rasmussen 
1960), based on the assumption that operating on the 
language-dominant hemisphere entailed increased risk. 
Though the Wada test has been in use for over 50 years, 
until recently the relationship between Wada language 
asymmetry and postoperative language outcome had 
never been quantifi ed. The historical reasons for this 
relate to the fact that language lateralization was tradi-
tionally viewed as dichotomous (left or right) or trichot-
omous (left, right, or “bilateral”). Under this schema, it 
was obvious that operating on a nondominant hemi-
sphere would be safer than operating on a language-
dominant hemisphere. Several aspects of this formulation 
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have changed in recent decades. First, language lateral-
ization has come to be seen as a continuously graded 
rather than an all-or-none phenomenon, with relative 
degrees of dominance rather than distinct categories 
(Loring et al. 1990b; Binder et al. 1996; Springer et al. 
1999; Knecht et al. 2000b, 2002; Chlebus et al. 2007; 
Seghier 2008). Thus, while the vast majority (∼80%) of 
patients who undergo left hemisphere surgery for epi-
lepsy are left-dominant for language, there is variation 
within this group in terms of the degree of left domi-
nance. This variability raises the question of whether 
graded degrees of language dominance are refl ected in 
graded levels of risk. Second, neuropsychological meth-
ods for identifying postoperative language defi cits have 
steadily improved and become more widespread, result-
ing in a shift of the clinical focus, particularly in left 
ATL cases, from prediction of severe aphasia (which is 
very rare after standard left ATL resection) to prediction 
of more moderate degrees of language decline.

The initiative to develop fMRI methods for predict-
ing language outcome in ATL epilepsy surgery is 
therefore motivated by two critical assumptions. First, 
it is assumed that patients show varying degrees of lan-
guage (mainly naming) defi cit after surgery, and that it 
is desirable to know before surgery what degree of 
decline can be expected. Second, it is assumed that the 
degree of decline will be related to the degree of lan-
guage lateralization toward the surgical hemisphere. 
The goal of fMRI in this context is, thus, to provide a 
reliable and valid measure of language lateralization. 
A wide variety of fMRI language activation paradigms 
have been described, differing in the type of language 
stimuli, the stimulus modality, the language task, the 
control stimuli, and the control task used, raising the 
question of which of these paradigms, if any, is opti-
mal. Though different paradigms have seldom been 
compared quantitatively, it is well known that they can 
produce very different, in some cases, entirely nonover-
lapping, activation patterns. This variation is related pri-
marily to the cognitive, sensory, and motor processes 
engaged by the tasks, and the degree to which the lan-
guage and control conditions differ in engaging these 
specifi c processes (Binder 2006).

Several simple criteria can be applied in  assessing 
the usefulness of different language paradigms. 
First, the pattern of activation obtained in healthy, 
 right-handed adults should be lateralized strongly to 
the left hemisphere, as it is known that almost all such 
individuals are left-hemisphere dominant for language 

(Loring et al. 1990b; Springer et al. 1999; Knecht et al. 
2000a). Second, the activation should be robust, i.e., it 
should be reliably obtained across individuals and in 
the same general brain regions. Third, there should be 
concordance between language lateralization mea-
sured with the fMRI paradigm, and with other tech-
niques, such as the Wada test, in the same individuals. 
Finally, in some cases it may be desirable that the para-
digm produce activation in particular target brain 
regions. In the case of ATL surgery, for example, acti-
vation asymmetry in the temporal lobe might be more 
predictive of outcome than activation in the frontal 
lobe, thus a paradigm that activates the temporal lobe 
would have advantages over one that does not.

Figure 9.1 illustrates some of these issues. The fi g-
ure shows average activation maps obtained while 26 
right-handed subjects listened to spoken words and 
performed a semantic decision task (Binder et al. 1997, 
2008a). In the top panel, BOLD signal during this task 
is compared to a “resting” baseline. The activated 
regions are largely bilateral, including bilateral audi-
tory, working memory, general executive, and attention 
networks. In the lower panel of the fi gure, the semantic 
decision task is compared to a nonlinguistic auditory 
control task. In this case the activated regions are 
strongly left-lateralized, including several left tempo-
ral, parietal, and prefrontal regions (indicated by blue 
arrows) that were not observed when the resting base-
line was used. These data illustrate in dramatic fashion 
how activation patterns depend on the choice of control 
condition. In the lower panel, the use of an active non-
linguistic control task “subtracts out” bilateral activa-
tion in early auditory, general executive, and attention 
networks, leaving activation in left-lateralized lan-
guage networks. These results also demonstrate that 
certain high-level language processing regions are 
active during the “resting” state and can only be 
observed when an active nonlinguistic control condi-
tion is employed (Binder et al. 1999, 2008a).

Many fMRI language paradigms have been com-
pared to Wada language testing (Desmond et al. 1995; 
Binder et al. 1996; Bahn et al. 1997; Hertz-Pannier 
et al. 1997; Worthington et al. 1997; Yetkin et al. 1998; 
Benson et al. 1999; Lehéricy et al. 2000; Carpentier 
et al. 2001; Rutten et al. 2002; Spreer et al. 2002; 
Adcock et al. 2003; Sabbah et al. 2003; Woermann 
et al. 2003; Deblaere et al. 2004; Gaillard et al. 2004; 
Benke et al. 2006; Chlebus et al. 2007). These studies 
generally report high concordance rates, typically in 
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the range of 90–100% (for reviews, see (Binder and 
Raghavan 2006; Swanson et al. 2007) ). In assessing 
the rate of concordance, patients are usually assigned 
to categories such as “left dominant,” “right dominant,” 
or “mixed” on each test. The proportion of concordant 
cases depends on how these arbitrary categories are 
defi ned. Another method of comparing fMRI and Wada 
results is to calculate the correlation between continu-
ous measures of lateralization on both tests. In the case 
of fMRI, a standard approach is to calculate a laterality 
index (LI) expressing the asymmetry of activation in 
numerical form. The fi rst such LI was based on a sim-
ple count of the voxels that survived thresholding in 
each hemisphere (Binder et al. 1996). The formula (L 
− R)/(L + R), where L and R refer to the voxel counts 
in each hemisphere, yields a number that varies from 
+1, when all activated voxels are on the left side, to −1, 
when all activated voxels are on the right. LI values 
obtained with this method vary as a function of the 
threshold used for defi ning activated voxels, thus 

several authors have explored alternative asymmetry 
measures that do not require thresholding (Nagata et al. 
2001; Adcock et al. 2003; Wilke and Schmithorst 2006; 
Chlebus et al. 2007; Seghier 2008). No consensus 
regarding the optimal method for calculating activation 
asymmetry has yet emerged from these studies.

9.1.2 Predicting Naming Outcome

With so many studies focusing on fMRI/Wada correla-
tions, it is easy to forget that the actual aim of measuring 
language lateralization prior to brain surgery is predic-
tion of language outcome. In the case of left ATL resec-
tion, an fMRI procedure that reliably identifi es patients 
at risk for postoperative naming defi cits would be a valu-
able clinical tool, especially if the fMRI results added 
information over and above other available tests. Previous 
behavioral studies have identifi ed demographic and 

Fig. 9.1 Group fMRI activation maps from two auditory word 
comprehension experiments. Top: Semantic Decision relative to 
resting. Bottom: Semantic Decision relative to Tone Decision. 
Data are displayed as serial sagittal sections through the brain at 
9 mm intervals. X-axis locations for each slice are given in the top 
panel. Both maps are thresholded at a whole-brain corrected P < 0.05 

using voxel-wise P < 0.0001 and cluster extent >200 mm3. The 
three steps in each color continuum represent voxel-wise P 
thresholds of 10−4, 10−5, and 10−6. Blue arrows in the lower image 
indicate left hemisphere language areas that are active during the 
resting state and thus visible only when an active nonlinguistic 
task is used as the baseline (adapted from Binder et al. 2008a)
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behavioral variables that may predict outcome. For 
example, left ATL patients who develop seizures at an 
earlier age generally have a lower risk for postoperative 
language decline (Stafi niak et al. 1990; Saykin et al. 
1995; Hermann et al. 1999b), presumably because ear-
lier age at onset is associated with a higher probability of 
language shift to the right hemisphere (Springer et al. 
1999). Better preoperative naming performance is asso-
ciated with a higher risk for decline (Hermann et al. 
1994). As noted above, Wada language testing has always 
been assumed to be predictive of language outcome. 
Apart from a few case reports of patients with right lan-
guage dominance who did not decline (Wada and 
Rasmussen 1960; Langfi tt and Rausch 1996), however, 
no prior studies have formally tested this assumption.

To date, only one study has examined the value of 
fMRI language lateralization as a predictor of language 
outcome. Sabsevitz et al. (2003) studied 24 consecu-
tively encountered patients undergoing left ATL resec-
tion. The fMRI paradigm used a contrast between an 
auditory semantic decision task and a nonlinguistic 
tone decision task (Fig. 9.1, lower panel). A previous 
study had shown that asymmetry of activation with 
this task paradigm is correlated with language lateral-
ization on the Wada test (Binder et al. 1996). For the 
Sabsevitz et al. study, separate LIs were computed for 
the whole hemisphere, frontal lobe, temporal lobe, and 
angular gyrus. All patients also underwent Wada test-
ing and preoperative assessment of confrontation nam-
ing using the 60-item Boston Naming Test (BNT). The 
BNT was administered again at 6 months after surgery, 
and a change score was calculated as the difference 
between postop and preop BNT scores. Surgeries were 
performed blind to the fMRI data.

Compared to a control group of 32 right ATL 
patients, the left ATL group declined postoperatively on 
the BNT (P < 0.001), with an average change score of 
−9. Within the left ATL group, however, there was con-
siderable variability, with 13 patients (54%) showing 
variable degrees of decline relative to the control group. 
The temporal lobe fMRI LI was the strongest predictor 
of outcome (r = −0.64, P < 0.001), indicating that lan-
guage lateralization towards the left (surgical) temporal 
lobe was related to poorer naming outcome, whereas 
lateralization towards the right temporal lobe was asso-
ciated with little or no decline. This fMRI measure 
showed 100% sensitivity, 73% specifi city, and a posi-
tive predictive value of 81% in predicting signifi cant 
decline. By comparison, the Wada language LI showed 

a somewhat weaker correlation with outcome (r = 
−0.50, P < 0.05), 92% sensitivity, 43% specifi city, and 
a positive predictive value of 67%. Notably, the frontal 
lobe fMRI LI was also less predictive (r = −0.47, P < 
0.05), suggesting that an optimal LI is one that indexes 
lateralization near the surgical resection area.

Sabsevitz et al. also created multivariate models to 
determine the contribution of fMRI relative to other 
noninvasive predictors. Both age at epilepsy onset 
(r = −0.35, P = 0.09) and preoperative performance 
(r = −0.39, P = 0.06) showed strong trends towards a 
correlation with outcome, and together these variables 
predicted about 27% of the variance in outcome. 
Adding the temporal lobe fMRI LI to this model 
accounted for an additional 23% of the variance (P < 
0.01), indicating a signifi cant increase in predictive 
power. Addition of the Wada language asymmetry 
score did not improve the model (R2 change = 0.01).

Though based on a relatively small sample, these 
results show how preoperative fMRI can be used to 
stratify patients in terms of risk for language decline in 
the setting of left ATL resection, allowing patients and 
physicians to more accurately weigh the risks and ben-
efi ts of the surgery. It is crucial to note, however, that 
these results hold good only for the particular methods 
used in the study and may not generalize to other fMRI 
protocols, analysis methods, patient populations, or 
surgical procedures. Future studies should not only 
confi rm these results using larger patient samples, but 
also test whether other fMRI protocols in current wide-
spread use have similar predictive capability.

9.1.3 “Tailoring” Resections

It remains to be seen how useful fMRI language acti-
vation maps will be for planning surgical resection 
boundaries. At least three signifi cant problems compli-
cate progress: (a) variation in language maps produced 
by different activation protocols, (b) the failure, to 
date, to fi nd an activation protocol that reliably acti-
vates the ATL where the majority of epilepsy surgeries 
are performed, and (c) an inadequate understanding of 
the specifi city of fMRI activations.

As indicated earlier, different fMRI language acti-
vation protocols in current clinical use produce mark-
edly different patterns of activation (Binder 2006; 
Binder et al. 2008a). These fi ndings suggest that 
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activation maps are strongly dependent on the specifi c 
composition of cognitive processes engaged during the 
scan, and how these differ between the language and 
control tasks used (see discussion above). Of note is 
the fact that none of the language activation protocols 
currently in common use is associated with robust ATL 
activation. Because the dominant ATL is known to 
contribute to language processing (Mazoyer et al. 
1993; Damasio et al. 1996; Hamberger et al. 2001; 
Humphries et al. 2005; Rogers et al. 2006), and left 
ATL resection not infrequently results in language 
decline (Hermann et al. 1994; Langfi tt and Rausch 
1996; Davies et al. 1998b; Bell et al. 2000b; Sabsevitz 
et al. 2003), it follows that these protocols are not 
detecting crucial language areas. Clearly, further lan-
guage activation task development is necessary. It may 
also be necessary, as some have suggested (Rutten 
et al. 2002; Gaillard et al. 2004), to incorporate multi-
ple activation protocols before a complete picture of 
the language zones in an individual can be discerned.

In addition to these issues concerning sensitivity of 
the activation protocol, it is conceivable that some 
regions activated during language tasks may play a 
minor or nonspecifi c role rather than a critical role in 
language. Resection of these “active” foci may not nec-
essarily produce clinically relevant or persisting defi cits. 
Thus, those who would use fMRI activation maps to 
decide which brain regions can be resected in an indi-
vidual patient run two risks: (a) resection of critical lan-
guage zones that are “not activated” due to insensitivity 
of the particular language activation protocol employed, 
resulting in postoperative language decline; and (b) 
sparing of “activated” regions that are actually not criti-
cal for language, resulting in suboptimal seizure control. 
Only through very carefully designed studies – in which 
resections are performed blind to the fMRI data, stan-
dardized procedures are used for assessing outcome, and 
quantitative measures are made of the anatomical and 
functional lesion – will the usefulness of fMRI language 
maps for “tailoring” surgical resections be determined.

9.2  Prediction of Verbal 
Memory Outcome

ATL resection typically involves removal of much of the 
anterior medial temporal lobe (MTL), including portions 
of the hippocampus and parahippocampus, which are 

known to be critical for encoding and retrieval of long-
term episodic memories (Squire 1992). Verbal memory 
decline after left ATL resection is a consistent fi nding 
in group studies and is observed in 30–60% of such 
patients (Chelune et al. 1991, 1993; Hermann et al. 1995; 
Kneebone et al. 1995; Loring et al. 1995b; Helmstaedter 
and Elger 1996; Martin et al. 1998; Chiaravalloti and 
Glosser 2001; Sabsevitz et al. 2001; Lee et al. 2002; 
Stroup et al. 2003; Gleissner et al. 2004; Baxendale et al. 
2006; Lineweaver et al. 2006; Binder et al. 2008b). In 
contrast, nonverbal memory decline after right ATL 
resection is less consistently observed in groups and 
individuals (Lee et al. 2002; Stroup et al. 2003; 
Lineweaver et al. 2006; Binder et al. 2008b). A main 
focus of the preoperative evaluation in ATL surgery can-
didates is, therefore, to estimate the risk of verbal mem-
ory decline in patients undergoing left ATL resection.

The Wada memory test was originally developed for 
the purpose of predicting global amnesia after ATL 
resection (Milner et al. 1962). Studies of its ability to 
predict relative verbal memory decline have been incon-
sistent, with several studies suggesting good predictive 
value (Kneebone et al. 1995; Loring et al. 1995b; Bell 
et al. 2000a; Chiaravalloti and Glosser 2001; Sabsevitz 
et al. 2001) and others showing little or none, particu-
larly when used in combination with noninvasive tests 
(Chelune and Najm 2000; Stroup et al. 2003; Lacruz 
et al. 2004; Kirsch et al. 2005; Lineweaver et al. 2006; 
Binder et al. 2008b). Some authors have questioned the 
general validity and reliability of Wada memory results 
(Novelly and Williamson 1989; Loring et al. 1990a; 
Lee et al. 1995; Kubu et al. 2000; Simkins-Bullock 
2000; Martin and Grote 2002; Loddenkemper et al. 
2007). Others have emphasized the sensitivity of the 
test to certain details of the stimulus presentation, 
 procedures used for recall, and other methodological 
factors (Loring et al. 1994, 1995a; Carpenter et al. 
1996; Alpherts et al. 2000). Other presurgical tests of 
MTL functional or anatomical asymmetry are also 
modestly predictive of memory outcome, including 
structural MRI of the hippocampus (Trenerry et al. 
1993; Wendel et al. 2001; Stroup et al. 2003; Cohen-
Gadol et al. 2004; Lineweaver et al. 2006) and inter-
ictal positron emission tomography (Griffi th et al. 
2000). Preoperative neuropsychological testing also 
has predictive value, in that patients with good memory 
abilities prior to surgery are more likely to decline than 
patients with poor preoperative memory (Chelune et al. 
1991; Hermann et al. 1995; Helmstaedter and Elger 
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1996; Jokeit et al. 1997; Davies et al. 1998a; Stroup 
et al. 2003; Gleissner et al. 2004; Baxendale et al. 2006, 
2007; Lineweaver et al. 2006; Binder et al. 2008b).

9.2.1 FMRI of the Medial Temporal Lobe

MTL activation during memory encoding and retrieval 
tasks has been a subject of intense research with fMRI 
(for reviews, see (Schacter and Wagner 1999; Gabrieli 
2001; Paller and Wagner 2002; Rugg et al. 2002; 
Hwang and Golby 2006; Schacter and Addis 2007; 
Vilberg and Rugg 2008) ). Hippocampal activation has 
been demonstrated using a variety of task paradigms 
(e.g., (Binder et al. 1997, 2005; Henke et al. 1997; 
Fernandez et al. 1998; Martin 1999; Constable et al. 
2000; Eldridge et al. 2000; Otten et al. 2001; Small 
et al. 2001; Sperling et al. 2001; Stark and Squire 
2001; Davachi and Wagner 2002; Killgore et al. 2002; 
Kensinger et al. 2003; Zeinah et al. 2003; Weis et al. 
2004; Greene et al. 2006; Parsons et al. 2006; Vincent 
et al. 2006; Hassabis et al. 2007; Prince et al. 2007) ), 
although fMRI of this region is not without technical 
challenges. The hippocampal formation is small rela-
tive to typical voxel sizes used in fMRI. Within-voxel 
averaging of signals from active and inactive struc-
tures may thus impair detection of hippocampal activ-
ity. Loss of MRI signal in the medial ATL due to 
macroscopic fi eld inhomogeneity can affect the 
amygdala and occasionally the anterior hippocampus 
(Constable et al. 2000; Fransson et al. 2001; Morawetz 
et al. 2008). Finally, the “baseline” state employed in 
subtraction analyses is probably of critical impor-
tance. Hippocampal encoding processes probably 
continue beyond the duration of the stimulus or event 
(Alvarez and Squire 1994), and human imaging evi-
dence suggests that the hippocampus is relatively acti-
vated in the “resting” state (Andreasen et al. 1995; 
Binder et al. 1999; Martin 1999; Stark and Squire 
2001). Stark and Squire (2001), for example, showed 
that the hippocampus and parahippocampus both show 
higher BOLD signals during “rest” than during active 
perceptual discrimination tasks. Activation of these 
MTL regions during encoding of pictures was detected 
using the perceptual discrimination tasks as baseline, 
but not when “rest” was used as a baseline.

Hippocampal fMRI paradigms generally employ one 
of three approaches. The fi rst of these involves a contrast 

between encoding novel and repeated stimuli, based on 
earlier electrophysiological studies showing that the hip-
pocampus responds more strongly to novel than to 
repeated stimuli (Riches et al. 1991; Li et al. 1993; 
Knight 1996; Grunwald et al. 1998). The encoding task 
might involve explicit memorization for later retrieval 
testing or a decision task designed to produce implicit 
encoding. Such novelty contrasts mainly  activate the 
posterior parahippocampus and adjacent fusiform gyrus, 
with involvement of the posterior hippocampus in some 
but not all studies (Stern et al. 1996; Tulving et al. 1996; 
Gabrieli et al. 1997; Kirchhoff et al. 2000; Fransson 
et al. 2001; Hunkin et al. 2002; Binder et al. 2005). The 
second approach involves manipulating the degree of 
associative/semantic processing that occurs during 
encoding. Hippocampal encoding is thought to involve 
the creation of “relational” representations that tie 
together sensory, semantic, affective, and other codes 
activated by an event (Cohen and Eichenbaum 1993; 
McClelland et al. 1995; O’Reilly and Rudy 2001). 
External events that are meaningful and activate seman-
tic and emotional associations engage the hippocampus 
more robustly and are, therefore, more effectively 
recorded (Craik and Lockhart 1972). Thus, many fMRI 
studies have demonstrated hippocampal activation 
using contrasts between a stimulus (e.g., a word or 
 picture) or task that engages associative/semantic 
 processing and a stimulus (e.g., a nonword or unrecog-
nizable visual form) or task that engages only sensory 
processing (Binder et al. 1997; Henke et al. 1997, 
1999; Wagner et al. 1998; Martin 1999; Otten et al. 
2001; Small et al. 2001; Sperling et al. 2001; Davachi 
and Wagner 2002; Killgore et al. 2002; Bartha et al. 
2003; Kensinger et al. 2003; Zeinah et al. 2003; Binder 
et al. 2005). Finally, a third approach uses subsequent 
recognition performance as a direct index of MTL 
activity during encoding. Items encoded during the 
fMRI scan are sorted according to whether they were 
later remembered, and a contrast is made between suc-
cessfully and unsuccessfully encoded items. These 
studies consistently show greater MTL activation dur-
ing subsequently remembered compared to subse-
quently forgotten stimuli, though the precise MTL 
regions showing this effect have varied considerably 
(Brewer et al. 1998; Fernandez et al. 1998; Wagner 
et al. 1998; Constable et al. 2000; Kirchhoff et al. 
2000; Buckner et al. 2001; Otten et al. 2001; Davachi 
and Wagner 2002; Weis et al. 2004; Prince et al. 2005, 
2007; Uncapher and Rugg 2005).
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Finally, the location of MTL activation detected by 
fMRI depends on the type of stimulus material encoded. 
MTL activation is left-lateralized for verbal stimuli and 
generally symmetric for pictorial stimuli (Binder et al. 
1997, 2005; Kelley et al. 1998; Martin 1999; Golby 
et al. 2001; Otten et al. 2001; Reber et al. 2002; Powell 
et al. 2005).

9.2.2  Medial Temporal Lobe FMRI 
as a Predictor of Memory 
Outcome

Several fMRI studies have examined the relationship 
between preoperative MTL activation and memory out-
come after ATL surgery (Table 9.1). Rabin et al. (2004) 
studied 23 patients undergoing ATL resection (10 left, 
13 right) using a scene encoding task that activates the 
posterior MTL bilaterally (Detre et al. 1998). Patients 
were tested for delayed recognition of the same pictures 
immediately after scanning. Delayed picture recogni-
tion was then tested again after surgery, and the change 
on this recognition task was used as the primary mem-
ory outcome variable. About half of the patients in both 

surgery groups declined on this measure. Preoperative 
fMRI activation lateralization towards the side of sur-
gery was correlated with decline, as was the extent of 
activation on the side of surgery. These results were the 
fi rst to demonstrate a relationship between preoperative 
fMRI activation asymmetry and outcome; yet, they are 
of limited relevance to the problem of predicting verbal 
memory outcome. In the left ATL patients studied by 
Rabin et al., neither Wada memory nor fMRI activation 
asymmetry predicted verbal memory decline as mea-
sured by standard psychometric tests.

Richardson and colleagues studied correlations 
between hippocampal activation and verbal memory 
outcome in three small studies (Richardson et al. 2004, 
2006; Powell et al. 2008). Patients performed a seman-
tic decision task with words during the fMRI scan and 
then took a recognition test after scanning. Words that 
were subsequently recognized were contrasted with 
words that were judged to be familiar but not recog-
nized. In the fi rst of these studies (Richardson et al. 
2004), the authors observed a focus in the anterior hip-
pocampus, where asymmetry of activation (i.e., left − 
right) predicted verbal memory outcome on a 
standardized word list learning test after left ATL 
resection. Greater activation in this region on the left 

References N FMRI contrast Memory measure Summary

Rabin et al. 
(2004)

10 L, 13 R Indoor/outdoor decision on visual 
scenes vs. passive viewing of 
scrambled scenes

Recognition of scenes 
encoded during fMRI

MTL LI predicts outcome on 
scene recognition task in 
both surgery groups

Richardson 
et al. 
(2004)

10 L Subsequently recognized vs. 
familiar but not recognized 
words encoded during a 
semantic decision task

Word list learning and story 
recall (Adult Memory 
and Information 
Processing Battery)

Activation asymmetry in a 
hippocampus ROI predicts 
verbal memory outcome

Richardson 
et al. 
(2006)

12 L Same as Richardson 
et al. (2004)

Same as Richardson et al. 
(2004)

Unilateral activation in ether left 
or right hippocampus ROI 
predicts verbal memory 
outcome

Binder 
et al. 
(2008b)

60 L Semantic decision on auditory 
words vs. sensory decision on 
tones

Word list learning and 
delayed recall (Selective 
Reminding Test)

LI predicts verbal memory 
outcome, adds value beyond 
other predictors

Frings et al. 
(2008)

9 L, 10 R Memorizing and recognizing 
object locations vs. comparing 
size of two objects

Word list learning (Verbaler 
Lern- and 
Merkfaehigkeitstest)

Hippocampal LI predicts verbal 
memory outcome, mainly in 
left group

Köylü et al. 
(2008)

14 L, 12 R Semantic decision on auditory 
words vs. sensory decision on 
tones

Word list learning and 
delayed recall (Münchner 
Gedächtnistest)

MTL activation correlates with 
pre- and postoperative 
memory

Powell 
et al. 
(2008)

7 L, 8 R Subsequently eecognized vs. 
forgotten words and faces 
encoded during a semantic 
decision task

Word list learning and 
visual design learning

Unilateral activation in 
dominant-side hippocampus 
ROI predicts verbal memory 
outcome in dominant 
resection

Table 9.1 fMRI studies of verbal memory outcome prediction in ATL surgery
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side relative to the right side predicted greater decline. 
The second study by the same authors, however, 
showed correlations between outcome and hippocam-
pal activation on either side (Richardson et al. 2006). 
That is, greater activation unilaterally on the left or the 
right was associated with poorer outcome. The corre-
lation between verbal memory decline after left ATL 
resection and activation in the right hippocampus is 
diffi cult to explain, as patients with greater activation 
in the right hippocampus preoperatively would be 
expected to have a better outcome, not a worse out-
come (Chelune 1995). This  fi nding was not replicated 
in the third study (Powell et al. 2008), which reported 
a correlation between left  hippocampus activation and 
poor outcome but no  correlation between right hip-
pocampus activation and outcome. A methodological 
weakness in all of these studies is that they are based 
on fMRI activation values extracted from a small 
region of interest, defi ned by searching the volume for 
voxels that show a correlation with outcome, across a 
group of patients. As the coordinates of these corre-
lated voxels have varied across the studies, it is not 
clear how this method of extracting activation values 
would be applied to a newly encountered patient.

Frings et al. studied the relationship between preop-
erative hippocampal activation asymmetry and verbal 
memory outcome in a small sample of patients under-
going left or right ATL resection (Frings et al. 2008). 
The fMRI protocol used a task in which patients viewed 
a virtual-reality environment containing colored geo-
metric shapes and either memorized the location of 
these objects or performed a recognition decision fol-
lowing memorization. These “memory tasks” were 
contrasted with a control task in which patients saw two 
versions of a geometric object and indicated which one 
was larger. This fMRI contrast had been shown previ-
ously to activate posterior MTL regions (mainly 
 posterior parahippocampus) bilaterally. An LI was com-
puted over the entire hippocampus, defi ned using a ste-
reotaxic atlas. Verbal memory change was marginally 
correlated (1-tailed P = 0.077) with preoperative LI in 
the left ATL surgery group, but not in the right surgery 
group. A signifi cant correlation (1-tailed P < 0.05) was 
obtained when the groups were combined, indicating 
greater verbal memory decline when preoperative 
 hippocampal activation was lateralized more towards 
the side of surgery.

Finally, Köylü et al. examined correlations between 
preoperative MTL activation and verbal memory 

performance before and after ATL surgery (Koylu et al. 
2008). Average fMRI activation produced by a semantic 
decision – tone decision contrast was measured in left 
and right MTL regions of interest including the hip-
pocampus and parahippocampus. The authors observed 
correlations between MTL activation and both preopera-
tive and postoperative verbal memory. In the left ATL 
surgery group, postoperative memory was positively cor-
related with preoperative activation in the right MTL. 
Unfortunately, the analyses examined only pre- and post-
operative scores in isolation and not pre- to postoperative 
change, which is the primary issue of clinical interest.

Although preliminary, these studies are encourag-
ing in that they suggest that preoperative fMRI activa-
tion asymmetry may provide information about the 
risk of memory decline in patients undergoing ATL 
resection. Among the studies that assessed verbal 
memory change, two (Rabin et al. 2004; Frings et al. 
2008) used complex scene encoding tasks that activate 
the MTL bilaterally on fMRI. This bilateral pattern 
suggests activation of both verbal and nonverbal mem-
ory encoding systems. Prediction of verbal memory 
outcome using these paradigms seems to be weak at 
best. In contrast, the verbal memory fMRI paradigms 
used by Richardson et al. appear to provide better pre-
dictive information regarding verbal memory outcome, 
at least when the analysis is confi ned to a specifi c 
region of the hippocampus. The persistent diffi culty in 
applying the latter approach, however, is identifying a 
priori the small set of voxels that will be predictive in 
a given individual patient.

9.2.3  Language Lateralization 
as a Predictor of Verbal 
Memory Outcome

Binder et al. studied the relationship between preopera-
tive language lateralization and verbal memory outcome 
(Binder et al. 2008b). The premise underlying this 
approach is that the verbal episodic memory encoding 
system is likely to be colateralized with language. 
More generally, the authors proposed that the type of 
material preferentially encoded by the left or right epi-
sodic memory system depends on the type of informa-
tion it receives from the ipsilateral neocortex. If this 
model is correct, then the MTL in the language-domi-
nant hemisphere is likely to be more critical for 
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 supporting verbal episodic memory, and language lat-
eralization should be a reliable indicator of verbal 
memory lateralization.

The study included 60 patients who underwent left 
ATL resection and a control group of 63 patients who 
underwent right ATL resection. The fMRI paradigm 
used a contrast between an auditory semantic decision 
task and a nonlinguistic tone decision task (Fig. 9.1, 
lower panel). Verbal memory was measured preopera-
tively and 6 months after surgery using the Selective 
Reminding Test, a word-list learning and retention test 
(Buschke and Fuld 1974). Other neuropsychological 
testing included the story recall and visual reproduc-
tion subtests from Wechsler Memory Scale (Wechsler 
1997). Language LIs were computed from the fMRI 
data using a large region of interest covering the lateral 
two-thirds of each hemisphere (Springer et al. 1999). 
All patients also underwent preoperative Wada lan-
guage and object memory testing.

The left ATL surgery group showed substantial 
changes in verbal memory, with an average raw score 
decline of 43% on word list learning and 45% on 
delayed recall of the word list. Of the individual patients 
in this group, 33% declined signifi cantly on the learn-
ing measure and 55% on the delayed recall measure. In 
contrast, the right ATL surgery group improved slightly 
on both measures. Neither group showed signifi cant 
changes on any nonverbal memory tests. Preoperative 
measures that predicted verbal memory decline in the 
left surgery group included the preoperative score, the 
fMRI language LI, the Wada language asymmetry 
score, the age at onset of epilepsy, and the Wada mem-
ory asymmetry score (Table 9.2, Fig. 9.2).

In applying these results to real clinical situations, 
the main questions to resolve are: which tests make a 
signifi cant independent contribution to predicting out-
come, and how should results from these tests be opti-
mally combined? Binder et al. addressed these 
questions in a series of stepwise multiple regression 

analyses. The fi rst variables entered in all analyses 
were preoperative test performance and age at onset of 
epilepsy. The rationale for including these variables 
fi rst is that they can be obtained with relatively little 
expense and at no risk to the patient. Next, the fMRI 
language LI was added, followed by simultaneous 
addition of both the Wada memory and Wada language 
asymmetry scores. The rationale for adding fMRI in 
the second step is that fMRI is noninvasive and carries 
less risk than the Wada test. The two Wada scores were 
added together in the fi nal step because these measures 
are typically obtained together.

Preoperative score and age at onset of epilepsy 
together accounted for 49% of the variance in List 

Predictor variable List learning P Delayed recall P

Preoperative score −0.662 <0.0001 −0.654 <0.0001
FMRI language LI −0.432 <0.001 −0.316 <0.05
Wada language asymmetry −0.398 <0.01 −0.363 <0.01
Age at epilepsy onset −0.341 <0.01 −0.390 <0.01
Wada memory asymmetry −0.331 <0.05 −0.135 n.s.

List learning and delayed recall refer to the consistent long-term recall and delayed recall subtests of the selective reminding test. 
Simple correlation values and P values for each correlation are shown

Table 9.2 Preoperative predictors of verbal memory outcome in 60 left ATL surgery patients
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Fig. 9.2 Relationship between fMRI lateralization indexes and 
individual change scores on a word-list learning verbal memory 
test (Continuous Long-Term Recall from the Selective Reminding 
Test) in 60 left ATL surgery patients (r = −0.432, P < 0.001) 
(adapted from Binder et al. 2008b)
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Learning outcome and 54% of the variance in Delayed 
Recall outcome. The fMRI LI accounted for an addi-
tional 10% of the variance in List Learning outcome 
(P = 0.001) and 7% of the variance in Delayed Recall 
outcome (P = 0.003). Addition of the Wada language 
and memory data did not signifi cantly improve the 
predictive power of either model (R2 change for List 
Learning = 0.025, R2 change for Delayed Recall = 
0.017, both P > 0.1). When patients were categorized 
as showing decline or no decline, based on a negative 
change score 1.5 standard deviations or more from 
the mean change score in the right ATL surgery group, 
the List Learning outcome model showed sensitivity 
of 90% and specifi city of 80% for predicting decline 
on List Learning. The Delayed Recall outcome model 
showed sensitivity of 81% and specifi city of 100% for 
predicting decline on Delayed Recall.

These results are interesting for several reasons. 
Most intriguing is the fi nding that language lateraliza-
tion, whether measured by fMRI or the Wada test, was 
a better predictor of verbal memory outcome than 
Wada memory testing. The explanation for this para-
dox rests on two hypotheses. One, mentioned above, 
is that verbal memory encoding processes tend to 

colateralize with language processes. The second 
hypothesis is that many tests of memory lateralization 
do not specifi cally assess verbal memory encoding. 
That is, visual stimuli such as objects and pictures can 
be dually encoded using both verbal and visual codes. 
Wada memory procedures that use such stimuli 
(including the Wada test used by Binder et al.) there-
fore do not provide a measure of verbal memory later-
alization, but rather a measure of overall memory 
lateralization that includes both verbal and nonverbal 
encoding processes. Together, these two hypotheses 
suggest that language asymmetry may be more closely 
correlated with verbal memory lateralization than 
Wada memory asymmetry (Fig. 9.3). In particular, 
some patients with left temporal seizures show right-
lateralized memory on the Wada test due to a strong 
nonverbal memory component in the right hemi-
sphere, but are nevertheless at high risk for verbal 
memory decline because their verbal memory remains 
strongly lateralized to the left (Fig. 9.3b).

These data also have direct implications for clinical 
practice. First, they confi rm the utility of fMRI for pre-
dicting verbal memory outcome in patients undergo-
ing left ATL resection. The fMRI language LI is a 
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Fig. 9.3 Schematic diagram of a hypothetical model of mem-
ory and language representation in temporal lobe epilepsy 
(TLE). The yellow ovals represent language systems, red rect-
angles represent verbal episodic memory encoding systems in 
the MTL, and green rectangles represent nonverbal episodic 
memory encoding systems in the MTL. (a) Typical state in 
healthy subjects and patients with late-onset epilepsy. Language 
and verbal memory processes are strongly left-lateralized, 
 placing the patient at high risk for verbal memory decline. 

(b) Chronic left TLE without shift. The left MTL is dysfunc-
tional, causing Wada memory lateralization to the right, but 
 verbal memory has not shifted, leaving the patient at high risk 
for verbal memory decline. (c) Chronic left TLE with shift. 
Both language and verbal memory functions have shifted par-
tially to the right, lowering the risk for verbal memory decline. 
Note the partial lack of correspondence, across patient types, 
between Wada memory asymmetry and level of risk (adapted 
from Binder et al. 2008b)
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safe, noninvasive measure that improves prediction 
accuracy relative to other noninvasive measures. The 
fi nding that Wada memory lateralization is not a strong 
predictor of verbal memory outcome and adds no pre-
dictive value beyond these noninvasive measures, con-
fi rms several previous studies that also examined 
multivariate prediction models (Chelune and Najm 
2000; Stroup et al. 2003; Lacruz et al. 2004; Kirsch 
et al. 2005; Lineweaver et al. 2006). Although Binder 
et al. found that Wada language asymmetry is a stron-
ger predictor of verbal memory outcome than Wada 
memory lateralization, even the addition of both Wada 
tests together did not contribute additional predictive 
power after inclusion of available noninvasive data 
(including fMRI). These results call into question the 
routine use of the Wada test for predicting material-
specifi c verbal memory outcome, particularly if a vali-
dated fMRI measure of language lateralization is 
available. Some practitioners continue to value the 
Wada test as a means of predicting more severe 
“global” amnesia, such as is known to occur after 
bilateral MTL damage (Scoville and Milner 1957; 
Milner et al. 1962; Guerreiro et al. 2001; Di Gennaro 
et al. 2006). According to this theory, anesthetization 
of the to-be-resected MTL is necessary to discover 
whether the contralateral hemisphere is healthy enough 
to support memory on its own. Empirical observations, 
however, provide little support for such an approach. 
Cases of global amnesia following unilateral temporal 
lobe resection – especially modern, well-documented 
cases – appear to be rare in the extreme (Novelly and 
Williamson 1989; Loring et al. 1990a; Baxendale 
1998; Kubu et al. 2000; Simkins-Bullock 2000; Kapur 
and Prevett 2003). Furthermore, there is ample evi-
dence that contralateral hemisphere “memory failure” 
on the Wada test suffers from poor test-retest reliabil-
ity and does not reliably predict amnesia (Novelly and 
Williamson 1989; Loring et al. 1990a; Lee et al. 1995; 
Kubu et al. 2000; Simkins-Bullock 2000; Martin and 
Grote 2002; Loddenkemper et al. 2007). Given the 
availability of fMRI for predicting material-specifi c 
verbal memory outcome, perhaps the use of the Wada 
test should be reserved only for patients at greatest risk 
for global amnesia, i.e., patients undergoing unilateral 
ATL resection and who have structural or functional 
evidence of damage to the contralateral MTL. Because 
it is noninvasive and requires fewer personnel, fMRI is 
also likely to be considerably less costly than Wada 
testing.

9.3 Conclusions

Recent studies demonstrate that preoperative fMRI can 
be used to predict postoperative naming and verbal 
memory changes in patients undergoing left ATL resec-
tion. Most importantly, two studies showed that fMRI 
signifi cantly improves prediction accuracy when com-
bined with other noninvasive measures (Sabsevitz et al. 
2003; Binder et al. 2008b). Thus, fMRI provides 
patients and practitioners with a tool for making better-
informed decisions based on a quantitative assessment 
of cognitive risk. The quantitative nature of these pre-
dictions represents something of a paradigm shift, in 
that traditional predictive models using the Wada test 
tended to be implemented as a dichotomous “pass or 
fail” judgment. The alternative approach followed in 
many recent studies involves the development of multi-
variable formulas that compute predicted change scores 
(Fig. 9.4). These quantitative predictions provide a 
much more realistic picture of the actual outcomes, 
which are not dichotomous but vary smoothly along a 
continuum. Ultimately, of course, the decision whether 
to undergo surgery is a categorical one, but the categor-
ical nature of the decision does not obviate the need for 
precision regarding the factors that enter into the deci-
sion. An unemployed patient with frequent seizures 
may be willing to tolerate a substantial decline in nam-
ing or verbal memory, whereas a patient who depends 
on such cognitive abilities for her livelihood may be 
willing to risk a small decline but not a large one.

In practice, implementation of fMRI methods for 
predicting outcome in epilepsy surgery will depend on 
the availability of a validated fMRI protocol and involve-
ment of clinicians with the necessary clinical expertise. 
Fast T2*-weighted imaging capabilities necessary for 
fMRI are a standard feature on currently marketed clini-
cal MRI systems, and fMRI is now available in some 
form at most medical centers. Implementation of cogni-
tive fMRI protocols requires only installation of rela-
tively low-cost audiovisual stimulation and response 
monitoring systems, together with expertise in cognitive 
training and testing provided by a neuropsychologist or 
cognitive neurologist.
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Mapping of Recovery from Poststroke 
Aphasia: Comparison of PET and fMRI

Wolf-Dieter Heiss

10

10.1  The Principle of Activation 
Studies

The energy demand of the brain is very high and relies 
almost entirely on the oxidative metabolism of glucose. 
Glucose metabolized in neuronal cell bodies mainly sup-
ports cellular, vegetative and house-keeping functions, 
e.g., axonal transport, biosynthesis of nucleic acids, pro-
teins, lipids, as well as other energy-consuming processes 
not related directly to action potentials. Therefore, the 
energy demand of neuronal cell bodies is relatively low and 
essentially unaffected by neuronal functional  activation 
(Sokoloff 1999). A larger portion of energy  consumption 
is required for signalling, mainly action potential propaga-
tion and postsynaptic ion fl uxes; this might account for up 
to 87% of the total energy consumed with only 13% 
expended in maintaining membrane resting potential 
(Laughlin and Attwell 2001). As a consequence, the rate 
of glucose consumption of neuronal cell bodies is essen-
tially unaffected by functional activation, whereas 
increases in metabolism (and in the coupled regional 
blood fl ow) evoked by functional activation are confi ned 
to synapse-rich regions, i.e., the neutropil that contains 
axonal terminals, dendritic processes, and the astrocytic 
processes that envelop the synapses (Magistretti 2004). 
The magnitudes of these increases are linearly related to 
the frequency of action potentials in the afferent path-
ways, and increases of metabolism and blood fl ow in the 
projection zones occur regardless of whether the path-
way is excitatory or inhibitory. Only at the next down-
stream projection zones, glucose utilization (and, as a 

consequence, blood supply) is depressed in inhibited 
neurons and increased in excited neurons.

Mapping of neuronal activity in the brain can be pri-
marily achieved by quantitation of the regional cerebral 
metabolic rate for glucose (rCMRGlc), as introduced 
for autoradiographic experimental studies by Sokoloff 
(Sokoloff 1999) and adapted for positron emission 
tomog raphy (PET) in humans (Reivich et al. 1979). 
Functional mapping, as it is widely used now, relies pri-
marily on the hemodynamic response assuming a close 
association between energy metabolism and blood fl ow. 
While it is well documented that increases in blood fl ow 
and glucose consumption are closely coupled during 
neuronal activation, the increase in oxygen consump-
tion is considerably delayed leading to a decreased oxy-
gen extraction fraction (OEF) during activation (Mintun 
et al. 2001). PET detects and, if required, can quantify 
changes in CBF and CMRGlc accompanying different 
activation states of the brain tissue. The regional values 
of CBF or CMRGlc represent the brain activity due to a 
specifi c state, task or stimulus, in comparison to the 
resting condition, and color coded maps can be ana-
lyzed or coregistered to morphologic images. Due to 
the radioactivity of the necessary tracers, activation 
studies with PET are limited to a maximum of 12 doses 
of 15O-labeled tracers, e.g., 12 fl ow scans, or two doses 
of 18F-labelled tracers, e.g., two metabolic scans. 
Especially for studies of glucose consumption, the time 
to metabolic equilibrium (20–40 min) as well as the 
time interval between measurements required for iso-
tope decay (HT for 18F 108 min, for 15O 2 min) must be 
taken into consideration.

Functional magnetic resonance imaging (fMRI) mea-
sures signals that depend on the differential magnetic 
properties of oxygenated and deoxygenated hemo globin, 
termed the blood–oxygen-level-dependent (BOLD) 
 signal, which gives an estimate of changes in oxygen 

W.-D. Heiss
Max Planck Institute for Neurological Research,
Gleueler Str. 50, 50931 Köln, Germany
email: wdh@nf.mpg.de



96 W.-D. Heiss

availability (Ogawa et al. 1990). This means that mainly 
the amount of deoxyhemoglobin in small blood vessels 
is recorded, which depends on the fl ow of well-oxygen-
ated arterial blood (CBF), on the outfl ow of O

2
 to the 

tissue (CMRO
2
) and on the cerebral blood volume 

(CBV) (Turner et al. 1997). The magnitude of these 
changes in signal intensity relative to the resting condi-
tions are color coded to produce fMRI images that map 
changes in brain function, which can be super-imposed 
on the anatomical image. This results in a spatial reso-
lution of fMRI of 1–3 mm with a temporal resolution of 
approximately 10 s. As fMRI does not involve ionizing 
radiation, and thus, is also used without limitations in 
healthy subjects, allows more rapid signal acquisition 
and more fl exible experimental setups, it has become 
the dominant technique for functional imaging. There 
are some advantages of PET, however – physiologically 
specifi c measures, better quantitation, better signal-to-
noise ratio, fewer artifacts, actual activated and refer-
ence values – which support its continued use especially 
in complex clinical situation and in combination with 
special stimulating technique, as transcranial magnetic 
stimulation (TMS).

10.2  Language Activation 
in Healthy Subjects

The capacity to understand and to speak language is 
strictly lateralized in most subjects to the dominant 
hemisphere. With a few exceptions, this is the left 
hemisphere in right-handers, whereas in left-handers 
language may be represented in either hemisphere or 
even bilaterally (Knecht et al. 2002; Thiel et al. 1998). 
In addition to language dominance, details of the ana-
tomical localization of sensory and motor language 
areas (Wernicke’s and Broca’s region) may vary con-
siderably even in normal individuals. A considerable 
variety of language activation paradigms have been 
applied for localization of language functions by PET 
and fMRI (Hickok and Poeppel 2007; Petersen et al. 
1988; Price 2000; Wise 2003), producing a vast amount 
of partly contradictory data (Demonet et al. 1996). For 
the analysis of aphasia after stroke or due to brain 
tumors, the application of a simplifi ed scheme may be 
justifi ed (Fig. 10.1) (Price 2000).

The processing of hearing words activates bilaterally 
the upper temporal gyrus and the semantic attribution to 

a meaningful content is achieved in left posterior tem-
poral, temporo-parietal and anterior lower cortical areas. 
For the production of speech, the activity in the poste-
rior upper temporal sulcus and in the left posterior lower 
temporal cortex is increased. The activity in the poste-
rior upper temporal sulci is further increased, if words 
or sequences are repeated or read. In contrast, the left 
posterior lower temporal cortex in the neighborhood of 
the middle fusiform semantic area is activated by word 
fl uency. This area is participating in lexical speech pro-
duction. Independently, planning of articulation acti-
vates the left anterior insula and the bordering frontal 
operculum. Phonologic word retrieval requires the inte-
gration of the anterior insula/operculum and the poste-
rior upper temporal sulcus or left posterior lower 
temporal gyrus. Finally, the bilateral sensomotoric cor-
tex is activated for the motoric control of speech pro-
duction and the hearing of the spoken response augments 
the activation in the upper temporal gyrus.

In the processing of written words the same areas 
are involved. Reading selectively activates the posterior 
fusiform and lingual gyrus, which are also involved in 
picture naming. For reading, the visual cortex and the 
posterior upper temporal sulci are activated, which 
contribute to the functional integration of the language 
network. According to this model the function of the 
Wernicke region is represented in the upper part of the 
sulcus temporalis, the sulcus temporalis posterior supe-
rior; the anterior insula and not the Broca area is respon-
sible for planning articulation; the gyrus angularis is 
involved in semantic connection and not specifi c for 
visualization of words; the meaning of words is located 
in the left lower and middle temporal gyrus; reading 
and retrieval of names activate the posterior lower tem-
poral lobe. For these functions – and also for the sever-
ity of functional damage – the hierarchy of individual 
areas within the network and the dominance of left cor-
tical regions is of utmost importance (Heiss and Thiel 
2006), which is induced and manifested by collateral 
and transcallosal inhibition (Karbe et al. 1998; Nudo 
et al. 1996).

It has to be kept in mind that all usual language 
functions, which are complex, and require integration 
of several partial functions, activate larger parts of the 
bilateral network. For instance, the retrieval of sub-
stantives and verbs activates large areas in the left 
dorso-medial prefrontal cortex and the anterior cingu-
lum as well as the supplementary motor area. The pro-
cessing of meaningful connections activates the left 
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middle temporal gyrus, the left and right temporal pole 
as well as a left prefrontal area. Hearing and process-
ing of nouns and generating verbs in relation to nouns 
involves a network consisting of pars opercularis and 
triangularis of the left lower frontal gyrus, the poste-
rior part of the temporal sulcus up to the planum tem-
porale and the anterior part of the left lower temporal 
gyrus. In this network, even some parts of the cerebel-
lum and of the basal ganglia are integrated (Booth 
et al. 2007). These complex activation patterns involv-
ing widely distributed areas impair the prediction of 
severity and recovery of speech disturbances caused 
by infarcts or other localized brain damage.

10.3 Poststroke Aphasia

Aphasia is a severely incapacitating symptom of stroke 
and is a main cause of functional disturbance. Estimates 
suggest that more than 20% of patients suffering a 
stroke develop aphasia, 10–18% of survivors are left 
with a persistent speech defi cit (Wade et al. 1986). 
Most patients with aphasia due to acute nonprogressive 
brain damage, such as in the case of stroke or head 
injury, show some degree of recovery of language 
function during the days, months, or even years follow-
ing the initial insult. The recuperation is variable, rang-
ing from the hardly noticeable improvement of auditory 
comprehension of the global aphasia to the apparently 
complete recovery of the patient with mild fl uent apha-
sia due to small subcortical stroke. It is also well known 
that improvement can be observed not only in patients 
submitted to language rehabilitation but also in cases 
that have not undergone any specifi c treatment.

10.4  Disturbance of Regional 
Metabolism and Flow vs. 
Severity and Persistence 
of Language Defi cit

Studies of glucose metabolism after stroke (Cappa 
et al. 1997) have shown metabolic disturbances in the 
ipsilateral hemisphere caused by the lesion, and con-
tralateral hemisphere caused by functional deactivation 
(diaschisis) (Feeney and Baron 1986). Most studies 
have been performed in right-handed individuals with 

language dominance in the left hemisphere. The left 
temporo-parietal region, in particular the angular gyrus, 
supramarginal gyrus, and lateral and transverse supe-
rior temporal gyrus are most frequently and consis-
tently impaired, and the degree of impairment is related 
to the severity of aphasia (Karbe et al. 1989; Metter 
et al. 1990). In contrast, metabolic impairment in sub-
cortical structures is related mainly to language fl uency 
and other behavioral aspects, but not to aphasia sever-
ity (Metter et al. 1988). In patients with aphasia attrib-
utable to purely subcortical strokes, deactivation of 
temporo-parietal cortex is regularly found, which is 
probably responsible for the aphasic symptoms (Kumar 
et al. 1996).

Recovery of metabolism in both hemispheres was 
correlated with recovery of aphasia. One specifi c 
region crucial for recovery of language perception has 
been found in the left temporo-parietal cortex (Karbe 
et al. 1989; Metter et al. 1987) and metabolic distur-
bance in these areas is related to outcome (Heiss et al. 
1993a). Investigations in the subacute state after stroke 
showed a highly signifi cant correlation with language 
performance assessed at follow-up after 2 years (Karbe 
et al. 1995). The receptive language disorder is corre-
lated with rCMRGlc in the left temporal cortex and 
word fl uency is correlated with rCMRGlc in the left 
prefrontal cortex. These results indicate that the func-
tional disturbance as measured by rCMRGlc in speech-
relevant brain regions early after stroke is predictive of 
the eventual outcome of aphasia. However, not only 
functional deactivation (diaschisis) but also neuronal 
loss may contribute to metabolic and perfusional 
changes in the neighborhood of the infarct, and the 
condition of the surrounding tissue may affect the 
recovery of individual patients. In this context, it is 
important to note that early reperfusion to specifi c 
areas is able to restore disturbed function, as demon-
strated for recovery of naming by reperfusion to the key 
areas BA37, BA 44/45 (Broca) and BA 22 (Wernicke) 
(Hillis et al. 2006).

10.5  Changes in Activation Patterns vs. 
Recovery of Language Function

On this basis, it is not surprising that in patients with a 
poor outcome of poststroke aphasia, metabolism in the 
hemisphere outside the infarct was signifi cantly less 
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than in those with good language recovery, indicating 
signifi cant cell loss caused by the ischemic episode 
outside the ischemic core (Heiss et al. 1993b). In addi-
tion, the functionality of the network was reduced in 
patients with an eventual poor outcome; during task 
performance, patients with an eventual good recovery 
predominantly activated structures in the ipsilateral 
hemisphere. It must be kept in mind that aphasia symp-
toms – and consequently also activation patterns – 
improve with restoration of regional blood fl ow (Jordan 
and Hillis 2006).

One of the central issues of aphasia research is the 
question why recovery from aphasia is taking place and 
what the responsible mechanisms for this recovery are. 
Converging evidence from clinical studies and neural 
imaging studies of aphasic patients suggest that primary 
candidates for recovery in right-handed, left-hemisphere 
language dominant patients include undamaged portions 
of the language network in the left hemisphere and – to a 
lesser extent – homologous right-hemisphere areas 
(Rosen et al. 2000). Since the language network is not 
confi ned to the dominant hemisphere, the role of the right 
hemisphere after infarcts in the left hemisphere has been 
addressed in several studies. Generally, more right hemi-
spheric activations were seen in the subacute phase of an 
infarct with language activation than in normals with the 
same tasks (Ohyama et al. 1996; Price and Crinion 2005; 
Saur et al. 2006; Weiller et al. 1995). Despite such 
responses in the right superior temporal gyrus especially 
in fl uent Wernicke’s patients (Musso et al. 1999; Weiller 
et al. 1995) and in the inferior frontal gyrus (Ohyama 
et al. 1996), effi cient restoration of language is usually 
achieved only if left temporal areas are preserved and can 
be reintegrated into the functional network (Gainotti 
1993). Only the basic function of mere word repetition 
appears to be suffi ciently supported by sole right hemi-
sphere activation (Berthier et al. 1991). Based on their 
study in chronic nonfl uent aphasia patients, Belin et al. 
(1996) suggested that the increased activation within the 
right hemisphere may be a marker of failed or faulty 
recovery attempts in the sense of maladaptive plasticity 
or the breakdown of normal interhemispheric control 
within the distributed neural network. Language recov-
ery in the months immediately after aphasia onset was 
associated with regression of functional depression 
(diaschisis) in structurally unaffected regions, in particu-
lar in the right hemisphere (Cappa et al. 1997; Saur et al. 

2006). Right hemispheric activations after left frontal or 
temporal parietal damage are not related to the level of 
recovery (Fernandez et al. 2004), but may refl ect tran-
scallosal inhibition as a maladaptive neuronal reorganiza-
tion rather than functional compensation (Price and 
Crinion 2005). Despite the brain recruits right hemi-
spheric regions for speech processing when the left-
hemispheric centers are impaired (Raboyeau et al. 2008), 
outcome studies reveal that this strategy is signifi cantly 
less effective than repair of the speech-relevant network 
in adults (Karbe et al. 1998). The effectiveness of right 
hemispheric compensation appears to be higher in 
childhood than later (Muller et al. 1998). In studies of 
reorganization of the functional network in the course 
of aphasia, it is important to take into consideration the 
specifi city of the tasks, the infl uence of site and extent 
of lesion, and the effect of treatment focused on a par-
ticular language domain on recruitment of different 
aspects of the language network, especially if compen-
satory treatment to access limited functional responses 
would stimulate only required pathways and would do 
little to stimulate reorganization of the language system 
(Thompson 2000). 

Changes in the activation pattern induced by repeat-
ing words in the course after ischemic stroke were 
related to recovery from poststroke aphasia (Heiss et al. 
1999). Repeating words activated blood fl ow in 10 nor-
mal controls by more than 10% relative to resting condi-
tion in both upper temporal gyri, by 5–10% in planum 
temporale and Heschl gyrus of both sides and in the 
lower part of the central gyrus of the left side, and by 
less than 5% in the left Broca area. This test procedure 
was applied to 23 patients with aphasia of different 
types. Morphological defects were defi ned on MRI/CT, 
and the patients were grouped according to the site of 
the lesion. Activation PET studies were performed in the 
subacute stage approximately 2 weeks after the stroke 
and repeated 6 weeks later. On matched MRIs, regions 
of interest were defi ned in 14 identifi ed structures of the 
bilateral language-related network.

The three groups of aphasic patients showed differ-
ent patterns of activation in the acute and chronic 
phase, and their improvement was different: Although 
subcortical and frontal infarcts improved considerably 
in several tests, temporal infarcts showed only little 
improvement. These differences in improvement of 
speech defi cits were refl ected in different patterns of 
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activation in the course after stroke (Fig. 10.2). The 
subcortical and frontal groups improved substantially 
and activated the right inferior frontal gyrus and the 
right superior temporal gyrus (STG) at baseline and 
regained regional left STG activation at follow-up. 
The temporal group improved only in word compre-
hension; it activated the left Broca area and supple-
mentary motor areas at baseline and the precentral 
gyrus bilaterally as well as the right STG at follow-up, 
but could not reactivate the left STG. These differen-
tial activation patterns were also obvious when sub-
cortical and frontal infarcts were grouped together 
according to the extent of improvement: Those with a 
decrease in Token test errors by more than 50% could 
activate the left STG, those with a more unfavorable 
and unsatisfactory outcome were not able to do this. 
Similar reactivation patterns were observed in smaller 
groups of patients (Cao et al. 1999; Warburton et al. 
1999). A recent study with repeated fMRI and parallel 
language testing from the acute to the chronic stage 
after stroke, demonstrated a similar pattern (Saur et al. 
2006). All 14 patients recovered clinically as shown 
by a set of aphasia tests. In the acute phase (mean: 1.8 
days post stroke), group analysis showed little early 
activation of noninfarcted left-hemispheric language 
structures, while in the subacute phase (12.1 days post 
stroke) a large increase of activation in the bilateral 
language network, with a peak in the right Broca-

homologue was observed. In the chronic phase (1321 
days post stroke) a normalization of activation with 
reshift to left-hemispheric areas was observed. This 
reorganization with recruitment of homologue lan-
guage zones correlated with improvement, the normal-
ization possibly refl ected recovery and consolidation 
of the language system.

10.6  Effect of Treatment 
in Poststroke Aphasia

Although the effect of physiotherapy on improvement 
of sensorimotor defi cits is unchallenged, the effi ciency 
of speech therapy is still controversial, with several 
randomized controlled trials yielding no difference in 
outcome between treated and untreated groups (Ferro 
et al. 1999; Greener et al. 2001a). Many trials were 
undertaken to enhance the recovery from aphasia with 
adjuvant pharmacotherapy, but again, only a few stud-
ies demonstrated effi cacy: In a double-blind placebo-
controlled study Walker-Batson et al. (2001) observed 
a signifi cantly increased gain in score in patients treated 
with dextroamphetamine before speech therapy ses-
sions compared to the placebo group, but the difference 
was not signifi cant at 6 months follow-up. Similarly, 
donepezil improved the effect of speech therapy only 

Reactivation of left
temporal gyrus

Only activation of
left frontal and 

homologous
language areas

Fig. 10.2 Activation patterns 
in patients with left hemi-
spheric stroke 2 and 8 weeks 
after stroke. In the case of 
subcortical and frontal 
infarction, the left temporal 
areas are reactivated 
correlating to better recovery 
of language function. From 
Heiss et al. (1999)
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temporarily (Berthier et al. 2006). A large Cochrane 
Review (Greener et al. 2001b) identifi ed piracetam as 
the only drug with a signifi cant effect on recovery of 
language, which was also observed in a large multi-
center trial (Orgogozo 1998). In order to investigate the 
question if the effect of piracetam is refl ected in altered 
activation patterns, we performed a study in 24 patients 
with aphasia after stroke (Kessler et al. 2000). All these 
patients had speech therapy and were randomly 
assigned to placebo or 2 × 2.4 g piracetam. With respect 
to performance in the aphasia tests, the piracetam group 
did signifi cantly better especially in subtests refl ecting 
the ability for spontaneous speech, whereas the placebo 
experienced – as the verum group – improvements in 
Token test, reading and writing and comprehension. It 
was impressive to see that these differences in improve-
ment were also refl ected in differences in the achieved 
activation patterns: In the piracetam group increase in 
activation was signifi cantly higher in the left transverse 
temporal gyrus, the left triangular part of the inferior 
frontal gyrus, and the left posterior temporal gyrus after 
the treatment period compared with the initial mea-
sures. In the right inferior frontal gyrus a trend toward 
a decrease in activation was observed. The placebo 
group showed an increase in the activation effect only 
in the left vocalization area, which is the inferior part of 
the precentral gyrus where the primary motor area of 
mouth, tongue, and larynx is localized. It might be con-
cluded from the controlled clinical trials and our study 
of activation patterns that piracetam as an adjuvant to 
speech therapy improves recovery of various language 
functions and that this effect is accompanied by task-
related fl ow activation in eloquent areas of the left 
hemisphere. This again points to the important role of 
(re)activated areas in the left hemisphere for recovery 
of language function. Other imaging studies with indi-
vidualized aphasia treatment in small numbers of 
patients did not show conclusive changes in fMRI acti-
vation patterns (review in Crinion and Leff 2007).

10.7  Combination of Repetitive 
Transcranial Magnetic Stimulation 
(rTMS) with Activated Imaging

rTMS is a noninvasive procedure to create electric cur-
rents in discrete brain areas (Pascual-Leone et al. 2002) 
which depending on frequency, intensity, and duration 
can lead to transient increases and decreases in 

excitability of the affected cortex. Low frequencies of 
rTMS (below 5 Hz) can suppress excitability of the cor-
tex, while higher frequency stimulation (5–20 Hz) leads 
to an increase in cortical excitability (Kobayashi and 
Pascual-Leone 2003). As in the motor system (Chen 
et al. 1997), it can also be applied to identify the various 
areas involved in language processing and production by 
a selective disturbance of partial function with low fre-
quency rTMS. Most frequently rTMS is used in the so-
called “lesion mode” to interfere with normal brain 
function. In our studies cited below rTMS was applied 
with 4 Hz at resting motor threshold for 10–30 s. These 
parameter settings were chosen because Wassermann 
et al. (2002) has shown that 4 Hz is the lowest frequency 
which consistently interferes with language function and 
simultaneously minimizes the risk of inducing seizures.

Increases in relative cerebral blood volume (CBV) 
in contralateral homologous language regions during 
overt propositional speech fMRI in chronic, nonfl uent 
aphasia patients indicated over-activation of right lan-
guage homologues (Naeser et al. 2004). This right 
hemisphere over-activation may represent a maladap-
tive strategy, as suggested previously by Belin et al. 
(1996) and Rosen et al. (2000) in their studies with 
chronic, nonfl uent aphasia patients. This over-activa-
tion in the right hemisphere homologous language 
areas during overt propositional speech can be inter-
preted as a result of decreased transcallosal inhibition 
due to damage of the specialized and lateralized speech 
areas (Karbe et al. 1998). TMS studies by Martin et al. 
(2004) and Naeser et al. (2005) have reported improved 
picture naming ability in chronic nonfl uent aphasia 
patients following a series of ten 20 min 1 Hz rTMS 
sessions to suppress a portion of the right pars triangu-
laris area in the right Broca’s area. Picture naming abil-
ity was signifi cantly improved at 2 months following 
ten 20 min rTMS sessions (90% of motor threshold). 
The authors hypothesized that suppression of the right 
pars triangularis modulated the bi-hemispheric neural 
network for naming, resulting in improved picture 
naming after the rTMS treatment series.

Both types of inhibition – collateral ipsilateral and 
transcallosal contralateral – can be demonstrated by 
simultaneous rTMS and PET activation studies (Thiel 
et al. 2006b). In six normal male volunteers, the Broca 
area, as defi ned by maximal activation during verb gen-
eration in the left inferior frontal gyrus, was stimulated 
by rTMS (4 Hz at resting motor threshold for 30 s) to 
interfere with normal language function. Interference 
with language function (positive TMS-effect) is usually 
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classifi ed into three types on the behavioral level: (1) 
No response to the stimulus (e.g., no verb generated to 
a presented noun). (2) Wrong response to the stimulus 
(e.g., a verb is generated which is not semantically 
related to the presented noun). (3) The reaction time 
latency to the stimulus is changed (e.g., faster response 
means facilitation, slower response means inhibition). 
At rest, rTMS decreased blood fl ow ipsilateral and con-
tralateral. During verb generation, rCBF was decreased 
during rTMS ipsilateral under the coil, but increased 
ipsilateral outside the coil and in the contralateral 
homologous area (Fig. 10.3). The effect of rTMS was 
accompanied by a prolongation of reaction time laten-
cies to verbal stimuli.

The role of activation in the right hemisphere for 
residual language performance can be investigated by 
combining rTMS with functional imaging, e.g., PET 
(Siebner et al. 2001). Such an approach was used in 11 
patients with predominantly nonfl uent aphasia 2 weeks 
after left sided middle cerebral artery infarction 
(Winhuisen et al. 2005). rTMS stimulation sites were 
selected according to maximum fl ow activation within 
left and right inferior frontal gyrus (IFG). Of these 
patients three activated the left, eight the bilateral IFG. 
rTMS (4 Hz, as described above) resulted in increased 
reaction time latency or error rate in the word genera-
tion task in fi ve patients with right IFG activation, indi-
cating essential language function. In a verbal fl uency 
task, these patients had a lower performance than patients 
with effects of rTMS only over the left IFG, suggesting 
a less effective compensatory potential of right sided 
network areas. These results were supported by studies 
in tumor patients.

10.8  Language Function 
in Brain Tumors

The speed of the development of a brain lesion may 
have an effect on the functional impairment and on the 
mechanisms of compensation and reorganization of the 
involved networks. In a study on 61 patients with 
tumors in the dominant left hemisphere (Thiel et al. 
2001), a verb generation paradigm not only increased 
fl ow in the left IFG (Brodman 44 and 55), both superior 
temporal gyri and the cerebellum (the pattern observed 
in the control group), but additionally in the left frontal 
medial gyrus (BA 46) and orbital part of the IFG (BA 
47), the anterior insula and the left cerebellum. Contrary 
to the healthy volunteers, two thirds of the right handed 
patients showed also an activation of the right IFG, i.e., 
the area homologous to the Broca area. In 18% of the 
patients, a reversed dominance was indicated by a neg-
ative laterality index. It was interesting to note that 
 successful resection of a left fronto-temporal tumor 
improved aphasia and restored left-hemispheric domi-
nance, suggesting the reversibility of the effect of disin-
hibition by removal of the cause of primary functional 
damage. In a further study (Thiel et al. 2005), the role 
of involvement of right IFG in speech performance was 
tested by disturbing IFG function with rTMS. In all 
patients, rTMS over left IFG prolonged word- generation 
latencies, indicating that the left IFG is still essential for 
performance of this task, as it is in normals. However, 
in patients but not in controls, signifi cantly longer 
latencies were also observed during rTMS over the 
right IFG corresponding to higher right IFG activation. 
The right IFG therefore can be regarded as essential for 

Models of focal brain lesionsFig. 10.3 Effect of repetitive 
transcranial magnetic 
stimulation on activation 
pattern by verb generation. 
Activation pattern (a) and coil 
position (d) shown in 3D 
rendering. Images in 3D 
(b) show activation of left 
inferior frontal gyrus during 
verb generation (red arrows), 
images (c) clearly show the 
decreased activation on the 
left (green arrow) and 
increased activity on the right 
side (red arrows) during 
rTMS interference. Modifi ed 
from Thiel et al. (2006b)
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language performance because patients and controls 
activate the IFG only during word-generation, e.g., 
retrieval of verbs and nouns contrasted with a number 
of control states (Warburton et al. 1996) and TMS over 
the right interfered with this task in patients as over the 
left in controls. The lateralization indices, as deter-
mined by PET, were signifi cantly lower in patients with 
right-sided TMS effect than in those without. As 
described in the article by Thiel et al. (2006a), there 
was a signifi cant correlation between the laterality 
index and the performance in a verbal fl uency test 
(FAS, (Lezak et al. 2004)) in the patients without right-
positive TMS effect (4 Hz for 20 s, as described above), 
whereas in patients with a predominant right-positive 
TMS effect the performance in the verbal fl uency test 
was comparable with that in controls. This result may 
indicate that in a few patients with left hemispheric 
brain tumors, the slow progression of damage leads to 
a shift in language function to the right hemisphere, 
which can compensate for the defect on the left side.

10.9  Hierarchical Organization 
for Recovery?

The different dynamics of recovery of language func-
tion observed in patients after stroke and with tumors 
in the left hemisphere suggest various mechanisms for 
compensation of the lesion within the functional net-
work. Despite the limited number of longitudinal 
studies, the heterogeneity with respect to the type of 

aphasia in the patients included and the differences 
among the activation and stimulation paradigms (Zahn 
et al. 2006), a hierarchy for effective recovery, might 
be deduced from these data (Fig. 10.4) (Heiss and 
Thiel 2006):

Best, even complete recovery of function can usu-• 
ally be achieved only by the restoration of the origi-
nal activation pattern within the network of the 
dominant hemisphere; this is only feasible after 
small brain damage, probably only affecting an area 
of minor importance, permitting functional restitu-
tion of the main interconnected components.
If primary functional centres are damaged, reduc-• 
tion of collateral inhibition leads to activation of 
areas around the lesion; this intrahemispheric com-
pensation involving secondary centres of the ipsi-
lateral network is the basis for incomplete, but often 
satisfactory improvement of language function.
If ipsilateral network components are severely dam-• 
aged, reduction of transcallosal inhibition causes 
activation of contralateral homotopic areas; this 
interhemispheric compensation involving homo-
topic contralesional areas contributes to some 
improvement in function, which is dependent on the 
extent of the functional shift between the hemi-
spheres, but usually is not as effi cient as intrahemi-
spheric compensation. However, in some patients 
with slowly developing brain damage – and perhaps 
also an a priori not highly lateralized functional net-
work – the language function can be completely 
shifted to the right hemisphere, and in these cases 

1. Before language
acquisition no dominance
pattern exists.

Language dominance by inhibition

2. During language acquisition
dominant hemisphere exhibits
inibitory influence.

3. After language
acquisition dominance
pattern is established.

4. After brain damage, inhibitory
influence is reduced and a
dominance shift occures

Fig. 10.4 Development of 
language dominance and 
changes in hierarchy of areas 
by lesions. Courtesy of Thiel
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speech  performance can be preserved or completely 
recovered despite the damage in the left (previously 
dominant) hemisphere.

The concept of the difference between the effectiveness 
of intrahemispheric compensation and interhemispheric 
compensation may be taken one step further. The 
blockade of the contralateral intact area by rTMS can 
be utilized to modulate the inhibitory interactions. In a 
preliminary study in patients with nonfl uent aphasia 
5–11 years after left hemisphere stroke, Naeser et al. 
(2005) observed signifi cant and persistent improve-
ment in naming pictures on testing performed 2 months 
after a series of ten 20 min 1 Hz rTMS treatment to sup-
press a portion of the right Broca’s homologue (right 
pars triangularis, posterior portion). The authors postu-
lated that rTMS decreased excitation in right BA 45 
which in turn modulated activity in the distributed, 
bihemispheric language network. This result suggests 
that in chronic, nonfl uent aphasia patients, contralateral 
over-activation (likely due to transcallosal disinhibition 
secondary to dominant, left hemisphere lesion) may be 
tempered or suppressed, following a series of slow, 
1 Hz rTMS treatments to a posterior portion of the right 
pars triangularis. The clinical and long-term effi cacy of 
this novel complementary treatment for aphasia, how-
ever, needs to be proven in larger clinical trials.

10.10 Conclusion

Specifi c brain functions, such as language, can be 
localized by comparing CBF or CMRGlc during per-
formance of a selected task with a “resting” condition. 
This was originally made possible by PET using FDG. 
With 15O-water or other ultra-short-lived CBF tracers, 
multiple replications of conditions in the same subject 
could be performed. This technique was widely used, 
especially for the study of higher brain function (cog-
nitive neuroscience) and for evaluating disturbed acti-
vation patterns in disease, as in post-stroke aphasia. In 
recent years, fMRI has become the dominating imag-
ing technique in this fi eld because it does not involve 
ionizing radiation and therefore, is easily used in nor-
mal controls, allows more rapid signal  acquisition and 
more complex experimental designs. However, PET 
provides a more physiologically specifi c signal, a bet-
ter signal-to-noise ratio and fewer artefacts in individ-
ual acquisitions. PET also provides actual activated 

and reference regional  values, which may show a bet-
ter correlation with task performance than the differ-
ence signal provided by fMRI. Additionally, magnetic 
stimulations can be performed during PET examina-
tions. These advantages support its continued use in 
pathophysiologically complex clinical situations such 
as stroke and brain tumors, where CBF responses to 
activation may be altered and may involve unexpected 
components of a functional network.
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11.1 Introduction

The ultimate goal of brain tumor surgery is maximum 
tumor removal without the development of a new neuro-
logic defi cit. This is especially true in the treatment of 
intraparenchymal tumors such as gliomas and metastatic 
lesions. In the treatment of glioblastoma multiforme 
(GBM), for example, gross total resection (GTR) has 
been demonstrated in a number of studies to be one of 
the few attainable factors that is associated with pro-
longed survival (Buckner 2003; Jeremic et al. 1994; 
Lacroix et al. 2001; Vidiri et al. 2006; Ushio et al. 2005). 
GTR of low grade gliomas is also supported in the litera-
ture and has been demonstrated in several retrospective 
studies to be associated with a lower risk of tumor recur-
rence and prolonged patient survival (Claus et al. 2005; 
Laws et al. 1984; Nicolato et al. 1995; Philippon et al. 
1993; Piepmeier et al. 1996). In one reported series 
where complete radiologic resection was attained in the 
treatment of low grade glial tumors, tumor recurrence 
was not reported (Berger et al. 1994). Additionally, GTR 
has been demonstrated to result in improved postopera-
tive control of seizures (Chang et al. 2008), a major 
source of disability in these patients. It should be noted, 
however, that the appropriate treatment of low grade 
gliomas is not without controversy (Keles et al. 2001), 
and there are reported series that have failed to demon-
strate a signifi cant correlation between GTR and survival 
(Medbery et al. 1988; Piepmeier 1987). Reported series 
of high grade gliomas (HGG) that have failed to 

demonstrate a correlation between the extent of resection 
and prognosis have also been published (Kowalczuk et 
al. 1997; Lai et al. 1993).

Despite these discordant fi ndings and the fact that 
most data are retrospective and nonrandomized, there is 
a theoretical benefi t of maximal tumor resection. In the 
case of low grade glial tumors, GTR may reduce the 
number of remaining cells that have the potential for 
malignant degeneration. Maximal resection of high grade 
tumors offers the advantage of minimizing the number of 
residual cells capable of generating recurrent tumor at 
the operative site or migrating along white matter tracts 
into other areas of the brain. This reduction in malignant 
cells should also allow for maximal benefi t of adjuvant 
therapy, and subsequently, lengthen the time to tumor 
recurrence. In patients with GBM, there are genetic 
changes that occur prior to tumor recurrence (Kim and 
Hall unpublished data; Joki et al. 2001; Speigl-Kreinecker 
et al. 2002) that may also negatively infl uence treatment 
response and thus, survival; this fi nding provides further 
rationale for aggressive surgical resection. Given the 
increasing body of evidence in the form of retrospective 
trials and the theoretical advantages of GTR as outlined 
above, we favor a strategy of aggressive resection for the 
treatment of most gliomas. Recently, a large series of 
patients with HGG were found to have increased survival 
with GTR even when stratifi ed for patient age and tumor 
location near eloquent cortex (Stummer et al. 2008).

There is even less evidence-based guidance regard-
ing the effect of the extent of resection on survival in 
patients with metastatic brain tumors. This is probably 
because of the fact that other treatment modalities are 
often used for these tumors instead of surgery, leading 
to controversy over the role of open surgery in the 
management of these tumors. A number of studies 
support the role of surgery in specifi c settings. Surgical 
resection has been demonstrated to confer increased 
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survival in patients with single metastatic lesions in the 
brain (Patchell et al. 1990; Vecht et al. 1993), particu-
larly in cases where the primary source of the tumor is 
unknown (Nguyen et al. 1998; Weber et al. 1996).

The goal of aggressive tumor removal with the pres-
ervation of brain function has led to innovations in 
imaging that are part of today’s surgical armamentar-
ium. Central to the planning and execution of brain 
tumor surgery is appropriate neuroimaging. The advent 
of computed tomography (CT) and magnetic resonance 
imaging (MRI) has revolutionized brain tumor surgery. 
These modalities were used initially to demonstrate 
brain anatomy; however, the development of stereotac-
tic techniques added to the accuracy of brain surgery, 
which in turn predated the development of neuronavi-
gation and eventually, ioMRI.

Frameless neuronavigation systems provide sur-
geons with an unprecedented accuracy in surgical plan-
ning. Despite this, a major limitation of this technology 
is the occurrence of brain shift, that results after the 
resection of any signifi cant amount of tumor (Reinges 
et al. 2004; Truwit and Hall 2006), the egress of cere-
brospinal fl uid (CSF) (Preul et al. 2004), and the com-
bination of these factors that are further infl uenced by 
the effect of gravity on an open surgical fi eld (Nabavi 
et al. 2001). Computational techniques (Clatz et al. 
2005) and methods of validation based on shifting vas-
cular anatomy (Reinertsen et al. 2007) have been used 
in an attempt to compensate for this effect. Intraoperative 
imaging circumvents the issue of brain shift, and was 
initially accomplished with CT (Engle and Lunsford 
1987). However, ioMRI has been validated as a safe 
and effective surgical technique that provides near-real 
time feedback with respect to the extent of tumor resec-
tion, the presence of secondary pathology such as an 
iatrogenic intracerebral hematoma or hydrocephalus, 
and the location of eloquent structures after brain shift 
has occurred (Alexander et al. 1997; Berger et al. 1994; 
Bernays and Laws 1997; Bernstein et al. 2000; Hall 
et al. 2003, 1998; Kremer et al. 2006; Lam et al. 2001; 
Nimsky et al. 2004; Schwartz et al. 1999; Trantakis 
et al. 2003). Many different magnet strengths have 
been utilized for ioMRI with each magnet and format 
offering distinct unique advantages. The fi rst opera-
tional system used a 0.5 T magnet with a double coil 
design (SIGNA SP, General Electric Medical Systems, 
Milwaukee, WI) in which the surgeon operated between 
the coils. System fi eld strength has varied from 0.12 to 
3 T, and while low fi eld (up to 0.5 T) systems allow for 

less rigorous adherence to MRI compatibility, 1.5 T 
fi eld strength or greater is necessary for advanced MRI 
techniques that include fMRI. Although the cost of 
establishing an operating suite with MRI capabilities is 
considerable, the use of ioMRI appears to be cost effec-
tive because of the shorter length of stay in the hospi-
tal, the improved neurologic outcomes, the decreased 
frequency of tumor recurrence and the longer time to 
tumor recurrence (Kucharczyk et al. 2001).

Neuronavigation and ioMRI allow the neurosurgeon 
to identify functional brain tissue with respect to the 
surgical lesion However, the determination of eloquent 
vs. noneloquent areas of brain are dependent upon the 
surgeon’s knowledge of normal anatomy and the ability 
to interpret accurately the information provided by the 
MRI. When lesions or planned surgical corridors are in 
close proximity to presumed eloquent cortex or the 
associated white matter fi ber tracts, one must consider 
the displacement of these vital areas that result from 
brain shift. An unacceptably high operative risk for 
neurological injury may exist in the absence of further 
defi nition of the location of eloquent areas. Awake 
craniotomy with direct cortical stimulation has been 
well described as a way to maintain neurologic function 
during high-risk neurosurgical procedures (Jääskeläinen 
and Randell 2003; Meyer et al. 2001; Picht et al. 2006). 
This direct surgical technique provides the surgeon 
with information concerning brain function during the 
operative procedure but does not allow for the genera-
tion of a visual image of the location of functional 
areas.

The need to identify and locate areas of functional 
importance and confi rm their exact spatial relation-
ships to brain tumors planned for resection has led to 
the use of fMRI for intraoperative guidance. The two 
most commonly used methods of employing fMRI in 
surgical planning are with neuronavigation and ioMRI. 
Additionally, fMRI has been combined with awake 
craniotomy and electrostimulation techniques (Amiez 
et al. 2008; Picht et al. 2006).

11.2 Functional MRI Neuronavigation

Functional imaging may be combined with frameless 
neuronavigation in tumor surgery to allow for the 
intraoperative localization of both the lesion and areas 
of brain activation. Blood oxygenation level dependant 
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(BOLD) fMRI (Ogawa et al. 1990) is performed pre-
operatively. Images are acquired while the patient per-
forms tasks that involve the area of brain that is likely 
to be at risk during the planned surgery. These data are 
then coregistered with traditional high resolution struc-
tural MRI and appear on the neuronavigation images. 
Demonstrations of this technique were reported in a 
small series of patients starting in the late 1990s (Braun 
et al. 2000, 2001; Kamada et al. 2003; Schulder et al. 
1999, 1997; Signorelli et al. 2003; Fandino et al. 1999 
Wilkinson et al. 2003), while validation has been 
achieved by comparison of fMRI data with the results 
of direct cortical stimulation at the time of surgery 
(Braun et al. 2000; O’Shea et al. 2006; Roessler et al. 
2005; Schulder et al. 1999; Signorelli et al. 2003). 
Algorithms for the coregistration of functional areas 
with structural MRI data have been demonstrated to 
yield accuracy within a sub-millimeter median error 
(Kober et al. 2002).

Neuronavigation combined with fMRI data was 
used in a series of 15 patients with tumors located in 
eloquent areas where no patient suffered a postopera-
tive neurologic defi cit (Gumprecht et al. 2002); how-
ever, in eight of these patients the tumor was only 
resected partially. Using a combination of fMRI neu-
ronavigation and direct intraoperative cortical stimula-
tion, Roessler et al. (2005) achieved GTR in nine of 22 
patients, with partial resections in 11 and biopsy in 2. 
Another series examined the use of fMRI neuronavi-
gation in 54 patients with tumors located near the 
motor strip. GTR was achieved in 45 patients (83%), 
however neurologic deterioration was observed in nine 
(Krishnan et al. 2004). In addition to the traditional 
mapping of sensorimotor and language functions, neu-
ronavigation with coregistered fMRI data has been 
used for resection of tumors located near areas involved 
in short term memory (Braun et al. 2006). In this series 
of 14 patients, good surgical results were reported, 
especially with regards to verbal memory. Two patients 
with lesions near visual cortex have been surgically 
treated using fMRI coregistered neuronavigation 
(Schulder et al. 1999). Functional MRI has been coreg-
istered with positron emission tomography (PET) data 
(Braun et al. 2001).

Preservation of functional cortex does not protect 
against postoperative neurologic defi cits when the cor-
responding deep white matter tracts are surgically 
damaged. To address this, fMRI data have been coreg-
istered with diffusion tensor imaging in order to 

visualize both functional areas of cortex and their 
underlying white matter tracts (Kamada et al. 2007).

11.3 Intraoperative Functional MRI

Intraoperative MRI was developed in order to provide 
the neurosurgeon with near-real time feedback regard-
ing the extent of tumor resection and the presence of 
intraoperative hemorrhage. Intraoperative imaging 
accounts for the effects of brain shift because the 
imaging data used for guidance are acquired during 
the surgical procedure and therefore the effects of 
CSF loss, tissue resection, and gravity are visualized. 
The main issues in developing ioMRI are magnetic 
compatibility, timing of intraoperative scans, mainte-
nance of sterility, and ergonomic design of the operat-
ing MRI suite. The latter must allow for the effi cient 
transfer of the patient to and from the scanner and 
ease of performing the operative procedure. The fi rst 
ioMRI scanner was low fi eld (0.5 T) (Black et al. 
1999) and therefore carried a relatively low risk of 
magnetic mishaps. As neurosurgeons turned to high 
fi eld ioMRI, issues with ferromagnetism of operative 
tools became more signifi cant. Adaptation of neuro-
surgical procedures to allow for the presence of the 
magnet within the operating suite involved defi nition 
of the fi ve gauss line, beyond which only MRI-
compatible materials may be used. Large surgical 
series have been reported without signifi cant rates of 
magnet-related mishaps or increased rates of infection 
(Hall et al. 2003; Nimsky et al. 2004; Nimsky et al. 
2009b; Trantakis et al. 2003). Although the fi rst ioMRI 
system consisted of a double coil design that allowed 
the surgeon to operate with the patient’s head already 
at the ideal location for image acquisition, we have 
found that transfer of the patient into and out of the 
scanner during surgery is easily accomplished. When 
ioMRI is desired, the patient is moved by means of a 
fl oating top table into the scanner after a sterile towel 
is placed over the surgical site. Surgery is resumed 
within a few minutes after the acquisition of the imag-
ing data. The timing of intraoperative scanning is 
variable. Although surgeons may employ slightly dif-
ferent algorithms, the basic technical strategy involves 
obtaining a scan when there is doubt regarding the 
completeness of the tumor resection, and then repeat-
ing this process until GTR is attained.
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11.4 High Field Functional MRI

Intraoperative images at low fi eld (0.12 T) and mid-fi eld 
(0.5 T) have predictably demonstrated lower resolution 
compared to imaging obtained at high fi eld (1.5 T); 
(Nimsky et al. 2004; Nimsky et al. 2009b). Despite the 
concerns for safety and the proven success of intraop-
erative high fi eld MRI at 1.5 T, surgery at 3 T has been 
performed in order to explore the benefi ts of improved 
resolution (Trantakis et al. 2003). The improved resolu-
tion and signal to noise ratio afforded by high fi eld MRI 
has led to its use for functional neuronavigation. Feigl et 
al. (2008) have used real time 3 T BOLD t-maps coreg-
istered with MRI for neuronavigation of patients with 
tumors near the motor cortex, and achieved success 
comparable to that seen in a cohort of patients that had 
previously undergone awake craniotomy.

Our paradigm for fMRI guided neurosurgery uti-
lizes preoperative high fi eld (1.5 T or 3 T) fMRI com-
bined with ioMRI at 1.5 T. Intraoperative MRI allows 
for near real-time feedback regarding the extent of 
tumor resection, but the shifted position of functional 
areas must be mentally extrapolated onto the newly 
acquired images by the surgeon. A novel approach 
reported by Archip et al. (2007), combines nonrigid 
registration of preoperative 3 T fMRI images with 0.5 
T ioMRI to provide a quantitative estimation of brain 
shift in order to update fMRI localization. Using this 
technique, the alignment of the nonrigid system was 
found to be accurate (1.82 mm).

Intraoperative fMRI has been used for the resection 
of tumors located near eloquent cortex. In the remain-
der of this chapter, we will review our experience with 
intraoperative fMRI at 1.5 T and 3 T.

11.5 Materials and Methods

11.5.1 The Intraoperative MRI Suite

Surgery was performed at the University of Minnesota 
Fairview-University Medical Center. The MRI was a 
short-bore 1.5 T scanner (Gyroscan ACS-NT, Philips 
Medical Systems, Best, The Netherlands) with strong 
imaging gradients (23 mT/m, 105 mTm/ms) allowing 
for generation of echo planar imaging that is com-
monly used in fMRI. The total length of the MRI is 

180 cm with an inner bore diameter of 60 cm and a gan-
try that can extend to 100 cm beyond the fl ared open-
ings. The operating suite consisted of the scanner and a 
monitor similar to that used by the technologists to 
 perform scanning. The operating microscope, patient 
monitors and anesthesia equipment were all MRI com-
patible. The magnet was actively shielded with a result-
ing 5 Gauss (G) line enclosing an area of 7.8 by 5.0 m. 
Surgery was performed on an angiography table with a 
fl oating table top mechanism oriented in-line with the 
MRI scanner, allowing for patient transfer easily into 
the MRI. A carbon-fi ber Malcolm-Rand head frame 
was used that allowed for the exact reproduction of 
scan planes between imaging sessions. The ability to 
obtain high quality scans while maintaining operative 
access was afforded by a head coil composed of two 
circular loops arranged as a phased array. Surgery was 
performed either at the near end of the room outside 
the 5 G line, or alternatively on the opposite side of the 
scanner within the 5 G line, where only MRI-compatible 
materials were used. The MRI suite was cleaned the 
day before the surgical procedure and treated as a ster-
ile surgical environment. Pocketless color coded scrubs 
were worn within the suite in order to avoid the inad-
vertent transport of non-MRI compatible instruments 
too near to the scanner.

11.6  Functional MRI-Guided 
Tumor Resection

11.6.1  1.5 T Functional 
MRI-Guided Resection

Patients underwent fMRI imaging preoperatively. For 
language, silent speech was used because actual physi-
cal vocalization would result in head movement and the 
subsequent misregistration of the areas of brain activa-
tion on the high resolution MRI obtained for surgical 
planning. Motor tasks included fi nger and toe tapping, 
while list retention was used for short-term memory 
mapping. Patients were asked to repeat each task mul-
tiple times with similar periods of rest between task per-
formance. The fMRI protocol for the 1.5 T scanner was 
a single-shot EPI scan (TR/TE = 3,000/40 ms; fi eld of 
view = 210 mm) with a 64 × 64 image matrix and 7 mm- 
thick slices with 1 mm intersection gap. Acquisition 
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was repeated 72 times over 4 min in sequential fashion. 
Test accuracy was measured by a wave pattern that was 
overlaid on a linear graph that indicated when the patient 
was performing a particular task properly. Areas of 
BOLD activation were calculated and these fMRI data 
were superimposed on high quality structural MRI 
scans that were displayed on the operating suite view-
ing monitor.

Intraoperative images were obtained in order to assist 
in determining the extent of residual disease and whether 
there was the need for more resection. The choice of 
imaging sequence was determined by the neurosurgeon 
in conjunction with the neuroradiologist. T2 weighted 
images, turbo FLAIR (fl uid attenuated inversion recov-
ery) and HASTE (half-Fourier-acquisition single-shot 
turbo-spin echo) images were used most often for intra-
operative imaging of low grade glial tumors. Once the 
decision to obtain intraoperative imaging was made, all 
non-MRI compatible materials were removed from the 
table and the surgical site was covered with a sterile 
towel. All operations were performed with the patient 
under general anesthesia, and therefore functional scans 
were not obtained intraoperatively.

Follow up imaging was obtained 3 months after sur-
gery and subsequently 1–2 times per year. All follow 
up fi lms were reviewed by the neuroradiologist to 
exclude the presence of recurrent tumor.

11.6.2  3 T Functional 
MRI-Guided Resection

Preoperative mapping of functional areas of the brain 
was accomplished at 3 T. For preoperative 3 T fMRI 
studies, one of two scanners was used. One MR system 
was a short bore 3 T scanner (Intera, Philips Medical 
Systems, Best, The Netherlands). The fMRI protocol 
for this system was a single shot EPI scan (TR/TE = 
3,000/35 ms; fi eld of view = 230 mm) with an 80 × 128 
image matrix and 4 mm thick slices with 1 mm intersec-
tion gap. The acquisition was repeated 100 times in a 
sequential fashion over an imaging interval of 7 min. 
The other system was the 3 T Siemens scanner (Siemens 
Medical Solutions, Erlangen, Germany). The fMRI 
protocol for this system was a single shot EPI scan (TR/
TE = 2,660/30 ms; fi eld of view = 192 mm) with a 64 × 
64 image matrix and 3 mm slices with 0.8 mm intersec-
tion gap. Acquisition was repeated 60 times in 

sequential fashion over an interval of 3 min. These data 
were acquired during repeated performances of toe tap-
ping, fi nger tapping or silent speech. Tasks were 
repeated with periods of rest of similar length interven-
ing. Brain activation (BOLD) imaging data were calcu-
lated using Philips software. Intraoperative guidance 
was still performed with the 1.5 T system as described 
above. Rigid fi xation of the head during intraoperative 
scans allowed for similar acquisition planes and straight-
forward identifi cation of the previously identifi ed areas 
of activation on the intraoperative scans.

11.7 Results

11.7.1  Functional MRI at 1.5 T 
for the Treatment of Low 
Grade Glial Tumors

From 1997 to 2003, 16 patients whose tumors were his-
tologically proven to be low grade gliomas were oper-
ated on using 1.5 T ioMRI-guidance after preoperative 
1.5 T fMRI was obtained. Fifteen of these patients had 
operative resection while the last patient underwent 
ioMRI-guided biopsy because the tumor was deter-
mined to be located within the motor cortex. Tumors in 
this series included oligodendrogliomas (n = 10), low 
grade astrocytomas (n = 4), pleomorphic xanthroastro-
cytoma (n = 1), and dysembryoplastic neuroepithelial 
tumor (n = 1). Mean age at the time of surgery was 31 
years, with a range of 10–43 years. Fifteen of the patients 
in this series presented with seizures, the remaining 
patient was asymptomatic. No patient had a neurologi-
cal defi cit prior to surgery. Of the 16 patients, 12 were 
undergoing their fi rst surgical procedure, whereas three 
patients had previous resection or debulking and one 
patient had previously undergone biopsy. Locations 
were right frontal (n = 5), left frontal (n = 6), left tempo-
ral (n = 3), and left parietal (n = 1). Motor function, 
speech function and memory function were localized 
using fMRI as deemed appropriate by the location of the 
lesion and planned surgical corridor.

The number and frequency of intraoperative images 
varied depending on the operative fi ndings; however, 
all the patients had imaging to determine whether the 
tumor was completely resected, and one fi nal scan to 
exclude the presence of hemorrhage before leaving the 
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operative suite. For the majority of patients, the fi rst 
scan obtained after resection revealed some residual 
tumor that was found to be resected on subsequent 
imaging after more surgery. In a few cases where the 
tumor was particularly close to areas of functional 
imaging, one or more additional intermediate scans 
were obtained as the resection progressed. In cases 
where there was doubt about the presence of blood on 
this scan, one fi nal scan was obtained 15–20 min later.

In this series of patients, a GTR was achieved in 10 
patients (63%). Of the fi ve patients in whom resection 
was considered subtotal, residual tumor was left inten-
tionally because it was felt that the lesions were entwined 
with functional motor cortex in four patients and both 
language and motor areas in the other patient.

None of the patients in whom complete radiographic 
resection was achieved had experienced recurrence at 
last follow up (mean, 31 months; range, 14–87 months). 
Of the patients who underwent partial resection, none 
had evidence of tumor progression at last follow-up 
(12–20 months). The patient who was treated with 
radiotherapy as the primary treatment modality had 
stable disease at last follow-up of 41 months.

Postoperative morbidity in this series was low. There 
were no permanent neurological defi cits in any patient. 
One patient experienced a transient hemiparesis that 
was felt to be related to postoperative edema extending 
into the motor strip, while another patient exhibited a 
transient motor apraxia, which was not surprising, given 
the location of the tumor within the supplementary 
motor area. There were no mishaps involving MRI-
incompatible instruments or any other objects within 
the magnetic fi eld.

11.8 Functional MRI at 3 T

Using fMRI data acquired at 3 T, tumor surgery was 
performed on 13 patients with primary intracranial 
tumors located adjacent to eloquent cortex. These 
tumors included six oligodendrogliomas, three menin-
giomas, two astrocytomas and two GBMs. Mean age 
was 43 years with a median age of 48 years (range, 
22–70 years). Tumors were located in the right frontal 
(n = 5), left frontal (n = 6), and left temporal (n = 2) 
lobes. Ten of the 13 patients were being operated on for 
the fi rst time. Twelve of the patients underwent resec-
tion with ioMRI-guidance after review of fMRI results, 
while one patient’s tumor was within the motor cortex, 

and therefore, a brain biopsy was performed. In the 
twelve patients whose tumors were resected, a GTR 
was achieved in ten (Figs. 11.1–11.3). The remaining 
two patients, one with an astrocytoma and the other 
with a GBM, had partial resections because the fMRI 
revealed that the tumors were infi ltrating into eloquent 
cortex. GTR was defi ned either as the removal of all 
areas of enhancement for high grade tumors and men-
ingiomas, or the removal of the predefi ned tumor 
imprint for nonenhancing tumors. There was no post-
operative hemorrhage noted in any patient.

The number of intraoperative scans that were obtained 
during surgery varied widely within this series. A mini-
mum of three scans were generally obtained with one 
before surgery, one to determine if there was residual 
tumor (Figs. 11.4–11.6), and a fi nal scan before leaving 
the operative suite to determine if any hemorrhage 
occurred during closure. The head position was main-
tained constant throughout the procedure by use of the 
head frame, resulting in identical image planes during 
scanning.

There were no permanent postoperative neurologic 
defi cits seen in this series of patients. Five patients 

Fig. 11.1 Axial T1-weighted brain activation study performed at 
3 Tesla showing the area for fi nger tapping of the left hand. The 
tumor that is planned to be surgically resected is just anterior and 
medial to the cortical area of brain activation. The posterior aspect 
of the tumor is nicely delineated by a medial and lateral sulcus
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did experience temporary neurologic worsening that 
included speech apraxia in two patients, motor apraxia 
in two patients and combined speech and motor apraxia 
in one patient. All patients experienced complete reso-
lution of these defi cits within 4 weeks of surgery. There 
were no safety issues that occurred in this series related 
to the inadvertent transport of ferromagnetic items too 
near to the magnet fi eld.

11.9 Discussion

The use of ioMRI at various fi eld strengths has been 
well described, and validated for safety and effi cacy in 
achieving maximal tumor resection in adult and pediat-
ric brain tumor surgery (Alexander et al. 1997; Berger 
et al. 1994; Bernays and Laws 1997; Bernstein et al. 
2000; Black et al. 1999; Hall et al. 2003; Hall et al. 2005; 
Hall et al. 1998; Kremer et al. 2006; Lam et al. 2001; 
Martin et al. 1998; Nimsky et al. 2004; Schwartz et al. 
1999; Trantakis et al. 2003). The addition of preopera-
tive fMRI provides the neurosurgeon with a clear 
delineation of the areas of eloquent cortex that must be 

Fig. 11.2 Three Tesla axial turbo FLAIR image demonstrating a 
right frontal area of increased signal that is consistent with a low 
grade glioma. This scan was obtained immediately prior to a 
brain activation study that was performed to identify the location 
of functional cortex in proximity to the presumed tumor

Fig. 11.3 Intraoperative axial turbo FLAIR scan that was 
obtained at 1.5 Tesla showing a complete radiographic resection 
of the tumor footprint. The pathologic examination revealed an 
oligodendroglioma. The surgical resection cavity is fi lled with air 
and pneumocephalus is seen over both frontal lobes. Brain shift as 
a consequence of the egress of cerebrospinal fl uid has occurred

Fig. 11.4 Axial turbo fl uid-attenuated inversion recovery (FLAIR) 
magnetic resonance imaging scan demonstrating a left frontal low 
grade glioma that was found at surgery to be an oligodendro-
glioma. This brain activation study was performed at 3 Tesla and 
the task being performed was fi nger tapping of the right hand
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preserved during tumor resection; when combined 
with ioMRI, it has allowed for the safe resection of 
tumors near eloquent cortex that would otherwise have 
required awake craniotomy or intraoperative cortical 
stimulation, or that may even have been considered 
unresectable. A reasonable concern with fMRI is that 
it defi nes areas of functionality indirectly, most often 
due to oxygen consumption during the performance of 
a task. Differences between functional territories as 
defi ned by direct brain mapping and fMRI have been 
reported (Roux et al. 2003), supporting this concern. 
Moreover, our speech testing used the commonly 
accepted paradigm of silent speech to reduce artifact 
(Friedman et al. 1998; Hinke et al. 1993), although 
areas of brain activation are not identical to those 
where true speech is generated (Huang et al. 2002). 
Awake craniotomy does provide the most direct assess-
ment of functionality of the brain tissue that is being 
resected; however, it requires stimulation to function or 
loss of function after resection to defi ne eloquent areas. 
This may result in an irreversible neurological defi cit. 

Most importantly, the lack of lasting postoperative def-
icits in the 29 patients in our combined series suggests 
that although indirect, fMRI does yield accurate infor-
mation on the location of eloquent cortex and allows 
for the safe resection of tumors lying adjacent to that 
tissue. Regardless of the technique that is used for 
localizing tumors, those that infi ltrate directly into 
functional cortex cannot be safely resected by the sur-
geon. Because of this limitation, there were patients 
who still underwent partial resection in both of our 
series despite the use of fMRI guidance and in other 
reported series (Nimsky et al. 2006a).

Increasing the fi eld strength of the preoperative 
fMRI from 1.5 to 3 T improved the resolution of these 
images. Although the 1.5 T imaging allowed for safe 
aggressive resection of the lesions in the fi rst series, the 
functional data was limited to one axial plane, whereas 
the 3 T data were visible on multiple slices, allowing 
for visualization of function in three dimensions. The 
success of increasing magnet strength intraoperatively 
raises the possibility of performing 3 T high fi eld ioMRI 
to match preoperative functional imaging at 3 T, which 
obviously would add clarity to the intraoperative 

Fig.11.5 Intraoperative axial half-Fourier acquisition single-
shot turbo spin echo (HASTE) magnetic resonance imaging 
scan demonstrating the presence of residual tumor just posterior 
to the surgical cavity that required additional resection before 
the completion of the procedure. The HASTE imaging tech-
nique is used for low grade gliomas because of its ability to 
clearly demonstrate residual disease and the rapid acquisition 
time that is possible during surgery. Note the presence of brain 
shift of the left frontal lobe

Fig. 11.6 Intraoperative axial half-Fourier acquisition single-
shot turbo spin echo (HASTE) magnetic resonance imaging 
scan demonstrating a complete radiographic resection of the left 
frontal oligodendroglioma footprint. The craniotomy has been 
closed completely at this point and there is a mixture of saline 
and cerebrospinal fl uid seen fi lling the resection cavity
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 imaging, affording a resolution equal to that of the pre-
operative functional images. Our experience in applying 
3 T fMRI preoperative data intraoperatively to guide 
brain tumor resection at 1.5 T has been suffi cient for 
most surgical decision making. However, intraoperative 
imaging at 3 T may clearly represent the next degree of 
sophistication for neurosurgeons working in this fi eld.

In our series, intraoperative scans were obtained to 
demonstrate brain structure only; therefore, during 
surgery the neurosurgeon was required to extrapolate 
the preoperative fMRI data onto the newly acquired 
ioMRI structural scans. While intraoperative fMRI 
scans would obviate the need for preoperative acquisi-
tion, this would also add the time of multiple cycles of 
anesthesia reversal (for the performance of the intraop-
erative functional tasks) to the procedure. As with any 
imaging modality used during surgery, the data does 
not replace sound surgical judgment and familiarity 
with the neuroanatomy. Therefore, although our para-
digm requires that the surgeon must mentally apply the 
preoperative fMRI data to newly acquired ioMRI 
images, this should not compromise the safety or effi -
cacy of this technique.

Functional MRI data may also be coregistered with 
neuronavigation data as described above, although this 
has previously been reported to pose the risk of mislo-
calization (Roux et al. 2001) and still is subject to brain 
shift as with other frameless stereotactic techniques. 
Another way to compensate for brain shift that has 
been reported, involves the application of intraopera-
tive high resolution 3D ultrasound data to registered 
MRI/fMRI data to allow for the correction of shift 
(Rasmussen et al. 2007). This is certainly an attractive 
option, although rigorous validation of computational 
algorithms is needed.

11.10 Low Grade Gliomas

Intraoperative MRI has been shown to help facilitate 
the resection of low grade gliomas (Martin et al. 1998); 
however, the lack of clearly defi ned borders in these 
infi ltrating tumors does increase the risk of damage to 
adjacent neural structures during image-guided sur-
gery. Because low grade glial tumors are often infi ltra-
tive and there exists controversy regarding the benefi ts 
of an aggressive resection of low grade gliomas; these 
tumors are often treated without surgery when they 

occur in close proximity to eloquent cortex. The infi l-
trative nature of these lesions may obscure the border 
between tumor and functional cortex. We have reviewed 
our experience with resection of low grade gliomas 
using ioMRI-guidance combined with preoperative 
fMRI. Our method of combining preoperative fMRI 
acquired at 1.5 T with 1.5 T ioMRI-guided surgery, 
allowed for complete tumor resection in 10 (63%) 
patients without neurologic defi cit at 1 month after sur-
gery. Only one patient in this series received adjuvant 
radiation therapy and all patients enjoyed progression 
free survival at last follow up (median 25 months). The 
lack of recurrence or progression of disease is consis-
tent with our belief that maximal resection is the opti-
mal treatment for low grade gliomas. Furthermore, we 
interpret the fact that a signifi cant number of the patients 
in this series exhibited transient postoperative neuro-
logic defi cits without permanent sequelae, as evidence 
that ioMRI allowed for the most aggressive resection 
possible by the neurosurgeon.

11.11 High Grade Gliomas

HGG represent the majority of primary intraparen-
chymal brain tumors in adults, and as mentioned 
 previously, are treated by most neurosurgeons by 
surgical resection. Functional MRI neuronavigation 
as well as ioMRI combined with preoperative fMRI 
have been used in the treatment of HGG. Because 
these tumors usually enhance after contrast adminis-
tration, a radiographic GTR can be defi ned as the 
removal of the enhancing mass on MRI. HGG are 
generally visible grossly, and the neurosurgeon is 
often able to determine when GTR has been achieved 
during surgery without imaging. Nonetheless, ioMRI 
is useful for judging the extent of the tumor resection 
and confi rming whether additional tumor removal is 
warranted. In our practice, contrast is only given 
intraoperatively after the apparent removal of most 
of the grossly abnormal tissue to avoid the diffusion 
of contrast into the edematous brain around the resec-
tion cavity.

Although controversy continues as to whether 
gross total tumor resection extends survival in patients 
with HGG, the combination of fMRI and ioMRI pro-
vides increased protection of eloquent brain structures 
 without the need for awake craniotomy and cortical 
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stimulation. Class I data regarding the extent of surgi-
cal resection on prognosis is unlikely to be collected, 
given the improbability that patients will agree to be 
randomized into the deliberate subtotal resection group. 
However, we feel that the rationale for aggressive 
tumor removal as outlined in the introduction further 
justifi es the use of ioMRI as a tool to maximize tumor 
resections.

In a rare, prospective, randomized trial comparing 
neuronavigation with diffusion tensor imaging tractog-
raphy compared to traditional structural neuronaviga-
tion for tumors near the pyramidal tract, subgroup 
analysis of 81 HGG revealed a signifi cantly higher rate 
of GTR, with a corresponding statistically signifi cant 
increase in median survival from 14.0 to 21.2 months 
(Wu et al. 2007). Although this approach represents a 
slightly different treatment modality, we believe that 
this is a demonstration of the advantage offered by sur-
gical guidance with functional imaging.

11.12 Other Tumors

Although we have focused on gliomas, the strategies 
outlined in this chapter should be applicable to virtu-
ally any lesion near eloquent cortex. The role of aggres-
sive surgical resection is less clear for metastatic brain 
tumors, and aggressive surgical resection for tumors 

adjacent to eloquent cortex may be less appealing, 
especially given the excellent nonsurgical modalities 
presently available. Within the parameters of a rational 
approach to surgical resection, however, fMRI-guided 
neurosurgery likely has a role in a subset of patients 
with metastatic lesions (Figs 11.7 and 11.8). Certainly 
lesions located near eloquent structures will often be 
symptomatic, and the availability of fMRI-guided 
resection is likely to be useful in such situations.

Because meningiomas are extra-axial tumors, their 
surgical resection should pose a lower risk of postop-
erative neurologic injury. The benefi t of radical resec-
tion in treatment of meningiomas is well documented 
(Simpson 1957). Neuronavigation is often used for 
planning the surgical resection of meningiomas and 
may be helpful in achieving complete resection (Keskil 
et al. 2006). We felt that ioMRI with pre-operative 
functional imaging at 3 T was helpful in three menin-
giomas in our series that were located near eloquent 
cortex (Figs 11.9 and 11.10).

11.13 Conclusions

Functional MRI identifi es those areas of cortex that are 
likely to result in neurologic compromise if resected 
by the neurosurgeon. Despite the fact that these data 
are indirectly measured, the use of fMRI has been 

Fig.11.7 Brain activation study at 1.5 Tesla showing the loca-
tion of fi nger and toe tapping of the left side of the body were 
present on three axial inversion recovery scans displayed on dif-
ferent slice images.  The area of decreased signal represents a 

brain metastasis from a sarcoma that originated in the thigh that 
is located in close proximity to eloquent motor function on this 
inversion recovery magnetic resonance imaging scans
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Fig. 11.8 Intraoperative axial turbo FLAIR, axial gradient echo, 
and coronal T1-weighted contrast enhanced magnetic resonance 
imaging scans demonstrating the complete resection of the poste-

rior right frontal sarcoma brain metastasis. The patient sustained no 
postoperative transient or permanent neurologic injury and they 
were discharged from the hospital on the second postoperative day

Fig. 11.9 Axial brain activation study performed at 3 Tesla 
demonstrating the location of the functional area of the cortex 
for fi nger tapping of the left hand. The area of activation is just 
posterior and lateral to the contrast-enhancing tumor on this 
T1-weighted axial magnetic resonance imaging scan that was 
found to be a meningioma at surgery

Fig. 11.10 Intraoperative axial turbo FLAIR MRI scan that was 
obtained at 1.5 Tesla after the complete resection of the tumor. 
Of note is the pneumocephalus that is present over both frontal 
lobes and the degree of brain shift that has resulted from the loss 
of cerebrospinal fl uid during surgery
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validated as safe and effective for surgical guidance in 
the resection of tumors located near areas of functional 
cortex. We prefer a paradigm of preoperative high fi eld 
fMRI combined with structural ioMRI to guide the 
removal of tumors that we have described in this series. 
Others have found fMRI useful within the context 
of coregistered frameless neuronavigation and awake 
craniotomy.
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12.1 Introduction

Intracranial space-occupying lesions, particularly glial 
tumors, may challenge the neurosurgeon who aims at 
preserving neuronal function as much as possible while 
removing as much of the lesion as possible. It has been 
repeatedly questioned whether radical resection of 
gliomas is the method of choice because of their inva-
sive nature, but it has also been shown recently that 
patients can benefi t from radical resection as much as 
possible both in primary (Stummer et al. 2006) and 
recurrent gliomas as well as in low-grade gliomas 
(Claus et al. 2006, Sanai et al. 2008). Radical resection 
of glial tumors, however, is hampered by the risk of 
damaging neuronal functions, particularly of speech 
and motor functions. Therefore, early on in the devel-
opment of modern neurosurgery, brain tumor surgery 
under local anesthesia (LA) was suggested in order to 
reduce the risk of immediate severe and non-reversible 
postoperative neurological defi cit (Berger et al. 1992; 
Black et al. 1987; Ojemann et al. 1989; Ojemann 1988). 
Most of the patients are initially frightened by the sug-
gestion of undergoing brain tumor surgery under local 
anesthesia. However, they accept this method when the 
details are fully explained to them (Danks et al. 1998). 
Nevertheless, there are limitations, such as patients’ 
inability to cooperate – in the case of very young and 
very old patients, or a tumor located and extending in 

such a fashion that there is no good way to position the 
patient with suffi cient comfort; patients with reduced 
cardio-pulmonary functions or seizures related to the 
tumor should be particularly well taken care of. Taking 
these precautions into account, it has been shown by 
many centers that it is possible to reduce the risk of a 
focal neurological defi cit while increasing the chance 
to completely remove a tumor located in eloquent areas 
(Danks et al. 2000; Duffau 2005a, b; Duffau et al. 2003; 
Ebeling et al. 1995; Pinsker et al. 2007).

With the advent of Magnetic Resonance Imaging 
(MRI) and particularly functional MRI (fMRI), this 
technique is now widely accepted as being able to pre-
cisely localize brain functions (Brannen et al. 2001; 
Naidich et al. 2001), with a high degree of sophistica-
tion and reliability (with a 53% regional specifi city 
(FitzGerald et al. 1997) ): even different brain func-
tions requiring complex interactions between various 
active brain areas. While the latter may be further 
explored in research projects, some indications for its 
use in a clinical setting have emerged over the recent 
years and led to its implementation into routine MRI 
scanner software. In routine clinical neurosurgical 
practice, these techniques mainly concern the defi ni-
tion of the dominant hemisphere, the various speech 
areas and motor cortex. Furthermore, relation between 
the most important areas can be demonstrated by fi ber 
tracking, thus enabling the surgeon to prevent damage 
to the white matter tracts (Duffau 2005a, b, 2007; 
Nimsky et al. 2006a–c). However, there are certain 
limitations which may lead one to question the value 
of these fMRI results in relation to intraoperative appli-
cation. This paper should elucidate some of the bene-
fi ts and pitfalls of both techniques as experienced by 
the authors in a review of the literature.
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12.2  Indications for Direct Cortical 
Stimulation and/or Functional 
Magnetic Resonance Imaging 
(fMRI): Patient Selection

Two factors determine the indication for either direct 
cortical stimulation (DCS) during surgery under awake 
conditions or fMRI:

1. The clinical condition of the patient, particularly his 
presenting symptoms, and his neurological status.

If the patient’s history and presenting symptoms, like 
temporary speech defi cits or focal seizures, suggest a 
lesion affecting motor or speech areas, and the diagno-
sis of an intrinsic brain tumor in these areas is ascer-
tained, the patient is considered for awake craniotomy 
using DCS. Special attention should be given to the 
patient’s problems of understanding and his/her capa-
bility and willingness to cooperate with the surgeon 
and the OR team; these factors need to be analyzed 
preoperatively by the neurosurgical staff members and 
dedicated neuropsychologists.

These criteria obviously exclude the following 
patient groups from awake craniotomy: emergency 
tumor decompressions in comatose patients, small 
children and geriatric patients who would be unable to 
cooperate fully.

In all other patients with tumors in the above men-
tioned locations, the method of DCS was the method 
of choice, before fMRI was available in our institution 
as well as in others, to determine intraoperatively how 
much tumor could be removed safely without provok-
ing too big a neurological defi cit. In our experience as 
well in the experience of others, DCS has shown to 
improve surgical outcome when operating in function-
ally relevant areas, enhancing both the amount of 
tumor resection and the preserving function.

Now, since the advancement of MRI technology 
and introduction of fMRI in the armamentarium of 
preoperative evaluation this method needs to be taken 
into consideration and weighted against the DCS 
method.

2. Tumor localization and function of brain region

Following the fi rst diagnostic imaging of the tumor 
which is made in order to grade it in a assumptive man-
ner, its localization, as visualized by preoperative com-
puted tomography (CT) scanning or more appropriately 
by MRI, is analyzed to determine whether functionally 

relevant (“eloquent”) brain structures incl. fi ber tracts, 
are in vicinity to the tumor and could possibly be harmed 
during tumor removal. The initial grading should help to 
defi ne the extent of surgical resection. While, resection 
of a WHO grade III or IV glioma should be attempted 
with the intent to completely preserve function at the 
preoperative level for the limited survival time, in grade 
I or II gliomas complete resection should be attempted 
in order to optimize survival times without adjunctive 
therapy. In these patients, particular workup is required 
in order to defi ne the spatial relation between the tumor 
borders and the functionally relevant structures i.e., 
speech and motor cortical areas, optical regions and the 
fi ber tracts, particularly the pyramidal tract and the bun-
dles between the motor and sensory speech areas, and 
also the optical fi ber tracts e.g., the Gratiolet tract.

While fMRI data acquisition can be applied to all 
patients who tolerate the narrow canal of MRI machines, 
and who understand the need to cooperate while per-
forming the neuropsychological paradigms, the DWI 
measurements required for representation of fi ber bun-
dles demand that a patient lie for some additional time 
without moving his/her head until the data are acquired.

The fMRI data need to be processed and transferred 
to the neuronavigation consoles in order to be used for 
surgical planning.

On the basis of the above mentioned criteria the 
patient is advised to undergo surgery as awake cran-
iotomy.

12.3 Methods

12.3.1  Surgery Under Local Anesthesia: 
Awake Craniotomy

Details of this technique have been described by our 
group (Pinsker et al. 2007) and others (Danks et al. 
2000; Duffau 2005a, b; Duffau et al. 2003, 1999; Tonn 
2007). We have implemented awake craniotomy since 
1993 in our department in order to remove as much 
tumor as possible in or close to eloquent areas while 
preserving function. Prerequisite for this technique is, in 
our  opinion, a good (neuro-) psychological preparation 
of the patient. The majority of our brain tumor patients 
undergo formal preoperative neuropsychological testing 
by our dedicated neuropsychologists who not only eval-
uate the aspects of the dominant hemisphere and, in a 
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very sophisticated manner, the neuropsychological defi -
cits, but also talk to the patients concerning their indi-
vidual fears related to the tumor and the upcoming 
surgery. In the initial phase, we also brought the patients 
into the operating room and positioned them onto the 
OR table to make them familiar with the setting; due to 
time restraints, this is no longer possible, but the 
patients are well familiarized with this particular type 
of surgery. Anesthesiologists also play a special role in 
this setting; they have to take care of the patient during 
surgery and are essential in keeping a balance between 
sedation of the patient during some parts of surgery 
e.g., craniotomy itself and having him/her awake for 
testing during tumor removal. Medications used in this 
regard are propofol and analgesics. Central lining is 
given to all our patients although this may not be the 
routine in other centers (Fig. 12.1).

LA is applied to the patient by the neurosurgeon 
using ropivacaine-HCl (Naropin®) 0.75% for the 
blocks around the 3-pin head-holder. Neuronavigation 
is used to defi ne the optimal craniotomy site and delin-
eation of the skin incision. Subsequently the line of the 
skin incision is anesthetized additionally; when a 
curved incision is required, particular care is paid to 
apply suffi cient anesthesia to the underlying muscles, 
usually the temporal muscle. After careful aseptic 
preparation the surgical drapes are placed after having 
applied a semicircular or rectangular cage-like metal 
to hold the drapes with suffi cient comfort for the 
patient to whom every single step of draping him/her is 
explained carefully (Fig. 12.2).

Then surgery is performed as usual, while always 
talking to the patient and explaining all the steps and 
adding LA as required; particular care is taken while 
the craniotomy is performed. Until this step and a little 
bit longer, the patient is also allowed to sleep under 
anesthesiological supervision and with the help of 
sedation and/or analgesic short lasting medication.

The dura is subsequently opened under the operat-
ing microscope and the brain inspected, and, again 
with the help of the neuronavigation, the brain tumor is 
localized.

12.3.2 Stimulation

Once the tumor has been outlined with inspection and 
neuronavigation, the functional mapping is required 
to defi ne cortical brain areas which are functionally 

Fig. 12.1 Brain Surgery in the awake patient. The patient is 
operated with standard microneurosurgical equipment while 
undergoing specifi c neurophysiologic and neuropsychological 
testing

a

b

Fig. 12.2 Positioning the awake patient in the 3-Pin Headholder 
using local anesthesia. (a) Close up view of the patient. (b) 
During surgery with the neuropsychologist calming and testing 
the patient
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relevant. These areas can be outlined in the fashion as 
described by Ojemann (Ojemann et al. 1989; Ojemann 
1988) and marked by cotton pledgets with numbers 
on it, or they can be virtually marked with neuronavi-
gation. Results of preoperative fMRI studies defi ning 
functionally relevant areas, can be implemented dur-
ing surgery, using particular computer programs, as 
provided commercially by BrainLAB and other com-
panies, which help to blend them into a particular 
computer screen adjacent to a surgical microscope, or 
to implement them into light course of the micro-
scope, thus overlaying them virtually onto the surgi-
cal fi eld. Both methods are available, presenting the 
tumor either as outline onto the brain surface or the 
level of visual acuity or by defi ning the tumor as 3D 
volume (Fig. 12.3).

Stimulation itself is performed using the Ojemann 
stimulator with various settings and eliciting the 
patient’s response to various levels of bipolar stimula-
tion. The motor respective speech disturbances are 
carefully monitored by the neuropsychologist attend-
ing on the patient during the important phases of sur-
gery, and this way, a mapping of cortical areas which 
are safe to remove and those whose removal may cause 

neurological defi cits, is ascertained. Particular atten-
tion needs to be paid to the vasculature of the cortical 
surface as it relates to the stimulated areas since one 
should always remind oneself that the cortical vessels, 
particularly the arteries, are nearly more important to 
be preserved than the cortical surface itself which they 
irrigate.

Once the area which can safely be removed has 
been defi ned, the interaction between the surgeon and 
the patient should not end. Care has to be taken depend-
ing on the correlation between the tumor borders and 
the white matter tracts e.g., the pyramidal tract (Nimsky 
et al. 2006a–c). Stimulation should therefore be con-
tinued, while the surgeon is entering the white matter, 
and combined with neuronavigation, in order to show 
the spatial correlation between these important struc-
tures (Bello et al. 2008; Duffau 2007; Duffau et al. 
2002). In our experience, the voltage required to elicit 
some motor problems in the patient relates well with 
the distance to the pyramidal tract: the higher the volt-
age the longer the distance to the tract. This means that 
one has to monitor this distance continuously as the 
tracts may be displaced during surgical removal of the 
tumor, when compared to their preoperative position.

Fig. 12.3 Cortical testing. 
The tumor encompasses the 
cortex, clearly visible by the 
discoloration in the top 
portion of the image. Direct 
cortical stimulation (DCS) 
results are registered using 
numbered cottonoids to map 
and documenting the elicited 
corresponding results. The 
identifi ed safe access routes 
are taken for arachnoidal 
opening, corticotomy and 
resection of the tumor. The 
images show corresponding 
sites, left before, and right 
after arachnoid opening and 
during cortical testing of the 
sulcal cortical surface with 
the Ojemann bipolar probe
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12.3.3 Intraoperative MRI

The implementation of a high-fi eld MRI machine into 
a neurosurgical operating room (OR) has facilitated 
tumor removal further by allowing real-time imaging 
on a high level of imaging quality. This enables the 
surgeon to re-establish the true anatomical situation 
which changes permanently after opening of the dura 
due to CSF drainage, manipulation of the brain and 
during tumor removal (Nabavi et al. 2001; Nimsky 
et al. 2000). This phenomenon of brain-shift is also of 
high importance concerning the accuracy of fMRI data 
acquired preoperatively.

12.4 Practical Considerations

In order to optimize the situation for the patient, we 
have developed a protocol for patients with tumors 
in or near to eloquent brain areas. Formal neuropsy-
chological testing as an initial step, as well as detailed 
neuro-imaging using MRI (T1 and T2, DWI and DTI 
and MPRage for 3D reconstruction and preparation 
for neuronavigation), fMRI data and DWI images 
are performed in order to determine the spatial rela-
tionship between tumor and functionally relevant 
structures, and then the situation is discussed with 
the patient to see whether awake craniotomy should 
be suggested. If the patient agrees, he undergoes sur-
gery under LA as usual and under intraoperative 
high-fi eld MRI control. This allows for re-registra-
tion of functionally relevant data and update into the 
neuronavigation (Nabavi et al. 2003; Nimsky et al. 
2006a–c).

12.5 Results

In a previous paper (Pinsker et al. 2007), we have 
compared the results of surgery performed between 
1998 and 2002 in 80 patients with gliomas located in 
eloquent areas, using awake craniotomy in 37 primary 
operations and 18 operations for recurrent gliomas, 
while using – on the patients’ request – general anes-
thesia in 27 patients. Comparing only patients with 
tumors located in the motor areas, patients operated 

using awake craniotomy had a higher rate of complete 
resection as evaluated by MRI scans within the 48 h 
post surgery: 20 out of 26 (77%) as compared to 4 out 
of 12 (33%). Worsening of motor functions occurred 
and lasted more than 3 months in three patients (12%) 
following awake craniotomy, while it happened in four 
patients (33%) operated under general anes thesia.

Since the routine use of preoperative fMRI and fi ber 
tracking and intraoperative high-fi eld MRI, we have 
the “clinical feeling”that we may be less intense to per-
suade patients into awake craniotomy, but this feeling 
needs to be substantiated in a prospective fashion, and 
the results of this policy are presently evaluated with 
regard to long term outcome. Having the possibilities, 
however, to use elaborate neuropsychological evalua-
tion, intraoperative monitoring, intraoperative MRI 
scanning and intraoperative application of local che-
motherapy agents, the number of patients coming to us 
in a predetermined fashion has certainly risen, and 
such a study may be diffi cult to evaluate.

Intraoperative guidance by preoperatively acquired 
data with regard to position of eloquent areas may cer-
tainly be helpful (Nimsky et al. 2004; Pinsker et al. 
2007), but still the surgeon has to be aware of intraop-
erative brain deformation, i.e., “Brain Shift”(Nabavi 
et al. 2001; Nimsky et al. 2000) and must therefore, 
still use his best surgical judgement while removing 
tumor tissue in or around eloquent areas. In this regard, 
intraoperative clinical control plays a substantial role 
in defi ning the extent of surgical resection around elo-
quent areas. A careful comparison of the location of 
eloquent areas as defi ned on fMRI studies and the 
intraoperative defi nition of these areas will be helpful 
in determining the clinical value of each of the meth-
ods described.

12.6 Perspectives

Further elaboration of preoperative evaluation of 
patients harboring those life-limiting tumors is war-
ranted in order to further improve quality of life both 
during treatment and follow-up, while enhancing long-
term survival. Initial surgery is essential to remove as 
much tumor as possible and thereby determine long-
term results, while second or third surgery often must 
take compromises to preserve function.
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Imaging Epileptic Seizures Using fMRI

Simon Glynn and John A. Detre

13

13.1 Introduction

Magnetic resonance imaging (MRI) has had an extra-
ordinary impact on the diagnosis and management 
of epilepsy. Contemporary high-fi eld strength MRI 
enables detailed in vivo imaging of lesions that under-
lie symptomatic epilepsies, for example, hippocampal 
sclerosis or malformations of cortical development. 
This routine use of high-fi eld MRI in clinical epilepsy 
has also contributed to the increasing interest in the 
potential use of functional MRI (fMRI) to image the 
abnormal brain function that underlies epilepsy. Here, 
we give a brief overview of epilepsy, the current state 
of fMRI for the diffi cult problem of imaging epileptic 
seizures, and introduce the topic of neurovascular cou-
pling in the epileptic brain and the constraints this 
imposes on fMRI interpretation.

13.2 Background

The term epilepsy derives from the Greek “to lay hold 
of” or “to be seized,” and is defi ned by the tendency to 
recurrent, spontaneous clinical seizures. Epileptic sei-
zures vary in their forms, from seemingly minor sei-
zures such as brief staring episodes, eye blinks, or 
myoclonic jerks, to generalized convulsions. All sei-
zure types can be potentially debilitating regardless of 
their form, depending on the frequency of the events, 
and the age of onset, among other factors.

Epilepsy affects 50 million people worldwide and 
over 2.7 million people in the United States, more than 
multiple sclerosis, Parkinson’s disease, and motor neu-
ron disease combined (Sander 2003; Hauser et al. 1990; 
Kurtzke 1982). Half of the persons with epilepsy are 
children, although recently there has been a sharp 
increase in epilepsy in persons over 65 years. In many 
people, particularly children, seizures will remit, but for 
the majority of persons epilepsy is a lifelong diagnosis 
(Hauser et al. 1991).

Importantly, the majority of persons with epilepsy 
have normal intellect. As a group, persons with epi-
lepsy have impaired cognitive performance compared 
to age and education-matched normal controls. This 
cognitive impairment refl ects (1) the etiology of their 
epilepsy, (2) the direct effects of the seizures, and (3) 
and the cognitive effects of the antiepileptic medicines 
used to control the seizures.

Only in a minority of newly diagnosed persons with 
epilepsy can a specifi c etiology be determined.

13.3 fMRI in Epilepsy

fMRI has the potential to contribute both to epilepsy 
research and clinical practice, although there is no 
 currently approved or universally accepted clinical 
 application for fMRI in epilepsy (Neuroimaging 
Subcom mission of the ILAE 2000). The best estab-
lished use of fMRI in epilepsy practice is in the presur-
gical evaluation of patients being considered for 
temporal lobectomy. Temporal lobectomy is an effec-
tive therapy for medically refractory temporal lobe 
epilepsy (Wiebe et al. 2001), but can be complicated 
by cognitive defi cits. In this application, fMRI is used 
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to lateralize language and, to a lesser extent, memory 
function (for reviews, see Swanson et al. 2007; Hwang 
et al. 2006, respectively) in an effort to predict post-
surgical defi cits following temporal lobectomy. It pro-
vides a safer and more repeatable alternative or 
complementary information compared to the more 
invasive intracarotid amobarbital test, which has been 
used for the same purpose for several decades. This 
application of fMRI is covered in a separate chapter in 
this volume by Binder (chapter 9).

A second application of fMRI in epilepsy, with both 
clinical and basic science implications, is its use for 
localizing seizure onset in the brain and for characteriz-
ing the physiology of seizures. This is an expanding area 
of investigation. A PUBMED query performed in 2008 
using the terms (“fMRI” or “functional MRI”) and 
(“epilepsy” or “seizure”) returned nearly 500 articles, 
the fi rst of these starting in 1994. Of these, nearly 100 
papers were published last year. About 150 papers con-
cern the technical development of concurrent electroen-
cephalography (EEG) and fMRI, or the use of this 
concurrent EEG–fMRI technique to localize interictal 
(that is, recorded in the interval between seizures) epi-
leptiform discharges. Briefl y, simultaneous recordings 
of EEG during fMRI imaging enable experiments to be 
defi ned by the presence of an interictal epileptiform dis-
charge on EEG. One can hypothesize that the cortical 
origin of these interictal discharges is concordant with 
changes in the BOLD signal modeled using these epi-
leptiform discharges on EEG. In general, these studies 
have thus far failed to conclusively localize the cortical 
origin of interictal epileptiform discharges, but have 
demonstrated that these discharges are associated with 
remarkably extensive changes in distributed networks 
well beyond the presumed origin of the epileptic dis-
charge. These papers have been the topic of several 
recent reviews (see, for example, Gotman 2008; or Laufs 
and Duncan 2007), and will not be reviewed in detail in 
this chapter. The other papers are on a variety of topics, 
including experimental design and analysis methods, 
and language or memory lateralization and dysfunction 
in patients with temporal lobe epilepsy.

In contrast, only very few papers have been published 
on the use of fMRI to image epileptic seizures. The 
obvious reason for this is that seizures are spontaneous, 
happening without warning (although there are impor-
tant exceptions). For this reason, fMRI recordings of 
clinical seizures are either merely fortuitous; or are 
recorded in persons with very frequent seizures, or they 

are seizures that may be deliberately induced in the sub-
ject (for example, hyperventilation-induced absence 
seizures).

For those fMRI recordings that do fortunately image 
a clinical seizure, there are several methodological 
issues that complicate the fMRI imaging. First, usually 
only one clinical seizure (on rare occasions, several) 
will be recorded, which in turn has implications for the 
modeling of the hemodynamic response. Second, imag-
ing clinical seizures is complicated by uncontrolled 
movement. For obvious reasons of safety, convulsive 
seizures or seizures characterized by violent move-
ments cannot be imaged in an MRI scanner without 
special accommodations. But even very small move-
ments of the head seen in myoclonic jerks, absence sei-
zures, or simple focal seizures may be problematic for 
the interpretation of voxel-based fMRI analyses, as this 
movement-related noise will be correlated to the exper-
imental effect of interest (Lemieux et al. 2007). This is 
especially of concern in fMRI experiments to record 
seizures because acquisitions tend be long, often as 
long as 2 h, and signifi cant movement that complicates 
voxel-wise analysis is a virtual certainty over these 
intervals. For these reasons, technical advances in 
image registration, fi eld-corrected image reconstruc-
tion, and techniques to detect activations that are robust 
to large-amplitude movements during scanning, are 
especially relevant to fMRI imaging in epileptic sei-
zures (see, for example, Yeo et al. 2008).

In the following sections, we review the papers on 
fMRI imaging of epileptic seizures. We also describe 
briefl y the different types of clinical epileptic phenom-
ena and their suitability for fMRI imaging, as well as 
differences in models of neuronal physiology that 
inform the interpretation of these fMRI data.

13.4 Classifi cation of Epileptic Seizures

Epileptic seizures are primarily divided into focal and 
generalized seizures. Focal seizures are seizures for 
which clinical features or EEG recordings demonstrate 
focal onset in one cerebral hemisphere. Conversely, 
generalized seizures are defi ned by the absence of clin-
ical or EEG data that would indicate focal onset. 
Instead, generalized seizures appear clinically and on 
EEG to involve both cerebral hemispheres very early 
and rapidly at seizure onset.
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13.5  Focal Epilepsies and the Concept 
of An “Epileptogenic Focus”

The concept of an “epileptogenic focus” is widely 
accepted in focal seizures, although recently a compet-
ing network or systems-oriented approach has been 
proposed (Spencer 2002). The details of exactly how 
this epileptogenic focus creates a seizure are complex 
and controversial (for reviews see McCormick et al. 
2001; Avanzini 2003), but in outline form may be 
somewhat as follows: In normal brain, bursting pyra-
midal neurons in the neocortex and hippocampus form 
a recurrent excitatory network with nearby excitatory 
neurons; this network also activates GABAergic inhib-
itory interneurons, as well as other inhibitory mecha-
nisms, that modulate this excitatory network.

In epileptic brain, failure of these inhibitory dynam-
ics leads to increased excitability of these networks. As 
a consequence, spontaneously bursting pyramidal neu-
rons in epileptic cortex may synchronously depolarize 
large populations of neurons. This phenomenon, termed 
the paroxysmal depolarizing shift, is seen on EEG as an 
epileptiform spike or sharp wave.

This abnormal network behavior is contained by 
GABAergic interneurons surrounding this spontane-
ously bursting focus (termed “surround inhibition”). 
Infrequently, this surround inhibition fails. Connected 
populations of excitatory neurons outside the epilepto-
genic focus that previously demonstrated normal fi ring 
patterns, then start phase locking to the epileptic burst-
ing discharges seen on EEG. This, in turn, starts a cas-
cade of neuronal and extracellular events, the result of 
which is a clinical seizure.

13.6  Neurovascular Coupling 
in Focal Epilepsy

Understanding this in outline is important, because this 
model has consequences for fMRI imaging of focal sei-
zures. First, these neuronal dynamics, in contrast to 
cognitive experiments, probably result in a dramatic (or 
even supernormal) increase in the cerebral metabolic 
rate of oxygen (CMRO

2
) (Folbergrova et al. 1981). In 

response to this increased CMRO
2
, we would expect 

cerebral blood fl ow (CBF) and cerebral blood volume, 
capillary and venous blood oxygen, and BOLD contrast 

to increase dramatically. Indeed, exactly these dynam-
ics were directly observed and described by Penfi eld in 
induced epileptic seizures during epilepsy surgery in 
the 1930s: “… the cerebral arteries pulsate violently…. 
Their color becomes a bright red and arteries which 
were not seen to pulsate before the seizure may now 
begin to do so visibly. In fact this recovery may go so 
far that the veins themselves take on an arterial hue.” 
(Penfi eld 1933). Following this reasoning, one can 
hypothesize that imaging using these metabolic and 
hemodynamic signals may defi ne the epileptogenic 
focus in these patients.

13.7 fMRI Imaging of Focal Seizures

These dynamics have been successfully imaged by 
several groups using BOLD fMRI in patients with fre-
quent focal seizures. The inferences in these few papers 
are tentative, and probably incorrect in several respects. 
This is confounded by the fact that only a few experi-
ments have used concurrent EEG–fMRI (Salek-
Haddadi 2002; Kobayashi 2006; Di Bonaventura 2006); 
and fewer still have been performed in patients without 
lesions on anatomical MRI (Salek-Haddadi 2002). 
Nonetheless, these papers do describe several fi ndings 
that are potentially very interesting:

First, the amplitude of the BOLD signal increase in 
focal seizures is large compared to cognitive experi-
ments. In different papers, this varies from 2% for sei-
zures without clinical accompaniment, to increases as 
large as 40% described in a patient with frequent focal 
motor seizures (Jackson et al. 1994), compared to the 
0.5–1% increase in BOLD usually seen in cognitive 
fMRI experiments.

Second, this large increase in BOLD signal means 
that seizures may be identifi ed even in the absence of a 
clinical or EEG correlate. This is demonstrated in sev-
eral papers simply by visually inspecting the BOLD 
time series for stereotyped signal increases, without the 
use of spatial statistics or linear regression models 
(Jackson et al. 1994; Detre et al. 1995; Krings 2000). 
This, in turn, enables the mapping of the spatial and 
temporal sequence of a seizure that precedes clinical 
onset. This is important because clinical onset of a sei-
zure may refl ect propagation from the epileptogenic 
focus to other cortical areas. This is nicely demonstrated 
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in the paper by Krings et al. (2000) for a single seizure 
in a patient with a right central tumor and focal motor 
seizures of the left foot. Visual analysis of the BOLD 
time series demonstrated an increase in the BOLD sig-
nal 65 s preceding clinical onset in the epileptogenic 
focus adjacent to the tumor but distant from the somato-
topic representation for the foot, then followed by a 
BOLD signal increase in the left foot area coincident 
with clinical seizure onset.

Third, EEG–fMRI enables fMRI imaging of sei-
zures that do not have a clinical correlate (termed elec-
trographic seizures). This technical advance is important 
because increases in the BOLD signal may refl ect any 
number of physiological or technical infl uences, quite 
apart from seizure activity. Con  versely, the interpreta-
tion of these BOLD signal in creases is straightforward 
if the BOLD signal in  creases correspond in time and 
space to electrographic seizure discharges recorded on 
EEG. Refl ecting this advance, the majority of recent 
papers in fMRI in epilepsy have concentrated on using 
EEG–fMRI to determine the BOLD signatures of vari-
ous interictal epileptiform discharges on EEG. In con-
trast, only two papers, as yet, describe concurrent 
EEG–fMRI to image focal seizures.

The fi rst of these papers by Salek-Haddadi et al. 
(2002) recorded continuous BOLD fMRI in a patient 
with frequent simple focal seizures of behavioral arrest 
only (this paper is also unique in describing the ana-
tomical MRI as normal). Concurrent EEG recorded a 
left temporal electrographic seizure of 41 s duration; 
no clinical change was observed, and the patient did 
not report experiencing a seizure. This electrographic 
seizure was then modeled as a single neural event 
using a Fourier basis set to avoid assumptions about 
the shape of the HRF, and an F contrast was used to 
test for variance due to the effects of interest (the sei-
zure). The time course for this cluster of time-locked 
variance on the F map was then extracted, and entered 
into a second model as a single covariate of interest. 
This demonstrated a BOLD signal increase of 2.5% 
over baseline at 6 s following EEG onset in the left 
anterior temporal lobe (maximum beta value, concor-
dant with the EEG localization) and left inferior pari-
etal cortex (statistical maximum).

A second paper by Kobayashi et al. (2006) used 
EEG–fMRI to record multiple electrographic seizures 
in a patient with right temporo-parietal gray matter 
nodular heterotopias and frequent clinical seizures con-
sisting of a rising epigastric aura, followed by an out of 

breath sensation and brief loss of awareness. Twenty-
fi ve brief focal electrographic seizures lasting 2–6 s 
were recorded; no clinical seizures were observed, and 
the patient did not report any seizures. Source model-
ing for these discharges estimated the maximum nega-
tivity in the inferior right temporal region. Maps of the 
t statistic were created using four different hemody-
namic response functions (HRFs) with peaks at 3, 5, 7, 
and 9 s. These t-statistic maps demonstrated widespread 
and intense activation, including the abnormal right 
temporo-parietal cortex some distance from the infe-
rior temporal localization on EEG. This was interpreted 
as indicating that the seizures started in the dysplastic 
cortex but did not generate a visible EEG change.

This last observation, that BOLD signal increases 
may also identify focal seizures without EEG corre-
late, also imposes a very strong constraint on the use of 
the EEG to model seizures. As an example of this from 
our laboratory, BOLD fMRI was successfully used in 
a patient with frequent focal motor seizures of his right 
face, but without EEG correlate. During the fMRI 
acquisition, no defi nite clinical seizures were recorded. 
Nonetheless, visual inspection of these BOLD signal 
changes demonstrated, clear, episodic BOLD signal 
increases of 3–4% in the posterior left frontal lobe that 
were consistent with the localization of focal seizures 
subsequently recorded on intracranial EEG (Detre 
et al. 1995). This is important because EEG is fre-
quently normal in certain focal seizures, as well as in 
simple focal seizures arising from the medial, basal, or 
interhemispheric neocortex – that is, precisely in the 
seizure types amenable to fMRI imaging.

13.8  Benign Childhood Focal
 Epilepsies

Benign childhood focal epilepsies are of special inter-
est in understanding focal seizures. These include the 
commonest epileptic seizures in children; interestingly, 
none of these syndromes occur in adults, probably due 
to age-related processes in the developing brain. Most 
children with these syndromes have only one or several 
 seizures, and remission is expected in all children.

Refl ecting this, no papers describe fMRI imaging of 
clinical seizures in children. These epilepsy syndromes 
are nonetheless well suited for EEG–fMRI experiments 
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due to the very high frequency of interictal discharges, 
and for this reason, several papers of interest are briefl y 
reviewed here.

In the fi rst of these, Archer et al. (2003a) performed 
spike-triggered EEG–fMRI in a child with benign epi-
lepsy with centrotemporal spikes (BECTS; the most 
frequent of the benign childhood focal epilepsies). This 
demonstrated an increase in BOLD signal in sensorim-
otor cortex corresponding to the centrotemporal epilep-
tiform discharges on EEG, and consistent with the 
prominent facial twitching and salivation described in 
these seizures. In this paper and in a separate paper, 
decreases as well as increases in BOLD signal were 
also described in the prefrontal cortex and in the ante-
rior cingulate, interpreted as consistent with clinical 
observations of defi cits in attention and concentration in 
these children (Archer et al. 2003a; Archer et al. 2003b; 
Lengler et al. 2007). In a separate paper, these observa-
tions were extended using EEG source modeling to dis-
tinguish focal abnormal BOLD signal in the face area in 
BECTS, from spatially more extensive propagated 
activity seen as BOLD activations (Boor et al. 2007).

In contrast to BECTS, other benign childhood focal 
epilepsies present with diverse clinical symptoms, 
despite a common EEG localization. In the childhood 
occipital epilepsies, for example, the EEG localizes the 
epileptic activity to the posterior head regions, but very 
often the abnormalities also involve the parietal and 
temporal areas. In several of these children, EEG/fMRI 
recordings have been helpful by demonstrating BOLD 
signal increases and, presumably, neuronal dysfunction 
in the posterior parietal lobes, distant from the occipital 
spike focus found using EEG source analysis and, 
importantly, more consistent with the clinical seizures 
in these children (Leal et al. 2006).

Finally, these papers raise important issues for mod-
elling fMRI experiments of epilepsy in children. 
Specifi  cally, Jacobs et al. (2008) analyzed 64 EEG–
fMRI event types in 37 children from 3 months to 
18-years. HRFs were calculated for each BOLD event 
type using a Fourier basis set. This demonstrated sig-
nifi cantly longer peak times of the HRF in the young-
est children (0–2 years), suggesting a different coupling 
between neuronal activity and metabolism or blood 
fl ow. Less easy to understand is the observation that 
even as the t-value increased with frequent spikes, the 
amplitude of the HRF decreased with increasing spike 
frequency. These observations would indicate that dif-
ferent HRF models may be required for fMRI in 

children with high spiking rates, a quite common situ-
ation (Jacobs 2008).

13.9 Generalized Epilepsies

In contrast to focal seizures reviewed above, generalized 
seizures are defi ned by the absence of clinical or EEG 
data that would indicate focal onset. Instead, general-
ized seizures appear clinically and on EEG to involve 
both cerebral hemispheres very early and rapidly at sei-
zure onset. Clinically, these are described as spells 
of impaired consciousness (“petit mal” or “absence”), 
myoclonic jerks, or tonic-clonic (convulsive) seizures.

Of these seizures, absence seizures are the prototype 
for generalized seizures. Absence seizures are brief 
spells of staring or unresponsiveness, as a rule less than 
30 s in duration. Clinical seizures are frequent, usually 
(at least) every day, and are easily provoked by hyper-
ventilation in nearly all untreated patients. On EEG, the 
essential feature is generalized 3–4 Hz spike-wave dis-
charges, involving the entire brain.

13.10  The Concept of Hypersynchrony 
in Primary Generalized Seizures

The essential feature of generalized seizures is the sud-
den, spontaneous, and transient abnormal hypersyn-
chronization of neuronal activity seen on EEG over 
both hemispheres. Two theoretical lines of reasoning 
have been proposed (for reviews see Meeren et al. 
2005; Blumenfeld 2005). The fi rst of these is the con-
cept of a “centrencephalic” system located in the brain 
stem and diencephalon that imposes the 3–4 Hz spike-
wave EEG pattern on the cortex via thalamo-cortical 
projections (Penfi eld 1954; Buzsaki 1991).

The second line of reasoning proposes that the 
3–4 Hz spike-wave EEG pattern is a consequence of dif-
fusely increased cortical excitability. According to this 
“cortico-reticular theory,” cortical neurons respond to 
normal thalamo-cortical input by generating spike-wave 
discharges via cortico-cortical excitation, in the context 
of impaired GABAergic inhibition (Gloor 1968). 
Intriguingly, two recent papers suggest – in an animal 
model of absence epilepsy – that this phenomenon may 
not require diffusely increased cortical excitability, but 
may be initiated by a cortical epileptogenic focus, that 
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then activates the thalamo-cortical network, amplifying 
and sustaining the discharge (Meeren et al. 2005; Polack 
et al. 2007).

13.11  Neurovascular Coupling 
in Generalized Seizures

What are the consequences of this concept of hypersyn-
chrony for fMRI imaging of generalized seizures? First, 
the temporal resolution of fMRI (or any imaging that 
uses a hemodynamic signal) is limited by the delayed 
hemodynamic response to neural activity. This is impor-
tant, as fMRI is unlikely to be helpful in imaging the fast 
cortico-cortical and cortico-thalamic dynamics described 
in these models.

Second, the hemodynamic changes described in focal 
seizures refl ect increased neuronal activity. Conversely, 
in generalized seizures the characteristic feature – at 
least conceptually – is the transient, abnormal synchro-
nization of neuronal activity, and not an increase (or 
decrease) in neuronal activity. For this reason, the 
expected hemodynamic changes in fMRI experiments 
of generalized seizures are less obvious than in focal sei-
zures. Indeed, decreases as well as increases in BOLD 
signal, as well as no BOLD signal change, have all been 
described in fMRI experiments of generalized seizures, 
refl ecting this different underlying physiology.

13.12  FMRI Imaging of Generalized 
Seizures

Spike-wave discharges modeled in EEG–fMRI experi-
ments are often less than 3s, and usually do not have any 
obvious clinical correlate; although discharges as long 
as 30s are described (Moeller et al. 2008). These EEG–
fMRI experiments describe a remarkably stereotyped 
fMRI correlate for generalized spike-wave discharges. 
This consists of a thalamic increase in the BOLD signal, 
as well as decreases in the frontal and parietal cortex, as 
well as posterior cingulated, that is apparently irrespec-
tive of the duration and morphology of the spike-wave 
discharge (Aghakhani et al. 2004; Gotman et al. 2005; 
Hamandi et al. 2006, Laufs et al. 2006; Moeller et al. 
2008). For this reason, these data may be valid as well, 
for at least some types of clinical generalized seizures.

In contrast to focal seizures described earlier, 
increased BOLD signal is consistently seen only in the 
thalamus during generalized spike-wave discharges in 
humans (Moeller et al. 2008; Salek-Haddadi 2003; 
Laufs et al. 2006) and in animal models of absence 
seizures (Blumenfeld 2005; Tenney et al. 2004). These 
data would be consistent with the concept introduced 
above, that generalized spike-wave discharges acti-
vate a thalamo-cortical network. Conversely, no pages, 
to date, demonstrate a clear focal increase in cortical 
BOLD signal that is interpreted as an epileptogenic 
cortical focus triggering the spike-wave discharges – 
although group analyses may not be useful if this focus 
varies from individual to individual.

Instead, at the cortical level, the compelling fi nding 
has been a “negative BOLD response” or “deactiva-
tion” or decrease in the BOLD signal in the frontal, 
parietal, and posterior cingulate cortex (although these 
deactivations are variable and activations are also 
described). This negative BOLD signal closely matches 
the areas of cortex hypothesized to be involved in so-
called “default mode” of brain activity (Greicius et al. 
2003; Mazoyer et al. 2001; Raichle et al. 2001; Raichle 
2003). If correct, then the “deactivation” or interrup-
tion of this network during generalized spike-and-wave 
may explain the symptom of absence as an interruption 
of an organized, baseline default mode of brain activ-
ity, and not the direct effect of the EEG discharge. This 
represents an important conceptual advance in our 
understanding of absence seizures.

A competing interpretation for  these surprising wide-
spread deactivations, is that the underlying  physiology 
of neural activity and blood fl ow is not normal (that is, 
an increase in neural activity is not coupled to an increase 
in blood fl ow, tence the BOLD signal decreases). fMRI 
experiments to examine this question in selected regions 
of interest have, in fact, demonstrated normal coupling 
between CBF and BOLD responses, and CMRO

2
 (Hoge 

et al. 1999; Stefanovic et al. 2005).
More recently, fMRI experiments have assessed this 

coupling between neural activity and blood fl ow over 
the entire brain using simultaneous BOLD and arterial 
spin labeling (ASL) perfusion contrast. Correlations 
were calculated for the BOLD and CBF signal in terms 
of percentage signal change on a voxel-by-voxel basis. 
This demonstrated that BOLD and CBF were posi-
tively correlated during normal EEG activity, and also 
during generalized spike-wave, although the value of 
this correlation varied over the brain, suggesting that 
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some areas may demonstrate a different hemodynamic 
response. These perfusion data would indicate that 
neurovascular coupling is intact, and that the negative 
BOLD signal is due to decreases in CBF. These perfu-
sion data are in broad agreement with deactivations 
observed in normal subjects (Garraux et al. 2005).

Interestingly, widespread deactivations are also seen 
in focal seizures (as well as the expected BOLD 
increases). Currently, there is no agreed interpretation 
for these BOLD signal decreases. In the opposite hemi-
sphere, or at a distance from the BOLD increase (Salek-
Haddadi 2002; Federico et al. 2005; Krings 2000). 
Conceptually, deactivations in focal seizures may refl ect 
GABAergic inhibition, but the relationship of the BOLD 
signal to inhibition is complex (Logothetis et al. 2001; 
Arthurs and Boniface 2002; Laurienti 2004). Nor do 
these deactivations in focal seizures appear to refl ect 
deactivation of default-mode networks as proposed 
above for generalized seizures. (Kobayashi 2006).

13.13 Continuous Seizures

Status epilepticus refers to a “continuous seizure,” or 
recurrent seizures for more than 30 min – in contrast to 
the vast majority of epileptic seizures, that terminate 
spontaneously in several minutes. In these instances, 
recording the seizure, otherwise a serendipitous affair, 
becomes trivial. Imaging status epilepticus using fMRI 
is nonetheless at odds with the consensus that status 
epilepticus generally, and convulsive status epilepticus 
in particular, is a medical emergency. For this reason, 
control over clinical and electrographic seizures is a 
clinical imperative, and, with a few exceptions, pre-
cludes fMRI imaging. The two potential exceptions to 
this are (1) generalized absence status epilepticus, and 
(2) focal motor status epilepticus (termed epilepsy par-
tialis continua).

13.13.1 Absence Status Epilepticus

Absence status epilepticus is probably the commonest 
of all continuous seizures, and the most likely to be 
imaged using functional neuroimaging. Typical absence 
status presents as an impairment of consciousness that 
may last for hours, and occasionally for days before the 

seizure is recognized, although most patients recognize 
what is happening. Once recognized, intravenous ben-
zodiazepines usually stop absence status epilepticus 
abruptly. No papers to date describe the fMRI imaging 
of absence status epilepticus in humans. In a marmoset 
model of absence status, EEG–fMRI at 4.7 T of spike-
wave discharges for more than 60-min duration, demon-
strated BOLD increases in the thalamus and  sensorimotor 
cortex (Tenney et al. 2004), resembling the fMRI corre-

lates reviewed earlier for spike-wave discharges in 
humans. Interestingly, despite the higher fi eld strength 
and robust clinical phenomena in this model, no signifi -
cant negative BOLD changes were seen.

13.13.2 Epilepsy Partialis Continua

Epilepsy partialis continua (EPC) is a focal, noncon-
vulsive form of status epilepticus, presenting as irregu-
lar myoclonic twitching or jerking of some muscle 
group, often involving the hand or face, for hours or 
days (and in some cases, even years). Implicit in this 
description is the observation that EPC is frequently 
resistant to antiepileptic medicines. Conversely, this 
presents unique opportunities to arrange for fMRI 
imaging. Lazeyras et al. (2000), for example, used 
multiple advanced MRI techniques including EEG–
fMRI, in a patient with normal anatomical MR imag-
ing and EPC. This demonstrated an area of increased 
BOLD signal that was concordant with a new hyperin-
tensity in the occipital region on FLAIR imaging, and 
elevated lactate, decreased N-acetylaspartate (NAA), 
and elevated choline (Cho) on [(1)H] MR spectros-
copy. This NAA level remained reduced even follow-
ing seizure control, demonstrating irreversible focal 
neuronal injury from EPC despite the disappearance of 
the FLAIR signal abnormality.

Separately, two papers have used fMRI to study 
recurrent events previously diagnosed as movement 
disorders in two patients. In both instances, fMRI fi nd-
ings were interpreted as consistent with EPC. In the 
fi rst of these, EEG–fMRI was performed in a patient 
with isolated hemifacial spasm. This demonstrated 
increased BOLD signal in the contralateral cortex 
responsible for facial movements, with widespread 
BOLD signal deactivations suggestive of epileptic 
 network involvement and not facial nerve hyperexcit-
ability (Espay et al. 2008).
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In the second paper, [(18)F] fl uorodeoxyglucose 
positron emission spectroscopy (FDG-PET) and fMRI 
were performed before and after benzodiazepine injec-
tion, in a patient with a right malformation of cortical 
development and unusual dystonic movements of his 
left hand (Zyss et al. 2007). Before benzodiazepine 
injection, no activation was seen on EEG–fMRI for 
the contrast of motor performance using the left (dys-
tonic) hand vs. rest. Conversely, physiological activa-
tion was seen adjacent to the cortical malformation for 
this identical contrast after a benzodiazepine injection 
effectively diminished the abnormal movement, con-
sistent with modulation of the baseline. Physiological 
activation of the left primary motor cortex was not 
infl uenced by the benzodiazepine injection. Finally, 
[18F] FDG-PET performed at rest demonstrated 
hypermetabolism located in the right paracentral area 
that was reduced after receiving benzodiazepine. 
These functional data were interpreted as favoring the 
diagnosis of EPC.

13.14 Refl ex Seizures

In unusual cases of epilepsy, seizures may be provoked 
by recognizable stimuli. This may be a simple external 
stimulus such as fl ashing lights, startle, or touch; or a 
more elaborate stimulus, for example,  reading, per-
forming calculations, eating, or playing Rubik’s cube 
(an example of praxis-induced seizures; Senanayake 
1987). These refl ex seizures have the obvious advan-
tage for fMRI that subclinical (seen on EEG only) or 
minor clinical events can be reproduced on demand 
during image acquisition. The several elegant fMRI 
experiments in persons with refl ex epilepsies demon-
strate that fMRI may be useful to localize epileptiform 
activity in these conditions, as well as advancing our 
understanding of the mechanisms of seizure onset. 
Several examples are reviewed here.

13.14.1 Photosensitive Epilepsy

In this epilepsy syndrome, persons with generalized 
epilepsy demonstrate a paroxysmal response on EEG 
in response to fl ash stimulation. In the only fMRI 

experiment to date to study this response, EEG–fMRI 
and [(1)H] MRS were performed in 16 persons with 
generalized epilepsy, including 9 persons with photo-
sensitive epilepsy, and 12 normal subjects (Hill et al. 
1999). Prominent visual cortex activation was seen in 
all normals and persons with epilepsy during fl ash 
stimulation. Photoparoxysmal spike-wave activity on 
EEG was evoked in only 3/9 epileptics; no BOLD 
correlate was seen for this photoparoxysmal response. 
Nonetheless, irrespective of the presence of a spike-
wave response to the photic stimulation, photosensi-
tive persons demonstrated a larger area of visual 
cortex activation with photic stimulation. Simultaneous 
with this activation, prominent BOLD signal attenua-
tion was seen in the peri-rolandic cortex; as well as a 
marked, widespread undershoot in the BOLD signal 
following the end of photic stimulation. MRS per-
formed without photic stimulation demonstrated a 
slight but signifi cant increase in lactate levels in the 
visual cortex in photosensitive persons, compared to 
generalized epilepsy or controls. These intriguing 
fi ndings would support the hypothesis of increased 
cortical hyperexcitability introduced earlier, at least 
for the subset of persons with generalized epilepsy 
and photosensitivity.

13.14.2 Reading Epilepsy

Reading epilepsy is a refl ex seizure disorder in which 
subjects complain of myoclonic movements of the 
mouth and throat when they read, especially aloud. 
Archer et al. (2003b) identifi ed two individuals with 
reading epilepsy who agreed to EEG–fMRI imaging of 
their clinical seizures. The subjects were instructed to 
read silently for 30 s; this was then compared to visual 
fi xation. In both subjects, reading recruited normal 
visual and language areas. In one subject, spike-related 
increases in the BOLD signal (17 spikes) were recorded 
in the left precentral gyrus, that overlapped with the 
activation pattern seen in reading.

Based on these data, the authors proposed that the 
mechanism for reading-induced seizures may start as a 
focal seizure in the left dorsolateral prefrontal cortex 
that is recruited in reading. Interestingly, reconstruction 
of the left central sulcal patterns in both subjects dem-
onstrated an abnormal-appearing sulcus concordant 
with this BOLD signal.
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13.14.3 Writing Epilepsy

Abreu et al. (2005) described this condition in a 33-year-
old right-handed person in whom seizures started as 
dystonic posturing and then myoclonic jerks of the right 
hand one minute after starting to write, consistent with 
clinical localization of the seizure onset in the left hemi-
sphere. Paradoxically, EEG during these seizures dem-
onstrated generalized spike-wave discharges that were 
maximal over the right (not left) centro-parietal head 
regions. A SPECT injection performed during a seizure 
also was discordant, demonstrating increased cerebral 
perfusion over right fronto-parietal cortex.

In this patient, fMRI (performed without EEG) 
using a writing paradigm demonstrated extensive, 
intense, abnormal left frontal (supplementary motor 
area) activation induced by writing that then suddenly 
terminated with the onset of myoclonic jerking. These 
fi ndings were interpreted as consistent with the clinical 
localization to the left hemisphere, as opposed to EEG 
and SPECT in this patient (Abreu 2005). More intrigu-
ingly, the spatial and temporal sequence of this BOLD 
signal preceding clinical onset of the seizure would be 
consistent with the hypothesis introduced earlier, that 
generalized discharges on EEG (as in this patient) may 
not require diffusely increased cortical excitability, but 
may alternatively be initiated by a cortical epilepto-
genic focus – in this instance, in the neuronal networks 
in the left frontal lobe that subserve writing.

13.14.4 Musicogenic Epilepsy

Musicogenic epilepsy is characterized by focal seizures 
precipitated by certain types of music, or sometimes 
music played by certain combinations of instruments. 
However, thinking about, remembering, or playing 
music may also precipitate a clinical seizure. The stim-
ulus may also be exquisitely specifi c. Curiously, EEG 
recordings of seizures in musicogenic epilepsy has 
described seizure onset in either hemisphere, even 
though music function is considered to be lateralized to 
the right hemisphere (at least in non-musicians).

Morocz et al. (2003) performed fMRI (but not EEG) 
on one patient with musicogenic epilepsy triggered by 
the song “I Believe In You And Me,” by Whitney 
Houston. EEG recordings and ictal SPECT performed 
previously in this patient had localized seizure onset in 

the left anterior temporal lobe. Music was played in a 
block-design, for 39 s per block, for 10 repetitions. A 
similar but different song, “Somebody Bigger Than 
You Or I,” from the same album was used as the control 
condition. Repeated exposure to the  seizure-precipitating 
music resulted in two distinct patterns: The contrast of 
epileptic music to control music demonstrated BOLD 
increases in the frontal lobes and especially the right 
gyrus rectus; but no increased BOLD signal in the left 
temporal lobe. Conversely, for the contrast using only 
the fi ve auras elicited by the music, BOLD increases 
were seen in the both the right gyrus rectus and left 
temporal lobe. As the left temporal lobe is not known to 
play any role in music, and was not activated by the 
epileptogenic music, the authors hypothesized that left 
temporal lobe onset on EEG and SPECT in this patient, 
could be secondary to the right gyrus rectus focus seen 
on BOLD, triggered perhaps by the emotional process-
ing of music.

13.15 The Future

The advantages of fMRI to advance our understanding 
of epilepsy but also to identify the epileptic focus in 
persons with focal epilepsy compared to the surgical 
implantation of electrodes are so compelling it seems 
certain that the development of fMRI will continue. 
Several directions for future fMRI experiments in epi-
lepsy seem especially interesting, in the context of the 
papers reviewed.

13.15.1 The Concept of a Preictal State

Perhaps the most surprising idea to emerge from the 
fMRI experiments reviewed here is the concept that 
changes in the BOLD signal may precede the clinical 
onset of a focal seizure. This observation underlines 
the  concept of a “preictal state” in focal epilepsy 
advanced in several papers using linear (Litt et al. 
2001) and nonlinear (Lehnertz et al. 1995; Elger and 
Lehnertz 1998) analysis of EEG time series that appear 
to  demonstrate changes in the EEG, minutes to hours 
 preceding  clinical onset.

This idea that hemodynamic changes may defi ne a 
preictal state has been investigated in experiments 
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using different modalities to measure CBF. Both 
increases (Adelson et al. 1999; Makiranta et al. 2005) 
and decreases (Hoshi et al. 1992) in tissue oxygen-
ation have been found tens of seconds before seizure 
onset. Transcranial Doppler studies have been inter-
preted as demonstrating increases in lobar perfusion 
20 min before focal as well as generalized spike-wave 
seizures (De Simone et al. 1998; Diehl 1998; Weinand 
et al. 1994). Indirect measurement of CBF in patients 
with TLE has demonstrated signifi cant increases in 
CBF in the region of the seizure focus 10–12 min pre-
ceding onset on intracranial EEG (Weinand et al. 
1997). Preictal hyperperfusion in the absence of clini-
cal or EEG change has also been seen on SPECT 
scans fortuitously obtained minutes prior to seizure 
onset and during video-EEG monitoring (Baumgartner 
et al. 1998).

Two recent papers on fMRI experiments in epilepsy 
add to this idea that hemodynamic changes may defi ne 
a preictal state. The fi rst paper reviewed 143 concur-
rent EEG–fMRI studies of interictal epileptiform dis-
charges performed at the Montreal Neurological 
Institute. Of these studies, BOLD changes in nearly 
half of the datasets preceded interictal epileptiform 
discharges on EEG used to model the BOLD signal, by 
several seconds (Hawco et al. 2007).

In the second paper, three persons with frequent 
frontal lobe seizures on falling asleep recorded their 
typical seizure in the fMRI scanner (Federico et al. 
2005). BOLD changes over the entire brain were fi rst 
analyzed using a t-contrast to compare a 1-min block 
immediately preceding seizure onset to a 1-min block 
beginning several minutes earlier. The time course 
was then extracted for the ROI defi ned by the maxi-
mal cluster on this t map, and for a mirror ROI in the 
contralateral hemisphere, and these time courses 
were compared. Each patient showed signifi cant, 
focal BOLD signal changes (either increased or 
decreased) up to 20 min over the presumed seizure 
focus.

Obviously, the interpretation of the hemodynamic 
changes in these papers is complex. Nonetheless, the 
concept of a preictal state, if correct, would represent a 
tremendous advance in our understanding of how sei-
zures happen. This, in turn, is potentially important 
clinically because, if a preictal state can be detected, 
then the use of various “closed loop” devices (for 
example, that give cortical stimulation) may be possi-
ble to prevent clinical seizures.

13.15.2 Low Frequency Noise in BOLD

Extending this idea, if we hypothesize that a preictal 
state exists for more than several minutes in epileptic 
networks preceding a clinical seizure, then we need to 
consider that detecting the BOLD signal correlate for 
this network activity will be complicated by the low 
frequency noise characteristics of BOLD time series. 
This noise refers to the fact that voxel intensities 
in BOLD fMRI data tend to demonstrate a slow varia-
tion over time, unrelated to the experimental design. 
This low frequency variability is typically removed by 
either high pass fi ltering, or by introducing terms into 
the linear model to model this low frequency drift. For 
this reason, BOLD contrast fMRI is not sensitive to 
detecting low frequency, or state-related changes that 
may be important in epilepsy.

Conceptually, the most direct approach to mea-
suring these state-related changes, would be to 
directly measure, the changes in perfusion at differ-
ent time points using bolus contrast agents, or noni-
nvasive arterial spin-labeling (ASL; Detre et al. 
1994). Perfusion-based methods such as ASL may be 
useful for these fMRI experiments, for several rea-
sons. First, they do not rely on a comparison between 
an active and baseline condition. In our laboratory, for 
example, this has enabled ASL–fMRI imaging of 
focal hyperperfusion in EPC. Interictal hypoperfusion 
in temporal lobe epilepsy has also been demonstrated 
with both ASL (Wolf et al. 2001) and DSC methods 
(Wu et al. 1999). Because these techniques measure 
perfusion only, their interpretation is also consider-
ably more straightforward compared to the multiple 
hemodynamic parameters encoded in BOLD (although 
these are dominated by changes in blood oxygen-
ation). Because ASL methods do not rely on the detec-
tion of changes in local susceptibility as in BOLD 
contrast, they are particularly well suited to the detec-
tion of activation in regions of high static susceptibil-
ity, such as orbitofrontal cortex and the inferior 
temporal lobes.

13.15.3 Is Perfusion Matched to CMRO
2
?

It follows from the papers reviewed that the BOLD 
signal increases during focal seizures, consistent with 
increases in blood fl ow and blood oxygenation (and 
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thus a decrease in deoxygenated hemoglobin). It none-
theless is not absolutely clear that this increase in blood 
fl ow is adequate to meet the increased CMRO

2
 in focal 

seizures. This uncertainty is motivated by recent stud-
ies using fast optical techniques in animal models and 
in humans to image these hemodynamic signals (for a 
superb review, see Schwartz 2007). Even in normal 
cognitive experiments, fast optical techniques demon-
strate a rapid decrease in tissue oxygenation and an 
increase in deoxygenated hemoglobin that precedes 
the increase in blood fl ow, termed the “initial dip” of 
the BOLD response (Frostig et al. 1990).

Conversely, in epilepsy, fast optical measurements 
demonstrate that this increase in deoxygenated hemo-
globin may persist, despite an increase in Suh et al. 
2006a Suh et al. 2006b blood fl ow, during both inter-
ictal epileptiform discharges and epileptic seizures 
(Bahar et al. 2006; Shariff et al. 2006; Suh et al. 2006a, 
b). Similar data exists in earlier studies using implanted 
oxygen-sensitive electrodes in humans that recorded a 
decrease in tissue oxygenation preceding and during 
focal seizures (Dymond et al. 1976). These data, if 
correct, would indicate that CBF and blood oxygen, 
although increased during focal seizures, may be 
inadequate for the supernormal increase in CMRO

2
 

seen in focal epilepsy.
This conjecture has implications for fMRI, as well. If 

the transient increase in deoxygenated hemoglobin is 
earlier and more focal than the subsequent increase, 
then imaging this transient hemodynamic change may 
be an excellent marker for the epileptic focus. For BOLD 
fMRI, this means future development of imaging tech-
niques optimized to image this initial dip in hemoglobin 
oxygenation, as opposed to imaging increases in BOLD 
contrast, may be the smarter approach.
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Special Issues in fMRI-Studies 
Involving Children

Marko Wilke

14

14.1 Introduction

Several exciting neuroscientifi c questions can only be 
answered only when investigating the developing 
brain. However, children are not small adults, and 
imaging children therefore poses a number of special 
challenges on different levels. In this chapter, I will try 
to cover some specifi c aspects that may need to be con-
sidered when planning, conducting, or analyzing pae-
diatric imaging studies.

When planning a neuroimaging study in children, 
special ethical issues arise, for example, subject consent. 
Subject recruitment is more diffi cult, and special empha-
sis must be placed on their exact characterization.

Conducting an fMRI study in children requires a 
special commitment in terms of time and personnel. 
Task design is another important issue, and addition-
ally, technical adaptations may be necessary in order to 
achieve optimal results.

Data analysis poses a number of pitfalls, including 
spatial normalization and tissue segmentation. Finally, 
interpretation of results has to take into account known 
differences between the developing and the adult 
brain.

The developing brain has an enormous potential for 
learning (in the physiological setting; Elbert et al. 
2001) and self-repair (when confronted with adverse 
events; Krägeloh-Mann 2004). These properties clearly 

diminish with age; several exciting questions with 
wide-ranging implications can therefore be explored 
only when investigating children, as for example, neu-
ral reorganization following stroke. However, research-
ers must be aware of a number of issues that require 
special attention when investigating children using 
fMRI. This chapter aims at highlighting selected points 
that may require special consideration in this context.

14.2  Planning a Paediatric 
Neuroimaging Study

As children may be unable to fully understand the 
implications of participating in a research study, spe-
cial regulations exist with regard to obtaining informed 
consent, which usually has to be signed by the legal 
guardian of the child. Most researchers will also obtain 
written assent from the child, which seems advisable, 
especially in older children or teenagers. The highest 
ethical standards must be met in order to justify the 
necessity of investigating children instead of adults 
(MRC 2008). In this context, it should also be noted 
that, for studies done in the US, there are now guide-
lines from the National Institutes of Health requiring 
researchers to establish a pathway to screen for and 
communicate incidental fi ndings detected as part of a 
neuroimaging research study (NIH 2008), which is 
also a relevant issue in children (Kim et al. 2002).

When aiming at investigating normal children, it is 
imperative that all efforts be made to recruit a repre-
sentative sample of subjects from the community. The 
much-used (but much less publicized) approach of 
scanning the children of co-workers and acquaintances 
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harbours the serious problem of studying a  super-normal 
group which may not be representative of the popula-
tion as a whole (Rivkin 2000). Substantial efforts may 
therefore be necessary to recruit truly normal children 
from different parts of the community and from differ-
ent socio-economic and ethnic backgrounds (Evans 
et al. 2006). This is especially relevant when children 
are meant to serve as “normal controls” for a clinical 
population. For example, imaging data from subjects 
scanned for clinical reasons still show signifi cant dif-
ferences from truly healthy control subjects, even if 
the images were subsequently read as normal 
(Courchesne and Plante 1996). As also relevant in 
adults, the detection of previous conditions potentially 
interfering with normal brain development (signifi cant 
head trauma, severe or long-standing illness or inva-
sive therapies [e.g. chemotherapy], etc.) requires a 
thorough personal history to be taken. Moreover, 
shared pathology has been described in siblings of 
affected individuals with attention defi cit disorder 
(Durston et al. 2004) or schizophrenia (Falkai et al. 2007), 
underlining the necessity to screen for such disorders 
in fi rst-degree relatives as part of the recruitment pro-
cedure. As to subject selection, it also seems important 
to remember that the age range of subjects should be as 
narrow as possible, in order to avoid the confounding 
effects of age. Conversely, if the effect of age is under 
study, the number of subjects must be suffi ciently large 
in order to detect such effects and to account for the 
large variability in brain structure (Giedd et al. 1996; 
Wilke and Holland 2003). The age-dependent failure 
rate of children (Byars et al. 2002; see also next para-
graph) must be taken into account when planning and 
budgeting for subject recruitment, in a way that chil-
dren in the lower age brackets are overrepresented 
(allowing for a larger proportion of them to fail the 
scanning session).

Institutional review boards will impose special 
requirements for imaging studies in children which are 
especially relevant when imaging normal children. 
Incidental fi ndings must be screened for. Researchers 
should aim at avoiding recruitment bias, and subject 
characterization should take into account the rapidly 
changing features of the developing brain.

Naturally, when investigating children for a clinical 
reason, many of the criteria mentioned above may not 
be relevant as the main indication and justifi cation for 
MR-scanning is a clinical one. However, most, if not 

all, of the following points may still need to be consid-
ered. For especially “diffi cult-to-scan” populations 
such as infants and toddlers, using imaging data 
obtained during a clinically-indicated scan under gen-
eral anaesthesia may be the only option. In this con-
text, it is important to remember the proven or suspected 
role sedative agents have on the hemodynamic response 
(Altman and Bernal 2001; Dueck et al. 2005) which 
may make data analysis using standard hemodynamic 
response functions diffi cult. As an alternative, studies 
have been done on babies and infants during natural 
sleep (Almli et al. 2007; Dehaene-Lambertz et al. 2002). 
With further efforts towards reducing scanner noise (de 
Zwart et al. 2002; Moelker and Pattynama 2003), such 
an approach may be easier in the future.

14.3  Conducting a Paediatric 
Neuroimaging Study

Children may be as willing but less able to comply with 
the high demands of participating in a neuroimaging 
study. In children taking part in such a study, there is a 
clear inverse correlation between age and failure rate 
(Byars et al. 2002). Interestingly, claustrophobia, rarely, 
is an issue in children (Eshed et al. 2007); instead, anxi-
ety, insecurity and lack of understanding of the proce-
dure are major concerns. The main lesson to be drawn 
from this is that adequate subject preparation is the key 
in achieving high success rates when scanning children. 
Several approaches have been suggested to achieve this, 
chief among them being the use of a mock scanner to 
desensitize children with regard to the intimidating scan-
ner environment (Epstein et al. 2007). Our approach has 
been to reserve longer time slots (2 h per subject) at the 
real scanner and to desensitize children by using life-
sized dolls that are being scanned prior to the subject 
(see Fig. 14.1). Therefore, the child can actually see (and 
thus, more concretely understand) the procedure (Wilke 
and Holland 2008). Even with extensive preparation, a 
failure rate of about 50% in children at 5 years of age 
must be expected (Byars et al. 2002). The value of moti-
vated, experienced personnel in this process of desensi-
tization cannot be overestimated, as every preparation 
scheme may have to be individually adapted based on 
the child’s reaction.
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Task design is an important point, and worth spending 
a lot of time on, before starting the study. A child’s atten-
tion span is shorter, and its ability to lie still for an 
extended period of time is signifi cantly reduced when 
compared to a motivated adult. It may also feel alone in 
the scanner, so addressing the child in an encouraging 
way between imaging series helps to keep it motivated. 
Age-appropriate stimulation material is important (see 
Fig. 14.2), and additionally, the level of diffi culty needs to 
be adapted to the child’s abilities (Thomas and Casey 
2000; Wilke et al. 2003a). Failure to take these facts into 
account may result in a high likelihood to end up with a 
frustrated child in the scanner, which consequently will 
be unable to comply for the remainder of the session. The 
following points are therefore important to keep in mind:

Short functional series (about 5 min/series), inter-• 
laced by talking to the child, improve the chances of 
acquiring usable data.

Distraction in the form of a movie or music should • 
be provided during non-fMRI parts of the exam (for 
example while acquiring the anatomical images).
Easy-to-do, but not boring tasks that are matched to • 
the child’s abilities to solve them will keep the child 
motivated.
Practice sessions before the scan where the child • 
demonstrates that it can master the task are 
advisable.
Objective documentation of task engagement • 
should be incorporated so that continued task exe-
cution can be verifi ed, ideally in real time.
Task design should not be too technical; for exam-• 
ple, using comics or cartoons to illustrate the task is 
advisable.
Non-essential scanning parts should be kept as short • 
as possible and should be strategically placed to 
ensure the successful processing of the whole data-
set (many successfully completed tasks do not help 
if the anatomical dataset, which may be necessary 
for data processing, could not be acquired).

With regard to specifi c technical diffi culties that are 
part of scanning children, these tend to increase as the 
age of the subject decreases. Factors such as coil load-
ing or differing water content of the brain are not rel-
evant when teenagers are under study. However, when 
imaging neonates, these factors are decisive with 
regard to the obtainable image quality (Erberich 
et al. 2003). MR-compatible incubators with matching 
RF-coils have been introduced that now allow for 
high-quality scanning of neonates in a protective envi-
ronment (Blüml et al. 2004). In the fi rst years of life, 
there are further issues with regard to sequence opti-
mization as image contrast continues to change dra-
matically (Ball and Dunn 1997). Finally, fMRI in the 
fi rst year needs to consider that the BOLD response 
in very young children is still changing (Marcar 
et al. 2004), which may also be an issue in older  children 
(Schapiro et al. 2004).

Extensive, age-appropriate preparation is key when 
conducting imaging studies in children. A mock scan-
ner or “child phantoms” are helpful for desensitization. 
Task design should always take into account the abili-
ties of the subjects under study, and scanning time 
should be kept as short as possible. Especially when 
scanning very small children, technical adaptations 
(smaller coils, optimized sequences) may be necessary.

Fig. 14.1 Life-sized doll, to be scanned prior to the child as part 
of the desensitization procedure
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14.4  Analyzing a Paediatric 
Neuroimaging Study

Due to the vast amount of acquired data, analyses of 
functional MRI are now mainly done within specialized 
software suites like AFNI, BrainVoyager, FreeSurfer, 
FSL, or SPM. However, it is important to remember that, 
both to reduce the processing load and to increase the 
quality of the obtained results, many software solutions 
implicitly or explicitly make use of prior information in 
the form of reference data. Such reference data is rou-
tinely derived from a single (like the common space of 
Talairach and Tournoux 1988) or several healthy adults 
(like the now commonly-used MNI-Brain, Mazziotta 
et al. 1995). However, such adult spatial information may 
not be appropriate when processing paediatric brains, 
especially in crucial steps as spatial normalization or tis-
sue segmentation (Wilke et al. 2002, 2003b). While it has 
been suggested that using a common stereotaxic space 
does not have a negative impact on the ensuing results 

(Burgund et al. 2002), it seems clear, that, especially for 
processing brain imaging data from younger children, a 
signifi cant impact of such procedures must be expected 
(Fig. 14.3). Similar to the increasing technical diffi culties 
with the decrease in subject’s age mentioned above, a 
number of issues, when processing neonatal or infant 
brain data, are still unexplored. Therefore, eliminating or 
at least exploring the extent of the impact of such refer-
ence data seems important.

With regard to interpreting results from brain imag-
ing studies done in children, it seems important to 
remember that, again, the application of concepts 
derived from studying adult brains must be considered 
with caution. This is true for an anatomical delineation 
such as the Brodman label (Brodman 1909), the value 
of which is questionable due to the large interindividual 
variability even in adults where a combined approach 
has been advocated (Eickhoff et al. 2007). Moreover, 
functional differences also seem to be present: studies 
suggest that cortical specializations present in adults 

Fig. 14.2 Illustration of 
child-friendly stimulation 
material as part of a language 
task, taken from a children’s 
book (for details see Wilke 
et al. 2005). Images used 
with kind permission from 
Egmont Pestalozzi Verlag, 
Munich, Germany
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only evolve in normal children, likely paralleling the 
increase in functional specialization (Bitan et al. 2006; 
Brauer and Friederici 2007). Recently, the question of 
evolving networks of cortical processing as a function 
of normal development was hotly debated (Brown et al. 
2006; Durston et al. 2006). In how far these functional 
differences are linked with structural maturation pro-
cesses is currently unknown.

What is true for the healthy setting is even more 
relevant for the response to adverse events: the devel-
oping brain has distinct ways to compensate for early 
insults, both in the sensorimotor and the language 
domain (Carr et al. 1993, Staudt 2007; Staudt et al. 
2002). Here, children have been shown to continue to 
use early patterns of motor organization or to reorga-
nize the whole cortical language network to the 
opposite hemisphere (Fig. 14.4). Both patterns are 
specifi c to the developing brain. Taken together, 
these results suggest that caution must be used when 
interpreting paediatric imaging studies on the back-
ground of knowledge gained from adult studies.

Interpreting results from paediatric imaging studies 
requires an awareness of implicit or explicit infl uences 
from adult reference data on processing steps or analy-
sis approaches. The developing brain shows distinct 
patterns of reorganization following external insults, 
so that especially in the pathological setting, applying 
information gained from studying adults may be 
inappropriate.

Fig. 14.3 Illustration of age-related brain changes: gray mat-
ter template for 6 (left) and 17-year-old boys (right), and dif-
ferences in gray matter concentration between them (middle, 
exceeding 10%; blue values indicate higher gray matter 

 concentration in younger children). Note substantial changes 
in the basal ganglia, but also throughout the whole cortical 
gray matter. Data generated with the TOM-toolbox (Wilke 
et al. 2008)

Fig. 14.4 Reorganization of the language network in a 16-year-
old boy following perinatal left-hemispheric stroke: note activa-
tion in typical anterior (circle) and posterior (box), but 
right-hemispheric brain regions while doing a language task. 
Data analyzed using SPM5, P £ 0.05, FDR-corrected for  multiple 
comparisons; note posterior co-activation due to visual process-
ing (Wilke et al. 2005)
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14.5 Conclusions

Much can be learned from studying the developing brain, 
and several questions will only be answered by under-
standing the processes underlying normal and abnormal 
brain development. When setting out to do imaging stud-
ies in children, it seems important to remember a num-
ber of specifi c points distinguishing paediatric from 
adult imaging studies, as laid out above. A multi-profes-
sional, collaborative effort involving researchers commit-
ted to working with children seems to be a prerequisite 
for successfully performing such studies.
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Multimodal Brain Mapping in Patients 
with Early Brain Lesions

Martin Staudt

15

15.1 Introduction

The developing human brain possesses a superior poten-
tial of functional reorganization after lesions compared 
with the adult brain. Because of such reorganizational 
processes, children with early brain lesions often show 
abnormally located cortical representations of certain 
brain functions, e.g. of motor representations (Carr et al. 
1993; Staudt et al. 2002a; 2004a) or of language func-
tions (Rasmussen and Milner 1977; Staudt et al. 2002b). 
Nowadays, these abnormally located representations 
can be identifi ed non-invasively using techniques such 
as functional MRI (fMRI), transcranial magnetic stimu-
lation (TMS) or magnetoencephalography (MEG). 
Thus, these techniques can not only contribute to our 
general understanding of the processes involved in the 
reorganization of the developing human brain, but can 
also be used clinically in the pre-surgical evaluation of 
children who have to undergo brain surgery, e.g. for the 
relief of pharmaco-refractory epilepsies originating 
from their lesions (Hertz-Pannier et al. 2001; Staudt 
et al. 2001; 2004a, b; Liégeois et al. 2006).

The clinical application of these mapping tech-
niques in this context is particularly challenging: fi rst, 
most of these patients are children, often with various 

degrees of cognitive impairments, so that their ability 
to comply with the experimental requirements is often 
reduced; second, the brain lesions often destroy or dis-
tort anatomical landmarks, which can normally be used 
for the identifi cation of eloquent brain regions; and 
third, the cortical representations of brain functions 
may have shifted because of reorganizational processes 
following lesions acquired during ongoing brain devel-
opment. This chapter gives typical examples of exami-
nations of children, mostly in the pre-surgical evaluation 
before epilepsy surgery, highlighting a number of impor-
tant aspects.

15.2 Example 1

A 3-year-old boy suffered from therapy-refractory focal 
seizures originating from a cortical dysplasia (yellow 
arrows in Fig. 15.1) in the central (Rolandic) region of 
the right hemisphere. On clinical examination, left hand 
function was normal. Prior to possible epilepsy surgery, 
fMRI during a simple active hand motor task (repetitive 
squeezing of a toy) was used to visualize the spatial 
relation between the dysplasia and the primary senso-
rimotor representation of the contralateral hand.

Based on these fi ndings of fMRI activation in the 
immediate vicinity of the dysplasia, no total resection 
of the dysplasia was performed.

fMRI can be used even in pre-school children to 
localize the primary sensorimotor region (S1M1) in 
the vicinity of epileptogenic lesions.

M. Staudt
Neuropediatric Clinic and Clinic for Neurorehabilitation/
Epilepsy, Center for Children and Adolescents, 
Krankenhausstrasse 20, 83569 Vogtareuth, Germany
e-mail: mstaudt@schoen-kliniken.de 
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15.3 Example 2

A 16-year-old girl with congenital hemiparesis due to 
a pre- or perinatally acquired cortico-subcortical infarct 

in the territory of the middle cerebral artery (MCA) 
showed a striking discrepancy between a large cystic 
lesion and relatively well-preserved sensorimotor func-
tions (preserved grasp) of the contralateral (paretic) 

P

Fig. 15.2 MRI and TMS fi ndings of a 16-year-old girl with con-
genital hemiparesis due to a large cortico-subcortical infarct. 
Left: Coronal T1-weighted image depicting the cystic lesion. 
TMS (indicated by the yellow fi gure-eight-coil symbol ) of the 
affected hemisphere elicited normal motor-evoked potentials in 
the paretic hand (P), confi rming the presence of preserved crossed 

 cortico-spinal projections (yellow arrow). Right: MR diffusion 
tensor tractography (in random colours on unweighted diffusion 
images; tilted axial planes, anterior-lateral-superior view) visual-
ized numerous fi bre trajectories passing through the small bridge 
of preserved white matter between the cystic lesion and the lateral 
ventricle. Adapted from Staudt et al. 2006b, permission pending

Fig. 15.1 fMRI during active left hand movement in a 3-year-
old boy with a focal cortical dysplasia (hyperintense on T2; 
yellow arrows) of the right central (Rolandic) region. The fMRI 
activation (in red ) is superimposed directly on the (functional) 
EPI images (yielding the most reliable topographical local-
ization, since no coregistration is involved; upper row), and, 

after coregistration, to high-resolution structural T2-weighted 
images acquired in general anaesthesia during a separate ses-
sion (lower row; courtesy of Prof. Winkler, Olgahospital 
Stuttgart) as well as onto a 3D surface reconstruction (right). 
Green line = central sulcus; blue rectangle = position of the 
enlarged details on the left
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hand (Staudt et al. 2006b). On neurophysiological 
examination, TMS revealed preserved crossed cortico-
spinal projections from the affected hemisphere to the 
paretic hand, and MEG identifi ed the fi rst cortical 
response to repetitive tactile stimulation of the paretic 
thumb (N20m) in the affected hemisphere, indicating 
the presence of preserved crossed spino-thalamo- 
cortical somatosensory projections. Accordingly, dif-
fusion tensor imaging (DTI) tractography with a seed 
region positioned in the small bridge of preserved 
white matter between the enlarged lateral ventricle and 
the cystic lesion visualized extensive connectivity pro-
vided by this area (Fig. 15.2).

15.4 Example 3

A 20-year-old young man with congenital right hemi-
paresis due to a large polymicrogyria in the left fronto-
parietal region shows partially preserved sensorimotor 
functions (preserved individual fi nger movements) of 
the contralateral (paretic) right hand (Staudt et al. 
2004b). On neurophysiological examination, TMS 
revealed preserved crossed cortico-spinal projections 
from the affected hemisphere to the paretic hand. 
Accordingly, fMRI during a simple active hand motor 
task (repetitive opening/closing of the paretic hand) 
revealed activation in the polymicrogyric cortex. Thus, 
both TMS and fMRI demonstrate that, in this patient, 
the polymicrogyric cortex harbours the primary motor 
representation of the paretic hand (Fig. 15.3).

Dysgenic cortex (here: polymicrogyria) can fulfi l 
primary motor functions, with normal descending cor-
tico-spinal motor projections. This can be confi rmed 
by a combination of fMRI and TMS.

Small areas of preserved white matter can provide 
surprisingly extensive connectivity in patients with 
early brain lesions. Such projections can be visualized 
by DTI tractography.

Fig. 15.3 MRI and TMS fi ndings of a 20-year-old man with 
congenital hemiparesis due to a large polymicrogyria. Left: 
Axial T2-weighted image depicting the polymicrogyria in the 
left fronto-parietal region (red arrows). TMS (indicated by the 
yellow fi gure-eight-coil symbol ) of the affected hemisphere 
 elicited normal motor-evoked potentials in the paretic hand (P), 
confi rming the presence of preserved crossed cortico-spinal 
 projections. Right: fMRI activation (in red; superimposed on the 
functional EPI) during active movement of the paretic hand 
revealed activation in the polymicrogyria, approximately oppos-
ing the Rolandic region in the contra-lesional hemisphere

P
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Fig. 15.4 MRI and TMS fi ndings of a 6-year-old boy with 
 congenital hemiparesis due to a complex hemispheric malforma-
tion. Left: Axial T1-weighted image depicting the malformation 
of almost the entire hemisphere. TMS (indicated by the yellow 
fi gure-eight-coil symbol ) of the contra-lesional hemisphere elic-
ited not only the normal contralateral responses in the  non-paretic 

hand, but also ipsilateral motor-evoked potentials in the paretic 
hand (P), demonstrating the presence of ipsilateral cortico-spinal 
projections. fMRI during active movement of the paretic hand 
(middle) revealed activation in the hand knob area of the contra-
lesional (ipsilateral) hemisphere, not different from the activa-
tion elicited by active movement of the non-paretic hand (right)

P P

15.5 Example 4

A 6-year-old boy with congenital right hemiparesis 
due to a complex hemispheric malformation suffered 
from pharmaco-refractory seizures (Staudt et al. 2001). 
Clinical examination showed preserved individual fi n-
ger movements in the paretic hand and massive mirror 
movements during voluntary movements of both the 
paretic and the non-paretic hand. Prior to epilepsy sur-
gery, fMRI and TMS were performed to identify the 
primary motor representation of the paretic hand. TMS 
of the affected hemisphere did not elicit any response, 
whereas TMS of the contra-lesional hemisphere elic-
ited bilateral responses with similar latencies. This 
indicated the presence of fast-conducting ipsilateral 
cortico-spinal projections, allowing the contra-lesional 
hemisphere to exert motor control over the paretic 
hand. Accordingly, fMRI during a simple active hand 
motor task (repetitive opening/closing of the paretic 
hand) revealed activation in the “hand knob” area of 
the contra-lesional hemisphere, not different from the 
fMRI activation elicited by movements of the non-
paretic hand. Active grasping was still possible after 
functional hemispherectomy (Fig. 15.4).

Early brain lesions (malformations, but also defec-
tive lesions) can induce shifting of the primary motor 

representation (M1) of the paretic hand to the contra-
lesional hemisphere (with ipsilateral cortico-spinal 
tracts).

15.6 Example 5

A 19-year-old woman with congenital right hemipare-
sis due to a large unilateral periventricular brain lesion 
showed preserved individual fi nger movements in the 
paretic hand and massive mirror movements during 
voluntary movements of both the paretic and the non-
paretic hand (Staudt et al. 2006a). As in the patient of 
example 4, TMS of the affected hemisphere did not 
elicit any response, but TMS of the contra-lesional 
hemisphere elicited bilateral responses with similar 
latencies. This indicated the presence of ipsilateral 
cortico-spinal projections, allowing the contra-lesional 
hemisphere to exert motor control over the paretic 
hand. Accordingly, fMRI during a simple active hand 
motor task (active opening/closing of the paretic hand) 
revealed activation in the “hand knob” area of the 
 contra-lesional hemisphere, but also activation in the 
contralateral Rolandic region, an area from which no 
motor-evoked potentials could be elicited by TMS. 
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fMRI during passive hand movement also elicited 
 activation in the contralateral Rolandic region (i.e. of 
the affected hemisphere), suggesting preserved soma-
tosensory functions in this region. And indeed, MEG 
recorded the fi rst cortical response to repetitive tactile 
stimulation of the paretic thumb (N20m) in the con-
tralateral Rolandic region, confi rming this region to 
harbour the primary somatosensory representation 
(S1) of the paretic hand. Finally, DTI with a seed 
region in the dorsal brain stem (tegmentum pontis) 
visualized ascending spino-thalamo-cortical projec-
tions bypassing the lesion on their way to this  preserved 
somatosensory representation of the paretic hand. This 
observation can be explained by the fact that develop-
ing thalamo-cortical somatosensory projections had 
not yet reached their cortical target areas by the time 
of the insult (the early third trimester of pregnancy; 
Kostovic and Judas 2002), so that these outgrowing 
fi bres could fi nd an alternative route in the preserved 
tissue, thus forming “axonal bypasses” around 
the defec tive areas (Staudt et al. 2006a).

This example and similar cases (Thickbroom et al. 
2001; Staudt et al. 2006a) teach important lessons for 
the application of non-invasive imaging techniques in 
children with early brain lesions:

1. Different mechanisms are available for reorganiza-
tion of primary motor and primary somatosensory 
representations (shifting to the contra-lesional hemi-

sphere for motor functions, forming axonal bypasses 
around a lesion for somatosensory functions).

2. This can lead to a “hemispheric dissociation” between 
the primary motor (M1) and the primary somatosen-
sory (S1) representations of a paretic hand.

3. fMRI of passive hand movement alone is not suited 
to identify the “sensorimotor representation” of a 
paretic hand (see Fig. 15.5) – the reorganization of 
the primary motor representation in example 5 
would have been missed with the “normal-looking” 
result for passive hand movement!

15.7 Conclusions

Non-invasive mapping techniques such as fMRI, TMS, 
MEG and DTI tractography are useful techniques in 
the pre-surgical diagnostic work-up of children with 
early brain lesions. These situations often require a 
combined use of complementary techniques.

The combination of fMRI (during active move-
ments) and TMS is well suited to identify motor repre-
sentations, with TMS being specifi c for areas from 
where cortico-spinal projections originate, and fMRI 
visualizing the entire sensorimotor network with a high 
spatial resolution in three dimensions (Thickbroom 
et al. 2001; Staudt et al. 2002a; 2004a, b). This is 

Fig. 15.5 MRI, TMS, fMRI, MEG and DTI tractography fi nd-
ings of a 19-year-old female with congenital hemiparesis due to 
a unilateral periventricular brain lesion. Left: Coronal T1-weighted 
image depicting the periventricular lesion. TMS (indicated by 
the yellow fi gure-eight-coil symbol ) of the contra-lesional hemi-
sphere elicited not only the normal contralateral responses in 
the non-paretic hand, but also ipsilateral motor-evoked potentials 
in the paretic hand (P), demonstrating the presence of ipsilateral 
cortico-spinal projections. Middle: fMRI during active (middle 

left) and passive (middle right ) movement of the paretic hand. 
The blue circle indicates the position of the dipole reconstruction 
from MEG recording of the fi rst cortical response to tactile stim-
ulation of the paretic thumb. Right: Diffusion tensor imaging 
(DTI) tractography of ascending spino-thalamo-cortical projec-
tions, with seed regions in the dorsal brain stem (tegmentum 
pontis) and in the subcortical Rolandic white matter of both 
hemispheres (from Staudt et al. 2006a, permission pending)

PP
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important for the identifi cation of (a) the spatial rela-
tion between M1 and an epileptogenic lesion (as in 
example 1), (b) of a preserved M1 in dysgenic cortex 
(as in example 3) and (c) of a reorganization of M1 
into the contra-lesional hemisphere (as in examples 4 
and 5). In this respect, patients with a “hemispheric 
dissociation” between M1 and S1 (Thickbroom et al. 
2001; Staudt et al. 2006a) are particularly challenging, 
since here fMRI of active hand movements typically 
yields bilateral Rolandic activation.

The combination of fMRI (during passive  movements) 
and MEG is well suited to identify somatosensory 
 representations, with MEG (due to its high temporal 
resolution) being specifi c for primary somatosensory 
representations (e.g. the cortical projection areas of 
somatosensory fi bres), and fMRI visualizing the soma-
tosensory network with a high spatial resolution in three 
dimensions (Staudt et al. 2006a; Wilke et al. 2008). 
Similar to the motor system, this combination can iden-
tify (a) preserved somatosensory projections in preserved 
white-matter bridges (as in example 2), (b) a preserved 
S1 in Rolandic cortex overlying even large lesions (as in 
example 5) and (c) a preserved S1 in dysgenic cortex 
(no example included here, see Gerloff et al. 2006).

Finally, DTI tractography can visualize preserved 
projections in the vicinity of a lesion (as in example 2), 
or “axonal bypasses” around a lesion (as in example 5). 
Because of the uncertainties involved in this new tech-
nique, we still recommend to use such information 
only when additional evidence (e.g. neurophysiologi-
cal evidence from TMS or MEG) for the existence of 
such projections is available.
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Combining Transcranial Magnetic 
Stimulation with (f)MRI

Gesa Hartwigsen, Tanja Kassuba, and Hartwig Roman Siebner

16

16.1 Introduction

Transcranial magnetic stimulation (TMS) is a noninva-
sive and painless tool for the electrical stimulation of the 
human cortex (Barker et al. 1985). TMS depolarizes 
cortical neurons and can evoke measurable electrophys-
iological and behavioral effects. TMS is usually applied 
to one cortical area, but can also be given to two or more 
areas (i.e., multi-site TMS). Single or paired stimuli and 
short stimulus trains (i.e., high-frequency bursts) pro-
vide a means of transiently disrupting ongoing neuronal 
processing in the stimulated cortex. Repetitive TMS 
(rTMS) refers to the application of prolonged trains of 
stimuli, which are either given continuously as long 
trains at a constant rate (continuous rTMS), or intermit-
tently as repetitive bursts (i.e., intermittent or burst-like 
rTMS). rTMS can modify the excitability of the cere-
bral cortex at the stimulated site and also at remote 
interconnected brain regions, beyond the time of stimu-
lation. Its neuromodulatory effects make rTMS a valu-
able tool to study the functional plasticity of neuronal 
networks and may be used therapeutically in patients 
with neurological and psychiatric disorders.

16.1.1  How Does TMS Excite 
Cortical Neurons?

TMS causes inductive (electro-magneto-electric) stim-
ulation of neuronal axons. A brief, high-current pulse 

is produced in a stimulating coil. The time-varying 
electrical fi eld produces a time-varying magnetic fi eld 
with lines of fl ux oriented perpendicularly to the plane 
of the coil. The pulsed magnetic fi eld is not attenuated 
by the scull and induces an electric fi eld in the superfi -
cial brain tissue (i.e., cortex), which runs parallel to the 
plane of the coil but has a direction that is opposite to 
the electric fi eld in the coil. Hence, the pulsed mag-
netic fi eld is only used as a means to generate an elec-
tric fi eld in the brain that is suprathreshold for exciting 
cortical axons.

How does the time-varying electrical fi eld induced 
in the cortex excite neurons? The electrical fi eld 
induced in the neuronal tissue drives transmembrane-
ous ionic currents. The most relevant parameter is the 
rate of change of the electric fi eld along the nerve. 
Depending on the gradient and the orientation of the 
electric fi eld gradient relative to the course of the axon, 
the pulsed electrical fi eld may generate an outward 
current and local depolarization at distinct sites of neu-
ronal axons. If the outward current causes suffi cient 
membrane depolarization, this will trigger an action 
potential. This action potential propagates along the 
axon and may cause a transsynaptic excitation of post-
synaptic neurons. Crucial for an effi cient depolariza-
tion of an axon is the spatial gradient of the induced 
electric fi eld in relation to the orientation of the axon. 
At the cellular level, the events that lead to neuronal 
excitation are still poorly understood. For instance, the 
relevance of cellular and gyral shapes, the grey matter 
boundaries, the local variations in tissue conductivity, 
and the role of background neuronal activity for neu-
ronal stimulation are largely unknown.

The majority of studies have investigated the physi-
ological mechanisms of TMS in the human primary 
motor cortex (M1) because its effects can be quantifi ed 
by recording the TMS evoked motor potential (MEP). 

G. Hartwigsen (�)
Department of Neurology, Neurocenter, University Hospital 
of Schleswig-Holstein, Schittenhelmstrasse 10, 24105 Kiel, 
Germany
e-mail: g.hartwigsen@neurologie.uni-kiel.de



156 G. Hartwigsen et al.

For other brain regions, such direct quantifi cation is 
diffi cult to obtain. Therefore, researchers have used 
neuroimaging techniques such as positron emission 
tomography (PET), electroencephalography (EEG), or 
functional magnetic resonance imaging (fMRI) to map 
TMS-evoked changes in regional neuronal activity 
throughout the brain (Bestmann et al. 2003b; Ilmoniemi 
et al. 1997; Lee et al. 2003; Massimini et al. 2005; 
Siebner et al. 2003). These studies have revealed that 
the TMS-induced changes in regional neuronal activ-
ity are not restricted to the stimulated cortex but give 
rise to functional changes in connected cortical areas, 
including subcortical brain regions (Bestmann et al. 
2003b; Lee et al. 2003; Siebner et al. 2003).

Regarding fMRI, a critical question is whether the 
blood oxygen level dependent (BOLD) signal really 
captures the TMS induced changes in regional neuronal 
activity. Allen et al. (2007) combined optical imaging 
with electrophysiological recordings of neuronal activ-
ity in cat visual cortex to show that TMS-induced 
changes in neural activity are readily refl ected by cere-
bral hemodynamics. Further, the quantitative coupling 
between TMS-evoked neural activity and cerebral 
hemodynamics was present over a range of stimulation 
parameters. These results demonstrate the usefulness of 
combined TMS–fMRI studies in humans showing that 
TMS-induced neural changes are “faithfully refl ected 
in hemodynamic signals” (Allen et al. 2007).

16.1.2  Some Physical Aspects 
of Transcranial Magnetic 
Stimulation

The induced magnetic and electric fi eld decreases rap-
idly with increasing distance from the coil. The maxi-
mal depth of penetration depends on the shape and size 
of the coil, the employed stimulation intensity and the 
responsiveness of the targeted tissue. The decrease with 
distance is more rapid for small coils than for large ones. 
The coil should be placed tangentially on the skin to 
minimize the coil-cortex distance. Commercially used 
coils reach a penetration depth of approximately 2–6 cm. 
This implies that only cortical neuronal tissue is within 
the range of TMS while deep cerebral grey matter nuclei 
cannot be stimulated directly with TMS.

In general, TMS does not produce a focal stimula-
tion of neuronal tissue at a small predictable site. The 

geometry of the coil is an important factor in determin-
ing the magnitude and spatial extent of cortical stimu-
lation. The two most commonly used coil shapes are 
circular (i.e., referred to as round coil) and fi gure-of-
eight (referred to as fi gure-of-eight shaped coil or but-
terfl y coil). The circular coil induces a concentric 
circular electric fi eld. If the coil is placed with its entire 
surface tangentially to the skin, neuronal structures in 
the tissue underlying the circular coil will be activated. 
It should be noted that neuronal stimulation is minimal 
in the brain tissue underlying the center of the coil 
when the fl at surface of the circular coil is placed on 
the scalp tangentially to the skin (Weyh and Siebner 
2007). The other coil design has a fi gure-of-eight con-
fi guration. Figure-of-eight coils consist of two circular 
coils placed side by side and are wired such that the 
current from the stimulator passes in opposite direc-
tions in each. This produces a relatively clear defi ned 
maximum of the induced current where the two coils 
approach each other (i.e., in the geometrical center of 
the coil). With a spatial resolution of approximately 
1–1.5 cm, the fi gure-of-eight coil is substantially more 
focal than the circular coil. This explains why the 
 fi gure-of-eight coil is preferred to the round coil when 
TMS is used to map cortical functions (Walsh and 
Rushworth 1999). It needs to be borne in mind that 
commercially available stimulation devices may differ 
in terms of coil design. This may alter the characteris-
tics of neuronal stimulation, including the heating 
properties during rTMS and the hardware design (Lang 
et al. 2006; Weyh et al. 2005).

16.1.3  Clinical and Neuroscientifi c 
Applications of TMS

TMS can be used in several ways to study human brain 
function. Single-pulse or paired-pulse TMS can be 
applied to probe the excitability of intracortical inhibi-
tory and facilitatory circuits in the motor and visual 
cortex. Since the action potentials induced by TMS 
spread along pre-existing axonal connections, TMS 
induced neuronal excitation is not limited to the stimu-
lated cortex but leads to a transsynaptic spread of exci-
tation to interconnected cortical areas. This renders 
TMS a very powerful means of studying functional 
and effective connectivity in the intact human brain 
(Kobayashi and Pascual-Leone 2003). For instance, 
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TMS has been extensively used to probe cortico– 
cortical and cortico–spinal connectivity in the motor 
system. In clinical neurology, TMS is commonly used 
as a routine evaluation of the excitability and conduc-
tivity of corticospinal pathways.

TMS can induce a transient dysfunction in the stimu-
lated cortex (i.e., a “virtual lesion”). When being applied 
in its “virtual lesion” mode during an experimental task, 
TMS may produce measurable changes in task perfor-
mance. These changes in behavior can be used to make 
inferences about the importance of the stimulated brain 
area for a specifi c cognitive, sensory or motor function 
(Walsh and Cowey 2000; Walsh and Rushworth 1999). 
Various rTMS protocols are being increasingly used by 
clinicians and neuroscientists to induce lasting changes 
in the status of the human brain (Siebner and Rothwell 
2003). Conventional rTMS protocols consist of a con-
tinuous series of pulses with constant repetition rates. In 
the “continuous mode” of rTMS, stimulation rates of 
around 1 Hz are referred to as low-frequency rTMS, and 
stimulation rates between 5–50 Hz as high-frequency 
rTMS. Most studies regarding the motor cortex suggest 
inhibitory effects of low-frequency rTMS and facili-
tatory effects of high-frequency rTMS (Berardelli et al. 
1998; Chen et al. 1997a; Pascual-Leone et al. 1998). 
Recent protocols use more complex temporal stimula-
tion patterns such as double-pulse rTMS (Thickbroom 
et al. 2006), quadro-pulse rTMS (Hamada et al. 2007), 
or theta burst stimulation (TBS) which gives short, high-
frequent bursts of pulses every 0.2 s (Huang et al. 2005). 
Ongoing research addresses the question whether the 
neuromodulatory effects of these rTMS protocols may 
have a therapeutic application in neurological and psy-
chiatric disorders (Wassermann and Lisanby 2001).

TMS can be applied while subjects perform an 
experimental task (online TMS) or shortly before they 
perform the task (offline TMS). Offl ine TMS usually 
involves an rTMS protocol that induces a lasting alter-
ation of cortical excitability, while online TMS may 
consist of single pulses or short high-frequency trains 
that are given at distinct time-points during task per-
formance. Both approaches allow the testing of the 
functional relevance of the targeted brain area by mea-
suring the acute (online TMS) or conditioning (offline 
TMS) effects of TMS on electrophysiological measures 
(e.g., the MEP amplitude), behavioral measures (e.g., 
response latencies or error rate) or more directly on 
regional brain activity using brain mapping techniques 
such as EEG, PET, or fMRI.

16.1.4  Adverse Effects and 
Safety Precautions

TMS has the capability of producing adverse effects, 
especially if rTMS is used. These side effects are exten-
sively discussed in a recent review (Wassermann 2008). 
The most relevant adverse effect is the induction of epi-
leptic seizures. Since rTMS induces stronger and more 
persistent effects on cortical excitability and function 
than single-pulse TMS, it bears a higher risk of 
 provoking epileptic seizures even in healthy individu-
als. Therefore, safety guidelines were established which 
specify the maximal number of pulses per session, 
stimulus intensity and frequency that are considered to 
be safe in terms of seizure induction (Chen et al. 1997b; 
Wassermann 1998). Since the introduction of the safety 
guidelines, only a few cases of accidental seizures with 
TMS have been reported worldwide, and none of the 
individuals who had experienced rTMS-induced sei-
zures has suffered lasting physical sequelae.

The rapid discharge through the coil produces a 
characteristic clicking sound in the frequency range of 
2–7 kHz. The click is caused by mechanical deforma-
tion of the coil during the strong magnetic pulses. Peak 
sound pressure has been reported to be 120–130 dB at 
a distance of 10 cm from the coil (Starck et al. 1996). 
Sound levels will be higher when TMS is given inside 
the MRI bore because of the additional magnetic fi eld 
generated by the MR scanner. Therefore, individuals 
who receive rTMS or are examined in the MR scanner 
should always wear ear plugs (cf. Sect. 16.3.2.1).

16.2  Placement of the Coil Over 
the Cortical Target Area

Accurate placement of the TMS coil over the cortex 
area that is to be stimulated with TMS is crucial. The 
motor response that is evoked by TMS can be used to 
localize the primary motor cortex. A similar approach 
can be chosen for TMS of the visual cortex by posi-
tioning the coil at the site where TMS most reliably 
elicits a phosphene. In both instances, TMS produces 
an overt response which can be used to functionally 
determine the appropriate site of stimulation. For most 
remaining cortical areas, no such responses can be elic-
ited and other strategies have to be used to accurately 
place the coil over the cortical target.
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Some researchers use the optimal site to stimulate 
the primary motor cortex as “anchor point” for the 
stimulation of pericentral cortical areas such as premo-
tor or somatosensory areas (Gerschlager et al. 2001; 
Koch et al. 2006; Lee and van Donkelaar 2006). 
However, this method is not suffi ciently accurate for 
targeting more distant areas such as the dorsolateral 
prefrontal cortex (Bohning et al. 2003b).

The International 10–20 system for the placement of 
EEG electrodes (Jasper 1958) is often used for posi-
tioning of the TMS coil. The 10–20 system offers a grid 
of electrode sites located on the scalp that is derived 
from standard cranial landmarks, i.e., the inion, nasion, 
or preauricular points. This method assumes a consis-
tent correlation between scalp locations and underlying 
brain structures across subjects. Greater accuracy can 
be obtained by acquiring structural MR images of the 
brain together with capsules containing a high-contrast 
marker attached to the head (Terao et al. 1998). The 
placement of the coil can then be referenced to the 
position of the marker.

Neuronavigated TMS guided by frameless stereo-
taxy represents the method of choice as it allows both, 
exact placement and monitoring of the coil throughout 
the TMS experiment (Denslow et al. 2005a; Herwig 
et al. 2003a; Neggers et al. 2004; Sack et al. 2006; 
Schonfeldt-Lecuona et al. 2005). Optical (infrared 
based) and acoustic (ultrasound based) devices are 
available for neuronavigation. These systems use pas-
sive (refl ecting) or active (emitting) markers which are 
attached to the subject’s head and to the TMS coil 
(Ettinger et al. 1998). Sparing et al. (2008) compared 
different methods for the placement of the TMS coil 
over the primary motor cortex in terms of accuracy. 
The least accurate results were obtained when the 
10–20 EEG system or function-guided procedures 
were used, although there was a great variation among 
different electrode positions as some can be located 
more reliably than others. In that study, fMRI guided 
neuronavigated stimulation yielded the highest spatial 
accuracy in the range of a few millimeters. Other stud-
ies have confi rmed these results (Denslow et al. 2005a; 
Herwig et al. 2003b; Schonfeldt-Lecuona et al. 2005).

Neuronavigation requires a T1-weighted, high- 
resolution image of the subject’s brain. The anatomical 
images have to be transferred into three-dimensional 
space. Optionally, individual fMRI activation maps 
can be overlaid on the structural images. Predefi ned 

anatomical landmarks are marked on the individual 
structural MRI with special neuronavigation software. 
Usually, the nasion, the nibs of the tragus of both ears, 
and the internal angle of the eyes are used. A headband 
is then strapped around the subject’s head. A tracker 
with at least three passive spheres or ultrasound refl ect-
ing transmitters is fi rmly attached to the headband, 
indicating the position of the subject’s head. Another 
tracker is fi xed onto the TMS coil. These dynamic ref-
erence systems provide online information about the 
location of the head and the coil in space. A camera 
system detects the position of the dynamic reference 
systems and displays this information on a computer 
screen using navigation software for visual localiza-
tion of the coil (see Fig. 16.1).

The subject’s head and the structural MR scans are 
coregistered by touching the predefi ned landmarks on 
the subject’s face using a pointer equipped with trackers. 
An accurate coregistration procedure is crucial to exact 
placement of the coil. The position of the coil is visual-
ized in realtime on a computer screen relative to the 
individual three-dimensional anatomy of the brain. 
The exact position of the cortical target area can be 
defi ned either anatomically based on the gyral anat-
omy or functionally on the basis of activation maps 
that have been obtained with fMRI. In addition to the 
individual activation map, one can also use the stereot-
actic coordinates of a peak activation that has been 
identifi ed in a group of subjects. In this instance, the 
coordinates from standardized space (MNI, Talairach) 
have to be transformed to the subject’s “native” space.

16.3 Combinations of fMRI with TMS

16.3.1 Why Combine TMS with fMRI?

fMRI provides a sensitive means of identifying brain 
regions where regional neuronal activity correlates 
with behavior. Due to its correlative nature, fMRI 
based activation maps cannot establish whether such 
activation makes a relevant contribution to the behav-
ior. By temporarily disrupting ongoing neural activity, 
TMS permits to make causal inferences regarding the 
contribution of the stimulated cortex to a specifi c brain 
function. Since single-pulse TMS offers a high tempo-
ral resolution it can also be used to identify the period 
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during which the stimulated area makes a critical con-
tribution to the experimental task. Thus, combined 
TMS and fMRI gives access to noninvasive measuring 
of stimulation effects on the brain with a high spatial 
(fMRI: spatial resolution in the millimeter range) and 
temporal (single-pulse TMS: temporal resolution in 
the order of milliseconds) resolution.

The temporal relationship between TMS and fMRI 
defi nes which question can be addressed using a com-
bined TMS–fMRI approach. TMS can be given in the 
MR scanner during fMRI data acquisition (online 
approach) to investigate the immediate effects of TMS 
on brain activity and behavior. Alternatively, TMS and 

fMRI may be separated in space and time (offl ine 
approach). In this case, TMS is given outside the MRI 
suite before or after fMRI (see Fig. 16.2).

16.3.2  TMS in the MR Scanner During 
fMRI (Online TMS–fMRI Approach)

TMS during fMRI (interleaved TMS–fMRI) enables 
the researcher to probe the immediate impact of TMS 
on regional neuronal activity across the whole brain. 
By applying TMS during different functional states of 

Fig. 16.1 Neuronavigated TMS guided by frameless stereotaxy. 
A tracker with three passive spheres is attached to the headband 
of the subject (a), to the TMS coil (b), and fi xed on a pointer (c). 
These dynamic reference systems provide online information 

about the location of the head and the coil in space. A camera 
system (d) detects the position of the dynamic reference systems 
and displays this information on a computer screen using navi-
gation software for visual localization of the coil

d

a
b

c
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the brain, the online TMS–fMRI approach can explore 
how the TMS infl uences on neuronal activity in the 
stimulated and distant areas vary with task demands.

16.3.2.1 Methodological Issues

Although the prerequisites to apply TMS during fMRI 
were already introduced by Bohning et al. (1997, 1998, 
1999) approximately 10 years ago, interleaved TMS–
fMRI failed to become a routine procedure yet. At pres-
ent, most of the studies that used interleaved TMS–fMRI 
were carried out by three research groups in Charleston 
(North Carolina, USA), Göttingen (Germany), and 
London (UK) (for details, see Table 16.1). A simple 
implementation of TMS in the MRI environment is pre-
cluded by problems originating from the application of 

magnetic pulses in the static magnetic fi eld of the MR 
scanner and in the presence of magnetic fi eld gradients 
required for image acquisition (Baudewig et al. 2001). 
Therefore, nonferromagnetic coils have to be used which 
are mechanically strengthened to prevent coils from 
breaking during fMRI. Subjects have to wear ear plugs 
and headphones because mechanical interactions between 
the TMS evoked local magnetic fi eld and the static mag-
netic fi eld of the MR scanner result in a louder click when 
the coil is discharged inside the scanner. The presence of 
the MR-compatible TMS coil may cause geometric 
image distortions (Baudewig et al. 2000; Bestmann et al. 
2003a). These can be reduced by a shorter read-out time 
of echo-planar imaging (EPI) sequences, the use of stron-
ger imaging gradients and parallel imaging.

The ferromagnetic stimulation device must be 
placed at suffi cient distance from the magnetic fi eld of 
the MR scanner, outside the scanner room or in a 
radiofrequency-shielded cabinet inside the scanner 
room. This requires a longer cable to connect the coil 
with the stimulator.

MR-compatible TMS coil holders help to ensure 
accurate placement of the coil inside the scanner. Yet 
spatial limitations imposed by the MR head coil may 
restrict the access to some cortical areas, especially in 
the basal, frontal and temporal lobe. TMS also evokes 
twitches of cranial muscles, somatosensory and audi-
tory stimulation which may cause discomfort, move-
ment artifacts and contribute to functional brain 
activation. Nonspecifi c auditory and somatosensory 
stimulation as well as the unpleasantness of TMS com-
plicate the interpretation of TMS-induced brain activa-
tion by causing BOLD signal changes in subcortical 
and cortical areas involved in sensory or affective pro-
cessing (Bestmann et al. 2005). It is therefore advis-
able to include a control condition which matches the 
auditory and somatosensory stimulation but does not 
cause transcranial cortical stimulation. Alternatively, 
the same TMS protocol might be applied to a control 
area in a separate fMRI session.

Dynamic artifacts pose a major problem to concur-
rent TMS during fMRI. Radiofrequency (RF) noise can 
markedly reduce the signal-to-noise ratio of MR images. 
TMS stimulators may themselves produce RF noise, 
and the antenna-like properties of the TMS coil cable 
can additionally guide RF noise into the scanner which 
can be reduced by customized RF fi lters. Leakage-
currents that originate from the high-voltage capacitors 
of the TMS stimulator may induce additional image 
distortions and artifacts. Of note, these leakage-currents 

a “Online” approach: concurrent TMS & fMRI

b “Offline” approach: fMRI preceding TMS

c “Offline” approach: TMS preceding fMRI

Fig. 16.2 Relative timing of TMS and fMRI determines the 
application of combined TMS–fMRI. TMS and fMRI can be 
performed interleaved, (i.e., “online” approach) to investigate 
immediate effects of TMS on brain functions (a). In the “offl ine” 
approach, fMRI precedes or follows TMS. fMRI preceding 
TMS is usually used to identify appropriate sites for focal TMS 
(b), while TMS preceding fMRI can be used to probe the lasting 
effects of TMS conditioning on brain functions (c)
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change with the intensity of TMS, and can give rise to 
intensity-dependent BOLD signal changes. Remote-
controlled high-voltage relay-diode systems reduce 
leakage-currents fl owing between the stimulator and 
the TMS coil and can thus be used to resolve this prob-
lem (Bestmann et al. 2007).

The strong magnetic pulses induced by TMS can 
severely distort MR images depending on TMS coil 
orientation, TMS pulse intensity, and MR magnetic 
fi eld strength (Bestmann et al. 2003a; Shastri et al. 
1999). Therefore, a direct interference between TMS 
pulse and EPI excitation pulses should be avoided, and 
images being perturbed by TMS pulses must be 
replaced (Bestmann et al. 2008). A feasible solution to 
this problem is to introduce a suffi ciently long tempo-
ral gap between TMS pulses and subsequent MR image 
acquisition (for more technical details see Baudewig 
and Bestmann 2007; Bestmann et al. 2008).

16.3.2.2 Applications of Interleaved TMS–fMRI

Several researchers applied TMS over the motor cortex 
during rest and showed that TMS induced acute changes 
in BOLD signal is a dose-dependent fashion (Baudewig 
et al. 2001; Bestmann et al. 2003a, 2004; Bohning et al. 
1998, 1999, 2000b). A single TMS pulse evoked 
regional increases in BOLD signal which were similar 
to those evoked by volitionally movements (Bohning 
et al. 2000b). Such BOLD signal increases were only 
observed at suprathreshold intensities which evoked a 
muscle twitch in the contralateral hand. Hence, it 
remains unclear whether the observed activation was 
directly induced by cortical stimulation or resulted 
from somatosensory feedback activation caused by the 
TMS-induced movement. However, Bestmann et al. 
(2005) applied short trains of 3 Hz rTMS over the left 
premotor cortex which produced an increase in BOLD 

Target area Task TMS-fMRI protocol (frequency; %MT;
 total no. of pulses per train /session)

Reference

Left M1 Rest 0.83 Hz; 110; 20/session Bohning et al. (1998)
Left M1 Rest 1 Hz; 80/110; 18/session Bohning et al. (1999)
Left M1 Rest/fi nger movements 1 Hz; 110; 21/train Bohning et al. (2000a)
Left M1 Rest SP; 120; 15/session Bohning et al. (2000b)
Left M1 
Left PMd

Rest/fi nger movements 10 Hz; 110; 10/train 
10 Hz; 90/110;10/train

Baudewig et al. (2001)

Left PFC Rest 1 Hz; 80/100/120; 21/train Nahas et al. (2001)
Left M1/S1 Rest 4 Hz; 90/110/110 AMT; 40/train Bestmann et al. (2003b)
Left M1 Rest 1 Hz; 110; not reported Bohning et al. (2003a)
Left M1 Rest 1 Hz; 120; 1,2,4,8,16,24/train Bohning et al. (2003c)
Left M1 Rest 4 Hz; 150; 4/train Kemna and Gembris 2003
Left M1 Rest 1 Hz; 110; 21/train McConnell et al. (2003)
Left M1 Rest 3.1 Hz; 90/110 AMT; 30/session Bestmann et al. (2004)
Left M1/S1 Rest/fi nger movements 1 Hz; 110; 21/train Denslow et al. (2004)
Left PFC Rest 1 Hz; 100; 21/session Li et al. (2004a)a

Left M1 
Left PFC

Rest 1 Hz; 110/120; not reported Li et al. (2004b)

Left PMd Rest/fi nger movements 3 Hz; 90/110 AMT; not reported Bestmann et al. (2005)
Left M1 Rest/fi nger movements 1 Hz; 110; 21/train Denslow et al. (2005a)
Left M1 Rest 1 Hz; 110; 21/train Denslow et al. (2005b)
Left M1 Rest SP; ∼90;98/102;110 SoM; 20; 40/session Bestmann et al. (2006)b

Right FEF Rest/visual judgement 9 Hz; 40/55/70/85 TOP; 
10 Hz; 65 TOP; 5/train

Ruff et al. (2006)

Left PMd Isometric left hand grips 11 Hz; 70/110; 5/train Bestmann et al. (2007)
Left/right SPL Visuospatial tasks 13.3 Hz; 100 TOP; 5/train Sack et al. (2007)
Right IPS/FEF Visual task (moving stimuli) 9 Hz; 40/55/70/85 TOP; 5/train Ruff et al. (2008)

AMT active motor threshold; FEF frontal eye fi eld; IPS intraparietal sulcus; M1 primary motor cortex; PFC prefrontal cortex; PMd 
dorsal premotor cortex; RMT resting motor threshold; SoM Sense of movement; SP single pulse; TOP total output
aDepressive patients
bAmputee patient

Table 16.1 Studies using interleaved TMS-fMRI in healthy volunteers



162 G. Hartwigsen et al.

signal in the stimulated cortex and connected areas. 
Since the premotor TMS train did not produce overt 
muscle movements, it was concluded that these BOLD 
signal changes resulted from cortical stimulation rather 
than from somatosensory feedback activation.

Interleaved TMS–fMRI studies revealed that TMS 
can evoke changes in neural activity in connected corti-
cal and subcortical areas (Baudewig et al. 2001; 
Bestmann et al. 2004, 2005; Bohning et al. 1998, 1999, 
2000a; Ruff et al. 2008). These distant BOLD signal 
changes can occur even in the absence of consistent sig-
nal changes in the area that was directly targeted by TMS 
(Bestmann et al. 2004). This suggests that transsynaptic 
spread of excitation from the stimulated to connected 
brain areas makes a major contribution to neuronal stim-
ulation that is induced by TMS in the human brain.

Interleaved TMS–fMRI opens up the possibility to 
examine how TMS interacts with intrinsic task-related 
activation and how these TMS-induced changes in 
task-related activity relate to changes in behavior. In a 
recent study, parietal rTMS was performed during 
fMRI to map TMS-induced changes in task-related 
brain activity that underly the TMS-induced impair-
ment of visuospatial judgements (Ruff et al. 2008). 
Concurrent TMS–fMRI was employed, to investigate 
the infl uences of a short high-frequency rTMS train 
over the right frontal eye fi eld (FEF) or intraparietal 
sulcus, on the BOLD response in occipital activity to 
visual stimulation. The authors showed that TMS 
induced changes in occipital activity critically depend 
on the actual state of the visual system at the time of 
TMS. Increased activity over visual area V5/MT+ was 
only found if moving stimuli were concurrently pre-
sented. Conversely, visual areas V1-V4 were specifi -
cally activated during the absence of input.

So far, very few interleaved TMS–fMRI studies have 
been carried out in patients. In a case study, Bestmann 
et al. (2006) investigated TMS induced activity changes 
in distinct cortical areas of an amputee. At an intermedi-
ate stimulus intensity, TMS over the motor hand repre-
sentation contralateral to amputation, elicited a phantom 
sensation of a movement in half of the trials without pro-
ducing overt activity in remaining muscles. The authors 
compared event-related BOLD signal changes in trials 
with versus without a phantom sensation of movement. 
Because the settings of TMS were identical, this com-
parison subtracted out any nonspecifi c TMS effects on 
regional neuronal activity. The sensation of a phantom 
movement was associated with increased activity in 

primary motor cortex, dorsal premotor cortex, anterior 
intraparietal sulcus, and caudal supplementary motor 
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Fig. 16.3 Activity changes for the comparison of trials with vs. 
without SoM reported, at intermediate TMS intensities (SPM(T) 
thresholded at T ³ 3). When a conscious phantom SoM was per-
ceived, activity increases were observed in several motor-related 
regions, including the left (stimulated) M1, left and right PMd, left 
anterior intraparietal sulcus (aIPS), and caudal SMA. Note that the 
intermediate stimulation intensities applied were held constant in 
this contrast, and were below threshold for evoking peripheral 
muscle responses. The results are displayed on the patient’s ana-
tomical T1-weighted MRI: (a) transverse section, z = 72; (b) z = 67; 
(c) z = 62; (d) z = 57; (e) fMRI percent signal change with repect to 
the session mean in peaks from these fi ve motor-related regions 
(left M1, left and right PMd, SMA, left aIPS), for trials with or 
without evoked phantom SoM experienced. Reprinted from 
Neuropsychologia, 44 (14), Bestmann et al., Cortical correlates of 
TMS-induced phantom hand movements revealed with concurrent 
TMS-fMRI, pp. 2959–71, 2006, with permission from Elsevier
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area. Based on these results, it was argued that activity in 
these frontoparietal areas represents the neuronal corre-
late of the phantom sense of movement (see Fig. 16.3 for 
details). Concurrent TMS–fMRI may also be of value to 
study how “therapeutic” rTMS protocols acutely change 
neuronal activity in functional brain networks. For 
instance, fMRI has been used to probe the immediate 
effects of continuous 1 Hz TMS at 100% MT over the 
left dorsolateral prefrontal cortex in 14 patients with 
major depression (Li et al. 2004a).

16.3.3  Offl ine combination 
of TMS and fMRI

16.3.3.1 TMS Following fMRI

There is consensus that fMRI can reliably identify 
brain regions in which increases in BOLD signal are 
correlated with the performance of an experimental 
task. Yet, the correlational nature of fMRI provides no 
information about the functional contribution of any 
activated brain region to the task. This question can be 
addressed using TMS. TMS can be applied over the 
area of interest to disrupt neuronal processing while 
participants perform the same experimental task. If the 
TMS-induced local perturbation affects task perfor-
mance, this is taken as evidence that the stimulated 
cortical area is functionally relevant.

An elegant illustration of this approach was provided 
by Cohen and colleagues in a TMS study on blind sub-
jects (Cohen et al. 1997). Previous neuroimaging stud-
ies had shown that Braille reading consistently activated 
visual cortical areas in blind subjects but not in those 
with sight. To investigate the signifi cance of task-related 
activation in the occipital cortex, short trains of 10 Hz 
rTMS were given to several brain regions time-locked 
to Braille reading. Occipital rTMS induced errors and 
distorted the tactile perceptions of congenitally blind 
subjects, but had no effects on tactile performance in 
normal-sighted. This fi nding proved that the occipital 
visual cortex makes a relevant contribution to the pro-
cessing of tactile input in blind subjects.

Functional MRI can be used to functionally local-
ize the optimal site for TMS. In a study by Neggers 
and colleagues (2007), participants fi rst performed a 
saccade task during fMRI. In each subject, the indi-
vidual peak activation in the precentral sulcus was 

identifi ed and superimposed on the structural image of 
the subject’s brain. Then, frameless stereotaxy was 
used to place the coil over the fMRI defi ned FEF. This 
fMRI guided stereotactic approach is likely to be more 
precise than relying on structural anatomical land-
marks because it takes into account the inter-individual 
variability of the functional representation of the FEF 
in the precentral cortex. An alternative strategy uses 
the results of a previous fMRI study that has used the 
same or a similar experimental task. The stereotactic 
coordinates of task-related peak activation in the area 
of interest defi ne the site of stimulation. The individual 
site of stimulation is determined by using the inverse 
of the normalization transformation and transforming 
the coordinates from standard to “individual” space. 
Considering the high inter-individual variability of the 
therapeutic effects of rTMS in psychiatric and neuro-
logical disorders (e.g., Gross et al. 2007; Lefaucheur 
et al. 2007; Ridding and Rothwell 2007), the use of 
fMRI-guided TMS which takes into account the func-
tional neuroanatomy of each individual may also 
increase the effi cacy of rTMS as a therapeutic tool.

16.3.3.2 fMRI Following TMS

Another way to combine rTMS and fMRI is to apply 
rTMS before fMRI. Here rTMS is used to induce an 
acute reorganization in the human brain (Siebner and 
Rothwell 2003). After rTMS, fMRI is performed to 
map the lasting functional impact of rTMS on task-
related neuronal activity at a system level (O’Shea et al. 
2007; Rounis et al. 2007). Performing fMRI after rTMS 
outside the scanner does not require specifi c method-
ological precautions because rTMS and fMRI are sepa-
rated in space and time. This condition-and-map 
approach can be used to study the changeability of 
functional brain networks. Preferably, fMRI should 
start as quickly as possible after rTMS to capture the 
transient effects of rTMS (Baudewig and Bestmann 
2007). The conditioning effects of rTMS on regional 
neuronal activity can be detected by comparing task-
related activation before and after rTMS. It is impor-
tant to control unspecifi c changes in task related 
activity that are simply due to the repetition of the 
experimental task in the MR scanner. This can be 
achieved by introducing a second session during which 
sham rTMS is given to the cortical target area. Sham 
rTMS should match real rTMS in terms of auditory and 
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somatosensory stimulation but without inducing tran-
scranial stimulation of the cortex. Alternatively, the 
same effective rTMS protocol might be applied to a 
second (control) area. A change in the pattern of activa-
tion after rTMS but not after control rTMS indicates a 
true reorganization in response to rTMS conditioning. 
The task specifi city of functional reorganization can be 
shown by having participants perform a control task 
during the same fMRI session.

The condition-and-map approach has mostly been 
applied to study functional plasticity in healthy volun-
teers (see Table 16.2). For example, a recent study 
investigated the modulation and reorganization of net-
works associated with sensory perception and motor 
performance after subthreshold high-frequency (10 Hz, 
90% resting motor threshold) rTMS of the right pri-
mary motor hand area (Yoo et al. 2008). Using a sham-
controlled within-subject design, BOLD signal change 
during a sequential fi nger motor task and noxious tac-
tile stimulation of the left hand were assessed before 
and after real and sham rTMS. Compared to sham 
rTMS, real rTMS led to increased activation in the 
motor network which was associated with enhanced 
motor performance. On the other hand, real rTMS 
caused deactivation in the sensory network which cor-
related with an increase in tactile sensory threshold. In 
another study, fMRI used in healthy right handers to 

probe short-term reorganization in right PMd after 
1 Hz rTMS induced a lasting disruption of neuronal 
processing in the dominant left PMd specialized for 
action selection (O’Shea et al. 2007). 1 Hz rTMS spe-
cifi cally increased activity in right PMd and connected 
medial premotor areas during action selection without 
affecting behavior. Based on additional experiments, it 
was claimed that, this increase in activity refl ects com-
pensatory short-term reorganization, that helps to pre-
serve behavior after the “neuronal challenge” induced 
by rTMS.

To date patients have been rarely studied with the 
offl ine combination of rTMS and fMRI (Cardoso et al. 
2008; Fitzgerald et al. 2007; Nowak et al. 2008). 
However, a large number of condition-and-map studies 
used offl ine rTMS followed by PET in patients with 
neurological and psychiatric disorders such as tinnitus 
(Richter et al. 2006; Smith et al. 2007), depression 
(Kuroda et al. 2006; Peschina et al. 2001; Speer et al. 
2000), schizophrenia (Langguth et al. 2006), dystonia 
(Siebner et al. 2003) or Parkinson’s disease (Strafella 
et al. 2005). These studies have shown that the condi-
tion-and-map approach is important to advance our 
understanding of the therapeutic effects of rTMS as well 
as the underlying pathological brain mechanisms and 
should encourage investigators to perform fMRI after 
rTMS in patients.

Target area Task during fMRI TMS protocol (frequency; 
%RMT; total no. of pulses/session)

Reference

Left S1 Rest 5 Hz; 90; 2,500 Tegenthoff et al. (2005)
Left IFG Semantic object classifi cation 10 Hz; 110; 300 Wig et al. (2005)
Left S1 Tactile frequency 

discrimination
5 Hz; 90; 1,250 Pleger et al. (2006)

Right vs. Left DLPFC Cued choice reaction 5 Hz; 90 AMT; 1,800 Rounis et al. (2006)
Left PFC Face-name memory 5 Hz; 80; 500 Sole-Padulles et al. (2006)a

Right PFC Tower of London 1 Hz; 110; 720 vs. 10 Hz; 100; 1,500 Fitzgerald et al. (2007)b

Left PMd, Left SM Action selection 1 Hz; 90 AMT; 900 O’Shea et al. (2007)
Left DLPFC Emotional stimuli 5 Hz; 120; 3,750 Cardoso et al. (2008)c

Right FEF Saccade-fi xation 30 Hz TBS; 80; 600 Hubl et al. (2008)
Contrales. M1 Hand grip movements 1 Hz; 100; 600 Nowak et al. (2008)d

Right M1 Sequential fi nger motor task, 
noxious tactile stimuli

10 Hz; 90; 1,000 Yoo et al. (2008)

AMT active motor threshold; DLPFC dorsolateral prefrontal cortex; FEF frontal eye fi eld; IFG inferior frontal gyrus; M1 primary 
motor cortex; PFC prefrontal cortex; PMd dorsal premotor cortex; RMT resting motor threshold; S1 primary somatosensory cortex; 
SM sensorimotor cortex; TBS theta burst stimulation
aElderly subjects with memory complaints
bPatients with treatment-resistant depression
cDepressive patients with Parkinson’s disease
dStroke patients

Table 16.2 Studies performing fMRI after a conditioning session of rTMS
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16.4 Conclusion

TMS can be used concurrently with fMRI (online 
approach), or it can be given before or after fMRI 
(offl ine approach). While online TMS during fMRI is 
technically demanding and requires specifi c safety 
precautions, the offl ine TMS before or after fMRI 
approach outside the MR scanner can be easily per-
formed. The relative timing between TMS and fMRI 
defi nes the scientifi c and clinical questions that can be 
tackled with the combined TMS-fMRI approach. This 
approach provides unique opportunities to explore the 
dynamic aspects of functional neuronal networks in 
space and time, and how these functional interactions 
are affected by disease. It also bears great potential for 
studying the physiological impact of TMS on the 
human brain. This knowledge will be crucial to the 
increased effi cacy of TMS as a therapeutic tool.
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17.1 Introduction

Over the past two decades, numerous studies have dem-
onstrated that functional magnetic resonance imaging 
(fMRI) conveniently maps brain activity, both at rest and 
during a task. The spatial resolution of fMRI in clinical 
scanners can exceed 1 mm in plane resolution. The tem-
poral resolution, however, is limited to around 1 s or per-
haps a few hundred milliseconds depending on the 
technique and the paradigm used. Today, in the clinical 
and research setting, MEG often supplements the spatial 
information from fMRI with high temporal information.

For purposes of identifying eloquent cortex, typi-
cally evoked activity from somatosensory, motor, audi-
tory, visual, and language stimulation is recorded with 
MEG. During an MEG examination, the weak mag-
netic fi elds generated by neuronal currents in the brain 
are recorded. By measuring the magnetic fi eld at sev-
eral sites over the head, the most probable brain sources 
are estimated. The technique is best suited for measur-
ing the activity in the fi ssural cortex of the cerebral 
hemispheres. Such areas are generally positioned so 
that they are diffi cult to measure even with invasive 
intracranial recordings. Thus, MEG detects brain activ-
ity that would be diffi cult to measure even in an operat-
ing room environment (Hämäläinen and Hari 2002).

This chapter reviews the history of clinical MEG, 
intro duces basic concepts about biophysics and analysis 

unique to MEG and electroencephalography (EEG), 
and compares and contrasts its clinical use with fMRI.

17.2 Clinical MEG Instrumentation

In 1968, David Cohen recorded the fi rst magnetoen-
cephalogram using a room-temperature copper coil as 
a detector, at the university of Illinois (Cohen 1968). 
After moving to the Massachusetts Institute of 
Technology, he built a more elaborate shielded room. 
At about the same time, James Zimmerman and col-
leagues developed the superconducting quantum inter-
ference device (SQUID), which uses the Josephson 
junction to measure tiny magnetic fi elds. It requires 
cooling to liquid helium temperatures, and has a sensi-
tivity that is several hundreds times that of a copper 
coil. Zimmerman brought this detector to Cohen’s 
room, and this combination of shielding and detector 
allowed the fi rst clear measurements of the body’s 
magnetic fi elds. After they had measured the heart, 
Cohen recorded the fi rst MEG measured with a SQUID 
(Cohen 1972). The initial measurements of magnetic 
brain activity were done by physicists who used a sin-
gle magnetometer.

Most MEG devices now have hundreds of channels 
that can provide whole-head coverage. This makes it 
possible to map activity throughout the cerebral cor-
tex, or beyond, and is critical for detecting propagating 
or widespread epileptic activity. Because of interfer-
ence from extraneous magnetic fi elds, all MEG mea-
surements must be performed in a magnetically 
shielded room, which typically consists of two layers 
of aluminum and multiple layers of ferromagnetic 
shielding.
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17.3  Magnetoencephalography 
and Electroencephalography 
Basic Biophysics

MEG and EEG both measure electric currents in the 
brain. There are critical differences between MEG and 
EEG that make them complementary. Importantly, 
MEG preferentially detects activity in superfi cial, non-
radial areas of cortex, i.e., the fi ssural cortex of the 
cerebral hemispheres. This is particularly advanta-
geous if the area of activity is in the walls of the sulci, 
such as in the somatosensory or the auditory areas.

Much of the neural activity measured by MEG is 
related to postsynaptic activity in the pyramidal cells 
of the cerebral cortex. It measures the neural activity 
directly, as contrasted with BOLD fMRI, which mea-
sures neural activity indirectly via the hemodynamic 
response. MEG localizes neural activity more accu-
rately than EEG because magnetic fi elds are less per-
turbed than electrical potentials by overlying brain 
structures: scalp, skull, cerebrospinal fl uid, meninges, 
and vascular structures. Recently, the advancements in 
the statistical combination of structural MRI, fMRI, 
and MEG have taken a great stride forward by yielding 
the maximum benefi t from each technique into a single 
image (Dale and Halgren 2001; Dale et al. 2000).

The calculation of the magnetic fi eld is more straight-
forward than that of the electric fi eld because of the 
symmetries and conductivity distribution of the human 
head. As the EEG electrodes are in direct contact with 
the head, they measure the extracellular volume cur-
rents. All currents, both intracellular and extracellular, 
generate magnetic fi elds, but, because of the near spher-
ical shape of the head, one can calculate the resultant 
magnetic fi elds due to primary currents without taking 
into account the conductivity layers of the head.

17.4 Analysis of MEG

In order to intelligently interpret the results of a clini-
cal MEG measurement, the data is examined in both 
the sensor space and in the brain (source space). The 
basic measurement with MEG is magnetic fi eld 
strength as a function of time. In order to improve the 
signal-to-noise ratio of measured signals, it is often 
necessary to average several (typically around 100 

trials) responses from an identical stimulus. This tends 
to average the extraneous activity to around zero in the 
evoked response, thus effectively improving the over-
all signal-to-noise ratio.

17.4.1 Source Modeling

Source modeling is necessary to determine the neural 
origin of the measured magnetic fi elds. The mathemat-
ical approach to this problem is known as the inverse 
problem. Generally, the inverse solution is nonunique 
and ill-posed. If proper assumptions are made, how-
ever, the solution becomes solvable.

17.4.1.1 Equivalent Current Dipole

In order to make the inverse solution tractable, one can 
approximate that the activity from primary sensory or 
motor cortex originates as a single equivalent current 
dipole (ECD). This is physiologically plausible, given 
that a limited patch of cortex is synchronously acti-
vated and that the sensors are at least a few centimeters 
from the source. The ECD provides spatial informa-
tion, magnitude (current dipole moment), and direc-
tion. It is typically computed using a standard iterative 
least-square algorithm (Marquardt 1963), which can 
also provide a measure of dipole parameter confi dence, 
as well as the best-fi tting parameters such as goodness 
of fi t (GOF) measure (Hämäläinen et al. 1993).

Thus, by assuming a single source, the inverse prob-
lem has a unique solution. This works particularly well 
for primary sensory areas, focal epilepsies, and for 
higher cognitive areas that have a focal source. Further 
advances in the ECD approach, for both EEG and MEG, 
has made it possible to fi nd multiple ECDs with a mul-
tidipole approach, such as that developed by Hari and 
colleagues for somatosensory activation (Hari et al. 
1993). One approach to investigate temporal changes in 
different areas of the brain is known as the time-varying 
dipole model. In this model, a series of dipoles are mod-
eled such that the locations are fi xed, but allowing the 
amplitudes to vary over time. This ECD approach works 
quite well for sequentially or simultaneously activated 
cortical sources, although the fi ne spatial details are lost 
due to the fact that the measurements are obtained at 
least 3 cm from the sources (Hämäläinen et al. 1993).
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17.4.1.2 Distributed Solutions

If a large area of cortex is activated, the single ECD 
solution may be misleading. In practice, this may be 
suspected when a dipole localizes too deep to be physi-
ologically plausible, i.e., in the deep white matter. In 
such cases, distributed solutions such as the minimum 
norm estimate (MNE) or the minimum current solu-
tion (MCE) maybe more accurate. Although numer-
ous other inverse solutions exist (Mosher et al. 1999; 
Mosher and Leahy 1998), this review concentrates on 
MNE and MCE.

Minimum Norm Estimate (MNE)

Originally pioneered by Hämäläinen (Hämäläinen and 
Ilmoniemi 1984), and recently improved by Dale and 
colleagues (Dale and Halgren 2001; Dale et al. 2000), 
MNE is now available in commercial software pack-
ages. The basis of the MNE is that a leadfi eld describes 
the contribution to the surface magnetic fi eld from a 
series of dipoles in the brain. Although computation-
ally expensive, the leadfi eld can be expressed as a 
matrix computed from a realistic head model from a 
head MRI.

The MNE does have some important limitations 
that must be kept in mind especially when they are 
used clinically: a depth bias, and the diffi culty in deter-
mining the extent of activation. In its most elementary 
expression, the source variance is assumed to be equal 
throughout the volume, and the MNE solution is biased 
towards the most superfi cial currents. One approach to 
lessen this effect is to use a cortical constraint obtained 
from the anatomic MRIs (Dale and Sereno 1993). In 
addition to a depth bias, determining the extent of the 
sources is also problematic. Simulations (Dale and 
Sereno 1993) show that the point-spread function of 
estimates is a function of location. Further, the spread 
depends on the assumed source variance.

In order to further compensate for the superfi cial 
bias of current estimates, and also give a more accurate 
estimation of the extent of activation, Dale has sug-
gested producing a statistical parametric map (SPM) 
by normalizing the estimate MNE by source noise 
(Dale et al. 2000). Simulations have determined that 
the point-spread function is then a much lesser func-
tion of location (Liu et al. 2002). Additionally, the 
SPM can be used for hypothesis testing of the spatial 

extent of estimated activity in individuals across stim-
ulus conditions, or between groups of subjects.

17.4.2  Combination with Other 
Imaging Technologies

In order to improve the spatial localization capabilities 
of MEG, the inverse solution can be combined with the 
spatial information provided from other sources, such 
as fMRI, positron emission tomography (PET), or 
optical imaging. As noted above, the spatial informa-
tion from anatomic MRI can be used to restrict the 
solution to the cortical surface. For example, Dale and 
Halgren (2001) report the ability to create spatiotem-
poral “movies” of the processing of the brain during 
reading, by statistically combining the information 
from fMRI and MEG done with identical stimulus 
conditions, performed on different sessions (See 
Fig 17.1 for example). It might thus be possible to use 
such a technique to locate and quantify complex lan-
guage and cognitive tasks presurgically.

17.5 Presurgical Mapping

17.5.1 Somatosensory Mapping

Using a tactile stimulator, the somatosensory cortex 
homunculus can be easily mapped by successively 
stimulating fi nger digits, foot digits, and lip using 
MEG. Alternatively, an electrical nerve stimulator can 
be used to map the median, tibial nerve, and lip repre-
sentative areas. If an electrical nerve stimulator is used, 
the electrodes are placed, and the intensity set, such 
that thumb twitching or toe twitching is elicited. 
Typically, 100 repeated stimuli are required to obtain 
adequate signal-to-noise ratio. Both the primary (SI) 
and secondary (SII) somatosensory cortices are detect-
able with MEG (see Fig. 17.2).

After recording the evoked magnetic fi elds, the pri-
mary somatosensory cortex is typically localized with 
an ECD (Hari 1991, 1990; Hari and Forss 1999). If the 
median nerve electrical stimulation technique is used, 
the N20 m – the fi rst “fast” component of the evoked 
magnetic fi eld – is easily obtained in nearly all patients, 
including ones under deep anesthesia or in a coma 
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(Hoshiyama et al. 1996; Kakigi 1994). The N20 m 
generator is located in the anterior wall of the soma-
tosensory gyrus (area 3b), with a nonradial orientation, 
which is ideal for detection with MEG (Hari 1990, 
1991, 1993; Hari and Forss 1999; Hoshiyama et al. 
1996). It is a preconscious fi eld that bypasses the thala-
mus and, due to a high signal-to-noise ratio, has a very 
repeatable localization, usually within a few millime-
ters of the hand area of the somatosensory cortex.

MEG identifi cation of the central sulcus, has been 
validated by several groups using intraoperative mea-
surements (Beisteiner et al. 1995; Inoue et al. 1999; 
Kober et al. 2001a; Schiffbauer et al. 2001). Firsching 

et al. (1992, 2002), recently reported that in 30 patients, 
ECD localization of the tactile neuromagnetic response 
localized in the somatosensory cortex, and was in agree-
ment with phase reversal measurements at the time of 
surgery, without exception. Recent reports of noninva-
sive multimodal technologies – MEG, fMRI, and others, 
– have noted that when combined, they enhance the reli-
ability of identifi cation of the central sulcus. Some have 
suggested using a functional risk profi le (FRP), based on 
MEG fi ndings to improve surgical decision-making 
(Hund et al. 1997). It should be kept in mind that brain 
tumor patients with known sensory or motor defi cits 
often have diminished evoked fi elds (Hund et al. 1997).

MEG Helmet View of All Channels

Left

SI SII

Left Central
Channels

SII

Source Analysis ECD Spatiotemporal Map

Right Central
Channels

t=35ms

t=90ms

dSPM

SI

SIISII

LEFT

(t=100ms)

SI Activation

SII Activation

MEG Helmet Isofield ViewFig. 17.1 Somatosensory 
evoked fi eld using MEG in an 
epilepsy patient. Upper left 
shows all 306 channels in a 
helmet view during electrical 
stimulation of the right 
median nerve.  Upper right 
shows the isofi eld map of the 
current dipole (green arrow) 
over the SII area of the 
somatosensory cortex.  
Middle panels show 
enlargement of the channels 
over the somatosensory 
cortex of the right and left 
sides.  Lower left shows the 
equivalent current dipole 
(ECD) of the contralateral SI 
and bilateral SII estimates 
superimposed on a 
T1-weighted MRI.  Lower 
right shows two time frames 
(35msec & 90msec post-
stimulation of the right 
median nerve) demonstrating 
the activity location and 
magnitude (F-statistic) of SI 
(upper) and SII (lower).  This 
activity can be converted to a 
millisecond resolution 
‘movie’ of the cortical current 
activity after a stimulus
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Fig. 17.2 Auditory mismatch response 
preliminary data using multiple imaging 
technologies in a control subject. Stimuli 
were narrow band standard tones (220Hz 
center, 1/8 octave widths) and deviants (3 
Octaves above standard, with 1/8 octave 
width) presented rarely (5%). Labeled areas 
are Heschl’s gyrus (HG), planum temporale 
(PT), superior temporal gyrus (STG), 
superior temporal sulcus (STS), and middle 
temporal gyrus (MTG). The next panel 
shows a focal source analysis technique, the 
equivalent current dipole (ECD) method, 
which is traditionally used for MEG source 
estimation. On the left is a sagittal MRI 
with the ECD source estimate location with 
the black bar indicating the dipole direction. 
On the right, the dipole representing the 
peak in the magnetic mismatch response 
(MMNm) is registered onto the infl ated 
cortex.  Notice that in this case the dipole is 
near the anterior portion of Heschl’s gyrus. 
The 3rd panel illustrates how the actual 
pilot data from fMRI, MEG data, and the 
infl ated cortex data are combined to create a 
‘movie’ or spatiotemporal map. The fMRI 
data superimposed on source EPI BOLD 
MRI images, which is then transformed 
onto the infl ated cortex. The lower panel 
illustrates how the activity from the 306 
channels of MEG data are transformed 
using the minimum norm estimate (MNE), 
a distributed source estimate method, onto 
the infl ated cortical source. Note that only 
the auditory areas in the rectangular region 
over the STG are shown for the fMRI, 
MNE, and dSPM panels. Next, the fMRI 
data and the MNE results are combined into 
a spatiotemporal movie, or dSPM. With this 
pilot data from a normal control, some 
activity of the mismatch response is seen at 
93ms, which peaks at approximately 103ms, 
and is diminished by 113ms
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17.5.2 Motor Mapping

As noted above, many functional imaging techniques, 
such as fMRI and PET, can accurately identify the cen-
tral sulcus (Bittar et al. 1999). However, isolating pure 
motor activity with fMRI is diffi cult due to inevitable 
activation of the adjacent somatosensory cortex or 
other components of the motor system. MEG, how-
ever, can be used to isolate pure motor activity. In prac-
tice, it requires precise timing of the onset of motor 
movement in order to produce an averaged evoked 
fi eld. This can be achieved by a self-paced button 
press, or by the use of a trigger, a photo-optic switch. 
Activity that peaks between 20 and 50 ms before the 
onset of movement refl ects activity in the primary 
motor cortex (Lewine and Orrison 1995).

Alternatively, the motor cortex can be mapped by 
performing a coherence analysis of the activity over 
the motor cortex with the electromyogram (EMG) 
waveform, as suggested by Makela et al (Makela et al. 
2001). By placing bipolar electrodes over the fi rst 
interosseous muscle, and instructing the patient to 
press the thumb against the index fi nger, the coherence 
of the MEG–EMG yields a spectrum with a peak near 
20 Hz, most concentrated in the MEG sensors over 
the motor cortex. This coherence calculation isolates 
the primary motor cortex response from the rest of the 
motor system (Makela et al. 2001). MEG can be com-
bined with neuronavigational systems in the neurosur-
gical suite to guide neurosurgeons of motor cortex 
(Ganslandt et al. 1999; Rezai et al. 1996, 1997). More 
recently, MEG has been reported to be useful in identi-
fying the entire neural network, activated during the 
planning and the act of motor movement, including 
 supplementary cortex (Erdler et al. 2000, 2001) and 
premotor  cortex (Gross et al. 2000, 2001).

17.5.3 Auditory Cortex

It is possible to localize the middle (50–200 ms) and 
late components (>400 ms) of the auditory response 
with MEG. Localization of the primary auditory cortex 
can be used as surgical reference, especially when 
using a neuronavigational system (Jannin et al. 2000, 
2002). More importantly, the later components of the 
auditory evoked response can be used to map higher 
level functioning such as language processing. The 

N1 m peak is the largest and most robust, displaying a 
strong dipolar response, which localizes to the poste-
rior superior temporal gyrus in or near the primary 
auditory cortex (See Fig 17.1). The auditory cortex has 
multiple tonotopic maps, and some report the ability to 
use the neuromagnetic response from a series of tone 
pips at various frequencies (i.e., 100 Hz, 200 Hz, 
500 Hz, 1 kHz, 5 kHz) to defi ne a dominant tonotopic 
organization (Pantev et al. 1995).

17.5.4 Visual Cortex

In patients with tumors lying near visual eloquent areas, 
mapping of the visual cortex is possible. The primary 
visual cortex can be mapped by a simple ECD of the 
fi rst visual evoked peak from a strong visual stimulus, 
such as a checkerboard fl ash. Mapping of the visual 
areas is theoretically diffi cult with ECD mapping due to 
synchronously active sources. In practice, however, it 
does yield valid results (Hatanaka et al. 1997; Nakasato 
et al. 1996; Nakasato and Yoshimoto 2000). Mapping 
of the magnetic equivalent of visual evoked potentials 
N75, P100, and N145 components is robust with large 
visual stimuli with phase reversal techniques, and can 
be performed to detect visual fi eld defi cits (Hatanaka 
et al. 1997; Nakasato et al. 1996; Nakasato and 
Yoshimoto 2000). During a visual language task, it is 
often possible to fi t ECDs to dipole locations, so that it 
does not necessarily have to be a separate stimulation 
which can save time during the MEG measurement.

17.5.5 Language Mapping

In patients with brain tumors in the perisylvian region, 
as well as in patients with epilepsy, lateralization, and 
localization of language processing are critical. Although 
fMRI has become standard at some institutions, the 
intracarotid injection of amobarbital, known as the 
Wada test, is still considered the gold standard for a 
presurgical determination of hemispheric dominance. 
Still, the Wada test has been criticized because of 
potential cross-fl ow to the contra-lateral hemisphere, 
and the lack of testing of territory supplied by the pos-
terior circulation. There are several reports of MEG 
being used in determining both hemispheric dominance 
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for language, as well as regional language mapping of 
individual language areas (Breier et al. 1999a, b; 
Castillo et al. 2001; Floel 2001; Simos et al. 1999a, b, 
2001; Szymanski et al. 1999, 2001). MEG of language 
areas holds the promise of providing a noninvasive 
method of mapping language areas, with the goal of 
prolonging survival and making possible more exten-
sive resections of brain tumors, yet preserving language 
function, in order to increase the survival. Such a test 
could reduce the need for invasive Wada tests and 
 stimulation-based intraoperative mapping techniques.

17.5.5.1 Functional Language Paradigms

Determining hemispheric dominance or regional lan-
guage processing in a brain tumor patient requires 
choosing the task that best activates the desired stream 
of language processing. Specifi c language processes 
include phonological, lexical, and syntactic process-
ing. In addition, memory storage and retrieval occurs 
concurrently. Supporting processes include attention, 
motor planning (speech), and basic visual or auditory 
processing. Semantic decision tasks are probably the 
most popular as they require a response from the 
patient, such as a forced binary decision, allowing one 
to monitor the quality of the patient’s responses. 
Otherwise, covert responses are desirable, as overt 
(spoken) responses can lead to unacceptable motion 
artifacts. Still, some passive sensory paradigms requir-
ing no patient response have been reported in the lit-
erature, to be successful (see below).

17.5.5.2 Hemispheric Dominance for Language

Determination of the language dominant hemisphere 
is critical in the presurgical work-up of tumors near 
language processing areas. There are several reports of 
using MEG to determine hemispheric dominance of 
language. The most commonly reported methods fall 
into two broad categories: (1) Sequential equivalent 
current dipole mapping and (2) Distributed solutions.

Wada and Rasmussen determined that over 93% of 
patients are left language dominant, and that over 96% 
of right-handed patients are so, as well, although more 
recent studies indicate that many patients have more 
bilateral representation of language than the original 
studies (Beisteiner et al. 1995). In left-handed patients, 

only about 70% demonstrate left hemispheric domi-
nance for language, with about 15% of patients dem-
onstrating bilateral language lateralization.

Recently, sequential dipole fi tting has been proposed 
to determine language dominance. First proposed by 
Papanicolaou (Papanicolaou et al. 1999), statistical cri-
teria based on the ECD are used for fi ltering a sequen-
tial equivalent current dipole fi t. The stimuli may consist 
of auditory and/or visual words. The results concur 
with Wada test results (Breier et al. 1999a) and electri-
cal stimulation mapping (Panagiotis 1999). Szymanski 
et al. (Szymanski et al. 2001) reported using simple 
phonetic stimuli, such as the vowel sounds /a/ and /u/, 
for determining the language hemispheric dominance 
by summing the number of selective dipoles in the late 
auditory magnetic fi eld on each hemisphere, and calcu-
lating a lateralization index. Multiple groups report a 
strong correlation with both intraoperative mapping 
techniques and the results of the Wada test (Simos et al. 
1999a; Szymanski et al. 2001).

It also been reported that MEG fi nds the posterior 
language areas, in and around Wernicke’s area, and is 
less sensitive for the anterior frontal areas, in and 
around Boca’s area. Kober et al. (2001b) propose using 
a spatial fi lter, continuous localization by spatial fi lter-
ing (CLSF), to determine language hemispheric domi-
nance which can image simultaneously active sources. 
CLSF requires parcellating the brain into approxi-
mately 6,000 “voxels” and calculating the current pro-
duced in each “voxel.”

17.5.5.3  Spatiotemporal Regional 
Language Mapping

MEG can localize, with a high temporal resolution, both 
receptive (auditory and visual) and productive brain 
areas, either alone or in combination with fMRI. There 
are number studies of the language system activation 
under a variety of passive and task-activated language 
paradigms, usually done for the purposes of understand-
ing how the brain processes language. This has led to a 
revolution in mapping brain function and understanding 
how the brain processes information. However, the prac-
tical needs for the presurgical workup of brain tumor 
patients and the needs of basic neuroscience are funda-
mentally different in several respects. First, the neuro-
surgical application requires precise localization in the 
individual patient, while the neuroscientist can average 
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the response over several subjects in order to increase 
the signal-to-noise ratio of small activations. Second, 
the neurosurgeon usually requires mapping the essential 
language areas, not just the participating areas. Essential 
language areas are those that, when removed, result in a 
language defi cit. Participating areas are activated dur-
ing language paradigms, but do not result in a postop-
erative language defi cit after resection, either because 
there are areas of redundant processing, or because other 
areas learn to take over the same function. Currently, 
there is no way to distinguish essential areas from par-
ticipating areas with noninvasive imaging, and this is a 
major goal of clinical functional imaging. Combining 
the fMRI, DTI tractography, and MEG source analysis 
can be used to guide neurosurgery (See Figure 2).

By simply applying a source localization procedure, 
the same techniques described for determining hemi-
spheric dominance can be used for regional language 
mapping. The mapping of ECDs of the late auditory 
evoked fi elds can be used for both posterior temporal 
and frontal operculum mapping (Papanicolaou et al. 
1999; Breier et al. 2001). Temporal maps of activation 
have similar profi les as determined by invasive electro-
corticography (ECoG). The latency of Wernicke’s area 
is typically between 210 and 420 ms, and Broca’s area 
between 400–1,100 ms, depending on the individual 
subject and the particular language paradigm. Generally, 
the peak activation of Wernicke’s area precedes Broca’s 
area, although occasionally, other temporal profi les 
have been reported (Kober et al. 2001b).

17.6  Spontaneous Activity: Epileptic 
Spike Localization

Localization of seizure activity can be performed both 
within the context of a low-grade brain tumor or as part 
of the workup of surgical epilepsy. Although interictal 
activity is most easily captured with MEG, ictal activ-
ity is also being detected and localized with whole head 
MEG systems – particularly if the instrument is located 
in a hospital where antiepileptic medicines can be 
tapered and stopped. The most effective workup of epi-
lepsy with MEG is with a whole-head system and is 
usually performed with simultaneously recorded EEG. 
A standard EEG electrode array, which has no mag-
netic material, is convenient and provides a way of pro-
ducing a standard EEG classifi cation of ictal or interictal 

activity. Higher density caps are also available if EEG 
source localization is contemplated.

17.7  MEG and fMRI: What’s 
the difference?

The precise relationship between the evoked neuro-
magnetic response and the BOLD signal are complex, 
and incompletely understood. One might, for example, 
assume that increased signal in MEG or EEG would be 
positively correlated with an increase in fMRI BOLD, 
but this is not always the case. This phenomenon is 
partly due to the fact that electromagnetic response is a 
weighted sum of the postsynaptic potentials in the 
brain occurring on a millisecond scale, and the BOLD 
signal is a hemodynamic response resulting from a 
convolution over several seconds of the temporal mean 
of cortical activity. fMRI appears to be related to 
changes in the neural fi ring rate, which also decreases 
with increased inhibition.

fMRI easily and conveniently detects multiple areas 
activated during a particular sensory or motor task. For 
example, during motor activation, the supplementary 
and premotor areas are activated in addition to the pri-
mary motor cortex. MEG also detects premotor activ-
ity but the detected signal from the supplementary 
motor is weaker. Therefore, fMRI can image activity 
in some regions that are problematic with MEG. MEG 
can, however, detect the activity exclusively from the 
primary motor cortex with the use of EMG–MEG 
coherence, as described above. BOLD activity is not 
subject to spatial cancellation effects as surface MEG 
and EEG are (Ahlfors and Simpson 2004). Another 
advantage of fMRI over MEG is that it does not require 
increasingly sophisticated models to solve the inverse 
problem (Hämäläinen and Hari 2002).

A disadvantage of fMRI is that, especially at lower 
fi eld strengths (3.0 T and below), signifi cant activity 
detection is due to large draining veins, which can be 
at some distance from the cortical sites, leading to con-
fusion in the localization of central sulcus (Ugurbil 
et al. 2003). MEG is useful in cases of a compromise 
to the hemodynamic compensatory mechanisms, such 
as arteriovenous malformations and, importantly, 
tumors (Roberts et al. 2000). This is especially true if 
the functional cortex is located within the radiologi-
cally defi ned extent of the tumor, such as those of a 
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slow-growing, low-grade nature. This has been empha-
sized in a study by Inoue et al. (1999) who found two 
examples where the tumor and edema mass effect led 
to the disruption of normal hemodynamic response 
that caused an incorrect localization. Holodny et al. 
(1999, 2000) found decreased BOLD activation of the 
motor and somatosensory cortices adjacent to brain 
tumors, despite normal neurological function. Thus, 
abnormal vascular supply may decrease the hemody-
namic response measured by fMRI. MEG, on the other 
hand, is a direct measure of neural activity and is 
immune to the constraints imposed by the vascular 
system (Roberts et al. 2000).

17.8 Conclusion

MEG/EEG and fMRI have excellent temporal and spa-
tial resolution. Clinically, they can be used together to 
accurately map eloquent cortex and epileptic cortex in 
both healthy and diseased populations.
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