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Preface
In the decade or so since Elements of Modern X-ray Physics first appeared there has continued to be

astonishing progress in the development of X-ray sources and the understanding of how to exploit

them. This fact, taken together with the kind and generous comments we received in response to the

first edition, has encouraged us to produce a second edition.

The second edition differs from the first in several key regards:

• An entirely new chapter on X-ray imaging has been included.

• The chapter dealing with kinematical diffraction has been divided into two separate chapters,

which deal with non-crystalline and crystalline materials, respectively. This change has allowed

us to include new material on the use of X-rays in the determination of the structure of liquids,

glasses, and most importantly polymers and biomolecules.

• We have made many adjustments to various sections in the book with a view to improving the

overall exposition.

• Small typographical errors have been corrected.

• Exercises have been included at the ends of all chapters except the first.

In preparing the second edition we have enjoyed the support and encouragement of many of our

colleagues and friends without which our task would have been impossible. We would like to extend

our deep gratitude to everyone who has contributed, most especially David Attwood, Martin Bech,

Christian David, Martin Dierolf, Paul Emma, Kenneth Evans-Lutterodt, Per Hedegård, Mikael Häg-

gström, John Hill, Moritz Hoesch, Torben Jensen, James Keeler, Ken Kelton, Carolyn Larabell, Bruno

Lengeler, Anders Madsen, David Moncton, Theyencheri Narayan, Franz Pfeiffer, Harald Reichert, Ian

Robinson, Jan Rogers, Joachim Stöhr, Joan Vila-Comamala, Simon Ward, and Tim Weitkamp.

Work on the second edition was initiated in Provence, France, during the summer of 2008 thanks to the

generous support of the Ib Henriksen Foundation.

The front cover was designed by Marusa Design from an image kindly provided by Michael Wulff.

This book is dedicated to our respective families.

Jens Als-Nielsen and Des McMorrow

London, November 2010



vi

Preface to the first edition
The construction of the first dedicated X-ray beamlines at synchrotron sources in the late 1970s heralded

the start of a new era in X-ray science. In the intervening years tremendous progress has been made,

both with respect to improvements to the sources, and with our knowledge of how to exploit them.

Today’s third-generation sources deliver extremely bright beams of radiation over the entire X-ray band

(c. 1–500 keV), and with properties such as polarization, energy resolution, etc., that can be tailored

to meet almost any requirement. These improvements have driven a surge of activity in X-ray science,

and phenomena over a diverse range of disciplines can now be studied with X-rays that were undreamt

of before the advent of synchrotron sources.

In light of these developments we believed that it was timely to produce a textbook at an introductory

level. Our intention is to offer a coherent overview, which covers the basic physical principles underly-

ing the production of X-rays, their interaction with matter, and also to explain how these properties are

used in a range of applications. The main target audience for this book are final year undergraduates,

and first year research students. Although the book has been written from the perspective of two

physicists, we hope that it will be useful to the wider community of biologists, chemists, material

scientists, etc., who work at synchrotron radiation facilities around the world. The main challenge

in writing for a wider audience has been to convey the physical concepts without obscuring them in

too much mathematical rigour. Therefore, many of the more difficult mathematical manipulations and

theorems are explained in shaded boxes that may be studied separately. In addition appendices covering

some of the required introductory physics have been included.

It is also our hope that this book will have appeal to more experienced research workers. Synchrotron

radiation facilities are large laboratories where many different groups work on disparate areas of sci-

ence. Cross fertilization of ideas is often the driving force of scientific progress. In order that these

different groups, often working on neighbouring beamlines, can communicate their ideas, a common

background is required. It is our intention that this book should provide at least some of this background

knowledge. In addition, many X-ray techniques are becoming viewed as standard analytical tools, and

it is no longer necessary to understand every aspect of the design of an instrument in order to be able

to perform experiments. While this is undoubtedly a positive development, it can also be argued that a

greater knowledge of the underlying principles not only adds to the overall feeling of satisfaction, but

also allows better experiments to be designed.

This book has emerged from a lecture course that has been running for several years at the University of

Copenhagen. The material covered in this book is taught in one semester, and is augmented by practical

lessons both in an X-ray laboratory at the university, and also during a week long trip to the HASYLAB

synchrotron facility. The list of subjects covered in this book inevitably reflects to some degree our own

areas of specialization. There is, for example, very little on the vast and important subject of imaging.

It was also decided at an early stage not to focus on subjects, such as classical crystallography, that we

felt were well described in other texts. In spite of these shortcomings we hope that the reader, whatever

his or her background, will learn something by studying this book, and be inspired to think of new ways

to exploit the great opportunities that the development of synchrotron radiation offers.

Jens Als-Nielsen and Des McMorrow

Copenhagen, September 2000
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Notes on the use of this book
The material in this book follows a more or less linear development. The scene is set in the first chapter,

where the predominant mechanisms for the interaction of X-rays and matter are described. Many of the

important concepts and results are introduced in this chapter, and forward references are made to the

remaining chapters where these concepts are discussed more fully and the results derived. An attempt

has been made to reduce to a minimum the level of mathematical skill required to follow the arguments.

This has been done by placing most of the more taxing manipulations and theorems in shaded boxes,

or in one of the appendices.

Computers are of course now an indispensable tool for helping to visualize mathematical and physical

concepts. For this reason we have chosen to include a listing in the last appendix of some of the

computer programmes that were used to generate the figures in this book. The hope is that this will

ease the process of turning mathematical formulae into computer algorithms, and also aid the design of

more complex programmes required for the analysis of data, etc. The programmes have been written

using the MATLAB� programming environment, although the way that they are derived from the

mathematics is transparent enough that they can easily be converted to other languages. Figures for

which programme listings are given are indicated by a star, �.
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1
X-rays and their interaction with matter

X-rays were discovered by Wilhelm Conrad Röntgen in 1895. Since that time they have become

established as an invaluable probe of the structure of matter. The range of materials for which X-rays

have proved to be decisive in unravelling the structure is truly staggering. These include at one limit

of complexity simple compounds, through to more complex and celebrated examples, such as DNA.

In more recent times the structure of proteins, and even functional units of living organisms, can be

solved on a regular basis. Progress in both our theoretical understanding of the interaction of X-rays

with matter, and in our knowledge of how to exploit them experimentally, was steady from the period

covering their discovery through to the mid 1970s. The main limitation in this period was the source,

which had remained essentially unchanged from about 1912. In the 1970s it was realized that the

synchrotron radiation emitted from charged particles circulating in storage rings constructed for high

energy nuclear physics experiments was potentially a much more intense and versatile source of X-rays.

Indeed synchrotrons have proven to be such vastly better sources that many storage rings have been

constructed around the world dedicated solely to the production of X-rays.

This has culminated to date in the so-called third-generation synchrotron sources, which are more

brilliant than the early lab-based sources by a factor of approximately 1012, as indicated in Fig. 1.1.

With the advent of synchrotron sources the pace of innovation in X-ray science increased markedly

(though perhaps not a trillion fold!), and today shows no signs of slowing. The first X-ray free-electron

lasers have recently come into service, and when they become fully operational further important

breakthroughs will undoubtedly follow. In Chapter 2 we explain the basic physical principles of X-ray

sources and outline their salient properties.

In Fig. 1.2 we show a schematic of the key components of a typical experimental beamline at

a third-generation source. The details will of course vary considerably depending on the particular

requirements, but many of the components shown will be found in one form or another on most

beamlines. First there is the source itself. In this case the electrons do not follow a purely circular orbit

in the storage ring, but traverse through straight sections where lattices of magnets, so-called undulator

insertion devices, force them to execute small-amplitude oscillations. At each oscillation X-rays are

emitted and, if the amplitude of the oscillations is small, then the different contributions from the

passage of a single electron add coherently, and a very intense beam of X-rays results. The second key

component is the monochromator, as in many applications it is required to work at a particular average

wavelength. It may also be desirable to choose the wavelength bandwidth, and monochromators made

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Fig. 1.1 The brilliance of X-ray sources as a function of time. Source brilliance is defined and discussed in Chapter 2, along with

the principles underlying the production of X-rays from synchrotrons and free-electron lasers. For free-electron laser sources we

plot the average brilliance. Due to the extremely short X-ray pulse length from a free-electron laser − of order 100 fs − the peak

brilliance exceeds the average brilliance by a large factor.

from perfect crystals through to multilayers allow for a considerable variation in this parameter. Thirdly,

if working with small samples it may be desirable to focus the monochromatic beam down to as small a

size as achievable. This is accomplished by devices such as X-ray mirrors and refractive Fresnel lenses.

Finally, X-rays are delivered to the sample itself on which the experiment is performed.

One of the main goals of this book is to explain the physical principles underlying the operation of

the key components shown in Fig. 1.2. As a first step it is necessary to understand some of the basic

aspects of the interaction of X-rays with matter.

1.1 X-rays: waves and photons

X-rays are electromagnetic waves with wavelengths in the region of an Ångström (10−10m). In many

cases one is interested in a monochromatic beam of X-rays as depicted in Fig. 1.3. The direction of

the beam is taken to be along the z-axis, perpendicular to the electric, E, and magnetic, H, fields. For

simplicity, we shall start by considering the electric field only and neglect the magnetic field. The top

part of Fig. 1.3 shows the spatial dependence of the electromagnetic field at a given instance of time. It

is characterized by the wavelength λ, or equivalently the wavenumber k = 2π/λ. Mathematically the

electric field amplitude is expressed as a sine wave, either in its real form, E
0

sin(kz), or in its more

compact complex form, E0ei kz.

The lower part of Fig. 1.3 is an alternative illustration of the monochromatic plane wave. Only the

wave crests are shown (full lines perpendicular to the z-axis), emphasizing that it is a plane wave with
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Fig. 1.2 A schematic of a typical X-ray beamline at a third generation X-ray source. Bunches of charged particles (electrons

or positrons) circulate in a storage ring (typical diameter around 300 m). The ring is designed with straight sections, where an

insertion device, such as undulator, is placed. The lattice of magnets in an insertion device forces the particles to execute small

oscillations which produce intense beams of radiation. This radiation then passes through a number of optical elements, such as

a monochromator, focusing device, etc., so that a beam of radiation with the desired properties is delivered to the sample. Typical

distances are indicated.

an electric field that is constant anywhere in a plane perpendicular to the z-axis. Although a beam is

never ideally collimated, the approximation of a plane wave is often valid. The spatial and temporal

variation of a plane wave propagating along the z-axis can be encompassed in one simple expression,

E
0

ei (kz−ωt). More generally in three dimensions the polarization of the electric field is written as a unit

vector ε̂, and the wavevector along the direction of propagation as k, so that

E(r, t) = ε̂E0 ei(k·r−ωt)

Since electromagnetic waves are transverse we have ε̂ · k=0, and k · E= k ·H=0 as shown in Fig. 1.4.

This is the classical description of a linearly polarized, electromagnetic plane wave. From a

quantum mechanical perspective, a monochromatic beam is viewed as being quantized into photons,

each having an energy �ω and momentum �k. The intensity of a beam is then given by the number of

photons passing through a given area per unit time. As the intensity is also proportional to the square of

the electric field, it follows that the magnitude of the field is quantized. Instead of quantizing the E and

H fields separately, it turns out to be more convenient to work with the vector potential A, since both E
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Fig. 1.3 Three representations of an electromagnetic plane wave. Only the electric field E is shown. Top: spatial variation,

described by the wavelength λ or the wavenumber k, at a given instant in time. Middle: temporal variation, described by the
period T or the cyclic frequency ω, at a given point in space. Bottom: Top view of a plane wave with the wave crests indicated

by the heavy lines, and the direction of propagation by the arrows. The shading indicates the spatial variation of the amplitude of

the field.

E

H
k

��

Fig. 1.4 An X-ray is a transverse electromagnetic wave, where the electric and magnetic fields, E and H, are perpendicular to
each other and to the direction of propagation k. The direction of the electric field is given by the polarization unit vector ε̂.

and H can be derived from A. In Appendix C it is explained how the vector potential is quantized, and

the explicit form of the quantum mechanical Hamiltonian of the electromagnetic field is given. In this

book we shall move freely between the classical and quantum descriptions, choosing whichever one

leads us to the quickest and clearest understanding of the problem at hand.
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The numerical relation1 between wavelength λ in Å and photon energy E in keV is

λ
[
Å

]
=

hc

E =
12.398

E [keV]
(1.1)

An X-ray photon interacts with an atom in one of two ways: it can be scattered or it can be absorbed,

and we shall discuss these processes in turn. When X-rays interact with a dense medium consisting of

a very large number of atoms or molecules it is sometimes more convenient to treat the material as

a continuum, with an interface to the surrounding vacuum (or air). At the interface the X-ray beam

is refracted and reflected, and this is an alternative way in which the interaction may be discussed.

The scattering and refraction descriptions are of course equivalent. In Chapter 3 we derive the X-ray

reflectivity equations, and exploit this equivalence to relate the reflectivity to the microscopic properties

of the medium of interest.

1.2 Scattering

To start with we shall consider the scattering of an X-ray by a single electron. In the classical description

of the scattering event the electric field of the incident X-ray exerts a force on the electronic charge,

which then accelerates and radiates the scattered wave. Classically, the wavelength of the scattered

wave is the same as that of the incident one, and the scattering is necessarily elastic. This is not true in

general in a quantum mechanical description, where the incident X-ray photon has a momentum of �k

and an energy of �ω. Energy may be transferred to the electron with the result that the scattered photon

has a lower frequency relative to that of the incident one. This inelastic scattering process is known as

the Compton effect, and is discussed at the end of this section. However, the elastic scattering of X-rays

is the main process that is exploited in investigations of the structure of materials, and in this case it

suffices to adopt what is essentially a classical approach.

One electron

The most elementary scattering object that we shall consider is a single, free electron. The ability of an

electron to scatter an X-ray is expressed in terms of a scattering length, which we shall now derive.

Figure 1.5 shows a schematic of a generic scattering experiment. The fundamental quantity

determined in such an experiment is the differential scattering cross-section (dσ/dΩ) which is defined

by (
dσ

dΩ

)
=

Isc

Φ0 ΔΩ
(1.2)

The strength of the incident beam is given by the flux, Φ0, which is simply the number of photons

passing through unit area per second. The incident beam interacts with the scattering object and is

scattered. The number of scattered photons recorded per second in a detector is Isc, where the detector

is positioned a distance R away from the object and subtends a solid angle ΔΩ. The differential cross-

section is thus a measure of the efficiency of the scattering process where details of the experiment,

1In this book we shall mostly limit the wavelength band to 0.1 − 2 Å corresponding to the energy band 120 − 6 keV. The

first limit, 0.1 Å or 120 keV, ensures that relativistic effects are negligible since the X-ray energy is considerably lower than the
rest mass of the electron, mc2= 511 keV. The second limit, 2 Å or 6 keV, is a practical limit ensuring that the X-rays have a

high penetration power through light materials, such as beryllium. In many X-ray tubes, and in synchrotron radiation beam lines,

the X-rays must be transmitted through a Be window, and above 6 keV the transmission of a 0.5 mm Be window exceeds 90%.

Lower energy X-rays are called soft X-rays and will not be dealt with in this book.
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Fig. 1.5 Schematic layout of a generic scattering experiment used to determine the differential cross-section (dσ/dΩ): see
Eq. (1.2). The incident beam flux Φ0 is the number of particles per second per unit area. For an electromagnetic wave this is

proportional to |Ein|2 times the velocity of light, c. The incident beam interacts with the target object to produce the scattered

beam. A detector records the scattered intensity, Isc, defined as the number of counts recorded per second, which is proportional

to |Erad |2 times the area of the detector and the velocity of light. The detector is located a distance R from the target object, and

subtends a solid angle of ΔΩ.

specifically the flux of the incident beam and size of the detector, have been normalized away. (See

Appendix A for a more complete discussion.)

For the particular case of the scattering of an electromagnetic wave indicated in Fig. 1.5 an

expression forΦ0 can be obtained in terms of the electric field Ein of the incident beam. Since the energy

density is proportional to |Ein|2, the number density of photons is proportional to |Ein|2 /�ω, while the

flux Φ0 is the number density multiplied by speed of light, c. (This follows from the realisation that

in one second a beam of area A sweeps out a volume equal to A c.) A similar argument applies to

the intensity Isc of the scattered beam. In this case the number density is proportional to the modulus

squared of the radiated electric field, |Erad |2. This quantity then must be multiplied by the area of

the detector, R2ΔΩ, and c to yield and expression for Isc. With these considerations, the differential

cross-section is given by (
dσ

dΩ

)
=
|Erad |2R2

|E
in
|2 (1.3)

In a classical description of the scattering process an electron will be forced to vibrate when placed

in the electric field of an incident X-ray beam, as illustrated in Fig. 1.6(a). A vibrating electron acts

as a source, and radiates a spherical wave Erad ∝ ε̂′ eikR/R. The problem then is to evaluate the

radiated field at an observation point X. This calculation is performed in Appendix B starting from
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Fig. 1.6 The classical description of the scattering of an X-ray by an electron. (a) The electric field of an incident plane wave

sets an electron in oscillation which then radiates a spherical wave. (For clarity the radiated wave is shown for positive values of

y only, and for the simplest case of an isotropic spherical wave the phase and amplitude are constant on spherical surfaces.) The

incident wave propagates along the z axis and has its electric field polarized along x. The wave crests of the incident wave lie
in between those of the scattered spherical wave because of the 180◦ phase shift in Thomson scattering. In the text the radiated

field at an observation point X is calculated. Point X lies in the plane spanned by the polarization vector and the propagation

direction of the incident wave, and the observed acceleration has to be multiplied by a factor of sinΨ. (b) From geometry,

sinΨ = −ε̂ · ε̂′ where ε̂ (ε̂′) represents the polarization of the incident (scattered) beam. The effect of this factor on the radiated

wave is illustrated by plotting surfaces of constant amplitude.
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Maxwell’s equations. Here, an heuristic argument is outlined. Initially we consider the situation where

the observation point X lies in the plane spanned by the polarization vector and the propagation direction

of the incident wave, and at an angle 90◦ −Ψ with respect to the direction of propagation of the incident

beam (Fig. 1.6(a)).

The radiated field is proportional to the charge of the electron, −e, and to the acceleration, a
X

(t′),
evaluated at a time t′ earlier than the observation time t due to finite speed c at which the radiation

propagates. The radiated field is thus expected to be of the form

Erad(R, t) ∝ −e

R
aX(t′) sinΨ (1.4)

where t′ = t − R/c. The total energy flow through a spherical shell of radius R is the energy density,

proportional to
∣∣∣E

rad

∣∣∣2, multiplied by the surface area, proportional to R2, so with
∣∣∣E

rad

∣∣∣ ∝ R−1 the total

energy flow becomes independent of R, as it must2. A further factor of sinΨ has been included to allow

for the variation of the acceleration with observation angle. For an observer at point X in the x−z plane,

the acceleration observed is zero for Ψ = 0◦, and a maximum for Ψ = 90◦. Therefore, the acceleration

observed is the full acceleration multiplied by sinΨ.

To proceed we evaluate the full acceleration from the force on the electron divided by its mass,

which yields

aX(t′) =
−e E

0
e−iωt′

m
=
−e

m
Ein eiω(R/c)

=
−e

m
Ein eikR

where E
in
= E

0
e−iωt is the electric field of the incident wave. Hence Eq. (1.4) can be rearranged to read

E
rad

(R, t)

E
in

∝
(

e2

m

)
eikR

R
sinΨ (1.5)

For an observation point at an arbitrary angle with respect to the polarization of the incident beam,

the factor of sinΨ must be reevaluated. If ε̂ is the polarization of the incident field, and ε̂′ that of the

radiated field, then from Fig. 1.5(b), ε̂ · ε̂′ = cos(90◦ + Ψ) = − sin(Ψ). The advantage of writing the

trigonometric factor for the apparent acceleration in this way is that it is valid for all possible angles

of observation. This is ensured by the azimuthal symmetry evident in Fig. 1.6(b) of the radiated field

around the x axis.

To complete the derivation of the differential cross-section it is necessary to check whether we have

the correct units. Clearly, the ratio of electric fields given in Eq. (1.5) is dimensionless. This requires

that whatever the factor is multiplying the spherical wave form eikR/R, it must have units of length. The

appropriate length can be found by noting that in SI units the Coulomb energy at distance r from a point

charge −e is e2/(4πε0r), while dimensionally the energy is also of the form mc2. Thus equating these

two expressions for energy and rearranging provides an expression for the fundamental length scale in

the problem, namely

r0 =

(
e2

4πε
0
mc2

)
= 2.82 × 10−5 Å (1.6)

This is referred to as the Thomson scattering length, or classical radius, of the electron. While these

arguments fix the magnitude of the scattering length, they do not fix its phase. As shown in Appendix

2Equation (1.4) represents the electric field radiated by an oscillating dipole in the far-field limit.
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B, the scattering amplitude from a single electron is in fact equal to −r0

∣∣∣ε̂ · ε̂′∣∣∣. Physically, the factor

of −1 represents the fact that there is a 180◦ phase shift between the incident and scattered waves. This

phase shift also has consequences for the refractive index n which in the X-ray region is less than unity,

as discussed in Section 1.4 and Chapter 3.

The ratio of radiated to incident electric fields is therefore

E
rad

(R, t)

E
in

= −r0
eikR

R

∣∣∣ε̂ · ε̂′∣∣∣ (1.7)

and from Eq. (1.3) the differential cross-section becomes

(
dσ

dΩ

)
= r2

0

∣∣∣ε̂ · ε̂′∣∣∣2 (1.8)

This equation describes the Thomson differential scattering cross-section of an electromagnetic wave

by a free electron.

The factor of
∣∣∣ε̂ · ε̂′∣∣∣2 has important implications for the choice of optimal geometry for different

types of X-ray experiments. For example, synchrotron sources naturally produce X-rays which are

linearly polarized in the horizontal plane of the synchrotron. It follows that scattering experiments are

best performed in a vertical scattering plane as then
∣∣∣ε̂ · ε̂′∣∣∣2 = 1 independent of the scattering angle,

ψ = 90◦−Ψ. Conversely, if one wants to study fluorescence from a sample, then it is possible to suppress

the scattering by working in the horizontal plane at ψ = 90◦ since
∣∣∣ε̂ · ε̂′∣∣∣2 = 0. These considerations

lead us to define P, the polarization factor for scattering, which depends on the X-ray source:

P =
∣∣∣ε̂ · ε̂′∣∣∣2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 synchrotron: vertical scattering plane

cos2 ψ synchrotron: horizontal scattering plane

1
2

(
1 + cos2 ψ

)
unpolarized source

(1.9)

The total cross-section for Thomson scattering is found by integrating the differential cross-section

over all possible scattering angles. Exploiting the rotational symmetry of the radiated field around ε̂,

it can be shown that the average value of <
(
ε̂ · ε̂′)2

> over the unit sphere is (2/3). Thus the total

cross-section σ
T

is equal to 4πr2
0
× (2/3) = 8πr2

0
/3 = 0.665×10−24 cm2 =0.665 barn. It is evident that

the classical cross-section, both the differential and total, for the scattering of an electromagnetic wave

by a free electron is a constant, independent of energy. This result is particularly relevant to the X-ray

part of the electromagnetic spectrum, as here a photon is energetic enough that even atomic electrons

respond to a good approximation as if they are free. Where it breaks down entirely is at low energies in

the optical part of the spectrum, or when the energy of photon passes a threshold for resonantly exciting

electrons from deeply bound atomic states, as outlined later in this section. In Chapter 8 we discuss the

origin and consequences of such resonant scattering processes.

Finally in this section we note that the classical derivation of the scattering of a photon by a free

electron given here yields the same result as the full quantum mechanical derivation given in Appendix

C.
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(a) One atom

(b) One molecule

(c) A crystal

k

r

k´

k

Q=k-k´

d

k´

Rn

� � � �
�
� �

Fig. 1.7 (a) Scattering from an atom. An X-ray with a wavevector k scatters from an atom to the direction specified by k′. The

scattering is assumed to be elastic, i.e. |k| = |k′ | = 2π/λ. The difference in phase between a wave scattered at the origin and

one at a position r is (k − k′) · r = Q · r. This defines the wavevector transfer Q. (b) The scattering from a molecule. Here the
scattering triangle is shown which relates k, k′ and Q. (c) Scattering from a molecular crystal. The molecules are organized on

a lattice with position vectors Rn, and a lattice plane spacing of d.
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One atom

Let us now proceed from the scattering by a single electron to consider the elastic scattering from an

atom with Z electrons.

To start with a purely classical description will be used, so that the electron distribution is specified

by a number density, ρ(r). The scattered radiation field is a superposition of contributions from different

volume elements of this charge distribution. In order to evaluate this superposition one must keep track

of the phase of the incident wave as it interacts with the volume element at the origin and the one at

position r, as shown in Fig. 1.7(a). The phase difference between two successive crests is 2π. The

phase difference between the two volume elements is 2π multiplied by the ratio of r, projected onto

the incident direction, and the wavelength. This is nothing other than the scalar product of the two

vectors k and r. The simplicity of this expression is one of the reasons why it is so convenient to use

the wavevector k to describe the incident wave. In the vicinity of the observation point X in Fig. 1.6,

the scattered wave is locally like a plane wave with wavevector k′. The phase difference, between the

scattered wave from a volume element around the origin and one around r is −k′ · r. The resulting

phase difference is thus

Δφ(r) = (k − k′) · r = Q · r
where

Q = k − k′ (1.10)

Q = k − k′ is known as the wavevector transfer or scattering vector. The scattering events depicted

in Fig. 1.7 are elastic, with |k|= |k′|, so that from the scattering triangle we have |Q| = 2|k| sin θ =

(4π/λ) sin θ. As we shall see, Q is the natural variable to describe elastic scattering processes and is

usually expressed in units of Å−1.

Thus a volume element dr at r will contribute an amount −r0ρ(r)dr to the scattered field with a

phase factor of eiQ·r. The total scattering length of the atom is

−r0 f 0(Q) = −r0

∫
ρ(r) eiQ·r dr (1.11)

where f 0(Q) is known as the atomic form factor. In the limit that Q → 0 all of the different volume

elements scatter in phase so that f 0(Q = 0) = Z, the number of electrons in the atom. As Q increases

from zero the different volume elements start to scatter out of phase and consequently f 0(Q → ∞) = 0.

The right hand side of Eq. (1.11) is recognizable as a Fourier transform. Indeed one of the recurrent

themes of this book is that the scattering length may be calculated from the Fourier transform of the

distribution of electrons in the sample3. It should be clear that to calculate the scattered intensity we

have to evaluate Eq. (1.11) and multiply by its complex conjugate (see Eq. (1.2) and accompanying

discussion).

Atomic electrons are of course governed by quantum mechanics, and have discrete energy levels.

The most tightly bound electrons are those in the K shell, which have energies comparable to those of

a typical X-ray photon. If the X-ray photon has an energy much less than the binding energy of the K

shell, the response of these electrons to an external driving field is reduced by virtue of the fact that

they are bound. Electrons in shells that are less tightly bound (L, M, etc.) will be able to respond to the

3The reader is reminded of the definition and properties of Fourier transforms in Appendix E.
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Fig. 1.8 The calculated frequency dependence of (a) the total Thomson scattering cross-section, and the real (b) and imaginary

(c) parts of the refractive index, n, when including the dispersion corrections to the Thomson scattering (see Section 8.1). In

general, the X-ray part of the electromagnetic spectrum corresponds to the high-frequency (or energy) limit. In this limit, the
total scattering cross-section approaches that from a free electron, σ

T
= 8πr2

0
/3, and the real part of the refractive index is less

than one. It should be noted that important resonances, associated with the K, L and M absorption edges, occur in the X-ray part

of the spectrum as discussed in Chapters 7 and 8. For clarity the width of the resonance at �ω0 has been exaggerated.
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driving field more closely, but overall we expect that the scattering length of an atom to be reduced by

some amount, which is by convention denoted f ′. At energies much greater than the binding energy

the electrons can be treated as if they are free and f ′ is zero. For energies in between these limits f ′

displays resonant behaviour at energies corresponding to atomic absorption edges, which are discussed

in Section 1.3. In addition to altering the real part of the scattering length, we also expect that, by

analogy with a forced harmonic oscillator, the response of the electron to have a phase lag with respect

to the driving field. This is allowed for by including a term i f ′′, which represents the dissipation in the

system, and, as we shall see in Chapters 3 and 8, it is related to the absorption. Collecting these results

together means that the atomic form factor is

f (Q, �ω) = f 0(Q) + f ′(�ω) + i f ′′(�ω) (1.12)

where f ′ and f ′′ are known as the dispersion corrections4 to f 0. We have written f ′ and f ′′ as functions

of the X-ray energy �ω to emphasize that their behaviour is dominated by tightly bound inner-shell

electrons, and as a consequence cannot have any appreciable dependence on Q. As might be expected

from these introductory remarks, f ′ and f ′′ assume their extremal values when the X-ray energy is

equal to one of the absorption edge energies of the atom. This resonant behaviour is manifestly element

specific, and in Chapter 8 it is explained how it may be exploited to solve the structure of complex

materials.

In Fig. 1.8(a) we illustrate the effects of including the dispersion corrections in a calculation of

the total scattering cross-section (see Section 8.1). For frequencies much less than �ω0 the binding

of the electron drastically reduces the cross-section. When ω ≈ ω0 the cross section is significantly

enhanced. It is only at high frequencies that the electrons behave as if they are free and the value of

the total cross-section calculated for Thomson scattering is realised. Figure 1.8(b) shows the calculated

variation in the real part of the refractive index n as a function of photon energy. For �ω � �ω0 the

real part of the refractive index tends to a constant greater than unity, whereas above �ω0 it is less than

unity as is found to be true for X-rays. The consequences of the real part of n being less than unity for

X-rays are introduced in Section 1.4 and discussed further in Chapter 3. Figure 1.8 also serves to further

underline the fact that scattering and refraction of electromagnetic waves are essentially different views

of the same physical phenomenon.

One molecule

So far we have introduced the scattering length for an electron and subsequently for an atom composed

of electrons. The next step in complexity is naturally molecules composed of atoms (Fig. 1.7(b)). It is

obvious that just as the scattering length of an atom has a form factor, so will the scattering length of a

molecule. Labelling the different atoms in the molecule by index j we may write

Fmol(Q) =
∑

j

f j(Q) eiQ·r
j

where as before f j(Q) is the atomic form factor of the j’th atom in the molecule, and it must be

remembered to include the multiplicative factor of −r
0

if the intensity is required in absolute units.

If one can determine
∣∣∣Fmol(Q)

∣∣∣2 experimentally for sufficiently many values of scattering vector Q then

4These are also sometimes referred to as the anomalous dispersion corrections, but it is generally agreed that there is in fact

nothing anomalous about them. It should be noted that with our sign convention f ′′ is negative.
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one can (at least by trial and error) determine the positions r j of the atoms in the molecule. However,

the scattering length of a single molecule is not sufficient to produce a measurable signal, even in the

very intense X-ray beams produced by today’s synchrotron sources. For that bulk samples containing

many molecules are required, assembled either as non-crystalline or crystalline forms of matter. The

scattering from these distinct phases of matter are dealt with in Chapters 4 and 5, respectively. However,

it is expected that in the future, the spectacular increase in peak brilliance offered by free-electron

sources will permit the imaging of single molecules.

A crystal

The defining property of a crystalline material is that it is periodic in space5, as shown for a molecular

crystal in Fig. 1.7(c). In elementary treatments of the scattering of X-rays from a crystal lattice, Bragg’s

law

mλ = 2d sin θ

is derived, where m is an integer. This is the condition for the constructive interference of waves

which have an angle of incidence θ to a set of lattice planes a distance d apart. While this is a useful

construction, it does have its limitations, principal among which is that it does not enable us to calculate

the intensity of the scattering for which constructive interference occurs.

For that we need to build on what we have already developed and write down the scattering

amplitude of the crystal. To do so we note that a crystal structure may be specified in the following

way. First, a lattice of points is defined in space, which must reflect the symmetry of the crystal, and

then a choice of unit cell is made, in other words a choice is made over which atoms to associate with

each lattice site. If Rn are the lattice vectors that define the lattice, and r j the position of the atoms with

respect to any one particular lattice site, then the position of any atom in the crystal is given by Rn + r j.

It follows that the scattering amplitude for the crystal factorizes into the product of two terms, which

we write as

Fcrystal(Q) =

Unit cell structure factor︷��������������︸︸��������������︷∑
j

f j(Q)ei Q·r
j

Lattice sum︷������︸︸������︷∑
n

ei Q·Rn (1.13)

where the first term is the unit cell structure factor, the second term is a sum over lattice sites, and

where again we have neglected a leading factor of −r
0
. In applications, such as solid state physics it

is the structure of the material that is of interest in its own right. For many other applications, such as

in molecular and protein crystallography, the lattice is of no interest whatsoever, and assembling the

molecules on a lattice merely serves to amplify the signal.

All the terms in the lattice sum given in Eq. (1.13) are phase factors located on the unit circle in the

complex plane. The sum will therefore be of order unity unless the scattering vector happens to fulfill

Q · Rn = 2π × integer (1.14)

in which case it becomes of order N, the number of unit cells. The lattice vectors Rn are of the form

Rn = n1 a1 + n2 a2 + n3 a3

where (a1, a2, a3) are the basis vectors of the lattice and (n1, n2, n3) are integers. A unique solution to

Eq. (1.14) can be found by introducing the important concept of the reciprocal lattice. This new lattice

5See, however, Section 5.2 on quasicrystals.
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is spanned by the reciprocal lattice basis vectors which are defined by

a∗1 = 2π
a

2
× a

3

a
1
· (a

2
× a

3
)
, a∗2 = 2π

a
3
× a

1

a
1
· (a

2
× a

3
)
, a∗3 = 2π

a
1
× a

2

a
1
· (a

2
× a

3
)

so that any lattice site in the reciprocal lattice is given by

G = h a∗1 + k a∗2 + l a∗3

where (h, k, l) are all integers. We can see that the product of a lattice vector in the reciprocal (G) and

direct (Rn) spaces is

G · Rn = 2π(hn1 + kn2 + ln3) = 2π × integer

and hence the solution to Eq. (1.14) that we are seeking is to require that

Q = G

This proves that Fcrystal(Q) is non-vanishing if and only if Q coincides with a reciprocal lattice vector.

This is the Laue condition for the observation of diffraction from a crystalline lattice which may be

shown to be completely equivalent to Bragg’s law (Chapter 5, page 155).

Scattering from a crystal is therefore confined to distinct points in reciprocal space. The intensity

in each point is modulated by the absolute square of the unit cell structure factor. From a (large) set

of intensities from a given crystal it is possible to deduce the positions of the atoms in the unit cell.

These considerations may of course be generalized to crystals containing molecules. Indeed these

methods have had an enormous impact on our knowledge of molecular structure. More than 95% of all

molecular structures come from X-ray diffraction studies. Data sets from crystals of large molecules

such as proteins or even viruses encompass tens of thousands of reflections and sophisticated methods

have been developed to get from the measured intensities to the atomic positions in the molecule. In

Chapter 5 these concepts will be further developed, and the principles behind these methods will be

explained.

In this section it has been tacitly assumed that the interaction between the X-ray and crystal is weak,

since we have not allowed for the possibility that the scattered beam may be scattered a second or third

time before leaving the crystal. This assumption leads to considerable simplicity and is known as the

kinematical approximation. In Chapter 6 it is explained how this assumption breaks down when dealing

with macroscopic perfect crystals, where multiple scattering effects become important, and we are then

in what is known as the dynamical scattering limit.

Compton scattering by a free electron

The alternative to the classical description used so far in this section, is to view the incident X-ray as

a beam of photons. For simplicity assume that the electron is initially at rest and is free. In a collision

energy will be transferred from the photon to the electron, with the result that the scattered photon

has a lower energy than that of the incident one. This is the Compton effect. Historically this was of

considerable importance as it could not be explained using classical concepts, and thus gave further

support to the then emerging quantum theory. The energy loss of the photon is readily calculated by

considering the conservation of energy and momentum during the collision. The collision process is

sketched in Fig. 1.9, while the kinematics of the collision are worked through in the box on page 17.
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Fig. 1.9 Compton scattering. A photon with energy E = �ck and momentum �k scatters from an electron at rest with energy

mc2. The electron recoils with a momentum �q′= �(k− k′) as indicated in the scattering triangle in the bottom half of the figure.
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E
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E

Fig. 1.10 The ratio of the energy E′ of the scattered photon to the energy E of the incident one as function of scattering angle.

The curves have been calculated from Eq. (1.15) with λ
C

k =E/mc2=E[keV]/511.



1.2 Scattering 17

Kinematics of Compton scattering

Conservation of energy for the scattering of a photon by an electron

shown in Fig. 1.9 leads to

mc2 + �ck =

√
(mc2)2 + (�cq′)2 + �ck′

Dividing both sides by mc2, and using the definition of the Compton

wavelength, λC = �c/(mc2), leads to

1 + λC(k − k′) =

√
12 +

(
λCq′

)2

This can be rewritten to obtain an expression for q′2 by squaring both

sides and collecting terms to give

q′2 = (k − k′)2 + 2
(k − k′)

λC

Conservation of momentum (or equivalently wavevector) reads

q′ = k − k′

Taking the scalar product of q′ with itself gives

q′ · q′ = q′2 = (k − k′) · (k − k′)

= k2 + k′2 − 2kk′ cosψ

Equating this with the expression for q′2 derived from energy conserva-

tion yields

k2 + k′2 − 2kk′ cosψ = k2 + k′2 − 2kk′ + 2
(k − k′)

λC

or

kk′(1 − cosψ) =
(k − k′)

λC

which may be recast in the form

k

k′
= 1 + λCk(1 − cosψ) =

E
E′ =

λ′

λ
(1.15)
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The result of the calculation is that the change in wavelength is proportional to the Compton

scattering length defined by

λC =
�

mc
= 3.86 ×10−3 Å (1.16)

There are thus two fundamental scattering lengths for the X-ray, the Thomson scattering length, r0, and

the Compton scattering length, λC. The ratio of these two is the fine structure constant

α =
r

0

λC

≈ 1

137

The ratio of the final to initial energy of the photon is given in Eq. (1.15) and is plotted in Fig. 1.10.

For a given scattering angle, the scattering becomes progressively more inelastic as the energy E of the

incident X-ray is increased. The energy scale is set by the rest mass energy of the electron, mc2 = 511

keV.

One important difference between Thomson and Compton scattering is that the latter is incoherent.

It has already been shown how X-rays that are elastically scattered from a crystal add up coherently

when Bragg’s law (or equivalently the Laue condition) is fulfilled. The scattering is then restricted to lie

at points on the reciprocal lattice. The same is not true for Compton scattering, as it is the interaction

between a single photon and electron, and the variation of the Compton cross-section6 varies only

slowly with scattering angle. As far as diffraction experiments are concerned, Compton scattering

gives rise to a smoothly varying background which sometimes needs to be subtracted from the data.

Compton scattering may be used to obtain unique information on the electronic structure of

materials. So far we have assumed that the electron in the Compton scattering process is initially

at rest. This assumption breaks down for electrons in a solid, which instead have a finite momentum.

When the kinematics are worked through for this case, it turns out that the Compton cross-section gives

a measure of the electronic momentum distribution.

1.3 Absorption

Now let us turn to the absorption process. It is depicted in Fig. 1.11(a). An X-ray photon is absorbed by

an atom, and the excess energy is transferred to an electron, which is expelled from the atom, leaving it

ionized.

The process is known as photoelectric absorption. Quantitatively, the absorption is given by the

linear absorption coefficient μ. By definition μdz is the attenuation of the beam through an infinitesimal

sheet of thickness dz at a depth z from the surface (Fig. 1.12). The intensity I(z) through the sample

must therefore fulfill the condition

−dI = I(z) μ dz (1.17)

which leads to the differential equation
dI

I(z)
= −μ dz

6The calculation of the Compton cross-section is beyond the scope of this book. It is discussed by Lovesey and Collins

[1996].
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Fig. 1.11 Schematic energy level diagram of an atom. For clarity we have indicated only the energy of the three lowest shells;

the rest are merged into the continuum. (a) The photoelectric absorption process. An X-ray photon is absorbed and an electron
ejected from the atom. The hole created in the inner shell can be filled by one of two distinct processes: (b) Fluorescent X-ray

emission. One of the electrons in an outer shell fills the hole, creating a photon. In this example the outer electron comes either

from the L or M shell. In the former case the fluorescent radiation is referred to as the Kα line, and in the latter as K
β
. (c) Auger

electron emission. The atom may also relax to its ground state energy by liberating an electron.
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I 0

I z( )

dz z

Fig. 1.12 The attenuation of an X-ray beam through a sample due to absorption. The attenuation follows an exponential decay

with a characteristic linear attenuation length 1/μ, where μ is the absorption coefficient.

The solution is found by requiring that I(z = 0) = I0, the incident beam intensity at z = 0, and we have

I(z) = I0 e−μz

One can therefore readily determine μ experimentally as the ratio of beam intensities with and without

the sample. The number of absorption events, W, in the thin sheet is proportional to I, and to the number

of atoms per unit area, ρat dz, where ρat is the atomic number density. The proportionality factor is by

definition the absorption cross-section, σa, so that

W = I(z) ρat dzσa = I(z) μ dz

where in the last step we have used Eq. (1.17). The absorption coefficient is therefore related to σa by

μ = ρatσa =

(
ρmNA

M

)
σa (1.18)

where N
A
, ρm and M are Avogadro’s number, the mass density, and molar mass, respectively. In a

composite material with several kinds of atoms, each with a number density ρat, j and absorption cross

section σa, j, the total probability for absorption in a layer dz is obtained by summing over ρat, jσa, jdz,

the total probability of absorption for an atom of type j. Thus the absorption coefficient for a composite

material is

μ =
∑

j

ρat, jσa, j (1.19)

When an X-ray photon expels an electron from an inner atomic shell it creates a hole in that shell. In

Fig. 1.11(a) we illustrate this for the case of an electron excited from a K shell. The hole is subsequently

filled by an electron from an outer shell, L say, with the simultaneous emission of a photon with an

energy equal to the difference in the binding energies of the K and L electrons (Fig. 1.11(b)). The

emitted radiation is known as fluorescence. Alternatively, the energy released by an electron hopping

from the L shell to the hole in the K shell can be used to expel yet another electron from one of the
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Fig. 1.13 Top: The absorption cross-section of gaseous krypton. Above a photon energy of 14.325 keV a K shell electron can

be expelled from the atom and a new absorption ‘channel’ opens. The double logarithmic plot illustrates that the cross-section

varies as 1/E3. Bottom: A comparison of the absorption spectra of krypton in its gaseous form and physisorbed on graphite

where the krypton atoms form a two-dimensional lattice. In the latter case fine structure, or wiggles, are evident which are

known as EXAFS. The quantity χμ is proportional to the absorption cross-section σa.
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Fig. 1.14 Three-dimensional micro-CAT reconstruction of a cylindrical human vertebral bone specimen scanned with 3.6 μm

spatial resolution. Note the difference between the cortical end-plate and the underlying trabecular bone. (Image courtesy of a

collaboration between Aarhus University, Denmark, and HASYLAB at DESY, Germany.)

outer shells, as sketched in Fig. 1.11(c). This secondary emitted electron is called an Auger electron,

named after the French physicist who first discovered the process.

The monochromatic nature of fluorescent X-rays is a unique fingerprint of the kind of atom that

produces the fluorescence. It was Moseley who first discovered the empirical law

EKα [keV] ≈ 1.017 × 10−2 (Z − 1)2 (1.20)

where EKα is the energy of the Kα line of a given element and Z is its atomic number7. The analysis

of fluorescent radiation can be utilized for non-destructive chemical analysis of samples, and has the

advantage that it is very sensitive. The radiation that creates the hole in the first place does not have to

be an X-ray: it could also be from a beam of particles, such as of protons or electrons. For example,

the latter is a standard option on electron microscopes, enabling the chemical composition of samples

to be determined with a very fine spatial resolution.

The absorption cross-section has a distinct dependence on photon energy. An example is shown in

the top panel of Fig. 1.13 for the rare gas krypton. Below a photon energy of 14.32 keV the X-ray photon

7Moseley’s original work, published in 1913 against the backdrop of the emergence of quantum mechanics, played a key role

in establishing the Bohr model of the atom. Moseley’s law also allowed the position of elements to be understood in terms of Z,

and was used to predict the existence of elements that up until that point had not been discovered.
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can only expel electrons from the L and M shells. The cross-section is approximately proportional to

1/E3. At a characteristic energy, the so-called K-edge energy, the X-ray photon has enough energy to

also expel a K electron, with a concomitant discontinuous rise in the cross-section of about one decade.

From then on the cross-section continues to fall off as 1/E3.

If we examine the fine structure of the absorption just around the edge it is apparent that it depends

on the structure of the material. This is again illustrated for Krypton in Fig. 1.13 [taken from Stern

and Heald, 1983]. The wiggles in the spectrum from two-dimensional crystalline Krypton on graphite

demonstrate the phenomenon of Extended X-ray Absorption Fine Structure (EXAFS) in condensed

matter systems. We shall return to the interpretation of EXAFS data in Chapter 7.

The photoelectric absorption cross-section varies with the atomic number Z of the absorber,

approximately as Z4. It is this variation, and thus the contrast, between different elements that make

X-rays so useful for imaging, as we describe in Chapter 9. Tissue is mainly water and hydrocarbons

and thus has a 1/e thickness of many centimetres for hard X-rays, whereas bone contains a lot of Ca

and a correspondingly smaller X-ray transmission. It was this, by now well-known, ability to look

through the body that produced a sensation, when Wilhelm Conrad Röntgen discovered X-rays over

a 100 years ago. When coupled with the computer power available today one can obtain the internal

structure of parts of the body with remarkable precision. The technique is called CAT scanning, an

acronym for Computer Axial Tomography (or Computer Aided Tomography). The idea is to take

two-dimensional ‘shadow’ pictures from many angles, and then reconstruct the three-dimensional

object using a computer program. An example of the type of exquisite images that can be obtained

with modern CAT scanning is given in Fig. 1.14. Another tomography application where computer

power is essential, utilizes subtraction of pictures taken above and below the K edge of the element one

is particularly interested in. In this way the element-sensitivity is enhanced dramatically.

While photoelectric absorption arises from a physical process that is distinct from the scattering

of a photon, it should always be bourne in mind that the two are nonetheless related (see Fig. 1.8). In

Section 3.3 the relationship between the absorption cross section and the imaginary part of the scattering

amplitude is established, while this interrelationship is more fully explored in Chapter 8.

1.4 Refraction and reflection

The interaction of X-ray photons with matter has so far been discussed mostly at the atomic level.

However, since X-rays are electromagnetic waves, one should also expect some kind of refraction

phenomena at interfaces between different media. To describe such refractive phenomena, the media

of interest are taken to be homogeneous with sharp boundaries between them, each having its own

refractive index n. By definition the refractive index of vacuum is one. It is well known that for visible

light in glass n is large and can vary considerably, ranging from 1.5 to 1.8 depending on the type of

glass. This of course enables lenses to be designed for focusing light and thereby obtaining magnified

images. For X-rays the difference from unity of n is very small, and as we shall see in Chapter 3 is of

order 10−5 or so. In general for X-rays, the refractive index can be expressed as

n = 1 − δ + iβ (1.21)

where δ is of order 10−5 in solids and only around 10−8 in air. The imaginary part β is usually much

smaller than δ. That the real part of n is less than unity is due to the fact that the X-ray spectrum

generally lies to the high-frequency side of various resonances associated with the binding of electrons,
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Fig. 1.15 (a) The refraction of light shows that in the visible part of the spectrum the refractive index of glass is considerably

greater than one. In contrast, the index of refraction for X-rays is slightly less than one, implying total external reflection at

glancing angles below the critical angle αc . (b) A focusing X-ray mirror can be constructed by arranging that the incident angle

is below the critical angle for total external reflection. (c) At glancing angles below the critical angle the reflectivity is almost
100%, and the X-ray only penetrates into the material as an evanescent wave with a typical penetration depth of ≈10 Å. In this

way X-rays can be made to be surface sensitive.
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as illustrated in Fig. 1.8. One consequence of the real part of n being less than unity is that it implies

that the phase velocity inside the material, c/n, is larger than the velocity of light, c. This does not,

however, violate the law of relativity, which requires that only signals carrying ‘information’ do not

travel faster than c. Such signals move with the group velocity, not the phase velocity, and it can be

shown that the group velocity is in fact less than c.

Snell’s law relates the incident grazing angle α to the refracted grazing angle α′ (see Fig. 1.15(a))

cosα = n cosα′ (1.22)

An index of refraction less than unity, implies that below a certain incident grazing angle called the

critical angle, αc, X-rays undergo total external reflection. Expansion of the cosine in Eq. (1.22) with

α = αc, α′ = 0 and using Eq. (1.21) allows us to relate δ to the critical angle αc:

αc =
√

2δ

where for simplicity we have taken β = 0. With δ being typically around 10−5, αc is of the order of a

milli-radian. We shall see in Chapter 3, that the refractive constants δ and β can be derived from the

scattering and absorption properties of the medium, respectively.

Total external reflection has several important implications for X-ray physics. First, total reflection

from a curved surface enables focusing optics to be constructed as shown in the Fig. 1.15(b). A

small source size is thus desirable, since from geometrical optics, a small source will be focused

to a small image. A second consequence of total external reflection is that for α < αc there is a

so-called evanescent wave within the refracting medium, see Fig. 1.15(c). It propagates parallel to the

flat interface, and its amplitude decays rapidly in the material: typically with a penetration depth of

only a few nanometers. This should be compared with a penetration depth of several micrometers at a

glancing angle of several times αc.

The much-reduced penetration of X-rays for angles less than αc increases their surface sensitivity.

This allows the scattering from the surface and near surface region to be studied, often in great detail,

and indeed X-rays have become a valuable tool for the investigation of surfaces and interfaces.

1.5 Coherence

Throughout this introductory survey we have assumed that we are dealing with an X-ray beam in a

perfect plane-wave state. This is obviously an idealization, and in this section we shall briefly discuss

its limitation by recalling the concept of a coherence length of a real beam, and its relation to the source

and monochromator. A real beam deviates from an ideal plane wave in two ways: it is not perfectly

monochromatic, and it does not propagate in a perfectly well defined direction. Let us discuss these

limitations in turn.

The top part of Fig. 1.16 shows two plane waves A and B with slightly different wavelengths, λ and

λ − Δλ say, but both propagating in exactly the same direction. The two waves are exactly in phase at

the wavefront P. The question is how far do we have to go away from P before the two waves are out

of phase? This defines the longitudinal coherence length L
L
. If the two waves are out of phase after

travelling LL, then they will be in phase again after travelling 2LL. Let that distance be N wavelengths

λ, or equivalently (N + 1)(λ − Δλ), i.e.

2LL = Nλ = (N + 1)(λ − Δλ)



26 X-rays and their interaction with matter

(a) Longitudinal coherence length, LL

2 =L NL �

2LT

(b) Transverse coherence length, LT

A

A

R

D

����

��

��

P

P

B

B

�

�
Fig. 1.16 Longitudinal and transverse coherence lengths. (a) Two plane waves with different wavelengths are emitted in the

same direction. For clarity we have shown the waves displaced from each other in the vertical direction. After a distance L
L
, the

longitudinal coherence length, the two are out of phase by a factor of π. (b) Two waves with the same wavelength are emitted
from the ends of a finite sized source of height D.
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The second equation implies that (N + 1)Δλ = λ, or N ≈ λ/Δλ, and using this result the first equation

can be rearranged to read

LL =
1

2

λ2

Δλ
(1.23)

The bottom panel of Fig. 1.16 shows the other case: two waves A and B of the same wavelength,

but with slightly different directions of propagation, say by an angle of Δθ. Their wavefronts coincide

at point P, and the question is now how far do we have to go from P along the wavefront of wave A

before it is out of phase with wave B? By definition that distance is the transverse coherence length L
T

.

Clearly, if proceeding to a distance of 2LT , the two waves will be in phase again, and it is obvious from

the figure that 2LTΔθ = λ, i.e. LT=λ/(2Δθ). Suppose that the different directions of propagation arise

because the two waves originate from two different points on the source, let us say a distance D apart.

If the distance from the observation point P to the source is R, then Δθ = D/R and we have

LT =
1

2

λ

(D/R)
=
λ

2

(
R

D

)
(1.24)

It is instructive to consider typical values for the coherence lengths, but to do so we need to make

some assumptions about the source. At a third generation synchrotron the vertical source size is

around 100 μm, and the experiment may be performed some 20 m away, so that for 1 Å X-rays LT

is approximately 10 μm in the vertical plane. To calculate the longitudinal coherence length we need to

make some additional assumption about the device used to monochromate the beam. If a perfect crystal

is used, Δλ/λ ≈ 10−5 (see Chapter 6), and then, according to Eq. (1.23), LL is ≈ 5 μm for 1 Å X-rays,

similar in order of magnitude to L
T

. The consequence of a finite coherence length is that it places an

upper limit on the separation of two objects if they are to give rise to interference effects. To take a

simple example, consider the scattering from two electrons. If the projection of their separation on the

wavevector transfer Q is much greater than the coherence length, then the total scattered intensity is the

sum of scattered intensities from the individual electrons, and not the modulus squared of the sum of

amplitudes as has been described thus far.

In Chapter 9 we describe how coherent beams of X-rays are utilized in modern imaging methods.

1.6 Magnetic interactions

The discussion so far has centred on the interaction between the electric field of the X-ray and the

charge of the electron. What has been neglected is the magnetic field of the X-ray and the spin of the

electron. When these are included in a full treatment of the interaction, terms emerge in the scattering

cross-section that are sensitive to the spin and orbital magnetic moments of the electron. In this way it

is possible to use X-rays to investigate magnetic structures. The history of X-ray magnetic scattering

is much more recent than that of classical X-ray diffraction. In fact the first observation of X-ray

magnetic scattering had to wait until 1972 and the pioneering experiments of de Bergevin and Brunel

on antiferromagnetic NiO [de Bergevin and Brunel, 1972].

The reason for this is simply that magnetic scattering is much weaker than charge scattering. The
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amplitude ratio of magnetic to charge scattering for a single electron is

Amagnetic

Acharge

=

(
�ω

mc2

)

[Blume, 1985]. For 5.11 keV X-rays this ratio is 0.01, so the intensity of Bragg peaks that are purely

magnetic in origin are weaker than the charge peaks by a factor of approximately 10−4. In fact, as

only relatively few atomic electrons contribute to the magnetic scattering (namely those with unpaired

angular momenta in open shells), while all of them contribute to the charge scattering, the intensity

ratio is typically depressed by an additional factor of 10−2 or so. Progress in the field of X-ray magnetic

scattering was at first slow, but the routine availability of synchrotron radiation has given a tremendous

boost to this subject, to the extent that it has now flourished into a field in its own right.

Sensitivity to magnetism is not restricted to scattering experiments, however, but also occurs in

absorption processes. For example, the difference in absorption of left- and right-hand circularly

polarized light by a solid (known generally as circular dichroism, or more specifically in the case

of magnetic systems as X-ray magnetic circular dichroism (XMCD)) can be directly related to the

ferromagnetic magnetization density, as described in Chapter 7. It has also been found that magnetic

scattering itself is a much richer phenomena than early expectations, with the discovery that resonant

magnetic scattering processes occur when the energy of the incident X-ray is tuned close to certain

atomic absorption edges [Namikawa et al., 1985, Gibbs et al., 1988]. These subjects take us beyond

the scope of this volume, but it is important to realize that the study of the interaction of X-rays with

matter is still an active field of research some 100 years or so after the discovery of the X-ray [see, for

example, Lovesey and Collins, 1996].

1.7 Further reading

Röntgen Centennial – X-rays in Natural and Life Sciences, Eds. A Haase, G. Landwehr, and E.

Umbach (World Scientific, Singapore, 1997).

Fifty Years of X-ray Diffraction, P. P. Ewald, (International Union of Crystallographers, N. V. A.

Oosthoek’s uitgeversmaatchappj, Utrecht, 1962).

X-rays 100 Years Later, Physics Today (special issue) 48, (1995).
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2.1 Early history and the X-ray tube

Röntgen discovered X-rays in November 1895 in his laboratory at the University of Würzburg,

Germany. He was examining the light and other radiation associated with the discharge from electrodes

in an evacuated glass tube. He had covered the tube, a so-called Geisler discharge tube, so that no visible

light could escape. The laboratory was also darkened. All that could be seen was a faint yellow-green

light from a fluorescent screen placed close to the tube. The fluorescent light was flickering, since

the high voltage was supplied by the ac output of an induction coil, and could be seen even when the

screen was several metres away from the tube. To his amazement the radiation from the tube passed

through paper and wood, whereas metal pieces of equipment cast a shadow on the screen. The most

stunning phenomenon occurred when he placed his hand into the space between the tube and the screen

and saw the bones inside. Röntgen was a keen amateur photographer and he quickly had the idea to

photograph the X-ray beam instead of using the fluorescent screen. The photographs were convenient

scientific documentation of his discovery, which was first published in the annals of the local Würzburg

Scientific Society in late December of 1895. The paper is entitled ‘Uber eine neue Art von Strahlen

– vorläufige Mitteilung’1. The fact that one could now ‘see’ inside the human body was a sensation

that spread worldwide within a few weeks, with implications for medical science that can hardly be

overstated.

It became clear from Röntgen’s subsequent investigations that the imaging of bones in the body is

based on the fact that X-ray absorption is strongly dependent on the atomic number of the elements; it

varies approximately as Z4. The other important application of X-rays, based on diffraction phenomena,

showing how crystalline matter is built up by atoms forming a periodic lattice, had to wait until 1912

when von Laue and his coworkers obtained the first diffraction pattern from a crystal of copper sulfate.

In the following year W.H. Bragg and W.L. Bragg (father and son) examined the diffraction of X-rays

from a number of crystals and laid the foundations of the field of crystallography, which subsequently

allowed one to determine the structure of molecules.

The younger Bragg also found a particular simple way to interpret the diffraction patterns which

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

1‘On a new kind of radiation – preliminary communication’
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proved unambiguously that X-rays are nothing other than electromagnetic radiation of short wave-

length: Röntgen had also played with the same idea, and tried to prove it experimentally, but without

success. His influence in German physics at the time was so great that even von Laue and coworkers

were not tempted to reach the same conclusion from their diffraction experiments as Bragg.

The standard X-ray tube and the rotating anode

The X-ray tube Röntgen used was a tricky business to run reliably. It was therefore a tremendous

practical step forward when in 1912 W.D. Coolidge from General Electric Research Laboratories

in New York developed a new tube, where electrons were produced by a glowing filament and

subsequently accelerated towards a water-cooled metal anode (see Fig. 2.1). Now one could vary the

high voltage and the current independently, and the limitation of intensity was set only by the cooling

efficiency. It turns out that the maximal power for such a device is around 1 kW. The Coolidge tube

served as the standard X-ray tube for many decades with only marginal technical improvements.

Although it was appreciated early on that by spinning the anode the heat could be dissipated over a

much larger volume than in a standard tube, allowing the total power to be correspondingly increased,

it was not until the 1960s that so-called rotating anode generators became available on a commercial

basis. One of the technical difficulties to overcome had been the problem of how to make a high-vacuum

seal on the rotating shaft, inside which the cooling water must flow in and out.

The spectrum of X-rays generated from electrons impinging on a metal anode has two distinct

components. There is a continuous part due to the electrons being decelerated, and eventually stopped

in the metal. This is consequently known as bremsstrahlung radiation (after the German bremsen

for brake), and has a maximum energy that corresponds to the high voltage applied to the tube.

Superimposed on this broad spectrum is a sharp line spectrum. In a collision with an atom the incident

electron may also cause an atomic electron to be removed from one of the inner shells, creating a

vacancy. The subsequent relaxation of an electron from an outer shell into the vacancy may produce an

X-ray with a characteristic energy equal to the difference in energy between the two shells. This is the

fluorescent radiation. For experiments requiring a monochromatic beam one often utilizes the Kα line

which is several orders of magnitude more intense than the bremsstrahlung spectrum. However, only a

very small fraction of the photons emitted into the solid angle of 2π can be utilised in a beam requiring

an angular divergence of a few squared milli-radian. In addition, the line source is not continuously

tuneable so the optimal wavelength for the experiment cannot be chosen, or scanned, at will. As

we shall see in the following sections, X-rays generated from synchrotron sources do not have these

drawbacks, and have a brilliance which is enormously higher than that of standard laboratory sources.

2.2 Introduction to synchrotron radiation

Synchrotron radiation takes its name from a specific type of particle accelerator. However, synchrotron

radiation has become a generic term to describe radiation from charged particles travelling at relativistic

speeds in applied magnetic fields which force them to travel along curved paths. Besides synchrotrons

themselves, synchrotron radiation is produced in storage rings where electrons or positrons are kept

circulating at constant energy. In a storage ring the synchrotron radiation is produced either in the

bending magnets needed to keep the electrons in a closed orbit, or in insertion devices such as wigglers

or undulators situated in the straight sections of the storage ring. In these devices an alternating

magnetic field forces the electrons to follow oscillating paths rather than moving in a straight line.

In a wiggler the amplitude of the oscillations is rather large, and the radiation from different wiggles
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on the continuous bremsstrahlung radiation (bottom, left). Schematic atomic energy level diagram (bottom, right): the Kα line

results from transitions between an L and K shell, whereas the Kβ comes from an M to K transition.
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add incoherently, whereas in undulators, as we shall see, the small-amplitude oscillations from the

passage of a single electron produce a coherent addition of the radiation from each oscillation. It is

also interesting to note that synchrotron radiation in fact occurs naturally, and has been observed, for

example, from plasmas around stellar nebula.

For X-ray research, however, practically all modern sources2 of synchrotron radiation are storage

rings. The researcher new to the field of synchrotron X-ray science will encounter the usual set of

abbreviations, such as SR (for synchrotron radiation), BM (from bending magnets), ID (from insertion

devices), etc. We shall not use them in this book, but the reader is warned.

2.2.1 Characterizing the beam: brilliance

Several aspects of an X-ray source determine the quality of the X-ray beam it produces. These aspects

can be combined into a single quantity, called the brilliance, which allows one to compare the quality

of X-ray beams from different sources. First of all, there is the number of photons emitted per second.

Next, there is the collimation of the beam. This describes how much the beam diverges, or spreads out,

as it propagates. Usually the collimation of the beam is given in milli-radian, both for the horizontal

and for the vertical direction. Third, it may be of importance how large the source area is: if it is

small, one may be able to focus the X-ray beam to a correspondingly small image size. The source

area is usually given in mm2. Finally, there is the issue of the spectral distribution. Some X-ray sources

produce very smooth spectra, others have peaks at certain photon energies. So it matters, when making

comparisons, what range of photon energies contribute to the measured intensity. The convention is

therefore to define the photon energy range as a fixed relative energy bandwidth (BW), which has been

chosen to be 0.1%. There are several reasons why the relative rather than the absolute bandwidth is

chosen. One reason is that monochromator crystals are often perfect crystals, and as we shall see in

Chapter 6 the relative bandwidth for a perfect crystal in symmetric reflection geometry is independent

of the photon energy, and depends only on the Miller indices of the reflection. Altogether then, one

defines the figure-of-merit for the source as:

Brilliance =
Photons/second

(mrad)2 (mm2 source area) (0.1% BW)
(2.1)

The intensity in photons per second after the monochromator crystal is the product of the brilliance,

angular divergences set by the horizontal and vertical apertures (in milli-radian), the source area (in

mm2), and the relative bandwidth of the monochromator crystal relative to 0.1%.

The brilliance is a function of the photon energy. The maximum brilliance from third generation

undulators (see Fig. 1.1) is approximately 10 orders of magnitude higher than that from a rotating anode

at the Kα line! This dramatic improvement has in many ways led to a paradigm shift in experimental

X-ray science. Experiments inconceivable only a few decades ago are now performed on almost a

routine basis.

2As we write, X-ray free-electron lasers, as described in Section 2.6, are entering service. While these have unique

capabilities, and will undoubtedly allow new branches of science to develop, we believe that for the foreseeable future,

synchrotron storage rings will remain the principal source for many types of important experiments.
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Fig. 2.2 A relativistic electron moving in a circular trajectory of radius ρ. The radiation emitted is confined to a narrow cone

with an opening angle of 1/γ around the instantaneous velocity.

2.3 Synchrotron radiation from a circular arc

In this section we describe the basic characteristics of the radiation emitted by an electron moving

in a constant magnetic field. The effect of the field is to accelerate the electron and bend its trajectory

into a circular orbit, producing so-called bending magnet radiation in the process. While this type of

radiation is not the most brilliant, it nonetheless has many useful properties that are widely exploited in

synchrotron research.

A non-relativistic electron of momentum p = mv moving in a constant magnetic field B experiences

the Lorentz force F = dp/dt = −ev×B. In response to this force the electron accelerates and moves in a

circular orbit in a plane perpendicular to B. The radius ρ of the orbit is determined by the magnetic field

B in the following way. The magnitude of the Lorentz force is evB. For a non-relativistic particle this

force is equal to the centripetal acceleration v2/ρ times the mass m. With mv = p, one obtains p = ρeB.

This relation is also valid for relativistic particles, in which case p is equal to γmv, where γ = Ee/mc2,

the electron energy in units of the rest mass energy. For the case of super-relativistic particles v � c

which pertains to synchrotrons, we have

γm c = ρ e B (2.2)

so that in practical units the radius of an electron orbiting in a synchrotron is given by

ρ[m] = 3.3
Ee [GeV]

B [T]
(2.3)

As discussed on page 8, the electric field radiated from an accelerating charge is directly pro-

portional to the apparent acceleration. Hence an electron moving in a circular arc experiences a

constant acceleration and radiates continuously throughout its entire orbit. However, as we shall

see, the radiation from a relativistic charged particle moving in a circular orbit is compressed into

tightly collimated cones of radiation, as indicated schematically in Fig. 2.2. The radiation from an
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Fig. 2.3 A circular arc is approximated by straight segments connected by bends at A, B,C, etc. When the electron passes a

bend, a wavefront (thick dotted line) is emitted and propagates with velocity c. The wavefront in the top (bottom) was emitted
from bend B (A). The electron velocity is v, and the time for the electron to travel from one bend to the next is Δt′. The observer

experiences a time interval of Δt = (c − v cos α)Δt′/c between wavefronts, where α is the angle between the electron velocity

and the direction towards the observer.

electron orbiting at relativistic speeds in a circle can thus be likened to a sweeping search light. The

characteristic features of the radiation depend on two key parameters: the cyclic frequency ωo of the

orbiting electron and γ = Ee/mc2.

The instantaneous direction of the radiation cone is that of the instantaneous velocity of the electron,

and the opening angle of the cone is γ−1 = mc2/Ee. This is typically around 10−4, or 0.1 milli-radian.

The emitted spectrum is very broad, ranging from the far infrared to the hard X-ray region. However,

the spectrum falls off quickly for photon frequencies higher than γ3ωo. The angular frequency of an

electron in the storage ring ωo is typically of order 106 cycles per second, so the hard X-ray frequency

cut-off is around 1018 cycles per second. We shall now show how one can understand these basic

features from simple physical arguments. A few facts from the theory of relativity have to be recollected

first, and these are given in the box on the facing page. The other important ingredient of basic physics

we need is the Doppler effect.

2.3.1 The Doppler effect and the natural opening angle of synchrotron radiation

Rather than consider a circular path, we will first analyse the simpler case of an electron travelling on

a path comprised of short straight segments, with abrupt bends at points A, B, C, etc., as shown in Fig.

2.3. Subsequently the limit will be taken where the straight sections become infinitesimally small and

the path becomes a circular arc.
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Relativistic formulae

The energy Ee of an electron at speed v is

Ee =
mc2√

1 −
(

v
c

)2

It is convenient to use the electron energy γ, measured in units of its rest

mass energy, γ ≡ Ee/mc2, and the speed βe, measured in units of the

velocity of light, βe ≡ v/c. The formula above then reads

γ ≡ 1√
1 − β2

e

(2.4)

The electron energy in a typical X-ray synchrotron storage ring is 5 GeV.

The rest mass of an electron is 0.511 MeV, so γ is of order 104. We can

therefore expand Eq. (2.4) to obtain:

βe =

[
1 − 1

γ2

]1/2

� 1 − 1

2γ2
(2.5)

While in linear, uniform motion the electron does not radiate. At each bend it changes its velocity

(but not its speed), and therefore it has a short period of acceleration during which it radiates. The

observer is along the direction BC, and the time the electron spends in getting from one bend to the

next is denoted Δt′ . Consider in the top part of Fig. 2.3 the propagation of a wavefront emitted by the

electron when passing the bend at B. During the time the electron spends in getting from B to C the

wavefront has moved the distance cΔt′ towards the observer, at which point a new wavefront is emitted

from C, which is vΔt′ closer to the observer than B. These two wavefronts will thus be (c−v)Δ t′ apart,

and the observer experiences3 that they arrive within a time interval Δt = (c − v)Δt′/c = (1 − βe)Δt′.
The same kind of arguments can be made for the pair of wavefronts emitted when the electron was

at A and B; the only difference is that the distance travelled by the electron towards the observer is

vΔt′ cosα, α being the angle between the velocity and the direction to the observer. The wavefront

from A is therefore not (c−v)Δt′ ahead of the wavefront emitted from B, but a distance (c−v cosα)Δt′.
In other words, the time compression of wavefronts – the Doppler effect – appears less pronounced to

the observer.

The time interval, Δt, between wavefronts measured by the observer is related to the time interval

Δt′ by

Δt = (1 − βe cosα)Δt′

3Following our discussion of the field radiated by an accelerating charge on page 8, due to the finite velocity of light, it will

again prove necessary to distinguish between the time t at which the radiation arrives at the observer, and the time t′ at which it is
emitted. The latter is often referred to as the retarded time, but here we shall also refer to it as the emitter time. In order to avoid

a possible source of confusion, it is important to note that t and t′ are both measured in one and the same inertial frame. In many

other treatments of synchrotron radiation, use is made of Lorentz transformations to move between the rest frame of the electron

and that of the observer, with space and time coordinates in the former often being denoted by primed quantities.
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Fig. 2.4 An electron is kept in a circular orbit by the magnetic field B. An observer in the direction of the tangent at point B

will, due to the Doppler effect, see the electron as having a large acceleration when it is between points A and C. The close-up

view indicates that the observer will experience something that resembles half a period of an oscillation.

Since βe and cosα are both very close to unity they can be expanded

Δt �

[
1 −

(
1 − 1

2γ2

) (
1 − α

2

2

)]
Δt′

which simplifies to read

Δt �

[
1 + (αγ)2

2γ2

]
Δt′ (2.6)

With α ≈ 0 and γ ≈ 104 the time compression of the wavefronts experienced by the observer is

enormous. The Doppler effect is in fact maximal when α=0, and has decreased by a factor of two when

α = 1/γ. This then explains why the natural opening angle of synchrotron radiation is of order γ−1.

Note that this is the opening angle in all directions. In the vertical plane the angular divergence is γ−1,

whereas in the horizontal plane the angular divergence of the fan of radiation depends on how long a

segment of the circular arc is viewed by the observer.

Taking the limit Δt′ → 0, the general relation between the observer time t and the retarded (or
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Fig. 2.5 Illustration of the vertical scattering geometry typically employed at synchrotrons. The component of the X-ray’s

electric field perpendicular to the scattering plane is labelled σ̂, while the component in the plane is labelled π̂. When viewed

exactly in the orbit plane the radiation from an electron traversing a circular arc is purely σ̂ polarized.

emitter) time t′ is therefore given by the differential equation

dt

dt′
= (1 − βe cosα) (2.7)

where βe is the electron velocity in units of c, and α is the angle between the instantaneous velocity

and the direction to the observer. We shall return to the solution of this differential equation in Section

2.4.1.

An electron radiates during its entire cycle around its orbit, but an observer located in the direction

of the tangent to point B (see Fig. 2.4) sees a significant amount of radiation only while the electron

passes from A to C. This is because the amplitude of the far-field radiation is proportional to the

apparent acceleration, which is itself overwhelmingly large when the electron is in the vicinity of B due

to the enormous time compression given by Eq. (2.6). Thus in evaluating the radiation from a circular

arc we are justified in restricting our considerations to segment A − C. (A quantitative estimate of the

radiated flux from the arc segment A −C is presented in Section 2.3.3.)

As well as being highly collimated, synchrotron radiation from a circular arc is also polarized.

When viewed in the orbit plane of the synchrotron, the acceleration of the electron is strictly horizontal,

and as electric field of the radiated field is parallel to the electron acceleration it is linearly polarized in

the same plane. As discussed on page 9, the polarization factor P associated with Thomson scattering

determines how different types of experiment are configured. Diffraction experiments, for example,

are mostly performed utilising a vertical scattering plane (see Fig. 2.5), as in that case P = 1, and no

correction has to be applied to the data. In general, the polarization state of the X-ray beam can be
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decomposed into an orthogonal basis. By convention, the component perpendicular (parallel) to the

scattering plane spanned by k and k′ is labelled σ̂ (π̂).

When the electron trajectory is viewed out of the orbit plane the polarization of the emitted radiation

is no longer linear. As can be seen in the lower part of Fig. 2.4, when the arc ABC is viewed from above

the orbit plane, it appears as part of an ellipse with the electron orbiting clockwise. If looked at from

below the orbit plane, on the other hand, A and C are interchanged. As the arrow must run from A to C

via B, it is apparent that the electron now appears to move in a counter clockwise direction. Therefore

when viewed out of the orbit plane the electron has non-zero angular momentum, which it imparts to

the emitted X-rays. From this it may be concluded that the radiation viewed above the orbit plane has

a right-handed circular component, whereas below the orbit plane the circular polarization is in the

opposite sense of rotation. This subject is returned to in Section 7.3 on X-ray magnetic dichroism.

2.3.2 Characteristic frequency of synchrotron radiation

As an electron moves along the arc AC it generates an intense pulse of radiation of finite duration. Here

we estimate the duration of that pulse Δt as witnessed by an observer viewing the motion of the electron

as indicated in Fig. 2.4. The finite duration of the pulse in time implies, from the general property of

Fourier transforms (see Appendix E), that there is a characteristic, cut-off frequency ωc ∼ 1/Δt.

From the observer’s point of view, the motion of the electron resembles one half of the period T of

an entire oscillation. The time the electron spends in getting from A to C is [γ−1/(2π)] T = 1/(γωo),

but the observer experiences the time to be ∼ γ2 shorter (Eq. (2.6)), i.e. Δt ∼ 1/(γ3ωo). Thus the

characteristic frequencyωc is of order γ3ωo. With ω0 being typically of order a MHz, and γ around 104

for a third-generation synchrotron, bending magnet radiation has a characteristic frequency of around

1018 Hz, i.e. a wavelength of around 1 Å.

In a more rigorous treatment it can be shown that the characteristic frequency is given by

ωc =
(

3
2

)
γ3ωo. Since ωo=2π/T = 2π/(2πρ/c)=c/ρ, which by Eq. (2.2) is proportional to B/Ee, the

corresponding characteristic photon energy is given in practical units by

�ωc[keV] = 0.665 E2
e[GeV] B[T] (2.8)

2.3.3 Flux, emitted power and the spectrum

The flux of photons emitted by an electron accelerated under the influence of a constant field in a

bending magnet can be estimated by following arguments similar to those given in Section 1.2 where

we derived the Thomson scattering cross-section. In both cases it is necessary to consider the power

density of the radiated field. This is given by the magnitude of the Poynting vector S = BradErad/μ0=

cε0E2
rad

with units of Wm−2. The magnitude of the radiated electric field at a large distance R from the

source in the case a single electron is Erad = Ae/(4πε0c2R), where A is the apparent acceleration (see

Eq. (1.4)).

In the present context of a relativistic electron in a bending magnet, the acceleration d2x/dt2 is

approximated by Δx/(Δt)2, where Δx is the distance from B to the direct line from A to C in Fig. 2.4,

and Δt is the time interval as seen by the observer that it takes for the electron to cover the arc length

AC. From Fig. 2.4, the distance Δx can be approximated from Δx = ρ(1 − cos(γ−1/2)) ∼ ρ/γ2, while
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the relevant time interval is Δt ∼ ρ/(cγ3) (Section 2.3.2), so that the acceleration can be estimated as

A = d2x

dt2
≈ Δx

(Δt)2
∼ ρ/γ2(
ρ/cγ3

)2
∼ γ

4c2

ρ

This equation reinforces our earlier comment that the apparent acceleration, and hence the radiated

electric field, is massively boosted by the Doppler effect which gives rise to the factor of order γ4.

The energy, Erad, radiated by the electron as it transits from A to C can then be calculated by

multiplying S by product the of the area of the radiated field at the observer, equal to R2ΔΩ with the

solid angle ΔΩ ∼ γ−2, and the time interval Δt:

Erad = cε0 A2

(
e

4πε0c2R

)2

(R2ΔΩ)Δt

∼ cε0

(
c4γ8

ρ2

) (
e2

(4πε0)2c4R2

)
(R2γ−2)

ρ

cγ3

=
1

4π

e2

4πε0

γ3

ρ
(2.9)

The number of photons emitted from the passage of a single electron, Nrad , is of order Erad/�ωc, and

since the characteristic energy �ωc ∼ �(γ3c/ρ), one obtains from Eq. (2.9) that

Nrad ∼
1

4π

e2/(4πε0)

�c
=

1

4π
α (2.10)

where α = e2/(4πε0�c) is the fine structure constant. For a current I of electrons passing the point A per

second, the photon flux is ∼ αI/e. This remarkably simple and elegant result4 establishes that a current

of relativistic electrons transiting a bending magnet radiates an enormous flux of photons, of order 1017

per Ampere, into a very narrow cone with an opening angle of 1/γ.

We can also use Eq. (2.9) to obtain an expression for the power radiated by a current of electrons as

it traverses a bending magnet. Equation (2.9) refers to the energy emitted from an electron path length

of ρ/γ, so per unit length the energy is ∼ γ4/ρ2. From Eq. (2.3) we have ρ ∝ Ee/B, and as γ ∝ Ee,

we obtain a dependence of E2
eB2. This result is in agreement with a full analysis which provides an

expression for the total radiated power in practical units of

P[kW] = 1.266E2
e[GeV] B2[T] L[m] I[A] (2.11)

where L is the length of the electron trajectory through the bending magnet. The radiated power can be

substantial, of order 1 MW for a third generation synchrotron, and has to be supplied to the electrons

to keep them orbiting with the same energy.

Thus far we have not considered the exact spectral distribution of bending magnet radiation, other

than to establish that it has a characteristic energy given by Eq. (2.8). The derivation of the spectral

distribution involves a level of mathematical complexity not in keeping with the spirit of this book. (The

interested reader should consult the references given in Further Reading at the end of this chapter.) It

4Here and elsewhere in this chapter we have borrowed heavily from the work of Kim: see under Further Reading.
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Fig. 2.6 The spectrum from a bending magnet, normalised by the square of the electron energy and the beam current. The

abscissa is x = �ω/(�ωc), i.e. the photon energy normalized by the characteristic energy �ωc =
(

3
2

)
γ3
�ωo. The numerical

formula is 1.33 × 1013 x2 K2
2/3

(x/2), where K
2/3

(x/2) is a modified Bessel function. The electron energy Ee is in GeV, and the

beam current in Amperes.

transpires that the spectrum from a bending magnet is a universal function of (ω/ωc) and is plotted in

Fig. 2.6. It scales with the square of the electron energy, Ee, and is proportional to the current I in the

storage ring. In practical units, the spectral distribution of bending magnet radiation in the horizontal

plane can be expressed as

Photons/second

(mrad2) (0.1% BW)
= 1.33 × 1013E2[GeV]I[A]x2K2

2/3(x/2) (2.12)

where x = ω/ωc and K
2/3

(x/2) is a modified Bessel function.

In a storage ring the electrons are stored in bunches. For certain applications one may choose to

have a single bunch, but in general the storage ring is filled with a sequence of bunches. For example,

the duty cycle for one bunch in a 300 m long storage ring is 1 μs, and as the bunch length is of order

a centimetre, the pulse duration from the passage of one bunch is of order of a hundred pico-seconds.

The resulting synchrotron radiation is consequently pulsed with a sub-nano second pulse width and a

duty cycle in the μs range.
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2.3.4 Example: bending magnet radiation at the ESRF

The European Synchrotron Radiation Facility (ESRF) in Grenoble, France, was the world’s first third-

generation X-ray source, and started regular operation for users in 1994. The storage ring consists of a

number of straight sections where insertion devices may be placed, and in between these the electron

beam passes through bending magnets where the electrons describe circular arcs.

The energy of the electrons in the storage ring at the ESRF is Ee= 6 GeV, the ring electron current

is typically around 200 mA, and the bending magnets produce a field of 0.8 T. Assume that the bending

magnet is viewed through a 1 × 1 mm2 aperture at 20 m from the tangent point of the arc. The angular

acceptance of the aperture is 1/20=0.05 mrad, somewhat smaller than the natural divergence of the

radiation. The opening angle of the synchrotron beam from an ESRF bending magnet is 1/γ = 5.11 ×
105/6 × 109 = 0.08 mrad.

The radius of the electron orbit through the bending magnet can be found from Eq. (2.3). The result

is

ρ = 3.3 × 6

0.8
= 24.8 m

The characteristic energy is given in Eq. (2.8) and is equal to

�ωc = 0.665 × 62 × 0.8 = 19.2 keV

In Fig. 2.6 the generic spectrum of a bending magnet is shown. To calculate the peak flux at the

characteristic energy it is necessary to multiply by the solid angle of the aperture, the square of the

electron energy and the current. The peak flux is then

Flux = 1.95 × 1013 ×
(

1

20

)2

× 62 × 0.2

= 3.5 × 1011 photons/s/0.1% BW

in a bandwidth of 0.1%. According to Eq. (2.11) the observed radiated power from the bending magnet

is determined by the length, L, of the electron orbit viewed through the aperture. As the radiation

is viewed from the tangent point, L is equal to the radius of the electron orbit, ρ, multiplied by the

acceptance angle in the horizontal plane of the aperture, i.e. L=24.8 m × 0.05 mrad= 1.24 mm. The

power radiated is then

P = 1.266 × 62 × 0.82 × 1.24 × 10−3 × 0.2 = 7.3 W

The observed power is smaller than this value for a number of reasons. First, the value given above

is the value integrated over the vertical direction, and it is therefore necessary to correct for the finite

angular acceptance of the slit. Second, there may be beryllium vacuum windows, and possibly other

components such as filters, etc., in a beamline at a synchrotron which act to dissipate the power.

Beamlines which use a bending magnet as a radiation source usually make use of focusing optics to

collect a fan of the emitted radiation in the horizontal plane. Typically the optics are designed to collect

and focus a fan of 1 mrad, rather than the 1/20 mrad in our example above. The values of the flux and

power given above are then increased by a factor of 20.
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Fig. 2.7 Radiation from insertion devices: (a) an undulator, (b) a wiggler. The difference in the performance of these devices

arises from differences in the maximum angles of the electron oscillations in the horizontal plane: K is around 20 for a wiggler,

and 1 for an undulator. The consequence is that the radiation cone from an undulator is compressed by a factor of approximately

1/
√

N (Eq. (2.20)) relative to the natural opening angle of synchrotron radiation, 1/γ. The number of periods N is typically
around 50.
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2.3.5 Summary: bending magnet radiation

We summarize the salient properties of the radiation from a circular arc as follows:

(a) The radiation power is particularly intense at the moment when the instantaneous electron

velocity points directly towards the observer, since at that instant the Doppler effect is maximal.

(b) This glimpse of radiation dies away when the angle between the direction to the observer and the

electron velocity is of order γ−1.

(c) A typical frequency in the spectrum is γ3 times the cyclic frequency of the orbiting electron in

the storage ring.

(d) The on-axis radiation is linearly polarized in the horizontal plane, whereas a circularly component

is obtained out of the orbit plane, with opposite helicities above and below the plane.

(e) The radiation is pulsed, the pulse duration as seen through a pin hole being the electron bunch

length divided by c.

2.4 Undulator radiation

There is a much more efficient way to produce X-ray beams from a synchrotron than by having the

electrons orbiting in a purely circular arc. In a typical storage ring there are straight sections followed

by circular arc segments. In any one of these straight sections a device can be inserted that forces

the electron to execute oscillations in the horizontal plane as it traverses through the section. This is

achieved by an array of magnets which produces a field that alternates from up to down along the path.

It is possible to construct an insertion device such that the radiation emitted by a given electron

at one oscillation is in phase with the radiation from the following oscillations. This implies that the

amplitudes of the radiated waves are first added, and then the sum is squared to obtain the resulting

intensity. An insertion device designed to operate in this way is known as an undulator, for which

a schematic is shown in Fig. 2.7. A necessary condition for the coherent addition of amplitudes is

that electrons transiting an undulator execute small angular oscillations on a scale set by γ−1. The

coherent addition of amplitudes implies a monochromatic spectrum (with harmonics), but one that is

only quasi-monochromatic due to the finite number of periods in an undulator.

2.4.1 The undulator parameters

For bending magnet radiation the basic parameters are γ, the cyclic frequency and the bending radius

ρ. For undulator radiation, the basic parameters are γ and the undulator spatial period λu. In addition

we need something to characterize the amplitude of the oscillations. It could be the amplitude itself,

but it turns out to be more convenient to use the maximum angular deviation from the undulator axis,

as indicated in the drawing in the box on the next page. This maximum angle is some dimensionless

number, of order unity and denoted K, times the natural opening angle for synchrotron radiation, γ−1.

Thus, in addition to γ and λu, we shall use the parameter K defined in this way to characterize the

undulator. From Eq. (2.2) we have an expression for ρ in terms of the magnetic field, and from the

drawing in the box on the following page we have an alternative expression for ρ in terms of Kγ−1, so
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Properties of small-amplitude sinusoidal waves
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�

λu = 2π/ku

x

z

ρ
K/γ = kuA

M

A

In the vicinity of M we can approximate the cosine wave by a circle of

radius ρ, which for the amplitude A � λu can be related to A and ku from

the following considerations:

Circle: x + (ρ − A) =

√
ρ2 − z2 ⇒ x � A − 1

2

z2

ρ

Cosine path: x = A cos(kuz) ⇒ x � A − A

2
k2

uz2

Identifying the two expressions leads to the result ρ � (Ak2
u)−1.

The electron path length S for one period of the undulator is evaluated as

S · λu =

∫
ds =

∫ √
1 + (dx/dz)2dz

� λu[1 + (Aku)2/4] = λu[1 + K2γ−2/4]

one finds K readily in terms of the maximum magnetic field B0 in the undulator as:

K =
eB0

mcku

= 0.934 λu [cm] B0 [T] (2.13)

where ku = 2π/λu.

2.4.2 The fundamental wavelength, λ1

An expression for the fundamental wavelength λ1 in the undulator spectrum is now derived. It is a

simple matter to find the relation between λ1 and the undulator period λu. Consider, as shown in Fig.

2.8, one undulation of the electron path. At emitter time t′ = 0 the electron is at point A. The electron

is one undulation further downstream at t′ = T ′. The signal from A is then at a position c T ′ and the

condition for coherence is that (c T ′−λu) is one wavelength λ1 (or a multiple thereof). The electron path

length between A and B is a factor S larger than the period λu, so T ′ = S λu/v or cT ′ = (S/βe)λu. In the

box on this page the path length is derived for one period in the limit of small amplitude oscillations.
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Fig. 2.8 Constructive interference occurs when the wavefront emitted by the electron when it was at A is one wavelength λ1

ahead of the wavefront emitted by the electron when it reaches B. This is then the fundamental wavelength emitted from the

undulator.

Altogether then we find

λ1(θ = 0) = λu(
S

βe

− 1) −−−−−−−−−−→
S=1+γ−2K2/4

λu

2γ2
(1 +

K2

2
) (2.14)

Here it has been tacitly assumed that the direction of observation is on-axis – if the observation direction

had been at angle θ with the undulator axis, then (S/βe −1) should be substituted by (S/βe − cos θ) with

the result

λ1(θ) = λu(
S

βe

− cos θ) −−−−−−−−−−→
S=1+γ−2K2/4

λu

2γ2
(1 +

K2

2
+ (γ θ)2) (2.15)

It has been shown above that γ−2 is of order 10−8, so that with λu of order 1 cm, λ1 becomes of order

an Ångström, and is hence in the X-ray region. It is also important to note that the radiated, first-order

wavelength λ1 is tuneable: by changing the magnetic field by varying the gap between the poles,

one changes K according to Eq. (2.13), and thereby the wavelength in accordance with Eq. (2.14).

Somewhat counter-intuitively a larger field produces a softer X-ray fundamental.

2.4.3 Higher harmonics

Let us now look at the time dependence of the transverse electron oscillations, both in terms of the

emitter time t′ and in terms of the observer time t. The fundamental differential equation relating t′ to

t has already been derived (Eq. (2.7)). Here it is rewritten in terms of a unit vector n pointing towards

the observer, and the instantaneous velocity vector βe:

dt

dt′
= 1 − n · βe(t ′)

It is necessary to distinguish between the angle ϕ in the horizontal plane where the undulations occur,

and the vertical angle ψ, the combination of which gives the total deviation angle θ. We assume that
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Fig. 2.9 The electron undulations take place in the horizontal x − z plane. The direction to the observer is at angle ψ from the

horizontal plane and at a horizontal angle ϕ from the undulator axis. The resulting angle θ is then given by θ2 = ψ2 + ϕ2 and the

unit vector n has the coordinates as indicated. The other vector of interest is the velocity vector βe(t′). Its angle with the z-axis

varies sinusoidally, or rather as a cos(ωut′), with a maximum value of K/γ.

both ϕ and ψ are small. The geometry is shown in the top part of Fig. 2.9. Since n is a unit vector it

has the coordinates

n =

{
ϕ, ψ,

√
1 − (ϕ2 + ψ2)

}
�

{
ϕ, ψ, (1 − θ2/2)

}
The components of the velocity vector can be written in terms of the instantaneous angular deviation

α(t′) as

βe(t′) = βe

{
α, 0,

√
1 − α2

}
� βe

{
α, 0, (1 − α2/2)

}
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Fig. 2.10 Construction to show the relationship between the displacement as a function of emitter time for the electron (dashed

sinusoidal line) and observer time (solid line). For example, the difference between the emitter, ωut′, and observer, ω1t, phases

at the point ωut′ = π/6 is represented by the arrow (see Eq. (2.18)).

so that the differential equation for dt/dt′ becomes

dt

dt′
= 1 − n · βe(t′) � 1 − βe

[
αϕ + (1 − θ2/2 − α2/2)

]
� 1 − (1 − γ−2/2)

[
αϕ + (1 − θ2/2 − α2/2)

]
�

1

2

[
γ−2 + θ2 + α2(t′)

]
− α(t′) ϕ (2.16)

where βe = 1 − γ−2/2 from Eq. (2.5). The solution to this equation is

ω1t = ωut′ +
K2/4

[1 + (γθ)2 + K2/2]
sin(2ωut′) − 2Kγ

[1 + (γθ)2 + K2/2]
ϕ sin(ωut′) (2.17)

where ωut′ and ω1t are the phases of the displacements with respect to emitter and observer time,

respectively. The derivation is given in the box on the following page.

We can use the solution given in Eq. (2.17) to estimate quantitatively the content of higher harmon-

ics in the undulator spectrum in the following way. The electron displacement varies sinusoidally in

emitter time, but the observed displacement will, in general, have a different time dependence according

to Eq. (2.17). Only in the limit K → 0 will ω1t and ωut′ be proportional to one another over an entire

period, and only in this limit will the displacement also appear sinusoidal to the observer. Let us discuss

a numerical example to understand how the observer in general experiences deviations from harmonic

time variation. For simplicity the example is restricted to the case of on-axis radiation, i.e. θ = ϕ = 0,
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Solution of the differential equation (2.16)

With a sinusoidal path x′ = (Kγ−1)k−1
u sin(kuz), which has the required

maximal deviation angle (dx′/dz)max = (Kγ−1), one finds that the general

deviation angle α is

α � tan(α) =
dx′

dz
= (Kγ−1) cos(kuz) = (Kγ−1) cos(ωut′)

Therefore α2/2 in Eq. (2.16) can be expressed as

α2

2
=

1

2
(Kγ−1)2 cos2(ωut′) =

1

4
(Kγ−1)2[1 + cos(2ωut′)]

and the differential equation reads

dt

dt′
=
γ−2

2
[1 + (γθ)2 + K2/2] +

(Kγ−1)2

4
cos(2ωut′)

− (Kγ−1)ϕ cos(ωut′)

This expression can be simplified by introducing the parameter χ, where

χ = [1 + (γθ)2 + K2/2]

and multiplying both sides in the differential equation with ωudt′ =
d(ωut′) we obtain

ωudt =
γ−2

2
χd(ωut′) +

γ−2

2

K2

2
cos(2ωut′)d(ωut′)

− γ
−2

2
(2Kγϕ) cos(ωut′)d(ωut′)

Further, by introducing the frequency ω1 where

ω1 = ωu(2γ2/χ)

and multiplying by 2γ2/χ gives

d(ω1t) = d(ωut′) + (K2/2)χ−1 cos(2ωut′)d(ωut′)

− 2Kγχ−1 ϕ cos(ωut′)d(ωut′)

which is readily integrated to give

ω1t = ωut′ + (K2/4)χ−1 sin(2ωut′) − 2Kγχ−1 ϕ sin(ωut′)
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and a value of K=1 is chosen as the undulation parameter. The solution Eq. (2.17) then reads

ω1t = ωut′ +

(
1

4

) (
2

3

)
sin(2ωut′) = ωut′ +

(
1

6

)
sin(2ωut′) (2.18)

The emitter displacement x′(t′) is proportional to sin(ωut′), which (in arbitrary units) is represented

by the dashed curve in Fig. 2.10, when plotted against the emitter phase ωut′. When plotted against

the observer phase ω1t the result is the solid curves, x(t). The two curves of course coincide when

ω1t = ωut′, i.e. at ωut′ = 0 or at π/2, but differ at other points. For example, when ωut′ = π/6,

the displacement is sin(π/6) = 1/2, and ω1t is larger than ωut′ by the amount sin(π/3)/6, as

indicated by the arrow. Hence by writing a simple computer program it is possible to generate the

displacement as it appears to the observer. The resulting apparent displacement can then be resolved

into Fourier components and the apparent acceleration calculated, since from elementary considerations

it is expected that the apparent acceleration is proportional to the square of the frequency times the

apparent displacement. Then as the amplitude of the observed radiation is proportional to the apparent

acceleration, the observed undulator spectrum for any K and for any angle (ϕ, ψ) can be computed.

By way of example, in Fig. 2.11(a)� we plot the transverse displacement for K =1, 2 and 5 as

seen by an on-axis observer. The displacement is shown both versus emitter time t′, or rather the

emitter phase ωut′, (dashed curves), for which the variation is sinusoidal, and versus observer time t,

or rather the observer phase ω1t, (full line). It is evident that the observed displacement, x(t), deviates

more and more from a sinusoidal variation the larger the value of K. This immediately implies that

the frequency spectrum is dominated by the first harmonic at low K, but as K increases the spectrum

acquires a successively greater content of higher harmonics. In Fig. 2.11(c)� the on-axis, K = 2,

displacement seen by the observer is decomposed into its Fourier components with the contributions

from the first three odd harmonics plotted. This allows us to estimate the intensity of the harmonics

from the square of the acceleration, which is itself proportional to the displacement multiplied by

the frequency (or harmonic number) squared. The results of this exercise, shown in Fig. 2.11(d)�,

illustrate that the intensities of higher harmonics do not decrease with harmonic number, in this case

illustrated for K =2. One consequence of this is that higher order undulator harmonics can be exploited

in experiments requiring high energy X-ray photons.

A particular point of interest is the symmetry of the electron displacement as it appears to an on-axis

observer: the curves are symmetric around π/2, 3π/2, etc. This implies that all even harmonics vanish.

Figure 2.11(b)� shows the electron displacement as seen from the observer in the off-axis case with

ψ = 0, and ϕ = θ = γ−1, and for K = 2. Now it is apparent that the symmetry around π/2, 3π/2, etc., is

broken, and as a result even harmonics can be expected to appear in the spectrum.

2.4.4 Monochromaticity and angular collimation

So far we have only discussed one oscillation of an electron in the undulator, although in deriving the

coherence condition (Eq. (2.14)) it was tacitly assumed that if there was coherence between waves

emitted from A and B, then there was also coherence between waves from all subsequent oscillations

in the undulator. The coherence condition, however, does not imply that the undulator emits perfectly

monochromatic radiation. An electron traversing through an undulator of N periods produces a train

of radiation pulses at the extremal points of its trajectory. As the pulse train is of finite duration, this

implies that it also has a finite frequency, or wavelength, distribution proportional to 1/N. (See, for

example, our discussion of the characteristic frequency of bending magnet radiation in Section 2.3.2.)

The monochromaticity of undulator radiation can be derived by evaluating the total radiation

amplitude from the pulse train. This involves performing a sum over the contributions from each
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Fig. 2.11 � Undulator characteristics. (a) The transverse displacement of the electron which is sinusoidal versus emitter phase

(dashed lines) adopts a progressively more triangular shape versus observer phase (solid lines) as K is increased. (b) On-axis the

observed displacement is symmetric around ω1t = π/2, 3π/2, etc. (solid line), while off axis in the horizontal plane (here with

ψ = 0 and ϕ = 1/γ) this symmetry is broken (dashed lines). Thus when the off-axis curve is Fourier transformed even harmonics

are produced. For the sake of definiteness, a value of K = 2 was used in these calculations. (c) The on-axis K=2 displacement is
decomposed into first, third and fifth harmonics; their sum is indicated by the full line. (d) The calculated intensities in arbitrary

units observed on axis for the first four odd-order harmonics for K = 2 (black bars). The intensity is proportional to the square of

the apparent acceleration which here is calculated from the displacement (white bars) multiplied by the frequency, or harmonic

number, squared.

undulator period, taking into account the relevant phase factors. The total amplitude of the radiation

field is then the radiation from a single undulator period multiplied by a phase factor sum of the form

S N (ω) ≡
N−1∑
n=0

ei nωT
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Fig. 2.12 Monochromaticity of the first (n = 1) and third (n = 3) harmonic for an undulator with N =32 periods as seen through

an on-axis pin hole from a zero emittance source. The monochromaticity half width at half maximum (HWHM) is approximately

equal to 0.44/(nN).

This phase factor sum is a particular example of a discrete Fourier transform which can be evaluated as

shown in the box on the next page with the result that

|S N(ω)| = sin(NωT/2)

sin(ωT/2)

Now suppose that we consider a wavelength, or a frequency for that matter, which has a relative

deviation of ε from the coherence condition:

ω = ω1(1 + ε)

where ω1 is the frequency of the first harmonic. The phase factor sum becomes

∣∣∣S N,1(ε)
∣∣∣ = sin(πNε)

sin(πε)

with ε = (ω − ω1)/ω1 = Δω/ω1 = Δλ/λ1. This result can be generalized to the n’th harmonic to give

∣∣∣S N,n(ε)
∣∣∣ = sin(πNnε)

sin(πnε)
now with ω = nω1(1 + ε)

The radiated intensity is proportional to
∣∣∣S N,n

∣∣∣2 and this is normalized by N2 and plotted in Fig. 2.12

for N = 32 with n=1 and n=3. The full width at half maximum (FWHM) is approximately 0.88/nN. In

other words the monochromaticity (Δλ/λ) of undulator radiation is inversely proportional to the number
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Phase factor summation and the geometrical series

Throughout this book we shall be interested in evaluating sums over N

phase factors of the form

S N (x) =

N−1∑
n=0

ei 2πnx

with x a continuous variable. This is nothing other than the geometrical

series

S N =

N−1∑
n=0

kn = 1 + k + k2 + · · · + kN−1 =
1 − kN

1 − k

The proof follows once it is realised that S N − S N−1 = kN−1 and kS N−1 +

1 = S N . The sum is convergent in the limit N → ∞ if and only if |k| < 1,

for which

S∞ =
1

1 − k

We can now evaluate the sum over phase factors as

S N(x) =
1 − ei 2πNx

1 − ei 2πx
=

e−i πNx − eiπNx

e−iπx − eiπx

ei πNx

ei πx

=
sin(πNx)

sin(πx)
ei(N−1)πx

and below we plot its modulus squared.

�

�

�� 0.88
N

|S N(x)|2
N2

3
N

2
N

1
N

− 1
N

− 2
N

− 3
N x

The full width at half of the maximum value (FWHM) is approximately

0.88/N.
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of periods N and to the harmonic index n:

Δω

ωn

=
Δλ

λn

≈ 1

nN
(2.19)

Thus, although undulator radiation is not ideally monochromatic, it can be said to be quasi-

monochromatic with a typical bandwidth of around 1%. This property of undulator radiation stands

in stark contrast with the broad spectral distribution of bending magnet radiation (Fig. 2.6). The

quasi-monochromatic, and tuneable, nature of undulator radiation means that experiments that do not

require the typical monochromatic bandwidth of 0.01% delivered by perfect crystal optics (see Chapter

6) can benefit greatly from the flux enhancement associated with forgoing the monochromator and

using directly the more relaxed bandwidth delivered by an undulator.

It is also important to understand how the angular collimation of undulator radiation compares

with the natural opening angle γ−1 of bending magnet radiation. For an undulator, off-axis observation

implies a change in the coherence condition, which means that a finite θ (see Fig. 2.9) corresponds to

an offset in wavelength. Quantitatively it follows from Eq. (2.14) and (2.15) that

λ1(θ) = λ1(0)

[
1 +

(γθ)2

1 + K2/2

]
≡ λ1(0) [1 + εθ]

so a certain value of θ corresponds to a relative offset εθ in wavelength. Above it was shown that a

relative mistuning of the frequency or wavelength by ε implied that the radiated intensity had a FWHM

of approximately 1/nN. It can therefore be concluded that the FWHM in θ must fulfil the equation

εθ =
(γθFWHM)2

1 + K2/2
�

1

nN

which can be rearranged to yield

θFWHM �
1

γ

√
1 + K2/2

nN
(2.20)

There is therefore a substantial reduction in the angular divergence of undulator radiation compared

with the natural divergence γ−1 of synchrotron radiation. As sketched in Fig. 2.7, this reduction is

independent of the azimuthal angle relative to the undulator axis.

In comparing with experiments one has to consider the effect of the finite angular divergence of the

electron beam. This can be added in quadrature to the intrinsic divergence as given by Eq. (2.20) in

order to obtain the observed divergence. The electron beam divergence within the plane of undulation

is usually different from that in the perpendicular direction, so the observable synchrotron radiation

divergence will not be symmetric around the undulator axis. These issues are further explored in Section

2.4.6.

2.4.5 Helical undulators

The linear undulator that has been discussed so far in this section is the most common insertion device

used at present day synchrotron facilities, but it is by no means the only one. In some applications it is
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useful to have an undulator with specific characteristics, for example one that is capable of producing

circularly polarized instead of linearly polarized radiation. The helical undulator is such a device,

and it is instructive to consider the difference between a linear and helical undulator in terms of the

higher-harmonic content in their spectra.

The content of harmonics of undulator radiation can be understood qualitatively by considering the

apparent electron acceleration that an on-axis observer experiences. First, recall the linear undulator.

The electron executes harmonic, sinusoidal motion, but it is not sinusoidal seen from the on-axis

observer. Here the Doppler shift is a little different when the electron is at its maximum displacement

(where its instantaneous direction is exactly towards the observer), compared to when it is passing

the undulator axis (where its instantaneous direction makes the angle K/γ with the direction to the

observer). Therefore the observer does not see a sinusoidal displacement versus time: he sees the

sinusoidal curve distorted more towards a triangular shape, which of course can be resolved into Fourier

components (see Fig. 2.11). By symmetry the on-axis observer will see odd harmonics only (in contrast

to the off-axis observer who will also see even harmonics). Clearly the distortion from sinusoidal

shape increases with increasing K, so the content of higher harmonics also increases with K. Now

consider the helical undulator. The electron path is a spiral. Seen from the on-axis observer though,

the electron trajectory describes a circle, and by the symmetry of the circle there are no points where

the Doppler effect is more pronounced than at other points. In other words the observer sees the same

Doppler shift all the time, and therefore no distortion of the circular motion. Thus, projected onto a

plane perpendicular to the undulator axis, the electron describes circular motion either as a function of

emitter time, or as a function of observer time: the only difference being that the observer witnesses

the circular movement as being much faster. However, there is no distortion, and hence there are no

harmonics. As the electrons execute a circular path, the emitted radiation is circularly polarized. In

practice, helical undulators are capable of producing intense X-ray beams with a circular polarization

exceeding 99%.

2.4.6 Emittance and the diffraction limit

In the last section it was shown that an undulator is a highly brilliant source of radiation. The question

naturally arises whether the brilliance of an undulator, or indeed any source, can be increased without

limit. According to its definition in Eq. (2.1) the brilliance is inversely proportional to the square of the

product of the linear source size and angular divergence. The product of source size and divergence is

known as the emittance, ε, of a source. In this section the lower limit of the emittance of the photon

beam is discussed. This turns out to be determined by the convolution of the emittance of the electron

beam circulating in the storage ring, and the emittance of the photon beam for the passage of a single

electron through the source path that is visible to the observer.

For a synchrotron storage ring, the electron beam emittance is a constant along the orbit around

the ring. This is a consequence of Liouville’s theorem, which states that for beams of particles the

product of beam size and divergence is a constant. Although the product of source size and angular

divergence is a constant, the two individual components may be manipulated by magnetic fields. It

is therefore convenient to represent the electron beam emittance at a given position around the ring

by a plot in phase space, with the spatial coordinate along the abscissa and the divergence along the

ordinate, as shown in Fig. 2.13(a). Here y is the spatial coordinate in the vertical direction, and y′ is

the angular divergence in the same direction. In the figure the source size and divergence are written

as σy and σ′y respectively, and the contour representing the root-mean squared (r.m.s.) value of these

quantities is shown as an ellipse. It follows from Liouville’s theorem that the phase-space ellipse has a

constant area around the orbit. But the ellipse can be tilted by magnetic fields as indicated in the figure.



2.4 Undulator radiation 55
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Fig. 2.13 Phase-space representation of the emittance ellipse, where the abscissa is the spatial dimension, y, and the ordinate

is the divergence, y′. The emittance is defined to be the product of source size and divergence. (a) For the electron beam in
the vertical direction, y, the emittance is written as εy= σyσ

′
y . It is a constant around the orbit of the ring, and may therefore

be represented at different points on the orbit by ellipses of equal area. (b) The photon beam emittance from an undulator at

the ESRF in the vertical direction. Dotted line: the diffraction limit of a 1 Å photon beam arising from the passage of a single

electron through a 4 m undulator. Dashed-dotted line: electron beam parameters in the vertical direction for a bunch of electrons

in the storage ring. Full line: the phase-space ellipse of the resulting photon beam.
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Typical values for the electron beam parameters of an undulator at the ESRF in the vertical direction

are σy= 10.3 μm and σ′y= 3.8 μrad. The vertical emittance is thus εy=σyσ
′
y= 39 pm rad. The ratio of

the emittances in the vertical and horizontal directions is known as the coupling. For the ESRF the

coupling is currently chosen to be 1 %, and the horizontal emittance is a factor of 100 times larger than

in the vertical direction. In the future the coupling is likely to be reduced by a factor of between two to

four.

The concept of a phase-space ellipse is also a convenient way to visualize the properties of the

X-ray photon beam. Let us discuss this for an undulator source by considering the passage of a single

electron. The angular divergence is given in Eq. (2.20), which for the first harmonic can be re-written

as

θFWHM �
1

γ

√
1 + K2/2

N
=
√

2

√
λ

1

L

where Eq. (2.14) has been used to relate the undulator length L = Nλu to the X-ray photon wavelength

λ
1

of the first harmonic. Converting from FWHM to r.m.s. introduces a factor of 2
√

2ln 2 ≈ 2.355,

but neglecting the difference between that and the factor of
√

2 in the equation above, leads to the

expression for the r.m.s. photon beam divergence of

σ′r ≈
√
λ

L

On the other hand, we know that the photon source size, σr, can never be smaller than the value set

by the diffraction limit. Beyond the diffraction limit any reduction in source size leads to an increase

in source divergence, and vice versa. The condition for the diffraction limit can be obtained from

Heisenberg’s uncertainty relation. In the present context this is written as

σrΔp ≥ �
2

where Δp is the uncertainty in the transverse momentum of the photon. This in turn can be related to

the angular divergence of the photon beam through

Δp = �Δk

= � kσ′r = �
2π

λ

√
λ

L

= �
2π
√

Lλ

It follows that the diffraction limited source size and angular divergence for an undulator are

σr =

√
Lλ

4π
and σ′r =

√
λ

L

To take a definite example we consider an undulator at the ESRF, and show how the emittance of

the electron beam and the diffraction limit of the photon beam combine to produce the final emittance

of the X-ray beam. From the above, a 4 m long undulator at a wavelength of 1 Å has σr= 1.6 μm and

σ′r= 5 μrad. The source size and divergence of the electron beam in the vertical direction were stated
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earlier as σy= 10.3 μm and σ′y= 3.8 μrad. These are shown graphically in Fig. 2.13(b). The phase-space

ellipse for the X-ray photon due to passage of a single electron through the undulator is represented by

the dotted line, while the ellipse from the passage of all the electrons in a bunch (approximately 1011

electrons) is shown by dashed-dotted line. The resulting photon beam pulse is the convolution of the

two, as indicated by the solid line. From this it is clear that a further reduction in the electron beam size

would be beneficial for the brilliance of the resulting photon beam, but a reduction in the electron beam

divergence will not make much difference. Similar considerations apply to the horizontal direction.

If the electron beam phase-space ellipse could be made considerably smaller than the diffraction

limit ellipse, the source would have full transverse coherence (Section 1.5). This is difficult to achieve

at a synchrotron source for both the vertical and horizontal directions. For that it is necessary to consider

a radically different type of source, the free-electron laser, which is described in Section 2.6.

2.4.7 Undulator brilliance

It is beyond the scope of this book to derive the formula for the brilliance of an undulator. (Derivations

can be found in the references given in Further Reading at the end of this chapter). For completeness

we quote one important result, which is the flux in the central cone5 of an undulator:

Photons/second

(0.1%BW)
≈ 1.43 × 1014NI[A]

K2

1 + K2/2
(2.21)

where this expression refers to the first harmonic and is approximately valid for K ≤ 1. The brilliance is

then given by the above expression for the flux divided by the product of source area (in mm2) and the

angular divergence (in mrad2), or equivalently by dividing by the product of the vertical and horizontal

emittances as discussed in Section 2.4.6.

A particular simple case to analyse, but one that is difficult to achieve in practice, is when the

undulator radiation is fully diffraction limited. The brilliance can then be calculated by dividing the

expression for the flux (Eq. (2.21)) by a factor of (λ/4π)2. By way of example, we take K = 1,

N = 50, I = 0.5 A and λ = 1 Å, for which the maximum (diffraction limited) brilliance6 would be

of order 1037 in photons/s/mm2/mrad2/0.1%BW. In practice, finite electron beam emittance means that

undulator radiation is very far from being diffraction limited, especially for hard X-rays. Nonetheless,

undulator brilliances in the range 1020 − 1023 can be achieved, exceeding the brilliance of bending

magnet radiation by at least five orders of magnitude.

2.4.8 Summary: undulator radiation

The salient features of undulator radiation can be summarized as follows:

(a) An undulator is characterized by the K parameter (proportional to the peak magnetic field), the

period λu, and the number of periods N.

5The reader may wonder why the central-cone flux scales with N, the number of undulator periods, and not with N2. The

reason is that it is the peak flux that scales with N2, which is then averaged over the horizontal and vertical cone angles, each of

which scales like N−1/2, to obtain the flux in the central cone.

6For the parameters chosen the flux in the central cone is ∼2.4×1015 photons/s/0.1%BW. Converting the diffraction-limited

emittance, (λ/4π)2, to practical units of (mm2 mrad2) introduces factors of 10−7 (Å to mm) squared, 10−3 (mrad) squared, plus an

additional factor of ∼ 10−2 from (1/4π)2. Thus the diffraction-limited brilliance is of order 1015+14+6+2= 1037 in the appropriate

units.
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Fig. 2.14 Schematic of the spectrum from an undulator. The energy of the harmonics can be tuned by K so that a larger gap,

implying a lower field and thereby a smaller K, gives a higher energy.

(b) The on-axis spectrum has a fundamental peak in wavelength given by Eq. (2.14), and has odd

harmonics with a relative width of 1/nN (FWHM). The higher the K value, the higher is the

relative proportion of the harmonics.

(c) The intrinsic angular divergence of the fundamental (and the odd harmonics) is much smaller

than γ−1 and is given by Eq. (2.20).

(d) The finite divergence of the electron beam implies that the on-axis spectrum contains contribu-

tions from finite values of ϕ, and thus has intensity also at energies corresponding to the even

harmonics.

(e) Undulator radiation has high intrinsic brilliance.

These properties are represented schematically in Fig. 2.14. The ideal X-ray source should be

monochromatic with a tunable energy, and a selectable polarization. The angular divergence of the

beam should be small, preferably in all directions. The main power of the source beam should be in

a quasi-monochromatic band, so that the heat load on the first optical elements in the beamline is not

unduly high. The undulator beam from a third-generation synchrotron storage ring has all of these

desired properties.
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Fig. 2.15 The white X-ray beam from the wiggler at the ID11 beamline, ESRF. The X-ray beam emerges from an evacuated

beam tube with an intensity that is high enough to ionize air. (Image courtesy of Åke Kvick, ESRF.)

2.5 Wiggler radiation

As far as the trajectory of an electron is concerned a wiggler can be viewed as a series of circular arcs,

turning successively to the left and to the right, as shown in Fig. 2.7. This leads to an enhancement in the

intensity of the observed radiation by a factor of 2N, where N is the number of periods. The spectrum

from a wiggler is the same as that from a bending magnet of the same field strength. The formula for the

emitted power is similar to that given by Eq. (2.11), except for one important difference. In a bending

magnet the field B is constant along the length L, whereas in a wiggler the average of the square of the

field is 〈B2〉 =B2
0/2, where B0 is the maximum field. As a consequence Eq. (2.11) is altered to read

P[kW] = 0.633E2
e[GeV] B2

0[T] L[m] I[A]

The observed path length L of the electron is approximately equal to the length of the wiggler, which is

typically of order 1 m. The radiated power is then of order 1 kW or more. Such a high heat load would

distort, if not destroy, the optical performance of the perfect crystals that are used to monochromate

the X-ray beam, and various methods have had to be devised to retain the optical quality. A dramatic

illustration of the power of the X-ray beam from a wiggler at a third-generation synchrotron source is

shown in Fig. 2.15. Here the intensity of the beam is so high that it ionizes the air rendering the path of

the beam visible.
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Fig. 2.16 Top panel: schematic of the power radiated by an electron cloud as it traverses through a long undulator. For short

distances along the undulator there is no correlation between the radiation emitted by the different electrons in the cloud. Each

electron emits as a coherent source, and the power of the ‘spontaneous radiation’ is proportional to the number of electrons in the

cloud. Further downstream the electrons start to form micro-bunches and the SASE effect switches on, leading to an exponential
growth in power. Eventually a train of micro-bunches forms with a spacing equal to the X-ray wavelength, and once this train is

fully formed the intensity saturates. Each micro-bunch can be regarded as a point-like charge, so that in the ideal case the power

is now proportional to the square of the number of electrons in a micro-bunch. Bottom panel: red points, the measured power

emitted from the LCLS as a function of undulator length; blue line, the results of a simulation of the power expected from the

known parameters of the electron beam. (Data courtesy of Paul Emma, LCLS.)
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2.6 Free-electron lasers

Although an undulator at a synchrotron has many desirable properties as a source of radiation it could

nonetheless be improved upon considerably. The reason is that although the radiation from a single

electron is coherent, in the sense that the radiation from one oscillation is in phase with that from the

subsequent ones, the radiation from different electrons is incoherent. This results from the fact that the

electrons traverse the undulator in a bunch without any positional order, in other words as an electron

gas. If somehow the electrons in the bunch (or macro-bunch) could be ordered spatially into smaller

micro-bunches (containing an average of Nq electrons with Nq � 1), with a separation equal to the

X-ray wavelength, then the radiation from one micro-bunch would be in phase with that from all of

the following micro-bunches. It follows that the charge, eNq, in a single micro-bunch would be much

larger than e, and, since the micro-bunch is confined spatially within a distance shorter than the emitted

wavelength, this charge can be considered as point like. In this case the brilliance would be enhanced

by a factor of N2
q relative to a conventional undulator.

In an undulator the radiation field increases from zero at the entrance to its full value at the exit.

An electron traversing through an undulator experiences a force from the magnetic lattice, and after

a certain distance the electron also begins to respond to the radiation fields from the other electrons

in the bunch. The interaction with the radiated field is spatially modulated with a period equal

to the X-ray wavelength, and will hence tend to modulate the electron density within a bunch into

micro-bunches. Once this effect occurs it will, through boot-strapping, enhance itself, as the radiation

field increases rapidly as the electrons move downstream. The mechanism is called Self Amplified

Stimulated Emission, or SASE for short, and an undulator designed to exploit the SASE principle is

known as a free-electron laser [Derbenev et al., 1982, Murphy and Pellegrini, 1985]. A schematic

representation of the SASE effect is shown in the top panel of Fig. 2.16.

Crucially, the boot-strapping mechanism described above requires that the radiation field acting

on the electrons is sufficiently strong to produce micro-bunching, and the more localized the electron

gas bunch, the stronger will be the radiation field. The electron gas density is therefore a decisive

parameter for the SASE mechanism to be realised. Even in low-emittance, third-generation storage

rings the electron density is not sufficiently high. This is primarily because the bunch length, of

order 100 ps times the speed of light, or about 30 mm, turns out to be far too long. One solution

to this problem is to use a linear accelerator, usually abbreviated to LINAC. In a LINAC it is possible

to produce small electron beams, of order 100 μm (FWHM) in diameter, with a very small angular

divergence, of order 1 μrad. Most importantly, with recently developed electron guns and LINAC

bunch compression devices one can obtain the required high electron density, and bunch times as low

as 0.1 ps, corresponding to a bunch length of 30 μm. With such a compressed electron gas volume the

SASE principle can be realised even for radiation in the hard X-ray regime.

Estimating the expected flux from a free-electron laser requires detailed numerical calculations, as

the SASE mechanism is more complicated than our description above suggests. As the electron bunch

enters the undulator, the electrons are distributed like in a gas. There will be spontaneous fluctuations

in the electron density within the bunch, and the region that happens to have a slightly higher density

than the average will spontaneously act as the seed for SASE growth of a spatially modulated electron

density with a wavelength equal to the first harmonic (or possibly the third harmonic) X-ray wavelength

of the undulator. However, this region will not grow to extend over the entire macro-bunch: its size

will be limited by the distance where the photon field will be in phase with the electrons that created it.

Numerical estimates indicate that the length of an ordered region will be some hundred wavelengths.

Within the total length of the bunch there will be many such partly ordered regions, but the radiation

from different regions will be incoherent. Superimposed on this SASE radiation, which is extremely
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brilliant, is the radiation from all of the electrons that remain spatially disordered, and this is like the

ordinary undulator radiation that was discussed earlier in the chapter.

The LINAC coherent light source (LCLS) situated in California, USA, is the world’s first opera-

tional hard X-ray free-electron laser. LCLS lased for the first time on 10 April 2009, and achieved

SASE saturation at 1.5 Å just four days later (see Fig. 2.16, bottom panel [Emma, 2009]). The peak

brilliance of LCLS is around 1032 (in the usual units), some 10 orders of magnitude more than the

typical brilliance of undulator radiation from third-generation synchrotrons sources (Fig. 1.1). X-ray

free-electron lasers not only produce radiation of unprecedented brilliance, but radiation that has full

transverse coherence and is pulsed with typical pulse lengths of less than 100 fs. The first of these

additional attributes can be exploited in imaging applications (see Chapter 9), while the second enables

time-resolved experiments. When fully operational the LCLS, and other X-ray free-electron lasers that

are being constructed, will revolutionise our ability to understand the structure and function of materials

at the atomic level.

2.7 Compact light sources

The history of the development of ever more brilliant X-ray sources has largely been one of facilities

of increasing scale and cost. One question that then naturally arises is whether it would be possible to

produce a compact, laboratory scale, but brilliant source of X-ray radiation. Here we describe briefly

one scheme that is currently being pursued to achieve this goal.

We have seen how the undulator has many features that make it an attractive source of radiation,

most especially the fact that it is quasi-monochromatic and highly collimated. The on-axis wavelength

of the radiation is

λ1(θ = 0) =
λu

2γ2

(
1 + K2/2

)
(2.22)

In practice, the undulator period λu is typically a few centimetres as determined by the array of

permanent magnets in the undulator. Thus to produce hard X-rays an electron energy corresponding to

γ ≈ 104 is required, and this in turn implies a storage ring with a circumference of about a kilometre,

in other words a large scale facility. Clearly, one way to reduce the scale and cost of the facility,

but still produce X-ray photons, would be to significantly reduce the undulator period, which would

concomitantly reduce the required electron energy. One way to achieve this is to replace the permanent

magnet undulator with an effective undulator formed by the periodic electromagnetic field of an optical

laser [Huang and Ruth, 1998, Bech et al., 2008]. The required electron energy can then be reduced by

two orders of magnitude, since the effective undulator period is then given by the wavelength of the

optical laser (around a micron), some four orders of magnitude smaller than the period of a permanent

magnet undulator.

A schematic of a compact light source which combines an optical laser with a low energy electron

storage ring is shown in Fig. 2.17. The operation of this type of compact light source can be understood

from two distinct points of view. One may consider the interaction between a laser photon and an

electron as the head-on collision between two particles. If the electron energy is sufficiently high, then

in the impact the energy of the laser photon is increased to X-ray energies. This process is known as

inverse Compton scattering, as in conventional Compton scattering an X-ray photon loses energy when

it collides with a stationary electron. The alternative way of looking at the problem is to consider the

electromagnetic field as providing an undulating force on the electron.

Following the second of these two approaches, we start by recalling that the Lorentz force exerted
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Fig. 2.17 Schematic layout of a compact light source in which a bunched low-energy (but still relativistic, γ ∼ 50) electron

beam makes a head-on collision with optical photons in a laser cavity. Viewed as a collision between two particles, the operation

of the compact light source can be understood as an example of inverse Compton scattering, in which the optical photon is back

scattered and emerges with a much shorter wavelength, i.e. it emerges as an X-ray photon. An alternative, but fully equivalent,

description views the electromagnetic field of the optical photon bunch in the laser cavity as forming an effective undulator with

a period equal to the laser wavelength.

on an electron due to combined effect of E and B fields is

F = dp/dt = −e (E + v × B) (2.23)

Two cases will be compared: (a) a spatially alternating magnetic field produced by an array of

permanent magnets in a conventional undulator, which we shall denote by the subscript ‘u’. (b) a

strong laser field in which both the electric field E and the magnetic field B provide a force on an

electron, which we shall denote by superscript ‘l’. The goal is to determine the laser power density,

or equivalently the magnetic field Bl of the laser, which gives the same radiation as the permanent

magnetic array described by the magnetic field Bu. We argue that if the force is the same in these two

cases, then the acceleration and hence the radiation produced must also be the same, and that argument

holds in any inertial system we may choose.

The simplest expression for the force is in an inertial system where the electron velocity is zero,

because then the Lorentz force is simply −eE. However, we start by expressing the electric and

magnetic fields in the laboratory system, where the electron moves with velocity v along the x axis,

and the permanent magnetic field alternates up and down along the z axis thus undulating the electron

along the y axis.
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To proceed we require the appropriate transformations from the lab (unprimed) to the electron rest

(primed) frames7. For the (space, time) set of variables (x, t) to (x′, t′) the Lorentz transformations and

their inverse are

x′ = γ (x − vt) x = γ
(
x′ + vt′

)
t′ = γ (t − βx/c) t = γ

(
t′ + βx′/c

)
(2.24)

while for the components of the electric field the transformations are

E′x = Ex

E′y = γ
(
Ey − vBz

)
E′z = γ

(
Ez + vBy

)
(2.25)

In the case of a permanent magnet undulator, the y component of the electric field in the primed

frame from Eq. (2.25) is

E′
y,u = γ

(
0 − vBueiku x

)
≈ −γcBueikuγct′ (2.26)

In the second equation we have used the fact that electron position in its rest frame is x′ = 0, so

x = γvt ≈ γct. The laser field expressed in the lab frame has a phase φ = klx + ωlt for propagation

along the −x direction. In the primed frame the phase becomes φ = klγct′ + ωlγt
′ =2klγct′ since

ωl = klc. The magnetic and electric fields of the laser in the unprimed frame are therefore Ble
iφ and

−Ele
iφ, respectively, since the Poynting vector is along the −x direction. As |El| = c |Bl| we find from

Eq. (2.25) that

E′
y,l ≈ −2γcBle

i2klγct′ (2.27)

Comparison of Eqs. (2.26) and (2.27) establishes two important facts: (a) ku = 2kl, or equivalently8

λu = λl/2; (b) Bu = 2Bl. The first allows us to calculate the X-ray wavelength expected for the

compact light source from Eq. (2.22) using λu = λl/2. The second facilitates calculation of the expected

performance of a compact light source (K parameter, flux, etc.) using the formulae pertaining to a

permanent magnet undulator (see Eq. (2.21)) with Bu = 2Bl. In particular, it can be shown that with

reasonable assumptions of electron beam current, laser power, etc., that a compact light source of the

scale indicated in Fig. 2.17 should have a performance approaching that of a bending magnet at a

synchrotron source.

2.8 Coherence volume and photon degeneracy

While source brilliance is one of the most useful figures of merit when comparing different sources, it is

not by any means the whole story. Brilliance provides a measure of the raw photon power of a source,

allowing for the effects of source size, and the collimation of the beam and its energy bandwidth.

However, it does not convey information on the ‘quality’ of the photons in the sense of whether or not

they are coherent. Increasing use is being made of coherent X-ray beams as explained in Chapter 9

on imaging. It is therefore of interest to determine the number of photons present in the volume of the

7Convention requires that we use primed coordinates for the rest frame of the electron. We hope that the reader is able to
differentiate between this case, and our earlier use of t′ which referred to the retarded, or emitter, time in the same inertial frame

as the observer.

8We note that this result agrees with the analysis of the compact light source in terms of an inverse Compton process.
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beam in which the photons are fully coherent, as defined by the transverse, LT , and longitudinal, LL

coherence lengths (see Section 1.5). From a quantum mechanical point of view, photons are coherent

with one another if they occupy the same eigenstate of the photon field. The number of photons in an

eigenstate is known as the photon degeneracy. Thus the photon degeneracy is equal to the number of

photons in the coherence volume.

We can derive an expression for the photon degeneracy from the source brilliance, B, and the

transverse and longitudinal coherence lengths. In the numerator of Eq. (2.1) we have the number of

photons per unit time. The longitudinal coherence length, LL, can be converted into a coherence time

tc by dividing by the speed of light, i.e. tc = LL/c ≡ 1/δν, where δν is the frequency bandwidth. It

follows that the photon degeneracy is proportional to the brilliance multiplied by 1/δν. We also have to

take account of the factors that appear in the denominator of Eq. (2.1). At a distance R from the source,

the coherence volume subtends a solid angle ΔΩtr = (LT )2/R2 which from Eq. (1.24) can be written as

ΔΩtr = πλ
2/(16As) where As is the area of the source. With a relative bandwidth of δν/ν, the photon

degeneracy,Dphoton, can be expressed as

Dphoton = B tc ΔΩtr As

(
δν

ν

)
= BΔΩtr As

λ

c
= B π

16

λ3

c

The photon degeneracy is a dimensionless quantity as it should be, although the pre-factor depends

on the exact definitions of the longitudinal and transverse coherence lengths over which there is not

universal agreement. Here we follow what we believe to be convention and write the photon degeneracy

as

Dphoton =
Bλ3

4c
(2.28)

In practical units B is expressed in photons/s/mrad2/mm2/0.1%BW. With λ in Eq. (2.28) in Å, B in

practical units must be multiplied by (10−7)2 to convert the source area from mm2 to Å2, by (103)2 to

convert mrad2, and finally by 103 for the 0.1%BW, i.e. altogether a prefactor of 10−5. Since λ/(4c)=8.3

×10−20λ[Å] s, altogether one obtains

Dphoton = 8.3 × 10−25B[photons/s/mrad2/mm2/0.1%BW]λ3[Å] (2.29)

The scaling of photon degeneracy with wavelength cubed has the consequence that in moving from

the optical to the X-ray regimes, say, the source brilliance source must increase rapidly to maintain the

same coherent flux. This explains why X-ray free electron lasers are a much more potent source of

radiation for experiments requiring a fully coherent beam than an undulator at a synchrotron source.

For the latter, the maximum brilliance that can currently be realised at a third generation source is

around 1022 photons/s/mrad2/mm2/0.1%BW, which gives a photon degeneracy at 1.5 Å of around 0.03,

i.e. an average of much less than one photon in the coherence volume. An X-ray free-electron laser,

such as the LCLS, operating at the same wavelength is expected to have a peak brilliance, and hence a

peak photon degeneracy, approximately ten orders of magnitude higher.

In principle, since photons are bosons, there is no reason why the photon degeneracy cannot be

increased without limit. However, it should be noted that the power delivered by current and planned

free-electron lasers is enough to destroy most samples of interest, through a process known as ‘Coulomb

explosion’, on the time scale of a few hundred femto-seconds9. In this sense, experiments for the

9A high flux X-ray beam will liberate a large number of photo electrons, leaving behind positively ionised atomic cores. Once

the photo-ionisation passes a critical threshold, the mutual repulsion between the positive ion cores destabilises the material, and

it disintegrates in a process known as Coulomb explosion.
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foreseeable future will probably be limited as much by detector technology, and in particular the need

to acquire data before the sample explodes, as it will be by innovations in the source.

2.9 Further reading

The Feynman Lectures on Physics, Vol. 1, Ch. 34, Richard P. Feynman, Robert B Leighton, and

Matthew Sands (Addison-Wesley, 1977).

Characteristics of Synchrotron Radiation, K.-J. Kim, AIP Conference Proceedings, 184, 565

(AIP, 1989).

Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications, David Attwood

(Cambridge University Press, 2007).

Synchrotron Radiation Made Simple, B.D. Patterson, Am. J. Phys. (2010) (In press).

2.10 Exercises

2.1 Show that to generate 1 W of photon power requires 5.04 ×1014 λ
[
Å

]
photons per second.

2.2 Estimate the total power radiated by the ESRF. (Consider only the bending magnet radiation.

The relevant parameters can be found in Section 2.3.4, and the total radiated power is given by

P = eγ4I/(3ε0ρ), where the symbols have their usual meaning.)

2.3 The Large Hadron Collider (LHC) at CERN in Switzerland circulates protons at an energy of

7 TeV. Assuming a bending magnet field strength of 8.3 T, and a current of 500 mA, calculate

the total power radiated. How much power would be radiated if the protons were replaced by

electrons of the same energy and bending radius?

2.4 Would the LHC make a useful source of hard X-rays?

2.5 Consider an electron moving through an undulator with period λu and with K � 1. In the rest

frame of the electron the undulator period is relativistically contracted and appears as λ′=λu/γ.

In this rest frame the electron radiates as a dipole with frequency ν′ = c/λ′, while in the lab the

on-axis frequency is Doppler shifted to ν = ν′/
[
γ (1 − β)] . Show that this leads to the on-axis

undulator radiation formula λ=λu/(2γ
2) valid for K � 1.

2.6 Show that in practical units the on-axis wavelength of the first harmonic of an undulator may

be written as λ1

[
Å

]
=13.056 λu [cm] (1+K2/2)/ E2

e [GeV].

2.7 Show that in an inverse Compton scattering event, in which a relativistic electron collides head

on with an optical photon propagating along the x direction, the fractional energy change of

the photon is given by
ΔE
E =

(γiβi − χi) (1 − cosψ)

γi (1 + βi cosψ) + χi (1 − cosψ)

where χi is the incident photon energy divided by the rest mass of the electron, ψ is the

scattering angle of the photon, and all other symbols have their usual meaning. Establish
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(a) that the maximum fractional change in the photons energy occurs when it is back scattered

and (b) in the limit that the incident photon energy is small compared with that of the electron,

the fractional change in energy is approximately 4γ2. Assuming an electron energy of 25 MeV,

and an incident photon wavelength of 1 μm, calculate the minimum wavelength of the scattered

photon produced by a compact light source.

2.8 Assuming an energy density of 4×107 Jm−3 in the laser cavity of a compact light source,

calculate the equivalent magnetic field of a permanent magnet undulator, and use the result

to calculate the undulator K parameter. Calculate the X-ray flux in the central cone for an

electron beam current of 100 mA, a laser wavelength of 1 μm and an effective length of 1 cm

over which the photon and electron beams interact.
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3
Refraction and reflection from interfaces

A ray of light propagating in air changes direction when it enters glass, water or other transparent

materials. This is the basis for the classical optics of lenses. Quantitatively, the phenomenon is

described by Snell’s law. For visible wavelengths the refractive index n of most transparent materials

has a value in the range between 1.2 and 2. The refractive index depends on the frequency ω of the

light, so that blue light is refracted more than red light, etc.

The index of refraction for electromagnetic waves displays resonant behaviour at frequencies

corresponding to electronic transitions in atoms and molecules. On the low frequency side of a

resonance, n increases with ω, and this is known as normal dispersion. Immediately above the

resonance frequency it decreases, and as more and more resonances are passed, the magnitude of the

index of refraction decreases. X-ray frequencies are usually higher than all transition frequencies,

perhaps with the exception of those involving the inner K- or maybe L-shell electrons. As a result in

the X-ray region n turns out to be less than unity. (See Fig. 1.8 and accompanying discussion.) This

reflects the phase shift of π in the Thomson scattering of X-rays, as we shall see. Moreover, it leads

to the phenomenon of total external reflection from a flat, sharp interface: for incident glancing angles

α below a certain critical angle αc the ray will no longer penetrate into the material but will be totally

reflected from it. The deviation of n from unity is tiny, so the critical angle is small. The reader might

wonder how n can be less than unity, since the velocity in the material is c/n, and this would seem

to imply that the speed of light is higher in the material than in vacuum. However, c/n is the phase

velocity, not the group velocity. The latter, evaluated as dω/dk, is indeed less than c.

In this chapter we shall see that the deviation of n from unity, δ, is related to the scattering properties

of the medium. Each electron scatters the X-ray beam with the Thomson scattering amplitude r0
, and

δ turns out to be proportional to the product of r
0

and the electron density ρ. With the explicit formula

derived below, Eq. (3.1), one finds that δ is of order 10−5. Snell’s law evaluated at small glancing angles

implies that the critical angle αc =
√

2δ, and therefore is of order of a few milli-radians. Although this

is small, it transpires that it is sufficient in practice to allow the production of highly reflecting X-ray

mirrors, which can be shaped so as to focus an incident X-ray beam. The glancing angle geometry

implies a long focal length, of order 10 metres, and rather long mirrors, since the ‘footprint’ of the

beam on the mirror is the beam height divided by the sine of the glancing angle. This problem can be

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Phase shift and scattering from a sharp interface
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Fig. 3.1 The spherical wave ψs from a point scatterer can be in phase (top) or 180◦ out of phase with the incident plane wave

ψ
0

(bottom). The refractive index is greater than unity in the first case, and smaller than unity in the second case.

overcome with a multilayer mirror, which has peaks in its reflectivity curve at angles well beyond the

critical angle, allowing shorter mirrors to be used. The fact that δ is so small would seem to make the

construction of refractive lenses in the X-ray region unfeasible. This turns out not to be the case, and

we shall expand on this, and other aspects of X-ray optical elements, towards the end of this chapter.

In general X-ray reflectivity is a very powerful probe of the structure of interfaces. The reference

interface is the sharp, flat interface for which the reflectivity is given by the Fresnel equations. Although

these may be well known to the reader in the optical region, we shall derive them here and see

how they are simplified in the X-ray region. Real interfaces are rarely sharp on a length scale of an

Ångström, and neither are they ideally flat. Most importantly, one can determine deviations from the

ideal sharp, flat interface by reflectivity studies. The ideally flat, but graded interface, and the ideally

sharp, but roughened interface, will be considered in later sections, followed by examples of reflectivity

experiments where these ideas have been an essential component of the models used to interpret the

data. The interesting part of the spectrum of the reflected intensity versus incident glancing angles is

often at reflectivities below 10−6, so an intense beam from a synchrotron source is often of advantage.

3.1 Refraction and phase shift in scattering

To start with absorption processes will be neglected, and it will be assumed that the interface between

vacuum and the medium of interest is both flat and sharp. Furthermore, the medium will be considered

to have a homogeneous density of scatterers each giving rise to a spherical scattered wave of real

amplitude b.

As shown in Fig. 3.1 there are two possibilities for the spherical wave emanating from a scattering
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centre: either it is in phase with the incident wave (top), or there is a phase shift of π in the scattering

process (bottom). A phase shift cannot be detected in an ordinary scattering experiment, since the

intensity is proportional to the absolute square of the scattering length b. But, as we shall prove in

the next section, there is a distinct difference in the refraction at an interface. With no phase shift

the refractive index n is larger than unity, and the ray is therefore refracted as shown in the top, right

part of Fig. 3.1. With a phase shift of π, the index of refraction becomes smaller than unity and the

phenomena of total external reflection occurs at sufficiently small glancing angles α. The argument

does not depend on the kind of radiation considered: for example, it also applies to beams of neutrons.

This is the reason why the nomenclature of b has been used for the amplitude of the spherical wave,

since the nuclear scattering length for neutrons is commonly denoted by b. Moreover, the sign of b

varies from nucleus to nucleus. A well known example is the deuteron and the proton, which have

nuclear scattering lengths of opposite sign. Here we are mainly interested in X-rays, and in that case

the scattering length for each electron is r0, and as was shown in Chapter 1 there is a phase shift of π

between the incident and scattered waves. The refraction of neutrons is discussed further in Appendix

F.

Below we derive the equation relating the index of refraction, n, to the scattering properties of the

medium given by the number density of electrons, ρ, and the scattering amplitude per electron, r0. The

equation is

n = 1 − δ (3.1)

with

δ =
2π ρ r

0

k2
(3.2)

and where the wavelength of the radiation, λ, is related to the wavevector, k, by k = 2π/λ. The electron

density ρ in condensed matter is of order 1 electron/Å3. This means that with r
0
= 2.82× 10−5 Å and

k around 4 Å−1, δ is of the order of 10−6. This is very much smaller than unity and explains why

refraction phenomena in the X-ray region are not completely trivial to observe1. Snell’s law relates the

glancing angles α and α′ defined in Fig. 3.1 to each other through the equation

cosα = n cosα′

which is also derived below. The critical angle α=αc for total external reflection is obtained by setting

α′=0◦, and by expanding the cosines to yield

αc =
√

2δ =

√
4π ρ r

0

k
(3.3)

Using the values of the typical parameters given above, αc is of order one milli-radian.

3.2 Refractive index and scattering length density

In order to derive the relationships stated in Eqs. (3.1) and (3.2) between the refractive index of a

material and its scattering properties we consider in Fig. 3.2 a plane wave at normal incidence to a

1W.C. Röntgen had a suspicion that X-rays were waves, and attempted to look for refraction phenomena, but without success.
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Fig. 3.2 The refractive description (top) implies that the thin plate introduces a small phase shift in the wave observed at point

P. In the scattering description (bottom) the incident plane wave is approximated by a point source far away, and the perturbation

of the plate is derived as a superposition of scattered spherical waves. (Absorption has been neglected in both treatments). The

two descriptions are equivalent and lead to the relation between the refractive index and the scattering properties.
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Evaluation of the integral in Eq. (3.4)

Here the integral

I =

∞∫
−∞

ei (k/R0) x2

dx

is evaluated.

The starting point is the integral given in Eq. (D.3) on page 361 which

we restate here for convenience:

f (a) =

∫ ∞

−∞
e−ax2

dx =

√
π

a

In evaluating this integral in Appendix D it is assumed that a is a

real positive number. By utilizing the mathematical theory of complex

functions (see, for example, Methods of Theoretical Physics by Morse

and Feshbach, McGraw-Hill) one can generalize the function to complex

values of a, in particular to values of a on the imaginary axis

a = −i
k

R0

since in this case f (a) = I.

Then one can invoke analytic continuation, which in the present case

means that the result is still f (a) =
√
π/a with a complex number

substituted for a. We therefore find

I =

√
π

−i k/R0

=

√
i π

k/R0

and thus

I2 = i

(
πR0

k

)

thin plate2. The presence of the plate is sensed at the observation point P by a change in the wave

ψP
tot compared to the situation without a plate. For X-rays ψP

tot describes the electric field, for neutrons

it is the Schrödinger wavefunction. The notation of ψ is used to emphasize the similarity of X-ray

and neutron optics. The derivation is simplified by considering normal incidence, since then the wave

does not change direction when entering the material, and for a thin plate any phase difference between

waves scattered from the front or the back of the plate can be neglected. There are then two equivalent

descriptions: on the one hand a refractive description where the presence of the plate is taken into

account by a phase difference of (n − 1) kΔ; and on the other hand a scattering description, where the

wave at P is a superposition of the infinitesimal spherical waves emanating from each scattering centre

in the plate, plus of course the incident wave. For the refractive description the total wave at P is

ψP
s = ψ

P
0 ei(n−1)kΔ

� ψP
0 [1 + i(n − 1)kΔ]

2An alternative derivation is given in Section 8.1.3 on page 280 by relating the index of refraction to the polarizability of the

medium. In Appendix F yet another derivation is given for neutrons by applying energy conservation.
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A quantitative evaluation of the scattering description requires a little work. First of all, the incident

plane wave is approximated by a train of spherical waves coming from a very distant source point S .

For convenience, let the observation point P be the point symmetric to S on the other side of the plate.

Next, let us consider the waves scattered from an element in the plate, lying within the plane of the

drawing at a distance x from the axis. The distance to the source and to the observation point from this

element, R, is a little longer than the closest distance R0.

By expansion we find R = (R2
0 + x2)1/2

� R0

[
1 + x2/(2R2

0)
]
, and the phase difference compared to

the direct path from S to P is 2kx2/(2R0), where the first factor of 2 accounts for equal phase lags on the

source and observation sides of the plate. A similar expression is obtained for an element at coordinate

(0, y), so that the phase difference, φ(x, y), for rays emanating from the element at (x, y) is

ei φ(x,y) = ei (x2+y2)k/R0 = ei x2k/R0ei y2k/R0

The number of scattering centres in that element is ρΔ dxdy, and each wave has the scattering amplitude

r
0

with a phase shift of π. Altogether, the contribution dψP
s to the scattered wave at P from the volume

element at (x, y) is

dψP
s �

(
ei kR0

R0

)
(ρΔ dxdy)

(
−b

ei kR0

R0

)
ei φ(x,y)

as indicated in Fig. 3.2. The subscript ‘s’ stands for ‘scattered’ to remind ourselves that, after integration

over all elements in the plate, we have to add the scattered wave to the incident wave in order to obtain

the total. The scattered wave at P is found by integrating the above to yield

ψP
s =

∫
dψP

s = −ρbΔ
⎛⎜⎜⎜⎜⎝ei 2kR0

R2
0

⎞⎟⎟⎟⎟⎠ ∫ ∞

−∞
ei φ(x,y) dxdy

= −ρbΔ
⎛⎜⎜⎜⎜⎝ei 2kR0

R2
0

⎞⎟⎟⎟⎟⎠ I2 (3.4)

The integration over (x, y) is described in the box on the preceding page, and leads to the result

I2 =

∫ ∞

−∞
ei φ(x,y) dxdy = i

(
πR0

k

)
The incident wave at P, a distance of 2R0 from the source S , is

ψP
0 =

ei k2R0

2R0

and the total wave at the observation point P becomes

ψP
tot = ψ

P
0 + ψ

P
s = ψ

P
0

[
1 − i

2π ρ bΔ

k

]
(3.5)

When the expression for ψP
tot from the scattering picture is identified with ψP

tot in the refractive

description (compare the top and bottom panels in Fig. 3.2) one arrives at the result stated in Eq. (3.1).

Our discussion of the forward scattered wave shown in Fig. 3.2 can be extended to include a thin

plate composed of atoms, instead of the uniform distribution of electrons that has been considered so

far. All that needs to be done is to replace the electron number density ρ in Eq. (3.5) by the product of
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the atomic number density, ρat, and the atomic scattering factor f (Q) (see Eq. (1.12)). The expression

for ψP
tot given in Eq. (3.5) can then be written as

ψP
tot = ψ

P
0

⎡⎢⎢⎢⎢⎣1 − i
2π ρat f 0(0) r0 Δ

k

⎤⎥⎥⎥⎥⎦
where for the forward direction Q = 0, and the dispersion corrections to f (Q) have been neglected.

Later we shall consider the diffraction from atomic planes where the angle of incidence θ is not

necessarily 90◦. This is taken into account by replacing Δ by Δ/ sin θ. To emphasize that the effect

of a thin plate is to introduce a phase shift of the forward scattered wave the above is rewritten as

ψP
tot = ψ

P
0

[
1 − i g0

]
� ψP

0 e−i g0

where g0 is the phase shift given by

g0 =
λρat f 0(0)r0Δ

sin θ
(3.6)

The factor of sin θ has been introduced to allow for the change in thickness of material traversed as the

incident angle is changed. In terms of the atomic density and atomic scattering length δ becomes

δ =
2π ρat f 0(0) r

0

k2

3.3 Refractive index including absorption

Suppose now that in addition to scattering, absorption processes also take place in the medium.

Absorption implies that the beam is attenuated in the material with a characteristic 1/e length which is

denoted by μ−1, where μ is known as the absorption coefficient. By definition, this length refers to the

intensity attenuation, and not to the amplitude attenuation. After traversing a distance z in the material

the intensity is attenuated by a factor e−μ z, but the amplitude only by a factor of e−μ z /2.

In the refractive description of a wave incident at normal angles to a plate (see Fig. 3.3) the

wavevector changes from k in vacuum to nk in the medium. If the refractive index n is now allowed to

be a complex number, n = 1 − δ + i β, then the wave propagating in the medium is

ei nkz = ei (1−δ)k z e−βk z

From this equation for the amplitude it can be inferred that β k = μ/2, or

n ≡ 1 − δ + i β (3.7)

with

δ =
2π ρat f 0(0) r

0

k2
(3.8)
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Fig. 3.3 A plane wave at normal incidence to a plate with absorption length 1/μ. The absorption is formally equivalent to an

imaginary part of the refractive index.

and

β =
μ

2 k
(3.9)

An alternative approach is to write the atomic scattering length f (Q) as a complex number by

including the dispersion corrections (see Chapter 8). The atomic scattering length is then f (Q)= f 0(Q)+

f ′ + i f ′′, and the refractive index becomes

n ≡ 1 −
2π ρat r

0

k2

{
f 0(0) + f ′ + i f ′′

}
with

−
(
2π ρat r

0

k2

)
f ′′ = β

Using Eq. (1.18) and Eq. (3.9) this can be rearranged by writing

f ′′ = −
(

k2

2πρatr0

)
β = −

(
k2

2πρatr0

)
μ

2k

to read

f ′′ = −
(

k

4π r
0

)
σa (3.10)
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Fig. 3.4 Snell’s law and the Fresnel equations can be derived by requiring continuity at the interface of the wave and its

derivative.

Thus the absorption cross-section, σa, is proportional to the imaginary part of the atomic scattering

length, f ′′, in the forward direction. This result is sometimes known as the Optical Theorem. It should

be noted that f ′′ is negative since σa is a positive real number, and that in other texts the sign convention

is sometimes such that f ′′ is positive.

3.4 Snell’s law and the Fresnel equations in the X-ray region

In the X-ray wavelength region, both δ and β are very much smaller than unity. It follows that

when considering refraction and reflection phenomena we can limit ourselves to small angles and take

advantage of the appropriate expansions.

The incident wavevector is k
I , and the amplitude is aI , as indicated in Fig. 3.4. Similarly the

reflected and the transmitted wavevectors (at angle α′) are kR and kT , respectively, and the amplitudes

are a
R

and a
T

. Snell’s law and the Fresnel equations are derived by imposing the boundary conditions

that the wave and its derivative at the interface z = 0 must be continuous. These require that the

amplitudes are related by

aI + aR = aT (3.11)

and

aIkI + aRkR = aT kT (3.12)

The wavenumber in vacuum is denoted by k=|k
I
|=|k

R
| and in the material it is nk=|k

T
|. Taking

components of k parallel and perpendicular to the surface yields respectively

aIk cosα + aRk cosα = aT (nk) cosα′ (3.13)

−(aI − aR)k sinα = −aT (nk) sinα′ (3.14)

From Eq. (3.11) together with the projection parallel to the interface (Eq. (3.13)) one readily derives
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Snell’s law:

cosα = n cosα′ (3.15)

As α and α′ are small the cosines can be expanded to yield

α2 = α′2 + 2δ − 2 i β

= α′2 + α2
c − 2 i β (3.16)

where the refractive index n has been taken from Eq. (3.7), and Eq. (3.3) has been used to relate δ to

the critical angle, αc, for total reflection.

From Eq. (3.11) together with the projection perpendicular to the interface (Eq. (3.14)) it follows

that
a

I
− a

R

a
I
+ a

R

= n
sinα′

sinα
�
α′

α

from which the Fresnel equations are derived as

r ≡
a

R

a
I

=
α − α′
α + α′

; t ≡
a

T

a
I

=
2α

α + α′
(3.17)

Here the amplitude reflectivity, r, and transmittivity, t, have been introduced. The corresponding

intensity reflectivity (transmittivity), denoted by the capital letter R (T ), is the absolute square of the

amplitude reflectivity (transmittivity).

Note that α′ is a complex number to be derived from Eq. (3.16) for a given incidence angle α. By

decomposing α′ into its real and imaginary parts

α′ ≡ Re(α′) + i Im(α′)

it can be seen that the transmitted wave falls off with increasing depth into the material as

aT ei (kα′)z = aT ei k Re(α′)ze−k Im(α′ )z

The intensity therefore falls off with a 1/e penetration depth Λ given by

Λ =
1

2k Im(α′)
. (3.18)

The results for r, t and Λ depend on several parameters: the incident angle α, the density and

absorption in the medium, as well as the wavevector. In order to get an overview of this multi-parameter

problem, it is convenient to use suitable units. The normalization unit for angles is the critical angle αc.

However, in connection with diffraction and reflection phenomena, the wavevector transfers are more

useful than angular variables:

Q ≡ 2 k sinα � 2 kα ; Qc ≡ 2 k sinαc � 2 kαc (3.19)

and in particular their dimensionless counterparts

q ≡ Q

Qc

�

(
2 k

Qc

)
α ; q′ ≡ Q′

Qc

�

(
2 k

Qc

)
α′



3.4 Snell’s law and the Fresnel equations in the X-ray region 79

Equation (3.16) can then be rewritten in terms of the dimensionless wavevectors q and q′ by multiplying

both sides of the equation by (2k/Qc)
2 to yield

q2 = q ′2 + 1 − 2 i bμ (3.20)

where from Eq. (3.9) the parameter bμ is related to the absorption coefficient μ through

bμ =

(
2 k

Qc

)2

β =

(
4 k2

Q2
c

)
μ

2k
=

2k

Q2
c

μ

The wavevector Qc at the critical angle is

Qc = 2kαc = 2k
√

2δ = 4

√
π ρ r

0

(
1 +

f ′

Z

)
(3.21)

as can be seen from Eq. (3.3) and Eq. (3.8). For completeness the dispersion correction f ′ to f 0 has

been included in the expression for Qc (see Chapter 8 for a complete discussion of the dispersion

corrections).

Calculation of the reflectivity, transmittivity and penetration depth proceeds as follows. For the

material in question values for the absorption length μ−1 (at the particular X-ray wavelength being

used), the electron density ρ, and possibly the dispersion correction f ′, are obtained from standard

sources, such as the International Tables of Crystallography. From these numbers the quantity bμ is

calculated. The complex number q′ can then be derived from Eq. (3.20), and thereby the complex

amplitude reflectivity (transmittivity) from the wavevector form of Eq. (3.17):

r(q) =
q − q′

q + q′
; t(q) =

2q

q + q′
; Λ(q) =

1

QcIm(q′)
(3.22)

Let us consider the solutions to some limiting cases, recalling that bμ � 1 in all cases.

q � 1 The solution to Eq. (3.20) yields Re(q′) � q and Im(q′) � bμ/q. From Eq. (3.22), r(q) can be

written as r(q) = (q2 − q′2)/(q + q′)2 so in the considered limit r(q) � (2q)−2, i.e. the reflected

wave is in phase with the incident wave. The intensity reflectivity falls off as R(q) � (2q)−4, there

is almost complete transmission, and the penetration depth is αμ−1.

q � 1 In this case q′ is almost completely imaginary with Im(q′) � 1 and r(q) � −1, i.e. the reflected

wave is out of phase with the incident wave, so the transmitted wave becomes very weak. It

propagates along the surface with a minimal penetration depth of 1/Qc, independent of α as long

as α � αc. Due to the small penetration depth, it is called an evanescent wave.

q = 1 From Eq. (3.20) one finds q′ =
√

bμ(1 + i). The penetration depth is b
−1/2
μ times larger than the

asymptotic value of 1/Qc. Since bμ � 1 the amplitude reflectivity is close to +1 so the reflected

wave is in phase with the incident wave. This implies that the evanescent amplitude is almost

twice that of the incident wave.
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Fig. 3.5 � The intensity reflectivity R(q), the penetration depth ΛQc, the intensity transmittivity T (q) and the phase of the

reflected wave, all versus Q/Qc or α/αc . In each case a family of curves is given corresponding to different values of the (small)

parameter bμ. The values of bμ(= 2μk/Q2
c ) used were: 0.001, 0.01, 0.05, 0.1. The right hand side of the figure gives the

asymptotic behaviour, scaled to the expressions in the text for q � 1, which by definition approaches unity as q � 1.
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Z Molar density Mass density ρ Qc μ ×106 bμ

(g/mole) (g/cm3) (e/Å3) (1/Å) (1/Å)

C 6 12.01 2.26 0.680 0.031 0.104 0.0009

Si 14 28.09 2.33 0.699 0.032 1.399 0.0115

Ge 32 72.59 5.32 1.412 0.045 3.752 0.0153

Ag 47 107.87 10.50 2.755 0.063 22.128 0.0462

W 74 183.85 19.30 4.678 0.081 33.235 0.0409

Au 79 196.97 19.32 4.666 0.081 40.108 0.0495

Table 3.1 Reflectivity parameters for selected elements: electron density, ρ; critical wavevector, Qc; linear

absorption coefficient, μ, at λ=1.54051 Å.

An overview of the different quantities versus scattering vector or incident angle is given in Fig. 3.5�.

In Table 3.1 the parameters needed to compute the reflectivity for several elements are given.

It should be emphasized here that the Fresnel reflectivity is specular. This means that the reflected

intensity is confined to the plane spanned by the incident wavevector and the interface normal, and that

within this plane the angle of the reflected beam equals the angle of the incident beam. Non-specular

reflectivity is produced by rough surfaces, as we shall explain later in this chapter.

3.5 Reflection from a homogeneous slab

In this section the reflectivity from a slab of finite thickness is considered. This is shown schematically

in Fig. 3.6 where it is compared with the case of the infinitely thick medium described in the previous

section.

Consider first Fig. 3.6(a) where a wave propagating in medium 0 with refractive index 1 is incident

on an infinitely thick medium of refractive index n. This part of the figure illustrates how Snell’s law

can be inferred directly from the boundary condition that the waves are continuous at the interface.

The incident plane wave, ei k·r, with wavevector OA=k, can be decomposed into two plane waves with

wavevectors along, kx, and normal, kz, to the interface: ei k·r =ei kx xei kzz. Continuity at the interface

implies that the component of kx cannot change in going from medium 0 to medium 1, i.e. the

waves propagating along x in medium 0 and medium 1 must necessarily have the same wavelength

if a continuous transition is to be made on crossing the interface at any arbitrary point. The wavevector

of the transmitted wave in medium 1 must therefore terminate on the vertical line through B′. The

termination point A′ is determined by the condition that OA′=nk. Snell’s law then follows immediately.

Next consider a slab of finite thickness shown in Fig. 3.6(b). The side view depicts only the

transmitted wavevectors across the two interfaces from medium 0 to 1, and from 1 to 2, whereas the

right panel shows the z components of the wavevectors. In contrast to the case of the infinite slab there

is now an infinite series of possible reflections, and the first three of these are drawn in the figure:

(a) Reflection at interface 0 to 1, amplitude r01.

(b) Transmission at interface 0 to 1, t01, then reflection at interface 1 to 2, r12, followed by

transmission at interface 1 to 0, t10. In adding this wave to the above it is necessary to include the

phase factor p2 = ei QΔ.
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Fig. 3.6 Reflection and transmission from a slab of infinite (a) and finite (b) thickness. The finite slab is of thickness Δ and the

total reflectivity is the sum of the infinite number of reflections, as indicated in the right panel of (b).

(c) Transmission at interface 0 to 1, t01, then reflection at interface 1 to 2, r12, followed by reflection

at interface 1 to 0, r10, then another reflection at interface 1 to 2, r12, finally followed by

transmission 1 to 0, t10. The total phase factor for this wave is p4.

The total amplitude reflectivity is therefore:

rslab = r01 + t01t10r12 p2 + t01t10r10r2
12 p4 + t01t10r2

10r3
12 p6 · · ·

= r01 + t01t10r12 p2
{
1 + r10r12 p2 + r2

10r2
12 p4 · · ·

}
= r01 + t01t10r12 p2

∞∑
m=0

(r10r12 p2)m

This is a geometric series which may be evaluated as described on page 52 to give

rslab = r01 + t01t10r12 p2 1

1 − r
10

r
12

p2

This expression may be simplified using the Fresnel equations (Eq. (3.22)). Following the notation of
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Fig. 3.7 � Kiessig fringes from a homogeneous slab of Tungsten. Solid curve: the calculated reflectivity |r
slab

|2 for a slab of

thickness 10 × 2π Å. The density of the film is 4.678 electrons per Å3, Table 3.1.

Fig. 3.6 we have

r01 =
Q0 − Q1

Q0 + Q1

and t01 =
2Q0

Q0 + Q1

which in turn imply that

r01 = −r10

and

r2
01 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2
+

2Q0 2Q1

(Q0 + Q1)2
=

(Q0 + Q1)2

(Q0 + Q1)2
= 1

so that t01t10 = 1 − r2
01

. The expression for r
slab

thus becomes

rslab =
r

01
+ r

12
p2

1 + r
01

r
12

p2
(3.23)

The phase factor, p2, of the rays reflected from the top and bottom faces of the slab is ei Q1Δ, where

Q1 = 2k1 sinα1.

For simplicity it is further assumed that the media on either side of the slab are the same, or in other

words that r01 = −r12. In this case the slab reflectivity becomes

rslab =
r01(1 − p2)

1 − r2
01

p2
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The intensity reflectivity given by this formula is plotted in Fig. 3.7�, and displays oscillations known

as Kiessig fringes [Kiessig, 1931] due to the interference of waves reflected from the top and bottom

interfaces. The peaks in the oscillations correspond to the waves scattering in phase, and the dips to

them scattering out of phase. In the figure Δ has been chosen to be equal to 10 × 2π Å, which makes it

clear that the oscillations occur with a period of 2π/Δ in Q.

The expression for the reflectivity of a slab is exact, but it is instructive to consider some limiting

cases. Assume first that the angles are sufficiently large that refraction effects can be neglected, with

the result that |r01| � 1. The reflectivity amplitude in this limit (q � 1) is derived on page 79 as

r(q) � (2q)−2 with q = Q/Qc. In this case the slab reflectivity becomes

rslab =
r

01
(1 − p2)

1 − r2
01

p2
� r01(1 − p2) �

(
Qc

2Q

)2

(1 − ei QΔ)

This can be recast in a form that will be of use to us in the section on multilayers by rewriting it as

rslab = −
16πρr

0

4Q2
ei QΔ/2 (ei QΔ/2 − e−i QΔ/2)

=

(
16πρr0Δ

2Q

)
ei QΔ/2

2(QΔ/2)
(−i)

(ei QΔ/2 − e−i QΔ/2)

2i

= −i

(
4πρr0Δ

Q

) (
sin(QΔ/2)

QΔ/2

)
ei QΔ/2

Second, in addition to neglecting refraction effects it is assumed that the slab is thin, i.e. QΔ� 1, with

the result that the reflectivity becomes

rthin slab � −i
4πρr0

Δ

Q
= −i
λρr0
Δ

sinα
(3.24)

This expression is valid for angles well above the critical angle, where the reflectivity is weak, and

both multiple reflections and refraction effects can be neglected. This is referred to as the region of

kinematical reflectivity.

An alternative way to derive the reflectivity from a thin film is to use the following heuristic argu-

ment. The amplitude of the reflected wave must be proportional to the density of electrons, ρ, as well as

to the scattering length r0, and to the thickness of sample traversed which is equal to Δ/ sinα. However,

the product of these three variables has the dimension of inverse length, whereas the reflectivity is a

dimensionless number. The only length remaining in the problem is the X-ray wavelength. Thus

from a dimensional analysis the reflectivity from a thin slab is rthin slab = C (ρr
0
λΔ/ sinα), where C

is a complex constant to be determined. The value of C can be found by imagining an infinitely

thick medium as being formed from an infinite stack of thin slabs. In other words, by integrating the

expression for rthin slab from 0 to ∞, taking into account of course the appropriate phase factor, we

should obtain the Fresnel reflectivity, rF :

rF = C

∫ ∞

0

(
ρr0λ

sinα

)
ei Qz dz = C

(
ρr0λ

sinα

) (
1

iQ

) ∫ ∞

0

ei Qz d(iQz)

= −iC

(
ρr

0
2π

Qk sinα

) [
ei Qz

]∞
0
= iC

(
Qc

2Q

)2
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Fig. 3.8 Schematic of a multilayer which here is a stack of bilayers. Each bilayer, as shown to the right has a homogeneous

high electron density region of thickness ΓΛ, and a low density region. The total thickness of a bilayer is Λ.

where the expression given in Eq. (3.21) for Qc has been used. However, the Fresnel amplitude

reflectivity is rF ≈ (Qc/2Q)2 in the limit that α � α′, which implies that C = −i. Thus the heuristic

argument taken together with this determination of C is in accordance with Eq. (3.24).

3.6 Specular reflection from multilayers

The scattering from multilayer structures has assumed particular significance in recent years. Modern

growth techniques allow materials to be designed and fabricated at the atomic or molecular level. Many

technologically important materials are now produced in this way, as under favourable conditions it is

possible to tailor make materials with desired physical properties. One particularly interesting and

useful class of materials is the multilayer or superlattice. This is a system grown by depositing one

material on top of another in a repetitive sequence as shown in Fig. 3.8.

Materials that are used to fabricate multilayers range from metallic or semiconducting elements,

through to complex molecules such as are found in a Langmuir layer. In most cases a specific growth

technique has been developed to produce the multilayer system of interest. What is common to all of

these systems is that there is a need to characterize the resulting structure. X-ray and neutron reflectivity

turns out to be an excellent tool for this task, as the contrast in scattering density between the two

materials gives rise to scattering. However, from now on we consider X-ray reflectivity only, for which

the scattering length density is simply ρr
0
.

The most general approach is to extend what has been developed so far for the single slab, so as

to obtain an expression that is valid at all scattering angles. It is more instructive, however, to start
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by considering the kinematical reflectivity, where multiple reflections and refraction are assumed to

be small. The resulting formulae are then valid only at angles well away from the critical angle, but

have the advantage that the connection between the equations and the electron density profile is more

transparent. The mathematical implication of restricting ourselves to the kinematical region is that we

can deduce the amplitude reflectivity as a superposition of reflected waves from infinitesimal sheets,

taking into account of course the phase factor eiQz for the sheet at depth z. Unsurprisingly, the equations

are very similar to those used to describe the scattering of light from an optical diffraction grating.

Kinematical approximation

For convenience we imagine the structure of the multilayer as being composed of N repetitions of a

single bilayer of thickness Λ formed from one layer of material A followed by B, as shown in Fig.

3.8. No assumption is made about the detailed structure of A or B, so that the formulae apply equally

well to amorphous or crystalline materials: all that matters is that there is an electron density contrast

between A and B. Having decomposed the multilayer into a sum of bilayers it is then straightforward

to write down an expression for the reflectivity. First the scattering amplitude from a single bilayer is

calculated, and then a sum made over the N bilayers, making suitable allowance for the difference in

phase factors for the waves scattered from each bilayer. Here it is assumed that the interfaces are flat,

and the wavevector Q is parallel to the surface normal, so the reflectivity is specular, and the problem

of summing the phases is then one dimensional.

If r1 is the reflectivity from a single bilayer, then the reflectivity from N bilayers comprising the

multilayer is

rN (ζ) =

N−1∑
ν=0

r1(ζ) ei 2πζνe−βν = r1(ζ)
1 − ei 2πζN e−βN

1 − ei 2πζe−β
(3.25)

where ζ is defined by Q = 2πζ/Λ, and β is the average absorption per bilayer. The bilayer reflectivity,

r
1
, is evaluated using the expression for the reflectivity of a thin slab given in Eq. (3.24). To apply this

result to the bilayer two modifications need to be made. First, the electron density of the slab must be

replaced by the difference in electron densities between A and B, where it is assumed that ρ
A
> ρ

B
.

Second, as usual it is necessary to allow for the change in phase of waves reflected from different

depths in the bilayer. To do so we imagine the high density material A to comprise a fraction Γ of the

bilayer, and to be subdivided into thin sheets, each of which has the reflectivity of a thin slab, but with

ρ replaced by ρ
AB
= ρ

A
− ρ

B
.

From Eq. (3.24) the amplitude reflectivity from one bilayer may then be written as

r1(ζ) = −i
λr0
ρ

AB

sin θ

∫ +ΓΛ/2

−ΓΛ/2
ei 2πζz/Λ dz

= 4πr0ρAB

1

i Q

∫ +ΓΛ/2

−ΓΛ/2
ei 2πζz/Λ dz

= −2ir0ρAB

(
Λ2Γ

ζ

)
sin(πΓζ)

πΓζ
(3.26)

To evaluate the absorption parameter β for a bilayer we note that the incident X-ray has a path length

Λ/ sin θ in the bilayer, of which a fraction Γ is through A and a fraction (1−Γ) through B. Remembering

that the absorption coefficient μ refers to intensity and not amplitude, the amplitude absorption for a



3.6 Specular reflection from multilayers 87

bilayer is e−β with

β = 2

[(μ
A

2

) (
ΓΛ

sin θ

)
+

(μ
B

2

) (
(1 − Γ)Λ

sin θ

)]

=
Λ

sin θ

[
μAΓ + μB(1 − Γ)

]
where the factor of 2 in the first line allows for the path length of both the incident and reflected beam.

In Fig. 3.9(a)� the reflectivity curve of a multilayer is shown. This serves to illustrate how the

different factors in Eq. (3.25) combine to produce the resulting curve. A specific example has been

chosen of a multilayer formed from 10 bilayers, where each bilayer has 10 Å of W and 40 Å of Si.

(This or similar types of multilayers are useful optical components in X-ray beamlines, as we shall see

in Section 3.10.) The main peaks in the reflectivity occur when ζ is an integer, as the denominator in

Eq. (3.25) is then zero (at least if βmay be assumed to be negligible). These correspond to the principal

diffraction maxima from a diffraction grating. In between the principal maxima there are auxiliary

maxima due to oscillations in the numerator. In real optical components for X-ray applications the

number of bilayers is normally much larger than 10, so that the spacing between the auxiliary maxima

becomes small and the reflectivity of the first principal maxima tends to 100%.

Parratt’s exact recursive method

A method to extend the exact result for a single slab (Eq. (3.23)) to the case of a stratified medium has

been described by Parratt [Parratt, 1954]. The medium is imagined as being composed of N strata, or

layers, sitting on top of an infinitely thick substrate. By definition the N’th layer sits directly on the

substrate. Each layer in the stack has a refractive index n j = 1 − δ j + iβ j and is of thickness Δ j. It

follows from Fig. 3.6 that the z component of the wavevector, kz, j, in the slab labelled j is determined

from the total wavevector k j = n jk and the x component, kx, j, which is conserved through all layers so

kx, j = kx for all j. The value of kz, j is found from

k2
z, j = (n jk)2 − k2

x = (1 − δ j + i β j)
2k2 − k2

x � k2
z − 2δ jk

2 + i 2β jk
2

Noting that Q j = 2k j sinα j = 2kz, j, the wavevector transfer in the j’th layer is

Q j =

√
Q2 − 8k2δ j + i 8k2β j

In the absence of multiple reflections, the reflectivity (Eq. (3.22)) of each interface is obtained from the

Fresnel relation

r′j, j+1 =
Q j − Q j+1

Q j + Q j+1

where the prime is used to denote a reflectivity amplitude that does not include multiple scattering

effects.

The first step is to calculate the reflectivity from the interface between the bottom of the N’th layer

and the substrate. As the substrate is infinitely thick there are no multiple reflections to consider and

r′N,∞ =
QN − Q∞
QN + Q∞

The reflectivity from the top of the N’th layer is then evaluated using Eq. (3.23) as

rN−1,N =
r′

N−1,N + r′
N,∞p2

N

1 + r′
N−1,N

r′
N,∞p2

N
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Fig. 3.9 � Specular reflectivity from a W/Si multilayer: 10 bilayers each being 10 Å (amorphous) W on 40 Å (amorphous) Si.

(a) Kinematical reflectivity. (b) Reflectivity curve calculated using Parratt’s method. The parameters used in the calculation were

taken from Table 3.1.

which allows for the multiple scattering and refraction in the N’th layer, and where p2
N

is the phase

factor eiΔN QN , or in general p2
j
= eiΔ jQ j . It follows that the reflectivity from the next interface up in the

stack is

rN−2,N−1 =
r′

N−2,N−1
+ r

N−1,N
p2

N−1

1 + r′
N−2,N−1

r
N−1,N

p2
N−1

and it is clear that the process can be continued recursively until the total reflectivity amplitude, r0,1, at

the interface between the vacuum and first layer is obtained.

The reflectivity from the same W/Si multilayer discussed above has been calculated using Parratt’s

method and is plotted in Fig. 3.9(b)�. A comparison of the two curves shows that as expected there

is little difference at high values of Q where the kinematical approximation is valid, but close to the

critical wavevector Qc ≈ 0.04 Å−1 the approximation fails completely.
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Fig. 3.10 A flat interface with a graded density given by the shape function f (z), normalized to unity at large z. The Fourier
transform of its derivative, φ(Q), can be considered to be the form factor of the density variation across the interface.

3.7 Reflectivity from a graded interface

So far we have considered the reflectivity from systems that have sharp, flat interfaces. Many interesting

systems cannot be described in this way, and hence it is necessary to extend the formalism to include

graded interfaces. For the sake of simplicity we shall limit ourselves to the kinematical region, where

Q is much larger than Qc. As with the example of reflectivity from a multilayer, this means that the

reflectivity is derived by considering the contribution from a thin slab at a depth z, and then summing

up all the contributions from the graded interface, making allowance for the change in phase ei Qz. The

density profile of the interface is given by the function f (z), which is normalized so that f (z) → 1 as

z → ∞ as shown in Fig. 3.10. In addition since the density profile represents an interface it must obey

the condition that f (z) → 0 as z → −∞. From Eq. (3.24) the contribution to the reflectivity from an

infinitesimal thin slab at depth z is

δr(Q) = −i

(
Q2

c

4Q

)
f (z) dz

The amplitude reflectivity for the superposition of infinitesimal layers is thus

r(Q) = −i

(
Q2

c

4Q

) ∫ ∞

−∞
f (z) eiQzdz

= i
1

iQ

(
Q2

c

4Q

) ∫ ∞

−∞
f ′(z) eiQzdz

= rF (Q) φ(Q) (3.27)

where rF(Q) is the Fresnel reflectivity, and φ(Q) is defined by

φ(Q) =

∫ ∞

−∞
f ′(z) eiQzdz

In the second line of Eq. (3.27) we have used partial integration, and in the third we have used the

expression from Eq. (3.22) for the Fresnel reflectivity of a sharp interface in the limit q � 1. The
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measured reflectivity is the intensity reflectivity, obtained as the absolute square of r(Q). The master

formula for the intensity reflectivity of a graded interface is therefore

R(Q)

R
F

(Q)
=

∣∣∣∣∣∣∣∣
∞∫

−∞

(
d f

dz

)
eiQz dz

∣∣∣∣∣∣∣∣
2

(3.28)

or expressed in words: the ratio between the actual reflectivity and that for an ideal sharp interface is the

absolute square of the Fourier transform of the normalized gradient of the density across the interface.

In Appendix E the reader is reminded of the definition of the Fourier transform.

The master formula is particularly useful as it allows analytical expressions to be used for the

density gradient at an interface. One commonly used function in this context is the error function

f (z) = erf

(
z√
2σ

)

where σ is a measure of the width of the graded region. The derivative of the error function is a

Gaussian
d f (z)

dz
=

1
√

2πσ2
e−

1
2

( z
σ

)2

and the Fourier transform of a Gaussian is another Gaussian, e−Q2σ2/2 (see Appendix E). The intensity

reflectivity for this model may then be written in the compact form

R(Q) = RF(Q) e−Q2σ2

(3.29)

It was pointed out by Névot and Croce [1980] that the reflectivity as given in Eq. (3.29) violates

time reversal and therefore is incorrect. The correct solution as discussed also by Dosch [1992] is

R(Q) = RF(Q) e−QQ′σ2

where Q = k sin θ and Q′ = k′ sin θ′. In practice the difference seldom matters.

3.8 Rough interfaces and surfaces

Real interfaces are rarely, if ever, perfectly flat or uniformly graded. Instead it is expected that the

height of an interface has a degree of randomness, in other words the interface is rough. In this section

it is explained how the presence of roughness gives rise to distinctive features in the X-ray reflectivity.

In keeping with the approach adopted in the preceding sections the reflectivity from a rough interface

is treated within the kinematical approximation, where the scattering is assumed to be weak so that

multiple reflections may be neglected. This approach has the advantage that it is possible to understand

the effects of roughness by comparing directly the results for a rough interface with the limiting form

of the Fresnel reflectivity from a flat interface, which varies as (Qc/2Qz)
4 at high angles.

The formalism in this section differs from what has gone before in that the interface is now described

by a statistical distribution [Wong, 1985, Sinha et al., 1988, Cowley, 1994]. In addition the heights
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of the interface (or surface) at different points on the rough interface are correlated in a way that is

characteristic of the particular type of roughness. One important consequence of the existence of these

correlations is that the reflectivity is no longer necessarily strictly specular, as is the case for the Fresnel

reflectivity from a sharp interface or from a graded but flat interface. Instead it develops a diffuse

component, which is also referred to as the off-specular reflectivity.

Figure 3.11(a) illustrates the reflection of an X-ray beam from a rough surface. A beam of intensity

I0 is incident at a glancing angle θ1, and the reflected beam is observed at a glancing exit angle θ2.

The incident beam illuminates a volume V (indicated by the darker shading) to a depth determined by

the absorption coefficient. Within the kinematical approximation the reflected amplitude of the beam

is calculated by summing all of the beams scattered from volume elements dr within V , taking into

account the appropriate phase factors. The scattering amplitude is

rV = −r0

∫
V

(ρdr) ei Q·r (3.30)

Here r0 is the Thomson scattering length of a single electron, (ρdr) is the number of electrons in a

volume element centred at position r, and the last term in the integrand is the phase factor. The volume

integral can be transformed to a surface integral using Gauss’ theorem, which states that∫
V

(∇ · C) dr =

∫
S

C · dS

where C is a vector field, S refers to the surface, and dS is normal to the surface at position (x, y) and

has a magnitude equal to dxdy.

Gauss’ theorem may be applied to transform Eq. (3.30) to a surface integral in the following way.

Let C be the unit vector ẑ along the z axis multiplied by the function eiQ·r/(iQz). The divergence of C is

then ∇ ·C=eiQ·r/(iQz) ×(iQz)=eiQ·r, which is the integrand in Eq. (3.30). Expressed as a surface integral

the scattering amplitude becomes

rS = −r0

∫
V

(ρdr) ei Q·r

= −r0ρ

(
1

iQz

) ∫
S

ei Q·r ẑ · dS

The dot product ẑ·dS is the area element of the rough surface projected onto the x−y plane, ẑ·dS = dxdy,

so that

rS = −r0ρ

(
1

iQz

) ∫
S

ei Q·r dxdy

It should be noted that the rough surface is not the entire surface enclosing the volume V , as Gauss’

formula assumes. However, the lower surface of V does not contribute, since the depth of V can be

chosen such that, by the time the beam has penetrated to the lower surface, absorption reduces the

beam intensity effectively to zero.

To proceed let the height variation of the rough surface be given by the function h(x, y). Then the

scalar product of Q and r is Q · r = Qzh(x, y) +(Qxx + Qyy), so that the scattering amplitude from the

surface is simply

rS = −r0ρ

(
1

iQz

) ∫
S

ei Qzh(x,y)ei(Qx x+Qyy) dxdy
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Fig. 3.11 (a) Scattering from a rough surface. (b) Definition of ΔQx.

The differential scattering cross-section, (dσ/dΩ), is the absolute square of the scattering amplitude

(see Appendix A): (
dσ

dΩ

)
=

(
r

0
ρ

Qz

)2 ∫
eiQz[h(x,y)−h(x′ ,y′)] eiQx(x−x′)eiQy(y−y′) dxdx′dydy′

It is now assumed that the difference in heights, h(x, y)−h(x′, y′), depends only on the relative difference

in position (x − x′, y − y′). The four-dimensional integral above then reduces to the product of two

two-dimensional integrals, one of which is simply
∫

dxdy = A0/ sin θ1, the illuminated surface area,

and we obtain (
dσ

dΩ

)
=

(
r0ρ

Qz

)2 (
A0

sin θ1

) ∫
〈eiQz[h(0,0)−h(x,y)]〉ei(Qx x+Qyy) dxdy

The angular brackets indicate an ensemble average: for a fixed (x′, y′) one evaluates the average value

of the function for all possible choices of the origin within the illuminated area. (We note in passing
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that the right hand side of the formula has the correct dimension of area.) One further assumption is

now introduced, namely that the statistics of the height variations are Gaussian, with the consequence

that the cross-section may be written as

(
dσ

dΩ

)
=

(
r

0
ρ

Qz

)2 (
A0

sin θ1

) ∫
e−Q2

z 〈[h(0,0)−h(x,y)]2〉/2 ei(Qx x+Qyy) dxdy (3.31)

This follows from the Baker-Hausdorff theorem, which is proved in Appendix D. In the following the

reflectivity is calculated for different models of the function g(x, y) describing the ensemble average of

height differences, where

g(x, y) = 〈[h(0, 0)− h(x, y)]2〉

3.8.1 The limiting case of Fresnel reflectivity

It is instructive to first check Eq. (3.31) against the kinematical form of the Fresnel reflectivity from a

flat interface. To do so we set h(x, y) = 0 for all (x, y) with the result that(
dσ

dΩ

)
Fresnel

=

(
r0
ρ

Qz

)2 (
A0

sin θ1

) ∫
ei(Qx x+Qyy) dxdy (3.32)

From the definition of the Fourier transform (see Appendix E) it can be seen that if F(q) = 2πδ(q) then

f (x) = (1/2π)
∫

F(q)e−iqxdq = 1, and since also by definition F(q) =
∫

f (x)eiqxdx =
∫

1 eiqxdx, the

double integral above is equal to (2π)2δ(Qx)δ(Qy), and thus

(
dσ

dΩ

)
Fresnel

=

(
2πr0ρ

Qz

)2 (
A0

sin θ1

)
δ(Qx)δ(Qy)

In order to make a connection between the cross-section, which has been derived here, and the

formula for the intensity reflectivity that was derived earlier, we recall that the scattered intensity is

related to the differential cross-section through

Isc =

(
I0

A0

) (
dσ

dΩ

)
ΔΩ

(see Appendix A). The element of solid angle ΔΩ is evaluated with the help of Fig. 3.11(b), which

shows the relationship between the angular variables (θ1, θ2) and the wavevector variables (ΔQx,ΔQy).

It is clear from this figure that kΔθ2 sin θ2 = ΔQx, and as the y axis is perpendicular to the plane of the

paper kΔϕ = ΔQy. Then since ΔΩ = Δθ2Δϕ the expression for the intensity becomes

Isc =

(
I0

A0

) (
dσ

dΩ

)
ΔQxΔQy

k2 sin θ2

Inserting now the Fresnel scattering cross-section it can be seen that the delta functions in Qx and Qy

imply that the Fresnel reflectivity is confined to the specular direction, θ1 = θ2. Furthermore we note

that k2 sin θ1 sin θ2 = (Qz/2)2, and recall from Eq. (3.21) that 2πr
0
ρ = Q2

c/8, where the term f ′/Z due
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to the dispersion correction has been neglected. Collecting all of these factors together the intensity

reflectivity is

R(Qz) =
Isc

I0
=

(
Q2

c/8

Qz

)2 (
1

Qz/2

)2

=

(
Qc

2Qz

)4

which is the expected form of the Fresnel reflectivity in the kinematical limit.

3.8.2 Uncorrelated surfaces

It is now assumed that the heights at different points (x, y) vary without any correlation: the height at

(x′, y′) is independent of the height at (x, y) no matter how close (x, y) is to (x′, y′). For points close to

each other this is clearly an unphysical assumption, but it is instructive to carry out the analysis of this

model anyway. For an uncorrelated surface the ensemble average of height differences Eq. (3.31) is

〈[h(0, 0) − h(x, y)]2〉 = 2〈h2〉 − 2〈h(0, 0)〉〈h(x, y)〉 = 2〈h2〉

where the average value of h is defined to coincide with z = 0. The cross-section then has the form(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 (
A0

sin θ1

)
e−Q2

zσ
2

∫
ei(Qx x+Qyy) dxdy (3.33)

which from Eq. (3.32) may be re-expressed as

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
zσ

2

(3.34)

where σ =
√
〈h2〉 is the rms roughness. From this the following points may be concluded:

(a) Fluctuations in height due to roughness diminish the Fresnel reflectivity. The Q dependence of

this reduction, given in Eq. (3.34), is very much like the Debye-Waller factor we shall discuss in

connection with thermal vibrations of atoms in a crystal in Chapter 5.

(b) Since the height fluctuations are uncorrelated, the scattering is confined to the specular direction,

as for the perfectly sharp interface.

(c) The result is identical to Eq. (3.29) for the particular example of a graded, but flat, surface. This

illustrates that different models may yield the same reflectivity curve. In other words, reflectivity

experiments cannot uniquely reveal the true nature of an interface.

3.8.3 Correlated surfaces

Our starting point is again Eq. (3.31). The difference from the previous section is that now the height

fluctuations are correlated. It is further assumed that the correlations are isotropic in the plane of the

surface (or interface), or in other words that g(x, y) depends only on r = |r| =
√

x2 + y2. For correlated

surfaces it is possible to distinguish between two different cases, depending on the behaviour of g(x, y)

in the limit that r → ∞.



3.8 Rough interfaces and surfaces 95

The first case to consider is when g(x, y) is given by

g(x, y) = 〈[h(0, 0) − h(x, y)]2〉 = Ar2h

In this case the height fluctuations develop without limit as r → ∞. This type of roughness is displayed

by fractal surfaces, and the exponent h determines the morphology of the surface: if h � 1 the surface

is jagged, while as h → 1 it becomes smoother. To evaluate the reflectivity in this case we simplify the

mathematics by setting y = 0 in Eq. (3.31). This is justified if the resolution in the Qy direction is very

broad, as the intensity is proportional to the integral∫ ∞

−∞
ei Qyy dQy ∝ δ(y)

The problem then reduces to evaluating a one-dimensional integral, and as g(x, y) depends on |x| it is a

symmetric function so that Eq. (3.31) becomes(
dσ

dΩ

)
=

(
r0
ρ

Qz

)2 (
A0

sin θ1

) ∫ ∞

0

e−AQ2
z |x|2h/2 cos(Qxx) dx

In general the integral must be evaluated numerically, except for when h = 1/2 or h = 1, where it may

be evaluated analytically using the results given in Appendix E to give

h =
1

2
⇒

(
dσ

dΩ

)
=

⎛⎜⎜⎜⎜⎝ A0r2
0
ρ2

2 sin θ1

⎞⎟⎟⎟⎟⎠ A(
Q2

x + (A/2)2 Q4
z

) (3.35)

h = 1 ⇒
(

dσ

dΩ

)
=

⎛⎜⎜⎜⎜⎝2
√
πA0r2

0ρ
2

sin θ1

⎞⎟⎟⎟⎟⎠ 1

Q4
z

e
− 1

2

(
Q2

x

AQ2
z

)
(3.36)

The first has a Lorentzian lineshape as a function of Qx with a half width of AQ2
z /2, while the second

has a Gaussian lineshape with the variance of AQ2
z . It is clear that the reflectivity from a surface where

the height correlations are unbounded is completely diffuse, that is it lacks a delta function component in

x (or y). This is contrast to the earlier cases of flat or uncorrelated surfaces, which have purely specular

reflectivities. To illustrate this we show in Fig. 3.12 the reflectivity calculated using Eq. (3.35). Scans

of Qx at different fixed values of Qz display a Lorentzian lineshape with a width that is proportional to

Q2
z .

The second case to consider is where the height fluctuations remain finite as r → ∞. This is best

explored by writing

g(x, y) = 〈[h(0, 0) − h(x, y)]2〉 = 2〈h2〉 − 2〈h(0, 0)h(x, y)〉
= 2σ2 − 2 C(x, y) (3.37)

where C(x, y) = 〈h(0, 0)h(x, y)〉 is known as the height-height correlation function. For example, if

C(x, y)=σ2e−(r/ξ)2h

then it can be seen that for r � ξ, g(x, y) ∝ r2h, and that as r → ∞, g(x, y) → 2σ2 as

required. From Eqs. (3.31) and (3.37) the cross-section becomes(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 (
A0

sin θ1

)
e−Q2

zσ
2

∫
eQ2

z C(x,y)ei(Qx x+Qyy) dxdy
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Fig. 3.12 Top: the diffuse scattering from a rough surface described by g(x, y) = Ar2h with h = 1/2 ( see Eq. (3.35)). The

coordinate system is such that Qz is perpendicular to the surface, and Qx lies in the surface plane. The intensity has been plotted

on a logarithmic scale. Bottom: Qx scans at different values of Qz indicated by the dashed lines in the top part of the figure. For

clarity, each of the scans has been normalized to unity. The lineshape is seen to be Lorentzian, with a width that broadens as a

function of Qz.
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By rewriting it in the form(
r

0
ρ

Qz

)2 (
A0

sin θ1

)
e−Q2

zσ
2

∫ [
eQ2

z C(x,y) − 1 + 1
]

ei(Qx x+Qyy) dxdy

it is possible to separate it into a specular and diffuse (or off-specular) term, since the last term in the

square brackets is evidently the specular reflectivity from an uncorrelated surface given by Eq. (3.33).

The total cross-section then becomes

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
zσ

2

+

(
dσ

dΩ

)
diffuse

(3.38)

where the diffuse component is now given by(
dσ

dΩ

)
diffuse

=

(
r

0
ρ

Qz

)2 (
A0

sin θ1

)
e−Q2

zσ
2

Fdiffuse(Q)

with

Fdiffuse(Q) ≡
∫ [

eQ2
z C(x,y) − 1

]
ei(Qx x+Qyy) dxdy

The scattering from a surface where the height fluctuations are bounded therefore consists of two

components. As a function of Qx (or Qy) the scattering has a sharp specular component superimposed

on a diffuse component. In an experiment the ratio of the two will depend on the instrumental resolution.

This takes us beyond the scope of this introduction, but it should be clear that X-ray reflectivity is a

useful probe of the correlations displayed by rough surfaces.

3.9 Examples of reflectivity studies

Two examples of reflectivity studies are given. In the first the specular reflectivity from a Langmuir

layer is considered. Although such a layer is a heterogeneous structure formed from complex

organic molecules it turns out that X-ray reflectivity is an excellent tool for characterizing the overall

morphology of such a layer. The second example concerns the reflectivity from liquid crystals. By

studying the specular and off-specular reflectivities together it is shown how it is possible to understand

the detailed nature of the critical fluctuations associated with the phase transitions in these systems.

3.9.1 Langmuir layers

X-ray reflectivity can be used to study heterogeneous structures with one or more atomic or molecular

layers on a substrate. One such example is a so-called Langmuir layer. These are composed of insoluble

amphiphilic molecules, with a hydrophilic chemical group at one end, and a hydrophobic chemical

group at the other. When dissolved in a volatile solvent, for example chloroform, a drop of the resulting

solution can be spread onto a water surface. The solvent quickly evaporates, and with the appropriate

concentration one is left with a monolayer of amphiphilic molecules on top of the water surface: a

Langmuir layer.

An example is shown in Fig. 3.13�. The hydrophobic part is a hydrocarbon chain (CH2)nCH3

terminating in a methyl group, and the hydrophilic part is carboxylic acid COOH. When the pH of the
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subphase is increased by adding a base like NH3 or Na(OH), the carboxylic acid is charged to COO−.

If in addition the subphase contains positive and negative ions from a salt, in the present case CdCl2,

the positive ions will be attracted to the negatively charged COO− head groups.

We shall now discuss the modelling of the reflectivity data given in the upper right panel. As a

first approximation the electron density of the molecules shown in the upper left panel can be modelled

as a series of boxes: the upper box of the hydrocarbon tail is of length �t with a density ρt; then

comes the head group, represented by a shorter box of length �h, but with a higher density ρh; finally

a semi-infinite box corresponding to the water subphase of density ρw. The reflected waves from the

different interfaces have different phases. Choosing the origin to be in the middle of the head-box,

the phase from the upper interface of the tail box is φ1 = Q(�t + �h/2), the phase form the upper

interface of the head-box is φ2 = Q�h/2, and −φ2 from the lowest interface. We can readily allow for

imperfectly sharp interfaces between the different boxes using the master formula of Eq. (3.28), and

by assuming that the change in density between the different boxes can be represented adequately by

an error function (see Eq. (3.29)). The density and its derivative are shown schematically in the lower

panel of Fig. 3.13�. The Fourier transform of the density gradient then assumes the simple form

φ(Q) =

∫
ρ′(z)

ρw

eiQzdz

= e−Q2σ2/2

[
ρte

−iφ1 + (ρh − ρt)e
−iφ2 − (ρh − ρw)eiφ2

]
ρw

For this two-box model five parameters can be obtained by fitting it to the data; two for each box

(length and density) plus a common smearing parameter. However, one can constrain the model from a

knowledge of the molecular chemistry. For example, if there were no counter ions in the subphase, then

the total number of electrons in the tail and head group together is known from the chemical formula

CH3-(CH2)18-COO−. Least-squares fits of |φ(Q)|2 ≡ R(Q)/RF(Q) to the data are represented by the

solid lines in the plot of the reflectivity data, and the values of the parameters deduced from the fits are

given in the figure caption.

Dramatic differences in the reflectivity curve are apparent when the pH is altered. In (a) it was

adjusted by adding NH3, which resulted in singly charged Cd(OH)+ ions being attracted to the COO−

head group in a 1:1 ratio. In (b) the base was Na(OH) and in this case doubly charged Cd++ ions were

attracted in the ratio 1:2.

3.9.2 Free surface of liquid crystals

Liquid crystals consist of long molecules with a typical length-to-diameter ratio of 5:1. In the upper

part of Fig. 3.14 we show an example of a liquid crystal molecule, for brevity labelled nCB, consisting

of a hydrocarbon chain CnH2n+1 terminating in two aromatic rings. Two such molecules pair head-

to-head, and this entity is considered as one rod-shaped building block of the structures that form at

different temperatures. One must differentiate between the positional and the orientational order of

such a building block. In the isotropic phase (I) both the position and orientation of the molecules are

disordered, whereas in the nematic phase (N) the positions are disordered, but all molecules have a

particular average direction. For the smectic-A phase (SmA) the common orientation is maintained,

and in addition the molecules are ordered in layers perpendicular to their long axis with a well-defined

repetition distance between the layers, but with positional disorder within the same layer. The smectic-

A phase is a particularly interesting object from a structural point of view as it is like a solid crystal in

one direction, and, in the plane perpendicular to it, it is like a liquid. Different sequences of transitions
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Fig. 3.13 � Top left: Langmuir layer of arachidic acid (n=20) on a salt solution of CdCl2. Top right: the measured reflectivity
data, normalized to the Fresnel reflectivity, and plotted as a function of Q/Qc, where Qc=0.0217 Å−1 is the critical wavevector of

water. Curves (a) and (b) correspond to pH adjustments with NH3 and Na(OH), respectively [Leveiller et al., 1994]. The dramatic

difference shows that in the first case monovalent Cd(OH)+ ions are bound to the monovalent COO− head group in approximately

a 1:1 ratio, whereas in the second case divalent Cd++ ions are bound in approximately the ratio 1:2. Bottom: two-box model of

the density variation across the interfaces of a Langmuir layer on water. Each interface is smeared by a common parameter σ.

Parameters deduced from fits to data: (a) ρh/ρw = 2.28, ρt/ρw = 1.08, �h = 6.2 Å, �t = 22.0 Å, σ = 1.36 Å; (b) ρh/ρw = 3.35,

ρt/ρw = 1.01, �h = 2.7 Å, �t = 23.4 Å, σ = 2.74 Å. The monolayer coverage was 75% in both cases.
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Fig. 3.14 Liquid crystals consist of long, rod-shaped molecules (top left). Different phases are characterized by both positional

and orientational order of the molecules. In the isotropic phase both of these are disordered. In the nematic phase the position of

the molecules is still random, but they all have a common average orientation, the so-called director field. In the smectic-A phase

the position of the molecules along the director field is ordered in layers with a repeat distance d but within a given layer the

positions are random: it is like a crystal in one direction and like a liquid in the two perpendicular directions. A density model

of two smectic layers on top of the isotropic phase is shown top right. This model was used to interpret reflectivity data (lower
panel) from the molecule 12CB, which with decreasing temperature goes from the isotropic phase directly to the smectic-A

phase [Ocko et al., 1986]. As the transition is approached a distinct number of layers form at the surface. In the lower figure, f)

corresponds to zero layers, e) to one layer, etc.
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between these phases may occur. With decreasing temperature one may find I→SmA, or I→N→SmA.

Here the I→N transition is first order, but the N→SmA transition may be discontinuous or continuous.

In the latter case critical fluctuations of short-range ordered SmA regions in the N matrix become more

and more extended as the N→SmA transition temperature is approached.

In the bottom part of Fig. 3.14 we show data at different temperatures in the isotropic phase for

12CB. This compound has no nematic phase but goes directly from the I phase to the SmA phase in a

first-order transition. The reflectivity data shows that as the transition is approached by decreasing the

temperature a discrete number of layers build up: the bottom curve corresponds to no layering, the next

curve corresponds to one layer, the next to two layers and so on. Modelling of two layers is indicated

in the upper right panel of Fig. 3.14. The smectic-A layering is a modulation of the density and may be

modelled by a sine curve, which in the example shown has two repetitions, each of length d. Adjustable

parameters used in fitting to the data are the amplitude BS (best value is 0.12 of the bulk density), the

phase displacement of the sine-curve with respect to the surface (best value 0.35d) , and also a smearing

of the surface (best r.m.s. value is 0.12d ). In fact, all of these parameters are the same for all of the full

lines in the plot, except the number of layers N, i.e. the number of periods of the sine wave density.

All it takes to obtain a nematic phase between the I phase and the SmA phase is a shortening of the

aliphatic tail of the nCB molecules from n=12 to say n=8. The surface layering is now quite different

and so is the scattering and reflectivity data shown in Fig. 3.15.

Let us now consider the scattering from the schematic model shown in the bottom part of Fig. 3.15,

and see that this is indeed consistent with the data shown in the top part of the figure. The surface

layering has a well defined lattice spacing d, so as usual it must give a peak in the reflectivity curve

when Qz=2π/d. If the layer structure is extended very far in the lateral directions, it means that the

corresponding scattering must be very confined in reciprocal space, i.e. the surface layering as shown

must show up in the specular reflecting direction, and be modulated with a peak at Q0=2π/d, c.f.

the open circles in the left data panel. A scan in the same direction, but slightly displaced from the

specular line, looks very different (filled squares in the left data-panel). The intensity is much lower

and the peak is symmetric, although it has about the same width as the specular peak. Finally a scan

in the lateral direction at fixed Qz=2π/d (right data panel) shows a superposition of a very narrow

peak, corresponding to the surface layering as already discussed, on top of a much broader peak, which

must reflect the bulk SmA clusters occurring in the nematic matrix. It is remarkable that one can in

this case so clearly separate scattering from the bulk from scattering near the surface. The width of the

central peak in the Qx-scan is resolution limited and proves that the layering is perfect over macroscopic

distances. That the width of the surface Qz-scan coincides with that of the bulk Qz-scan tells us that

the penetration of the surface layering is identical to the extent of the critical fluctuations: another

remarkable feature that was found at all temperatures in the nematic phase. The reader is referred to

the original research article to explain why this is so.

3.10 X-ray optics

3.10.1 Refractive X-ray optics

The ability to manipulate beams of visible light with lenses is of fundamental importance for ordinary

optics. Optical lenses made from glass or plastic work so effectively since their refractive index deviates

considerably from unity, and this produces a significant change in the direction of light propagation at

the air–lens interface. In addition they are transparent and hardly any losses take place in transmitting

the beam through the lens. As we have seen, refraction at an interface also occurs for X-rays, but there
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Fig. 3.15 Top: Intensity vs. wavevector transfer near the second-order phase transition N → SmA of the liquid crystal 8CB in

a free-surface geometry. The left panel shows the longitudinal scans indicated by the two green lines in the scattering diagram,

whereas the right panel is the transverse scan indicated by the blue line. Q0 is 2π/d, d being the lattice plane spacing [Pershan

et al., 1987]. Middle: reciprocal space. Critical scattering from the bulk SmA clusters are indicated by the shaded ellipses.
Scattering from the surface layering is confined to the Qz-axis, peaking at Qz = Q0. Bottom: schematic model for the surface

layering used to interpret the data. Horizontal lines indicate planes of SmA molecules. The two Qz-scans show that the surface

penetration depth ξs equals the bulk longitudinal correlation length ξl of the critical fluctuations.
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(a) Visible light,  n > 1

(b) X-rays,  n < 1, single and double lenses

(c) X-rays, compound lens

(d) Silicon compound refractive lenses 

Fig. 3.16 A comparison of converging lenses for visible light (a) and X-rays ((b) and (c)). The shaded areas represent material,
and the white areas cavities. In (c), the dashed lines indicate double lenses as shown in the bottom part of (b). The shape of

a converging X-ray lens, is like that of a diverging lens for visible light. (d) Image of an array of X-ray lenses fabricated from

silicon. In this example the lenses are parabolic, which is a better approximation to the ideal ellipse than a circle. (Image courtesy

of Bruno Lengeler.)
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are two basic differences from the case of visible light: the deviation in the index of refraction from

unity is tiny, of order 10−5; and the refractive index is less than one, not greater than one as it is for

visible light. The latter implies that the shape of a converging X-ray lens must be the same as that of a

diverging optical lens as illustrated in Fig. 3.16(a) and (b).

One consequence of the refractive index in the X-ray region being close to unity is that the focal

length f of a single lens would be of order 100 m, which is impractically long for most applications.

However, with a series of single lenses the combined focal length may be reduced in proportion to the

number of lenses [Snigirev et al., 1996], see Fig. 3.16(c), making it compatible with the tens of metres

or so available on a typical beam line at an X-ray synchrotron source.

In the context of imaging applications (see Chapter 9), one important figure of merit is the spatial

resolutionΔx perpendicular to the optical axis. For a perfect lens of diameter D the minimum resolvable

feature is by convention taken to be given by the Rayleigh criterion:

Δx = 1.22

(
λ f

D

)
(3.39)

For fixed wavelength, the spatial resolution can therefore be improved by decreasing the focal length

and/or increasing the aperture of the lens.

In the following section the ideal shape of the air–lens interface needed to achieve focusing is

derived, along with the formulae for the focal length and the spatial resolution.

The ideal shape of an X-ray lens

Figure 3.17(a) illustrates the focusing of an incident X-ray beam by a lens. The incident beam is

assumed to be a plane wave which can hence be represented by a series of parallel rays. The X-ray

beam enters the material perpendicular to the lower flat interface, traverses the lens, and is refracted

on exiting the material via a curved interface such that all of the incident rays are focused at point F.

Our objective is to derive an expression for the shape of the curved interface. The most direct way of

achieving this is to invoke Fermat’s principle [Evans-Lutterodt et al., 2003]. In the current context we

take this to mean that the optical path length (the product of the refractive index and the geometrical

path length) of all of the rays shown in Fig. 3.17(a) are the same, since the transit of any of the rays then

takes the same minimal time to reach the focal point. For example, the central ray on the optical axis,

indicated by the dashed line, has the shortest total geometrical path length, and takes the shortest path

through the material. Other rays have an increased geometrical path, but the same optical path length

as the central ray since they traverse a longer distance in the material for which n < 1.

Now consider Fig. 3.17(b), in which we show just two rays: one on the optical axis which enters

the lens at A, and one a distance x off of the optical axis which enters the lens at P′. The latter traverses

the material along the geometrical distance y(x) parallel to the optical axis, and thus has an optical path

length of P′P = ny = (1−δ)y. Applying Fermat’s principle then requires that AF = P′P+PF. Inserting

AF = f and (PF)2 = x2 + ( f − y)2 leads to

x2 + (2δ − δ2)y2 − 2 f δy = 0 (3.40)

This is recognizable as the equation of an ellipse:

x2

a2
+

(y − b)2

b2
= 1

since it can be recast as

x2 + (a/b)2 y2 − 2(a2/b)y = 0 (3.41)
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Fig. 3.17 The ideal shape of an X-ray lens. (a) A plane wave X-ray beam (represented by parallel rays) impinges at normal

incidence to a solid material (grey region). Depending on the distance from the optical axis (dashed line), X-rays traverse varying
thickness of material, before being refracted at a curved interface. If the curved interface is elliptical, then all of the exit rays are

focused at point F. (b) Construction used to established that the ideal interface for a X-ray lens is an ellipse, where a and b are

the semi-minor and semi-major axes of the ellipse, respectively.

where a and b are the semi-axes. By comparing Eqs. (3.40) with (3.41) we obtain the following

expressions for the semi-axes of the ellipse:

b =
f

2 − δ ≈
f

2

and

a = f

√
δ

2 − δ ≈ f

√
δ

2

This established that the ideal shape of a lens for focusing a beam of X-rays is an ellipse with

axes given by the above formulae. From Eqs. (3.39) and the above expressions for a and b, the spatial

resolution of an elliptical lens is

Δx = 1.22

(
λ f

2a

)
= 1.22

(
λ√
2δ

)
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which depends on the X-ray wavelength and choice of lens material only.

It is useful to consider approximations to the ideal elliptical shape in the vicinity of A in Fig. 3.17(b).

For example, it may be approximated by the circle x2 + (y − R)2 = R2 where the radius R of the circle

by comparison with Eq. (3.41) is

R = (a2/b) = f δ (3.42)

Alternatively it may be approximated by a parabola

y =
x2

2R
=

x2

2 f δ

Compound refractive lenses

Equation (3.42) implies that reducing the focal length of a single lens can only be achieved at the

expense of limiting its aperture, and hence its efficiency as a focusing element in an optical system.

The compound refractive lens sketched in Fig. 3.16(c) overcomes this conflict, as in this case the focal

length is reduced in proportion to the number of lenses. In its simplest form, a compound refractive lens

is formed by the simple expedience of drilling N holes into a solid block of material, thereby creating

2N lenses with a focal length of

f2N =
R

2Nδ
(3.43)

By way of a numerical example, consider an array of lenses formed by drilling a series of 30 holes

of 2 mm diameter in Beryllium (Z=4), where the centre spacing of the holes is 2.1 mm. For a photon

energy of 10 keV, δ=3.41 × 10−6 and the focal length is f
N
= 4.9 m. While this may seem a little

long, it is in fact well matched to the length of a typical synchrotron beamline, and arrays of lenses of

the type illustrated in Fig. 3.16 have been used to successfully focus X-rays [Snigirev et al., 1996].

One potential problem with this type of lens is absorption. For Beryllium the absorption coefficient

at 10 keV is μ = 1/(9589 μm), and the transmission is exp(−31 × 0.1 × 10−3/9589 × 10−6), or some

72%, more than sufficient for most applications. For an incident beam diameter of R/2 = 0.5 mm, the

transmission would be 65%. Quadrupling the number of lenses, for example, to obtain a shorter focal

length, and consequently higher spatial resolution, would diminish the transmission considerably.

An image of an array of compound refractive lenses fabricated from silicon is shown in Fig. 3.16(d).

The lenses were designed to have a parabolic profile, rather than a paraboloidal shape, and hence

produce a line focus. By deploying a crossed pair one obtains two-dimensional focusing. For the

lenses shown, the spatial resolution achieved was 115×160 nm2 [Lengeler et al., 2005].

Kinoform lenses and the Fresnel zone plate

An important observation to be made about the paths taken by the different rays shown in Fig. 3.17(a)

is that the performance of the lens is insensitive to relative changes in the optical path length of the

individual rays by an integer number of wavelengths. Here we define Λ to be the distance that a ray

must travel in a material to be composed of one fewer wavelengths than a ray propagating in vacuum.

It follows that Λ is determined by the condition

Λ = (N + 1)λ0 = Nλ = N (1 + δ) λ0

or in other words

Λ =
λ0

δ



3.10 X-ray optics 107

Λ =
λ
δ

(a) (b)

(c)

Fig. 3.18 (a) A kinoform lens formed by removing those regions of an elliptical lens that phase shift the wave in the material by

an integer number of wavelengths relative to a wave propagating in vacuum. The length of these regions parallel to the optical axis

is a multiple of the distance Λ = λ/δ. (b) A kinoform Fresnel zone plate. (c) Scanning electron microscopy image of a kinoform

lens fabricated from silicon designed to work at an X-ray wavelength of 1 Å. (Image courtesy of Kenneth Evans-Lutterodt.)
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For hard X-rays, δ is of order 10−5 − 10−6, and so Λ is of order 10 − 100 μm. Removing a length Λ

of material from the appropriate section of a lens therefore does not adversely affect its function, but

does have the beneficial consequence of reducing the absorption of the beam. This is the basic idea

behind the design of the so-called kinoform lens shown schematically in Fig. 3.18(a). The horizontal

lines indicate the depths where the central ray through x = 0 and the rays inside the material are

in phase. Using electron beam lithographic techniques the feasibility of producing kinoform lenses

for hard X-rays has been demonstrated [Evans-Lutterodt et al., 2003]. An example is shown in Fig.

3.18(c).

At optical wavelengths, it is straightforward to manufacture a more compact lens by removing

all of the 2π phase shifting regions completely, as sketched in Fig. 3.18(b). This structure is known

as a kinoform Fresnel zone plate (FZP). Manufacturing a FZP for X-rays with a profile that follows

faithfully the kinoform shown in Fig. 3.18(b) is currently beyond the scope of what is possible with

micro-fabrication techniques. Instead, for X-ray applications a binary approximation is employed when

designing FZPs.

In Chapter 9 on imaging we consider further the properties and applications of X-ray lenses

including binary FZPs.

3.10.2 Curved mirrors

One important application of X-ray reflectivity is the X-ray mirror. The mirror surface is often coated

with a heavy material, like gold or platinum, in order to obtain a relatively large electron density. This

produces a comparatively large critical angle for total reflection, thereby reducing the required length

of the mirror. Such mirrors can be used to filter out the higher-order contamination from a beam

monochromatized by Bragg reflection from a single crystal. This is rather obvious from the top part of

Fig. 3.5�: with a glancing angle α ≤ αc for the fundamental wavevector k of the beam, one obtains

close to 100% reflectivity, but the ν’th order wavevector transfer will be ν(2k sinα) and thus larger than

Qc by approximately a factor ν, so the reflectivity is reduced by approximately (2ν)4. In addition to

serving as a low bandpass filter, a mirror may also be curved, and in this way one obtains a focusing

optical element for X-rays.

In the ideal mirror device all rays from one particular point will be reflected by the mirror and

focused into another point. We distinguish between two cases: in tangential focusing (also known

meridional focusing) all the rays are in one and the same plane, spanned by the incident and reflected

central rays; whereas in sagittal focusing it is the focusing of rays with a component perpendicular to

this plane that is considered.

We shall first consider tangential focusing which is the simpler case since it only requires planar

geometry. The ideal shape of a focusing mirror is an ellipse. An ellipse can be considered as the

projection of a circle, where the projection angle, u, determines the ratio between the minor axis, b, and

the major axis, a:
b

a
= cos u

A ray emitted from the centre of the circle is reflected back into itself. In an ellipse, the circle centre

splits into two focal points, F1 and F2. A ray emitted in any arbitrary direction from one focal point

will be reflected into the other focal point3.

3Although this may be well known we shall give an elementary proof. Consider in Fig. 3.19 a point P on the ellipse at distance

p(q) from the focal point F1(F2). The basic property of an ellipse is that p + q is constant. Let us find a neighbouring point to

P – neighbouring means that the point is on the tangent to the point P. Let point Q be a small amount δ further away from F1
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Fig. 3.19 Elementary proof that the tangent in a point of an ellipse bisects the angle of the rays from the two foci to the point.

The angle RPP′ is equal to the angle QPP′ and hence a ray from F1 will be focused at F2.

For simplicity, we shall in the following restrict the point P to be the symmetric midpoint between

F1 and F2, providing 1:1 focusing. As shown in Fig. 3.20, the constant sum of distances to the two

focal points equals the major diameter 2a since F1A + F2A = 2a, and therefore F1B = F2B = a. From

the general equation of optics:
1

p
+

1

q
=

1

f

where p(q) is the distance from source (image) to the optical element having the focal length f , it

follows that for p = q = a one finds f = a/2.

Next we consider sagittal focusing. Imagine that the considered ellipse is rotated around the major

axis forming an ellipsoid as shown in the bottom part of the figure. In an ellipsoid any ray from one

focal point is focused on to the other focal point. In particular the sagittal rays from F1 to anywhere

on a line perpendicular to the plane of central rays through B will be focused in F2 as indicated in the

bottom part of the Fig. 3.20.

In the following we discuss the best approximation to tangential and sagittal cuts through the

ellipsoid by circles. The reason is that it is much simpler and cheaper to produce a cylindrical or

toroidal surface than it is to produce a true ellipsoidal surface. The issue is to determine the radius of

curvature, ρ, of the best approximating circle.

The glancing angle, θ, at B equals the angle OF1B, i.e.

sin θ =
OB

F1B
=

b

a

Furthermore we have just seen that a = 2 f . The best sagittal circle is clearly the one with radius b as is

than P. Consider then all points where the distance from F1 is increased by this small amount. They must be on the line through

Q, perpendicular to F1P. Similarly, all points with the distance to F2 diminished by the same amount are on the line through R,

perpendicular to PF2. The intersection of these two lines is therefore the neighbouring point P′ since the sum of distances to F1

and F2 is maintained constant. A ray from F1 has an incident angle on the tangent which is P′PQ, but since triangles P′PQ and
P′PR are congruent this incidence angle is also equal to angle P′PR, so the reflected ray will go through F2.
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Tangential focusing

Sagittal focusing

F1 F2

A
a�a

b

2b

�

B P

O

Circle projected to

an ellipse

Fig. 3.20 By considering an ellipse as a projection of a circle (top), which is the same as a contraction of the vertical axis by

the factor (b/a), one realizes that the radius of curvature at B must be the radius of the circle, a, divided by (b/a). Considering

the ellipsoid (middle and bottom) it is clear that the best sagittal radius at B must be b.
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evident from the middle part of the figure:

ρsagittal = b = 2 f sin θ

The best tangential circle approximation of the ellipse at B requires a circular radius of

ρtangential = a
a

b
=

2 f

sin θ

This is clearly correct when b = a, and by considering the ellipse as a projection of a circle with radius

a it is obvious that the radius at B becomes larger in the ratio of a:b.

As stated at the beginning of this section it is desirable to make the angle of incidence of the X-ray

as large as possible, so as to reduce the overall length of the mirror, and hence its cost. One way to

achieve this is to use a multilayer (as described in Section 3.6) as a mirror. The angle of incidence is

then determined by the position of the first principal diffraction maxima, which may be chosen to be

many times the critical angle of the materials that constitute the multilayer.

3.11 Further reading

X-ray Reflectivity Studies of Liquid Surfaces, J. Als-Nielsen, Handbook on Synchrotron Radiation

(Eds. G.S. Brown and D.E. Moncton) 3, 471 (1991).

X-ray and Neutron Reflectivity: Principles and Applications, Eds. J. Daillant and A. Gibaud

(Springer-Verlag, 1999).

Critical Phenomena at Surfaces and Interfaces: Evanescent X-ray and Neutron, H. Dosch

(Springer Tracts in Modern Physics 126, 1992).

Focus on Liquid Interfaces, Synchrotron Radiation News, 12 No. 2 (1999).

3.12 Exercises

3.1 Prove that when refraction effects are taken into account Bragg’s law is modified to read

mλ ≈
(
1 − 4d2δ

m2λ2

)
2d sin θ

where m is an integer and the other symbols have their usual meaning.

3.2 Show that the incident beam angle α required to achieve a given penetration depth Λ for the

intensity is given by

α =

√
α2

c −
(

1

2kΛ

)2

Assume that α < αc and ignore the effects of absorption. Calculate the value of α required to

obtain a value of Λ = 50 Å at the interface to Si for 10 keV photons. What is the minimum

penetration length of the beam at this energy? (Take δ=4.84×10−6.)
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3.3 By considering the condition for the constructive interference of waves scattered from the

front and back surfaces of a freely supported thin film of thickness t show that Kiessig fringe

maxima are observed when the angle of incidence is given by

α2 = α2
c + m2

(
λ

2t

)2

Here m is the fringe order, other quantities have their usual meaning, and it has been assumed

that λ � t. Hence explain how it is possible to obtain an accurate value of t from the observed

positions of the Kiessig fringes.

3.4 One important application of X-ray mirrors is to remove unwanted high-energy photons from

the incident beam. At fixed incident angle a mirror will reflect incident X-rays up to some

critical photon energy Ec, and the reflectivity curve as a function of energy can be calculated

from the Fresnel equations since the dimensionless variable q=Q/Qc ≡ E/Ec, etc. A crystal

monochromator has been set to select a photon energy of E = 0.8Ec, while also diffracting

higher-order contamination at energies of mE. Calculate how much the mirror attenuates the

higher order intensities for m=2, 3 and 4.

3.5 Show that the critical energy of a mirror at a fixed angle α to the incident beam may be written

as

Ec[keV] ≈ 12.398

α

√
ρr0

π

For a 200 mm long Rhodium mirror and a beam height of 0.5 mm calculate the angle of

incidence for full illumination of the mirror, and hence calculate the critical energy. Write a

computer programme to calculate the reflectivity of the Rhodium mirror over the full range of

energies of interest assuming a mirror roughness of 3 Å. (Rhodium (Z = 45) crystallizes in the

f cc structure with a=3.8 Å, and an absorption coefficient of 2.4×10−5 Å−1 at 8 keV.)

3.6 The transmission of an X-ray beam through a compound refractive lens formed from N

spherical holes may be approximately written as e−2Ntavμ. In approximating the shape of one

lens by a paraboloid determine the thickness t(r) at beam position r away from the optical axis

in terms of the hole diameter D. Evaluate the average thickness tav as a function of the ratio

between the beam diameter d and D, α = d/D.

3.7 An X-ray lens can be used to de-magnify the source size so as to produce a finely focused

beam for application in different forms of microscopy. If L1 and L2 are the source-lens and

lens-sample distances, respectively, the demagnification is given by M = L1/L2. A beryllium

compound refractive lens is required to focus a 10 keV X-ray beam down to 500 nm from a

source of size 100 μm located at L1=100 m. Estimate the number of lenses required assuming

spherical lenses with a diameter of 800 μm and a geometrical aperture of 400 μm. Making

reasonable assumptions, estimate the transmission of the lens system. (At 10 keV, Be has

δ = 3.41 × 10−6 and β = 1.01 × 10−9.)

3.8 Consider a double-focusing toroidal mirror, illuminated by a 1 mm high beam at a glancing

angle of 5 mrad. The distances from the centre of the mirror to the source and to the image

point are both 10 m. Determine the length of the footprint of the beam on the mirror, and the

tangential as well as the sagittal radii of curvatures. Estimate how accurately the axis of the

mirror must be aligned with the beam axis.



4
Kinematical scattering I: non-crystalline
materials

One of the main uses of X-rays is in the determination of the atomic scale structure of materials

using the principles of diffraction. In this chapter we introduce some of the key concepts underlying this

subject and derive the essential equations. Our approach is to build on what has been learned already

about the interaction of X-rays with a single electron, the Thomson scattering cross-section, and then

to gradually add to the complexity, until we arrive at a description relevant to real materials.

An important approximation that often applies when an X-ray is diffracted by a material is that

the scattering can be considered to be weak. This applies when multiple scattering effects can be

neglected, and leads to considerable simplification of the theory. The weak-scattering limit is also

known as the kinematical approximation. When multiple scattering effects cannot be neglected, which

is most especially true in perfect crystals, then the resulting mathematics is necessarily more complex.

The subject of so-called dynamical diffraction theory relevant to perfect crystals is covered in Chapter

6.

In describing the development and application of kinematical diffraction theory it proves convenient

to divide the exposition into two parts. In this chapter we shall restrict ourselves to describing systems

that may be loosely described as possessing short-range structural order: in the following chapter we

will consider the scattering from systems displaying long-range crystalline order. While the definition

of crystalline order can be stated rather precisely (albeit with an interesting twist associated with so-

called quasicrystals), the same cannot be said to be true for materials displaying short-range order.

Instead of striving to achieve such a definition, it will suffice to state that in this present chapter we

focus our attention on non-crystalline materials including molecules, liquids, glasses, polymers, etc.

Understanding the structure of such non-crystalline forms of matter is of considerable importance as not

only are they abundant in nature, but they also arguably comprise the largest group of technologically

significant materials.

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.



114 Kinematical scattering I: non-crystalline materials

k z

r

k

2�
Q

k´

k´

�

Fig. 4.1 The scattering of a monochromatic X-ray beam by a two-electron system. The incident X-ray is labelled by its

wavevector k, and has wavefronts represented by the vertical lines. Scattered X-rays are observed in the direction k′. As the

scattering is elastic |k|= |k′|. The phase difference between the incident and scattered X-rays is φ = (k − k′) · r =Q · r, where the

wavevector transfer Q is defined as shown in the scattering triangle to the right.

4.1 Two electrons

The most elementary scattering unit that we shall consider is an electron, which is believed to be

structureless. Consequently the simplest structure that can be conceived of must be comprised of two

electrons. The origin is defined to coincide with one electron, and the second is at a position given by

the vector r. Determining the structure of this system therefore amounts to determining r. To do so we

imagine that the electrons are illuminated with a monochromatic X-ray beam, and that the elastically

scattered radiation is observed along a direction k′ as indicated in Fig. 4.1. We will further assume

that the source and detector are sufficiently far from the origin that the incident and scattered X-rays

may be represented as plane waves. This is the so-called far-field limit, and the resulting diffraction

theory is associated with the name of Fraunhofer. In Chapter 9 we consider what happens when this

approximation breaks down.

The incident wave is specified by its wavevector k and arrives at the electron at r after it has

scattered from the electron at the origin. The phase lag for the incident wave, φin, is thus 2π times the

ratio of z to the wavelength λ, where z is the projection of r onto the direction of the incident wave.

Thus we can write φin=k · r. On the other hand, the wave scattered from the electron at r is ahead of

the wave scattered from the one at the origin by an amount which in the Fraunhofer limit (see Chapter

9) is |φout|= k′ · r. It follows that the resulting phase difference is φ= (k − k′) · r ≡ Q · r, which defines

the wavevector transfer Q. For elastic scattering |k|= |k′|, and from the scattering triangle shown in Fig.

4.1 the magnitude of the scattering vector Q is related to the scattering angle 2θ by

|Q| = 2k sin θ =

(
4π

λ

)
sin θ (4.1)
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The scattering amplitude1 for the two-electron system may be written as

A(Q) = −r0(1 + ei Q·r)

and it follows that the intensity is

I(Q) = A(Q)A(Q)∗ = r2
0(1 + ei Q·r)(1 + e−i Q·r)

= 2r2
0(1 + cos(Q · r)) (4.2)

In Fig. 4.2(a) the intensity I(Q) is plotted for the particular case where Q is parallel to r. The natural

unit of Q is Å−1 if λ is in Å. However, it is often more convenient to express it in units of 2π divided

by the characteristic length scale in the problem, in this case the bond length r. The periodic variation

in intensity arises from the interference of waves scattered by the two electrons: it is a maximum when

the waves are in phase, and a minimum when they are out of phase. Clearly by measuring I(Q) as a

function of Q, that is the diffraction pattern, and fitting r in Eq. (4.2) to the data, the ‘structure’, i.e. r,

of the two-electron system can be determined.

These ideas can be extended to more than two electrons, with the result that the elastic scattering

amplitude from any assembly of electrons may be written quite generally as

A(Q) = −r0

∑
j

ei Q·r j (4.3)

where r j denotes the position of the j’th electron. Of course in the case that the electrons are

continuously distributed the sum is replaced by an integral. In this way a model of the diffraction pattern

of the sample can be built up gradually by first considering the scattering from all of the electrons in an

atom, then all of the atoms in a molecule, etc., until we arrive at a description of the scattering from the

material of interest.

It is important to realize that the procedure that we shall follow is valid only if the diffracting

volume is small, and hence the scattering is weak. The problem then remains a linear one. In the

language of quantum mechanics this means that the sample is only a perturbation on the incident beam,

and that the Born approximation is valid. This weak-scattering requirement is also often referred to as

the kinematical approximation, which contrasts to the more complicated dynamical one that is treated

in Chapter 6. Fortunately the conditions for the validity of the kinematical approximation are met in

many applications of X-ray diffraction. In practice this means that the results of an X-ray diffraction

experiment are more readily interpreted than those obtained with a strongly interacting probe, such as

the electron. Of course there is a price to be paid for this advantage: if the interaction is weak, so is the

scattered signal. However, even this drawback is mostly overcome by the availability of intense X-ray

beams from today’s synchrotron sources.

Orientational averaging

In order to plot the scattered intensity of the two-electron system shown in Fig. 4.2(a) it was necessary

to specify the angle between the wavevector transfer, Q, and the position vector, r. For many systems

of interest, for example molecules or aggregates in solution, r is randomly oriented with respect to Q.

Here it is explained how the scattering from our simple, prototypical two-electron system is modified

1Here we are assuming that the polarization of the incident beam is perpendicular to the scattering plane spanned by k and k′

so that the full Thomson acceleration of the electrons is observed at all scattering angles. If this is not the case then the expression

for the intensity I must be multiplied by the appropriate polarization factor P, as given in Eq. (1.8).
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Fig. 4.2 The diffraction pattern from two electrons, assuming that they are distributed in various ways. (a) The two electrons

are separated by a well-defined vector r. The intensity is given by Eq. (4.2), where for the sake of definiteness r has been taken

parallel to the wavevector transfer Q. (b) The electrons are separated by a fixed distance r = |r|, but the direction of r is randomly

oriented in space. In this case the intensity has been calculated from Eqs. (4.4) and (4.5), with f
1
= f

2
= −r

0
. (c) The electrons

are distributed in two charge clouds separated by a distance r = |r|, as they would be, for example, in a dumbbell like, diatomic
molecule. The wavefunction of each electron has been taken to be the 1s state of the hydrogen atom (see Eq. (4.8)). The effective

radius of the electron distribution is specified by the parameter a, and in this example a/r=0.25. Here Q has been taken to be

parallel to the bond joining the two atoms.
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by allowing the orientation of r to vary randomly. The equations derived will enable us to understand

the scattering from more realistic systems, for example a gas of molecules, considered later in this

chapter.

X-ray scattering is a ‘fast’ probe, in the sense that the time for the transit of the X-ray through

the system is short compared to the characteristic time for the motion of the particles comprising the

system. Thus in an X-ray experiment a series of snapshots are recorded, which are then averaged. To

make the formalism a little more general, we will assume that there are two particles, one at the origin

with a scattering amplitude of f
1
, and one at a position r of scattering amplitude f

2
, both taken to be

real. The instantaneous scattering amplitude from a single snapshot is

A(Q) = f1 + f2ei Q·r

and the intensity is

I(Q) = f 2
1 + f 2

2 + f1 f2ei Q·r + f1 f2e−i Q·r

If the length of r remains fixed, but its direction is randomly distributed, then the measured intensity is

obtained by performing a spherical or orientational average. This is written as〈
I(Q)

〉
orient. av.

= f 2
1 + f 2

2 + 2 f1 f2

〈
ei Q·r

〉
orient. av.

(4.4)

The orientational average of the phase factor is

〈
ei Q·r

〉
orient. av.

=

∫
ei Qr cos θ sin θ dθdϕ∫

sin θ dθdϕ

The denominator is equal to 4π, while the numerator is

∫
ei Qr cos θ sin θ dθdϕ = 2π

π∫
0

ei Qr cos θ sin θ dθ = 2π

(
−1

iQr

) −iQr∫
iQr

ex dx

= 4π
sin(Qr)

Qr

Thus the orientational average of the phase factor is

〈
ei Q·r

〉
orient. av.

=
sin(Qr)

Qr
(4.5)

It is straightforward to generalize this to a system comprising of N particles, with scattering amplitudes

of f1 · · · f
N

. The result is

〈 ∣∣∣∣∣∣∣∣
N∑

j=1

f j ei Q·r j

∣∣∣∣∣∣∣∣
2 〉

orient. av.
= | f1|2 + | f2|2 + · · · | fN |2

+ 2 f1 f2
sin(Qr

12
)

Qr
12

+ 2 f1 f3
sin(Qr

13
)

Qr
13

+ · · · + 2 f1 fN

sin(Qr
1N

)

Qr
1N

+ 2 f2 f3
sin(Qr23

)

Qr
23

+ · · · + 2 f2 fN
sin(Qr

2N
)

Qr
2N

· · · + 2 fN−1 fN

sin(Qr
N−1,N )

Qr
N−1,N

(4.6)
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where r12 = |r1 − r2|, etc. This formalism was first derived in 1915 by Debye [Debye, 1915].

In a gas of N identical particles all the distances rnm may be considered to be large enough that all

of the cross terms in Eq. (4.6) can be neglected, and the intensity is then just N times the square of the

scattering amplitude for a single particle. The scattering amplitude may still depend on Q if the particle

is not point like as is the case of electrons.

In Fig. 4.2(b) the spherically averaged intensity for the two-electron system is plotted as a function

of Q. The effect of the averaging is seen to wash out the oscillations in the diffraction pattern at high Q.

Mostly, however, we are interested in scattering of electrons bound in atoms, where they may no

longer be regarded as point like, but are instead described by a distribution. The fact that atomic

electrons have a finite spatial extent also leads to a damping of the diffraction pattern at high Q, as

illustrated for a hydrogen like molecule in Fig. 4.2(c). This is the subject of the next section.

4.2 Scattering from an atom

As our first system of real interest we shall consider the X-ray scattering from an isolated, stationary

atom. To begin with the electrons are described as a classical charge distribution, and the elastic

scattering is calculated. This introduces the concept of an atomic form factor, which is nothing other

than the atomic scattering amplitude. It is then explained, by way of a simple example, how the atomic

form factor may be evaluated from a quantum mechanical description of the electrons.

Elastic scattering and the atomic form factor

Classically the atomic electrons are viewed as a charge cloud surrounding the nucleus with a number

density ρ(r). The charge in a volume element dr, at a position r is then −eρ(r)dr, where the integral

of ρ(r) is equal to the total number of electrons Z in the atom. To evaluate the scattering amplitude we

must weight the contribution in dr by the phase factor ei Q·r, and then integrate over dr, which leads to

f 0(Q) =

∫
ρ(r) ei Q·rdr =

⎧⎪⎪⎨⎪⎪⎩Z for Q → 0

0 for Q → ∞
(4.7)

where f 0(Q) is the atomic form factor in units of the Thomson scattering length, −r0. The limiting

behaviour of f 0(Q) for Q → 0 is obvious, as the phase factor then approaches unity and the total

number of electrons is the integral of their number density. In the other limit we need to consider how

the phases of the waves from the different electrons combine when the wavelength of the radiation

becomes much smaller than the atom. The phase factor from any one electron can be represented as a

point on the unit circle in the complex plane, since ei Q·r = cos(Q · r) +i sin(Q · r). Now, in limit of large

Q the phase will be much larger than 2π and the phase factors for the different electrons will fluctuate

rapidly around on the unit circle. Therefore the integral, even when weighted by the smoothly varying

distribution ρ(r), will tend to zero. In other words, when the wavelength of the radiation becomes

small compared to the atom there is a destructive interference of the waves scattered from the different

electrons in the atom.

In a quantum mechanical description, an atomic electron with principal quantum number n is

described by its wavefunction ψn(r). Here we shall take a simple example of the contribution made

by the 1s electrons in the K-shell to the atomic form factor. The wavefunction of a K electron is similar
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Fig. 4.3 The wavefunction (Eq. (4.8)) and form factor (Eq. (4.9)) of the 1s state for Z=1 (dashed lines) and Z=3 (solid lines).

to that of the ground state of the hydrogen atom, and is given by

ψ1s(r) =
1√
πa3

e−r/a (4.8)

where

a =
a0

Z − zs

and a0 = �
2/me2 = 0.53 Å is the Bohr radius. If the nuclear charge Z is greater than one the effective

radius a of the 1s electron is reduced compared with a0 by the nuclear charge Z. This is itself partly

screened by the other 1s electron, and typically zs ≈ 0.3. The density of a 1s electron is |ψ1s|2 so that

the form factor is

f 0
1s(Q) =

1

πa3

∫
e−2r/a ei Q·rdr

To evaluate this integral we use spherical polar coordinates (r, θ, φ) and note that the integrand is

independent of the azimuthal angle φ so that the volume element becomes dr = 2πr2 sin θ dθdr. Writing

Q · r = Q r cos θ, the integral over θ is evaluated in the following way:

f 0
1s(Q) =

1

πa3

∫ ∞

0

2πr2 e−2r/a

∫ π

θ=0

ei Qr cos θ sin θ dθdr

=
1

πa3

∫ ∞

0

2πr2 e−2r/a 1

i Qr

[
ei Qr − e−i Qr

]
dr

=
1

πa3

∫ ∞

0

2πr2 e−2r/a 2 sin(Qr)

Qr
dr

The next step is to write sin(Qr) as the imaginary part of a complex exponential, sin(Qr)=Im
{
ei Qr

}
. The



120 Kinematical scattering I: non-crystalline materials

a1 b1 a2 b2 a3 b3 a4 b4 c

C 2.3100 20.8439 1.0200 10.2075 1.5886 0.5687 0.8650 51.6512 0.2156

O 3.0485 13.2771 2.2868 5.7011 1.5463 0.3239 0.8670 32.9089 0.2508

F 3.5392 10.2825 2.6412 4.2944 1.5170 0.2615 1.0243 26.1476 0.2776

Si 6.2915 2.4386 3.0353 32.333 1.9891 0.6785 1.5410 81.6937 1.1407

Cu 13.338 3.5828 7.1676 0.2470 5.6158 11.3966 1.6735 64.820 1.5910

Ge 16.0816 2.8509 6.3747 0.2516 3.7068 11.4468 3.683 54.7625 2.1313

Mo 3.7025 0.2772 17.236 1.0958 12.8876 11.004 3.7429 61.6584 4.3875

Table 4.1 Coefficients of the analytical approximation (Eq. (4.10)) to the atomic form factor f 0 for a selection of

elements. (Source: International Tables of Crystallography.)

form factor then becomes

f 0
1s(Q) =

4

a3

1

Q
Im

{∫ ∞

0

r2

r
e−2r/a ei Qr dr

}

=
4

a3

1

Q
Im

{∫ ∞

0

r e−r(2/a−i Q) dr

}

which may be integrated by parts to yield the final result2

f 0
1s(Q) =

1

[1 + (Qa/2)2]2
(4.9)

The wavefunction and form factor for two different values of the nuclear charge Z are plotted in

Fig. 4.3. The wavefunction has been plotted against r in units of a0, and the form factor plotted against

the dimensionless quantity Qa. As Z is increased the wavefunction becomes more localized around the

nucleus, and the form factor correspondingly more extended in Q. Because of this relationship between

real space spanned by r and the space spanned by Q, the latter space is known as reciprocal space. Fig.

4.3 serves to illustrate the relationship between a description of objects in the two spaces: objects that

are extended in real space, are localized in reciprocal space and vice versa. This should be obvious to

those familiar with the properties of Fourier transforms, as it is evident from Eq. (4.7) that the atomic

form factor is the Fourier transform of the electronic charge distribution.

Considerable effort has been devoted over the years to calculate the form factors of all free atoms

(and most of the important ions) from the best available atomic wavefunctions. These are tabulated in

the International Tables of Crystallography for different values3 of sin θ/λ = Q/4π. For computational

2For a complex number α = (2/a − iQ) one obtains by partial integration∫ ∞

0

re−αrdr =

[
r

e−αr

−α

]∞
0

+
1

α

∫ ∞

0

e−αrdr = 0 +
1

α2

3Crystallographers tend to prefer to refer to the wavevector transfer as the scattering vector, and to define it without the leading

factor of 4π in Eq. (4.1).
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Fig. 4.4 The total scattering (circles) measured from a kapton foil is composed of elastic (green shading) and inelastic scattering

(red shading). The energy resolution of the detector is given by the width of the elastic peak. The inelastic scattering is broadened

beyond the resolution (red dashed line) by the momentum distribution of the electrons in the kapton foil. The incident energy

was 20 keV corresponding to a photon wavevector of 10.13 Å−1, and the scattering angle was 120◦. At this energy and scattering

angle the inelastic scattering is seen to dominate as a consequence of the fact that kapton is composed of low-Z elements (see

Fig. 4.5).

convenience the calculated form factors have been fitted by the analytical approximation

f 0
(

Q
4π

)
=

4∑
j=1

a j e−b j sin2 θ/λ2

+ c =

4∑
j=1

a j e−b j (Q/4π)2

+ c (4.10)

where a j, b j and c are fitting parameters. In Table 4.1 we tabulate their values for several of the elements

that will be of interest to us later.

The total scattering length f of an atom is the sum of the energy independent part, f 0, and the

dispersion correction factors f ′ + i f ′′ that arise from the fact that electrons are bound in an atom. These

dispersion corrections were introduced in Chapter 1 and are discussed further in Chapter 8.

Inelastic scattering

In Fig. 4.3 it is evident that as the wavevector transfer becomes large, the atomic form factor associated

with elastic scattering tends to zero. However, it would be incorrect to infer that photon scattering is

somehow being ‘switched off’ in the limit Q→ ∞. Instead, as the elastic, coherent scattering decreases,

Compton scattering of the photon by the atomic electrons increases. Compton scattering is inelastic and

is also incoherent, in the sense that it cannot give rise to interference effects since the wavelength of the

photon is changed in the scattering event (see page 15).

As a first approximation in understanding the Compton scattering spectrum it might be assumed

that all of the atomic electrons are initially at rest. The inelastic spectrum would then in principle



122 Kinematical scattering I: non-crystalline materials

In
te

ns
ity

(a) He x 10

10
0

10
1

10
2

10
3

(b) Ne

Q [Å
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Fig. 4.5 The calculated scattered intensity separated into contributions from elastic (green line) and inelastic Compton scattering

(red dashed line) from (a) He (b) Ne (c) Ar and (d) Kr . The cross over at which inelastic exceeds elastic scattering occurs

at progressively higher Q as the atomic number increases. The calculations were performed using the information given in

the International Tables of Crystallography. Note that the Thomson scattering approaches Z2 as Q→0, whereas the Compton

scattering approaches Z as Q→∞.

consist of a delta function response with a relative shift in energy from the elastic response given by

Eq. (1.15). Atomic electrons of course carry a finite momentum in their groundstate. If the electronic

momentum is distributed isotropically, then it can be shown that conservation of momentum leads

to a broadening of the delta function response. Measurement of the Compton scattering spectrum

therefore allows the groundstate electronic momentum distribution to be determined. A data set which

illustrates the existence of both elastic and inelastic scattering components is shown in Fig. 4.4. Here

a monochromatic X-ray beam is scattered by the electrons in a kapton foil. The scattering exhibits

both an elastic line and a well-resolved, broadened inelastic response. The relative weights of the two

components of the scattering can be specified by writing the total atomic scattering cross-section as the

sum of an elastic (dσ/dΩ)el. ∼ r2
0 | f (Q)|2 and an inelastic part (dσ/dΩ)inel. ∼ r2

0 S (Z,Q).

From our opening remarks in this section it can be expected that the function S (Z,Q) to approach

Z as Q → ∞, as in this limit all of the Z atomic electrons scatter incoherently. Moreover, it might also

be reasonably expected that the limiting form of S (Z,Q) is reached at progressively larger values of Q

as the atomic number Z increases, since the inner electrons become more and more tightly bound. The

detailed calculation of S (Z,Q), as with that of f (Q), is beyond the scope of this book. The reader is

again referred to the International Tables of Crystallography, where it has been tabulated in a useful
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Fig. 4.6 The CF4 molecule. The C-F bond length is 1.38 Å, and the geometry is such that the ratio of the length of OD to OO′

is 3:1.

form for all elements up to Z < 55. This enables the relative weight of elastic and inelastic scattering

for any atom, and at any wavevector transfer Q, to be calculated. Examples for the rare gases are shown

in Fig. 4.5, which underline the qualitative remarks regarding the dependence on Q and Z given above.

In the remainder of this chapter, and indeed most of the rest of the book, we shall be concerned pre-

dominantly with elastic scattering, as it is through exploiting this process that most of our understanding

of the atomic scale structure of materials has been gained. The reader, however, should be aware of the

existence of inelastic Compton scattering, and have an appreciation of under what conditions it might

become a significant factor in their experiments.

4.3 Scattering from a molecule

The next level of complexity we might imagine is to consider the scattering from a group of atoms

organized into a molecule. Let the atoms be labelled by j, so that we can write the scattering amplitude

(again in units of −r0) of the molecule as

Fmol(Q) =
∑

j

f j(Q) ei Q·r j (4.11)

To take a specific example, let us consider the molecule CF4. The four fluorine atoms are tetrahedrally

coordinated (at points A,B,C,D) around the central carbon atom (at O) as shown in Fig. 4.6.

The line from D to O intersects the plane spanned by A, B and C at the point O′. Assume that the

dimensions are such that OA=OB=OC=OD=1. It is easy to show that OO′ = z = 1
3

and that angle u

between any of the lines from the centre to any of the four apices is given by cos u = − 1
3
. The proof is
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Fig. 4.7 The calculated molecular structure factor squared of the CF4 molecule. (a) Dashed-dotted blue line is from Eq. (4.13);

solid green line is calculated from a spherical average of the structure factor (Eq. (4.14)); magenta line is the square of the

form factor of atomic molybdenum which has the same number of electrons as the CF4 molecule. (b) Solid green line is the

spherically averaged structure factor of CF4; red dashed line is the Compton scattering calculated from the information given in

the International Tables of Crystallography.

as follows. The scalar product of the vectors OA and OD is

OA ·OD = 1 · 1 · cos u = −z

but by symmetry we also have

−z = OA ·OD = OA ·OB = (OO′ +O′A) · (OO′ +O′B)

= z2 +O′A · O′B

= z2 + (O′A)2 cos(120o).

From the right-angle triangle OO′A one immediately finds that (O′A)2 =1 − z2, so that

−z = z2 + (1 − z2) cos(120o) = z2 − 1

2
(1 − z2) (4.12)

from which it follows that z= 1
3

and u =acos(−OO′/OA)=109.5o.

The molecular form factor of CF4 is readily evaluated when the scattering vector Q is either parallel

(+), or anti parallel (−), to a C-F bond:

Fmol
± (Q) = f C(Q) + f F(Q)

[
3e∓i QR/3 + e±i QR

]
(4.13)

where R is the C-F bond length (1.38 Å). In Fig. 4.7(a) |Fmol
± |2 is plotted as a function of Q, where the

values of the form factors f C(Q) and f F(Q) have been calculated from Eq. (4.10) using the coefficients

in Table 4.1. The oscillations in the magnitude of |Fmol
± |2 are characteristic features of the scattering

from a molecule. They arise from the fact that there are distinct length scales, in this case the C-F
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(1.38Å) and F-F (1.38
√

8/3) bond lengths, and indeed the first peak in |Fmol
± |2 near Q = 2π/(1.38

√
8/3)

can be identified with the latter. Clearly, | F+|2 = | F−|2, so that one should not expect too much deviation

from the qualitative behaviour shown in Fig. 4.7(a) when Q is not parallel to a C-F bond. That this is

indeed the case is evident in the same figure where the square of the spherical average of Fmol is also

plotted. This has been calculated from Eq. (4.6) by noting that there are 4 C-F bonds of length R =1.38

Å and 6 F-F bonds of length
√

8/3R, so that altogether

∣∣∣Fmol
∣∣∣2 = ∣∣∣ f C

∣∣∣2 + 4
∣∣∣ f F

∣∣∣2 + 8 f C f F sin(QR)

QR
+ 12

∣∣∣ f F
∣∣∣2 sin(Q

√
8/3R)

Q
√

8/3R
(4.14)

(For reference, the squared atomic form factor of molybdenum, the element that has the same number

of electrons as CF4, i.e. Z =42, is also plotted in Fig. 4.7(a).) In Fig. 4.7(b) the Q dependence of the

elastic scattering from CF4 is compared with the Compton scattering which is seen to dominate for Q

greater than approximately 7 Å−1.

4.4 Scattering from liquids and glasses

In Fig. 4.8(a) a schematic is shown of the configuration typically adopted by atoms in a crystalline

material, where they exhibit long-range structural order. At this stage the details of the atomic

coordination are irrelevant, as is the fact that the system shown is two dimensional. What is important

is that the atoms sit on a regular array, known as the lattice, so that the exact location of all atoms,

relative to the atom chosen to be at the origin, can be inferred. The defining structural characteristic

of non-crystalline materials, on the other hand, is a degree of randomness in the position of the atoms

as sketched in Fig. 4.8(b). The implication of this fact is that any structural order in non-crystalline

material, if present at all, can only be described in a statistical sense. Indeed at first glance it might

seem surprising to some to talk about structural order at all in the context of liquids, glasses and other

forms of non-crystalline materials. However, well-defined, short-range structural correlations not only

exist in these forms of matter, but as we shall see they can be studied in great detail using X-ray

scattering techniques.

4.4.1 The radial distribution function

The position adopted by atoms in non-crystalline materials changes over an incredibly wide range of

timescales, from a few nanoseconds in the case of liquids up to millennia and more in the case of

glasses. As we have already noted in Section 4.1, X-rays are a fast probe, and hence we are justified

in considering a snapshot of the structure as shown schematically in Fig. 4.8(b). The task then is to

provide a statistical description of the structure frozen in time, and then to perform an average over

all possible configurations. The first of these objectives is accomplished by introducing the radial

distribution function, g(r).

The radial distribution function is constructed by first choosing any one atom as the origin. The

choice is of course arbitrary, as in an experiment an average is made over a series of snapshots. In the

two-dimensional examples shown in Fig. 4.8, the radial density is calculated as ρ(r) = N(r)/(2πr dr),

where N(r) is the average number of atoms in an annulus of radius r and thickness dr, and 2πr dr is the

area of that annulus. The radial distribution function is then defined by g(r)=ρ(r)/ρat where ρat is the

average areal number density. The extension to three dimensions is straightforward, with the annulus

being replaced by a shell of volume 4πr2 dr.
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Fig. 4.8 Construction of the radial distribution function g(r) for crystalline (left panels) and non-crystalline (right panels)

materials in two dimensions. The radial distribution function is the probability density of finding two atoms separated by a

distance r. It follows that in two dimensions, g(r) (2πrdr)ρat is the number of atoms in an annulus of radius r and thickness dr,

where ρat is the average areal number density. The dashed lines in (e) and (f) are guides for the eye.
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In Fig. 4.8(c)-(f) we compare the calculation of the radial distribution function for our two-

dimensional models of crystalline and non-crystalline matter. In both cases, g(r) is calculated by

drawing a series of concentric circles of the same spacing centred on the origin. The number of atoms

in each annulus is then added up to give N(r), before dividing by the product of the area of the annulus

and ρat to yield g(r), which is plotted in Fig. 4.8(e) and (f). As the spacing of the shells tends to

zero, the difference in g(r) between a crystalline and a non-crystalline structure becomes evident. For

the crystalline material, g(r) exhibits sharp, non-overlapping peaks which form a series extending to

indefinitely large r (Fig. 4.8(e)). The radial distribution function of the non-crystalline material is also

seen to exhibit peaks, but in this case they dampen and broaden out, with g(r) rapidly tending to unity

as r increases (Fig. 4.8(f)). Although the ‘toy model’ we have constructed of a non-crystalline material

should not be taken too seriously, the qualitative features of the resulting radial distribution function are

in fact generic to those displayed by real non-crystalline forms of matter. For example, the position of

the first peak in g(r) is a measure of the minimal distance of approach between two atoms. In a liquid,

mobile atoms or molecules are excluded from occupying the same volume (ultimately a consequence

of quantum mechanics); in a glass there is a minimum (average) length of rigid chemical bonds.

Next we consider the salient features of the X-ray scattering from non-crystalline materials, and

demonstrate how the radial distribution function can be obtained from the Fourier transform of the

observed intensity as a function of wavevector transform.

4.4.2 The liquid structure factor

For simplicity, we start by considering a mono-atomic or mono-molecular system for which the

scattered intensity in suitable dimensionless units may be written generally as

I(Q) = f (Q)2
∑

n

eiQ·rn

∑
m

e−iQ·rm = f (Q)2
∑

n

∑
m

eiQ·(rn−rm)

Here f (Q) represents the atomic or molecular form factor. To proceed the terms in the double

summation with n = m are separated from those with n � m to yield

I(Q) = N f (Q)2 + f (Q)2
∑

n

∑
m�n

eiQ·(rn−rm)

The next step is then to replace the sum over m � n by an integral. In addition, as X-ray scattering

ultimately arises from deviations in electron density from its average, we subtract and add a term

proportional to the average density ρat . The expression for the scattered intensity then assumes the

form

I(Q) =

IS RO(Q)︷������������������������������������������������������������������︸︸������������������������������������������������������������������︷
N f (Q)2 + f (Q)2

∑
n

∫
V

[
ρn(rnm) − ρat

]
eiQ·(rn−rm) dVm

+ f (Q)2ρat

∑
n

∫
V

eiQ·(rn−rm) dVm︸�����������������������������������︷︷�����������������������������������︸
IS AXS (Q)

(4.15)

where ρn(rnm) dVm is the number of atoms or molecules in the volume element dVm located at a position

rm − rn with respect to the reference atom at rn.
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As illustrated in Fig. 4.8(f) for the dense non-crystalline materials of interest here, g(r) → 1,

or equivalently, ρn(rnm) → ρat after only a few inter-atomic spacings. The second term in the

above equation is therefore sensitive to short range order (SRO), and is hence the term that contains

structural information relevant to typical inter-atomic distances. The final term, on the other hand, only

contributes to the scattering as Q → 0, as for finite Q rapid oscillations of the phase factor lead to

destructive interference. (This point is further discussed in the context of scattering from crystalline

materials in Chapter 5.)

The limit Q → 0 corresponds to long distances in real space, and since Q ∝ sin(θ), this limit occurs

at small scattering angles close to the forward direction. This small angle X-ray scattering (SAXS)

regime turns out to provide important and unique information on the size and morphology (as opposed

to detailed positional information of the individual atoms) of large scale structures including polymers,

micelles, etc., and is considered further in Section 4.5. The remainder of this present section is

concerned with understanding how to extract information on inter-particle correlations in disordered

(non-crystalline) systems, and we proceed by first neglecting the small-angle scattering term in Eq.

(4.15).

Further simplification of Eq. (4.15) is achieved in a number of steps. Firstly, an average is performed

over different choices of origin, 〈ρn(rnm)〉 → ρ(r), which allows us to write

IS RO(Q) = N f (Q)2 + N f (Q)2

∫
V

[
ρ(r) − ρat

]
eiQ·r dV

Secondly, invoking the isotropy condition, expected to apply to a liquid or glass, allows us to make

the replacement ρ(r) → ρ(r), and facilitates calculation of the angular average of the phase factor, as

described on page 115. The formula for the scattering intensity then becomes

IS RO(Q) = N f (Q)2 + N f (Q)2

∫ ∞

0

[
ρ(r) − ρat

]
4πr2 sin(Qr)

Qr
dr

Rearranging this slightly leads to an expression for what is conventionally known as the liquid (or glass)

structure factor4

S(Q) =
IS RO(Q)

N f (Q)2
= 1 +

4π

Q

∫ ∞

0

r
[
ρ(r) − ρat

]
sin(Qr) dr (4.16)

It is instructive to consider the limiting forms of the liquid structure factor S(Q). The limit Q → ∞
is readily derived as the factor of 1/Q multiplying the integral means that S(Q) → 1, i.e. for short

real space distances the scattering from a liquid or glass becomes independent of any inter-particle

correlation effects. In the limit of long wavelengths, Q → 0, the integrand of the right hand side

becomes proportional to
[
ρ(r) − ρat

]
, since sin(Qr)/Q → r as Q → 0. The liquid structure factor in the

long-wavelength limit thus depends on the density fluctuations in the system.

These become particularly strong when the compressibility is large, for the obvious reason that if it

is easy to change the density by external forces, then thermal fluctuations can also do so spontaneously.

At the critical point of a fluid the compressibility diverges, and the fluctuations extend over macroscopic

distances. S(0) can in fact become so large that the fluid becomes opaque to visible light as well as for

X-rays, and the phenomenon (first observed by Andrews [1869] and later explained by Einstein [1910])

4This nomenclature may be regarded as somewhat unfortunate, as the liquid structure factor is proportional to the intensity,

whereas the molecular structure factor encountered earlier, and the structure factor used in crystallography refer to amplitude!
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is known as critical opalescence. The isothermal compressibility, κT , is defined as the relative change

in density when applying a pressure P at constant temperature T , or explicitly κT = (∂ρ/∂P)T /ρ. For

the ideal gas the equation of state is P = ρatkBT , and the compressibility is κT = 1/(ρatkBT ) which

varies smoothly with density. For interacting gas particles, as phenomenological described by van

der Waals, the compressibility diverges at a critical point in P − T space. It can be shown rigorously

that S(0) = ρatκT kBT , which is quantitatively consistent with the expected result for an ideal gas that

S(Q)=1 for all Q.

Equation (4.16) stated in words says that the structure factor depends on the sine Fourier transform

of the deviation of the atomic density from its average. One way of making this clearer is to rewrite Eq.

(4.16) as

Q [S(Q) − 1] =

∫ ∞

0

H (r) sin(Qr) dr (4.17)

with H (r)=4πr
[
ρ(r) − ρat

]
= 4πrρat

[
g(r) − 1

]
. Then from the definition of the Fourier transform (see

Appendix E) H (r) is obtained from the inverse Fourier transform as

H (r) =
2

π

∫ ∞

0

Q [S(Q) − 1] sin(Qr) dQ (4.18)

This can be rearranged to read

g(r) = 1 +
1

2π2rρat

∫ ∞

0

Q [S(Q) − 1] sin(Qr) dQ (4.19)

Thus the radial distribution function of a liquid or glass − in other words the function that describes its

structure − is obtained directly from the measured structure factor using the algorithm of Eq. (4.19).

In deriving the expression for the non-crystalline structure factor (Eq. (4.16)) it has been assumed

implicitly that the scattering is dominated by elastic scattering events. For rigid systems, such as typical

structural glasses, this turns out to be a reasonable assumption. For liquids it fails completely, as there

is no strictly elastic scattering from a liquid. However, as the X-ray photon energy (∼ 10 keV) is

much higher than the energies of the relevant modes of excitation in a liquid (∼ 10 meV for diffusion,

sound modes (phonons), etc.), the change in the energy of the scattered photon is in most situations

imperceptibly small5. Another way of looking at this is to say that an integration is performed in an

X-ray scattering experiment over all possible excitation energies in the sample. In such a case the above

equation is exact. When this does not hold, as in the case of neutron scattering where the energy of the

incident neutron is comparable to the excitation, corrections have to be applied.

Although the formalism in this section has been developed for mono-particle systems, it can be

readily extended to cover more complex, multi-component systems. The main conceptual step is to

introduce a radial distribution function gi j(r) which now describes correlations between atoms of type i

and j. This then leads to the concept of the so-called partial liquid structure factor Si j(Q).

4.4.3 The structure of supercooled liquids

One of the most spectacular effects oberved when a liquid solidifies to form a crystalline solid is

supercooling: it is possible to maintain the liquid state as a meta-stable phase well below the melting

5It is worth noting in passing, however, that X-ray spectrometers have been developed which are more than capable of

resolving changes in photon energy of better than 1 part in 108, and indeed phonon dispersion relations can be routinely

determined with such instruments.
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Fig. 4.9 X-ray scattering from liquid metals. (a) Image of a drop of a liquid metal (diameter approximately 2 mm)
electrostatically levitated in an ultra-high vacuum chamber. (b) Drops levitated in this way can be heated with a laser, here

causing the drop to glow. The metallic sample shown in (a) and (b) is Ti39.5Zr39.5Ni21. (c) Wavevector dependence of the liquid

X-ray structure factor of nickel for selected temperatures below its freezing point of 1455 ◦C. (d) The radial distribution function

of liquid nickel evaluated using Eq. (4.19). The shaded area under the bottom most curve corresponds to a coordination number

of 12 in the nearest neighbour shell. (Images courtesy Jan Rogers, NASA’s Marshall Space Flight Center, Huntsville, AL; data

from K. F. Kelton, Washington University in St. Louis.)
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temperature. For an element like the transition metal nickel in its liquid phase the supercooling is

several hundreds of degrees, for water it is tens of degrees. The explanation of this phenomenon

was provided by Frank more than half a century ago (Frank [1952]). When approaching the melting

temperature from the liquid state it can be expected that atoms in the liquid will form ordered clusters

spontaneously. The structure of the clusters will obviously depend on the system under consideration.

Here we focus on materials which in the solid phase form simple close packed structures such as the

face centred cubic (fcc) or hexagonal close packed (hcp) structures (see Chapter 5). For these structures

each atom has 12 nearest neighbours, and it would be reasonable to assume that clusters in the liquid

would also be similarly coordinated. Frank’s insight was that that apart from fcc or hcp packing there is

an alternative way of forming a cluster with 12 neighbours, namely the icosahedron. This polyhedron,

depicted in Fig. 4.10(a), consists of 20 equilateral triangles, which can be viewed as two pentagonal

pyramids at the top and bottom, braced by a ring of 10 triangles.

It was argued by Frank that an icosahedron is the most likely configuration adopted by atoms in

the liquid on the basis of its following properties. The Cartesian coordinates of the 12 vertices of

an icosahedron are (0,±1,±φ) and its two cyclic permutations, where φ is the golden mean number

φ = (1 +
√

5)/2 (see Fig. 4.10(a)). With these coordinates the length of the side of each equilateral

triangle is 2, as the reader can easily verify, but the distance from the origin to a vertex is only 1.9021.

Visualizing the atoms as spheres, this calculation shows that the central atom touches its 12 neighbours,

but the neighbours do not touch each other, in contrast to a fcc or an hcp cluster. The structure is

therefore slightly more ‘open’ and thus a likely candidate for the arrangement of atoms forming a

liquid cluster.

Although an icosahedral arrangement of atoms is permitted for an isolated cluster, it is impossible

to form a regular crystal by attempting to stack icosahedral clusters in a three-dimensional, space-filling

network. This is ultimately due to the five-fold symmetry displayed by the icosahedron, a point further

discussed in Section 5.2 in the context of quasicrystals. The liquid-solid transition cannot therefore be

thought of simply as the condensation of icosahedral clusters. Indeed there must be an energy barrier

to overcome at the transition, arising from the different structures preferred by the liquid and solid, the

existence of which explains the possibility of supercooling a liquid. In Frank’s own words, ‘[if one

assumes the atoms] interact in pairs with attractive and repulsive energy terms proportional to r−6 and

r−12, one may calculate that the binding energy of the group of thirteen is 8.4% greater than for the two

other packings. Thus freezing involves a substantial rearrangement, and not merely an extension of the

same kind of order from short distances to long ones’.

Here we describe two X-ray scattering studies of metallic liquids that have provided strong

experimental support for Frank’s proposal.

Scattering from bulk liquid nickel

In an experiment by Lee et al. [2004] using synchrotron X-ray diffraction sufficient accuracy was

obtained to conclude that icosahedral clusters do indeed occur in the supecooled liquid phase of bulk

Ni.

One of the main obstacles in obtaining accurate scattering data from a liquid is that the experiment

has to be designed to minimize the scattering from the container in which the liquid is held. This is a far

from trivial problem which has been overcome by the ingenious method of levitating the sample with

electric or magnetic forces. In Fig. 4.9(a) and (b) we show images of a drop of metallic liquid levitated

using electrostatic forces. This container-less technique also reduces any possible contamination of the

sample, particularly if it is also held in ultra-high vacuum. Nucleation sites are therefore minimized

which facilities studies of undercooled liquids. The temperature of the sample can be varied by heating
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Fig. 4.10 Five-fold local symmetry in liquid lead. (a) An icosahedral atomic cluster, where the central atom is surrounded by 12

neighbours. (b) Instantaneous snapshot of a liquid fragment in proximity to the (100) surface of silicon. The fragment is formed

from five, slightly distorted tetrahedra, and has five-fold symmetry for rotations around the (100) four-fold axis of silicon. For

the case shown, the minimum overlap of the projected electron density between the fragment and the underlying silicon surface

occurs for rotation angle φn = 2πn/20, n integer. (c) Schematic of the scattering geometry used to measure the scattering from

liquid lead in contact with a silicon surface. (d) Wavevector dependence of the structure factor of liquid lead measured with an

X-ray angle of incidence of αi= 0.0328◦ below the critical angle. The red and green symbols indicate the values of Q for which

the anisotropy of the liquid structure factor was investigated by rotating the sample around φ. (d) Variation with φ of the liquid
structure of liquid lead in contact with silicon. (Data courtesy of Harald Reichert.)
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using a high-powered laser, as is evident in the images shown in Fig. 4.9(a) and (b).

In Fig. 4.9(c) we show the measured structure factor of an electrostatically levitated drop of liquid

nickel as it is undercooled below its freezing point of 1455 ◦C [Lee et al., 2004]. It is apparent that the

gross features of the scattering do not change even as the liquid is cooled to more than 200◦C below its

freezing point. Also apparent is the fact that this method produces data of extremely high quality.

The radial distribution functions calculated by transforming the data in Fig. 4.9(c) using Eq. (4.19)

are plotted in Fig. 4.9(d). At a given temperature, the radial distribution function g(r) exhibits a series

of well-defined peaks as a function of r, tending to unity at large distances, as expected. The peaks

in g(r) directly reflect the existence of coordination shells in the liquid at characteristic distances, as

shown schematically in Fig. 4.8. For example, the first main peak in g(r) from the nearest-neighbour

shell in Ni occurs6 at r≈2.5 Å. Nickel crystallises in the face-centred-cubic structure (see Section 5.1)

with the lattice parameter at room temperature of a=3.52 Å. The nearest-neighbour distance in the solid

is therefore a/
√

2 ≈2.5 Å, close to the value found in the liquid. This illustrates the fact that although

the solid and liquid are distinct phases, they nonetheless share some characteristics. For a fcc structure,

the number of nearest neighbours is exactly equal to 12. The number of nearest neighbours in the first

coordination shell of liquid nickel can be estimated by integrating the first peak in g(r), as indicated by

the grey area in the bottom most data set displayed in Fig. 4.9(d). Obviously, the choice of integration

limits is arbitrary to some extent. The average number of atoms Nnn in the nearest neighbour shell is

evaluated as

Nnn =

∫ r2

r1

ρatg(r)4πr2 dr

where ρat is the average number density. In Fig. 4.9(d), the lower limit r1 has been set at 2, and the

upper limit r2 chosen such that Nnn=12, the number of nearest neighbours in the solid, or indeed in an

icosahedron.

Closer inspection of the data shown in Fig. 4.9(c) reveals subtle but significant changes to the

scattering on cooling. In particular, with decreasing temperature, a shoulder appears on the high Q

side of the second peak in S(Q). By carefully comparing the data with structural model of the liquid

it has been demonstrated [Lee et al., 2004] that this shoulder reflects the development of short-range

icosahedral order in the undercooled liquid, as first proposed by Frank [1952].

Structure of liquid lead in contact with crystalline silicon

The smearing of the diffraction pattern produced by the orientational averaging of atomic clusters, as

occurs in a bulk liquid, was overcome in an elegant way by Reichert et al. [2000]. The idea is that

close to a crystalline interface a liquid will be subject to a modulated potential with the same symmetry

as that of the crystalline surface. Reichert et al. [2000] investigated liquid lead in contact with the Si

(100) surface, which imposes a potential of four-fold symmetry on any clusters localized close to the

interface (see Fig. 4.10(b)). If, as expected for an icosahedron, or for a fragment of one, the cluster has

five-fold symmetry, then the diffraction from the liquid in contact with the solid surface should exhibit

a periodic variation when rotating around the four-fold axis. The period expected is 2π/(4 · 5) = 2π/20.

The main challenge to realise such an experiment is to limit the diffraction so that it occurs only from

the liquid in contact with the solid interface. This was achieved by Reichert et al. [2000] using a grazing

incidence diffraction geometry to excite an evanescent wave in the liquid (see Chapter 3).

6The small oscillations evident in g(r) for r< 2 Å are an artefact which arise from the fact that S(Q) is measured out to a finite
value of Q only. As S(Q) is sampled out to a maximum Q, it follows from the properties of Fourier transforms, that g(r) is not

determined by the data for r less than 1/Q.
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A schematic of the experimental geometry employed by Reichert et al. [2000] is shown in Fig.

4.10(c) where a narrow X-ray beam is incident at a glancing angle of 0.032◦ on a Si single crystal.

The X-ray energy is chosen to be high enough so that the beam actually penetrates through the Si

from the side before interacting with the liquid lead. According to Eq. (3.3) the critical angle αc at

the solid-liquid interface is proportional to the square root of the electron density difference between

Si and Pb, viz. αc =
√

4πr0(ρPb − ρS i)/k = 0.705 mrad = 0.04◦. From Eq. (3.18), and neglecting for

simplicity absorption effects, the penetration depth of the evanescent wave into the Pb is calculated to

be Λ =32 Å. This value pertains to the penetration of the incident beam. The actual penetration depth

sampled in an experiment will be somewhat different from this value depending on the details of how

the experiment is performed, as due allowance must be made for the exit wave. Of key importance is

the fact that the X-ray beam samples the liquid lead only within a few nanometres from its interface

with Si.

The diffraction pattern from the near-surface region of liquid lead in contact with crystalline silicon

is shown in Fig. 4.10(d). The variation of intensity with wavevector follows that expected for the

scattering from a liquid. With Q increasing from zero the intensity increases rapidly forming a well-

defined peak around 2.18 Å−1, close to the value found for the bulk liquid. Thereafter a number of

oscillations are observed before the intensity saturates to a constant value at large wavevectors. The

novel aspect of the experimental setup employed by Reichert et al. [2000] was the ability to rotate the

ultra-high vacuum chamber containing the sample around a vertical axis (the axis marked φ in Fig.

4.10(c)). Data were then collected by scanning φ with the detector angle 2θ fixed. For a bulk liquid

the intensity recorded in such a scan will be independent of φ. For lead in contact with silicon a very

different result was obtained, with the intensity displaying five pronounced oscillations as a function of

φ (Fig. 4.10(e)) in an interval of 90◦. Modelling of the results proved that the data are fully consistent

with the existence of liquid lead fragments similar to that shown in Fig. 4.10(b). Since the four-fold

symmetry of the Si surface cannot possibly induce a Pb cluster with five-fold symmetry this study thus

provided definite proof for the existence of poly-tetrahedral clusters of atoms in an elemental, metallic

liquid.

4.5 Small-angle X-ray scattering (SAXS)

We now return to examine the third term on the right-hand side of Eq. (4.15) which we argued

contributed to the scattering at small wavevector transfers, or equivalently small scattering angles, only.

This term, giving the small angle scattering intensity in dimensionless form, can be recast as

IS AXS (Q) = f 2
∑

n

∫
V

ρat eiQ·(rn−rm) dVm = f 2
∑

n

eiQ·rn

∫
V

ρat e−iQ·rm dVm

Following earlier considerations on page 127, the sum on the right-hand side may be replaced by an

integral to yield

IS AXS (Q) = f 2

∫
V

ρate
iQ·rn dVn

∫
V

ρat e−iQ·rm dVm

which for sufficient averaging, as typically occurs in small-angle scattering, becomes

IS AXS (Q) =

∣∣∣∣∣
∫

V

ρsl eiQ·r dV

∣∣∣∣∣2 (4.20)
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Fig. 4.11 Schematic layout of a small-angle X-ray scattering beamline. A monochromatic X-ray beam is collimated using

a set of apertures and then impinges on the sample. The scattered beam is detected on a two-dimensional, position sensitive

detector (PSD). For isotropic samples, the scattering can be azimuthally averaged to produce a plot of scattered intensity versus

wavevector transfer.

Here we have introduced ρsl = fρat which when multiplied by r0 gives the scattering length density.

The reader will hopefully recognize the form of Eq. (4.20) from our earlier consideration of the

atomic form factor (see Section 4.2). Although the equations have identical formal structures − as

is bound to be the case, as they are little more than general statements of the fact that the scattering

amplitude is the Fourier transform of the charge density − the key difference is that here we are

concerned with scattering from objects very large compared with typical inter-atomic distances. This

confines the scattering of interest to small angles, and allows us to analyse the scattering through a

number of simplifying assumptions.

The typical experimental layout of a beamline to determine the small-angle scattering from large-

scale structures is appealingly simple, and is shown schematically in Fig. 4.11. The X-ray beam first

passes through a monochromator (not shown) after which a series of apertures are used to control its
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Fig. 4.12 Calculated small-angle scattering from a sphere (Eq. (4.23)). (a) Radius R=100 Å. (b) R=200 Å.

angular divergence. The X-ray beam then impinges on the sample, from which it is scattered at low

angles into a detector. In modern small-angle X-ray scattering (SAXS) beamlines a two-dimensional,

position-sensitive detector is invariably used. Each pixel of the detector records the number of scattered

photons it receives in a given time, so that an image is built up of the scattered intensity as a function of

the two components of the wavevector transfer which are approximately perpendicular to the incident

beam.

4.5.1 The form factor of isolated particles

The simplest case to analyse is a dilute solution of molecules, or more generally particles, allowing

inter-particle correlations to be be neglected, and where it is assumed that the particles are identical. If

the scattering length density of each particle is uniform and represented by ρsl,p, and that of the solvent

is ρsl,0, then from Eq. (4.20) the intensity scattered by a single particle is

IS AXS
1 (Q) = (ρsl,p − ρsl,0)2

∣∣∣∣∣∣
∫

Vp

eiQ·r dVp

∣∣∣∣∣∣
2

where Vp is the volume of the particle. By introducing the single particle form factor7,

F (Q) =
1

Vp

∫
Vp

eiQ·r dVp, (4.21)

this becomes

IS AXS
1 (Q) = Δρ2 V2

p |F (Q)|2 . (4.22)

with Δρ=(ρsl,p − ρsl,0).

The form factor depends on the morphology − size and shape − of the particle through the integral

over its volume, Vp. Unfortunately, it can only be evaluated analytically in few cases. When this is

7In the small angle scattering literature the form factor is often defined as P(Q)= |F (Q)|2. In other words it refers to the

intensity and not the amplitude.
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not possible, the appropriate integrals have to be evaluated numerically. Probably the easiest case to

consider is a sphere of radius R, for which the form factor can be readily calculated as

F (Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0

eiQr cos θ r2 sin θdθdφdr =
1

Vp

∫ R

0

4π
sin(Qr)

Qr
r2dr

= 3

[
sin(QR) − QR cos(QR)

Q3R3

]
≡ 3J1(QR)

QR
(4.23)

where J1(x) is the Bessel function of the first kind. In Fig. 4.12(a)-(b) we illustrate the variation of

|F (Q)|2 with particle size by plotting it for two different choices of sphere radius.

For Q = 0, |F (Q)|2 = 1, and from Eq. (4.22) the intensity from a single particle is given by

IS AXS
1

(0) = Δρ2V2
p . This is the expected result as in the forward direction all electrons scatter in phase,

and the intensity scattered from a particle embedded in a medium must then be proportional to the

excess number of electrons squared. (See the discussion on atomic form factors on page 118.) If

required, the intensity can of course be determined in absolute units which involves introducing an

additional factor of r2
0
, as well as normalizing for the incident intensity I0. At finite Q the intensity falls

off rapidly, with strong oscillations evident in the SAXS intensity, where the period of the oscillations

is inversely proportional to the radius of the sphere. An example of SAXS from spheres of silica is

given in the figure on page 331, where oscillations in the observed intensity are clearly visible.

Greater insight into how information on the particle morphology is encoded in a SAXS experiment

may be gleaned by considering the limiting forms of F (Q). In the first instance we will use the specific

example of a sphere, and then indicate how the resulting concepts can be generalised to other particle

shapes.

4.5.2 The long wavelength limit: Guinier analysis

In the long-wavelength limit, QR → 0, and appropriate expansion of the trigonometric functions in Eq.

(4.23) yields

F (Q) ≈ 3

Q3R3

[
QR − Q3R3

6
+

Q5R5

120
− · · · − QR

(
1 − Q2R2

2
+

Q4R4

24
− · · ·

)]

which simplifies to become

F (Q) ≈ 1 − Q2R2

10

Therefore from Eq. (4.22) the intensity in the long-wavelength limit may be written as

IS AXS
1 (Q) ≈ Δρ2V2

p

[
1 − Q2R2

10

]2

≈ Δρ2V2
p

[
1 − Q2R2

5

]

This equation demonstrates that in the long-wavelength limit the variation of the scattered intensity

with increasing wavevector can be used to determine the radius R of the particle. Often the right hand

side of the above equation is written in exponential form8, viz.,

IS AXS
1 (Q) ≈ Δρ2V2

pe−Q2R2/5 QR �1 (4.24)

8e−x ≈ 1 − x
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Fig. 4.13 Limiting forms of the small-angle scattering from a sphere (Eq. (4.23)). (a) Guinier analysis applicable in the
long-wavelength limit (QR �1) when the intensity I1(Q) is proportional to exp(−Q2R2/5) (Eq. (4.24)). A plot of I1(Q) versus

Q2 should therefore produce a line with a gradient of −R2/5 as represented by the dashed lines. (b) At short wavelengths,

QR � 1, in the Porod regime, the intensity falls off as 1/Q4 for a sphere (Eq. (4.27)). In a double log plot one decade in Q yields

a decrease of four decades in the ordinate, i.e. a power of 4 in the power law. For simplicity in both (a) and (b) we have set Δρ

equal to 1.

as then by plotting loge(I
S AXS
1

(Q)) versus Q2 a straight line should be obtained with a slope equal to

−R2/5 thus allowing the radius of the sphere to be determined. The above formula was first derived by

Guinier, and in honour of this, analysis of small-angle scattering in the long-wavelength limit bears his

name. In Fig. 4.13(a) we show Guinier plots for spheres of different radii, which confirm that when

plotted appropriately the intensity recorded in a SAXS experiment in the long-wavelength limit tends

asymptotically to a straight line with a slope proportional to the radius squared of the particle.

Guinier analysis can be applied not only to spheres but to the small-angle scattering from any dilute

system containing particles of arbitrary shape. In this case, the radius of the sphere has to be replaced

by a more general measure of the particle size, known as the radius of gyration.

Radius of gyration

The radius of gyration Rg of a particle is defined as the root-mean-squared distance from the particle’s

centre of gravity. If the scattering length density is uniformly distributed, and has spherical symmetry,

the radius of gyration squared is given by

R2
g =

1

Vp

∫
Vp

r2dVp

In general, the scattering length density is spatially dependent, and the radius of gyration is obtained by

first evaluating

R2
g =

∫
Vp
ρsl,p(r) r2 dVp∫

Vp
ρsl,p(r) dVp

(4.25)
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and then performing an orientational average. In most cases, the required integrals often can only be

calculated using numerical techniques. One exception is the uniform sphere, for which it is straight

forward to show that its radius of gyration is R2
g =

3
5
R2. This allows us to re-write Eq. (4.24) as

IS AXS
1 (Q) ≈ Δρ2V2

pe−Q2R2
g/3 (4.26)

which can be used to extract the radius of gyration from a Guinier plot. Although Eq. (4.26) has been

derived for the specific case of a spherical particle of uniform density, it can be shown to be generally

true.

4.5.3 The short wavelength limit: Porod analysis

For wavelengths small compared with the particle size, i.e. QR � 1, but still large compared with

inter-atomic spacings, the form factor for a sphere can be expanded as

F (Q) = 3

[
sin(QR)

Q3R3
− cos(QR)

Q2R2

]
≈ 3

[
−cos(QR)

Q2R2

]

When QR � 1, cos2(QR) oscillates rapidly as a function of Q with an average value of 1/2. The

intensity may then be written as

IS AXS
1 (Q) = 9Δρ2V2

p

〈cos2(QR)〉
Q4R4

= 9Δρ2V2
p

1

2

1

Q4R4

Noting the relation between the volume Vp and the surface S p of a sphere,

V2
p=[(4π/3)R3]2=(4π/9)R4 S p, one finds

IS AXS
1 (Q) =

2πΔρ2

Q4
S p (4.27)

Thus the SAXS intensity in the short-wavelength limit, the so-called Porod regime, is proportional to

the surface area of the sphere and inversely proportional to the fourth power of Q. This is illustrated in

Fig. 4.13(b) where we have scaled the calculated intensity by the surface area. While the oscillations for

the two types of sphere occur with different periods, as they must, when plotted on a double logarithmic

plot, the average of the two curves falls off with a gradient of −4, as represented by the dashed line.

In fact, the variation of scattered intensity with wavevector in the Porod regime turns out to depend

sensitively on the shape of the particle, including its dimensionality. This dependence is examined in

the following section.

4.5.4 Variation of the form factor with particle shape

In this section we examine how the single particle form factor depends on the shape of the particle. That

the form factor has to vary with particle shape should be clear from the defining equation, Eq. (4.21),

which for a three-dimensional particle involves an integral over the particle volume Vp. As indicated

earlier, an analytic calculation of the orientationally averaged form factor can only be made for very
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Radius of gyration Porod exponent

|F (Q)|2 Rg n

Sphere (d = 3)
(

3J1(QR)
QR

)2
√

3
5 R −4

Disc (d = 2) 2
Q2R2

(
1 − J1(2QR)

QR

) √
1
2 R −2

Rod (d = 1) 2S i(QL)
QL

− 4 sin2(QL/2)

Q2L2

√
1
12 L −1

Table 4.2 Variation with dimensionality d of the SAXS single-particle form factor, F (Q), radius of gyration, Rg,

and Porod exponent. Results are given for a sphere of radius R, an infinitely thin disc of radius R, and an infinitely

thin rod of length L. Here S i(x) is the sine integral
∫ x

0
sin t/t dt, and J1(x)=(sin(x)−x cos(x))/x2 is a Bessel function

of the first kind.

few particle shapes. Beyond these cases, it is necessary to calculate the form factor using numerical

integration methods. The form factors for various shaped particles have been compiled by Pedersen

[2002].

The form factor can be shown to depend sensitively on particle dimensionality. An understanding of

this fact can be gained without recourse to detailed calculation, but from examining how the element of

integration, dVp in three dimensions, itself varies with dimensionality. We have already considered an

example of a three-dimensional object, the sphere, for which the element of integration is dVp=4πr2dr,

and therefore the integrand in Eq. (4.21) varies as r2. An example of a two-dimensional object is an

infinitesimally thin disk, radius R, for which the element of integration is an area dAp=2πrdr. To

complete the sequence, we consider an infinitesimally thin rod, of length L as an example of a one-

dimensional object. In this case, the element of integration is a constant independent of r. Thus when

sampled at length scales smaller than the particle itself, the form factor exhibits a characteristic power

law rα with an exponent that depends on the particle’s dimensionality. It follows that in a scattering

experiment performed as a function of wavevector (proportional to inverse length) one should expect to

see power laws in Q from which it should be possible to determine the dimensionality of the particle.

In Table 4.2, we provide expressions for the form factors for the three representative objects of

varying dimensions considered above. Derivations of the form factor of the infinitesimally disk and

rod are not provided here as it suffices for our present purposes to quote the results. The form factors

listed in this table are plotted and compared in Fig. 4.14�. The comparison is facilitated by plotting the

form factors as a function of the product of Q and the radius of gyration Rg. When plotted on a linear

scale (Fig. 4.14(a)�) significant differences are apparent in the form factors for values of QRg greater

than approximately two. These differences become even more pronounced when the form factors are

shown over an extended range on a double logarithmic plot (Fig. 4.14(b)�). In the Porod regime the

asymptotic Q dependence of the form factor is such that |F (Q)|2 ∝ Q−4, Q−2, and in Q−1 in d=3, 2, and

1 dimensions, respectively.

It is important to appreciate that the apparent dimensionality inferred from experiment may change

with the range of wavevector considered. The reason is that different wavevectors probe different real

space length scales, and how an object appears will depend on the length scale at which it is investigated.
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Fig. 4.14 � Illustration of the dependence of the small-angle scattering form factor on particle dimensionality. Here |F (Q)|2 is

plotted as a function of the product of wavevector, Q, and the radius of gyration Rg. (a) The form factor for a sphere (d = 3), disk

(d = 2) and rod (d = 1) (see Table 4.2). (b) The asymptotic behaviour at large Q of the form factor follows a power law with an

exponent that depends on the dimensionality: F (Q) ∝ Q−4, Q−2, and Q−1 for d = 3, 2 and 1, respectively.

For example, polymers are extensively studied by small-angle scattering techniques. Simple polymers

are composed of segments (monomers) bonded to form a long chain-like molecule. Depending on the

solvent the chain can either be in an extended or collapsed state. For sufficiently large wavevectors the

scattering from the former would fall off as 1/Q, while for the latter as 1/Q4. At a critical concentration

of solvent, the polymer structure is described as a random walk in three dimensions for which the

intensity can be shown to vary as 1/Q2. Irrespective of the global structure assumed by the polymer,

there is a minimum length scale in the problem set by the length of a monomer unit, and therefore

at the highest wavevectors (shortest real space length scales) the scattering must fall off as 1/Q, the

characteristic behaviour of a rigid rod.

4.5.5 Polydispersivity

Up to now we have analysed the small-angle scattering from a dilute (i.e. non-interacting) ensemble of

identical particles. In particular it has been assumed that all of the particles have the same size. Such

an ensemble is said to be monodispersed. When this assumption no longer applies − as is most often

the case when dealing with real systems, to a greater or lesser extent − the scattering system is said to

be polydispersed. While it is undeniable that the existence of polydispersivity complicates the analysis

of SAXS experiments, it is also true that one of the strengths of the technique is its ability to provide

information on the statistical distribution of particle sizes.

If the distribution of particle sizes R is represented by the function D(R), then in the presence of

polydispersivity Eq. (4.20) must be amended to read

I(Q) = Δρ2

∫ ∞

0

D(R)Vp(R)2 |F (Q,R)|2 dR (4.28)

The particle size distribution function is normalized such that
∫ ∞

0
D(R)dR = 1. Although it is possible
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to use different functions to represent the particle size distribution according to the problem at hand, one

particular function is particularly popular in the context of small angle scattering. The Schulz function

is defined by

D(R) =

[
z + 1

R̄

]z+1
Rz

Γ(z + 1)
exp

(
−(z + 1)

R

R̄

)
(4.29)

where R̄ is the mean particle size, and z is a measure of the spread in particle sizes, with D(R) tending

to a delta function as z → ∞. The reason for the popularity of the Schulz function is that it is

possible to obtain semi-analytic expressions for Eq. (4.28) for simple particle shapes such as rods,

disks and spheres (see, for example, Kotlarchyk and Chen [1983] and references therein). For the

Schulz distribution the percentage polydispersivity p=100/
√

z + 1.

Qualitatively, polydispersivity acts to smear out features in the SAXS curve. In Fig. 4.15�

we show the calculated effect of progressively increasing the polydispersivity of an ensemble of

spheres. The solid blue line represents the familiar, well-defined intensity oscillations expected from

a monodispersed system of spheres. Introducing a modest spread in particle size of p=10% (z= 99,

dashed red line) leads to a rapid damping of the intensity oscillations. Doubling the spread to p=20%

(z = 24, dot dashed green line), the intensity oscillations all but disappear.

4.5.6 Inter-particle interactions

We now consider briefly how to extend the theory that has been developed so far to describe the small-

angle scattering from a concentrated system of particles. In analogy with the scattering from dense

atomic liquids considered in Section 4.4, inter-particle correlations may be accounted for by introducing

a structure factor S(Q) (Eq. (4.16)). Equation (4.22) then has to be amended to read

IS AXS (Q) = Δρ2V2
p |F (Q)|2 S(Q) (4.30)

Thus starting from the dilute limit, increasing the particle concentration will progressively lead to

additional peaks in the intensity as a function of Q similar to those shown in Fig. 4.10 and Fig. 4.9.

Before considering an example of the application of SAXS it is worth remarking that very few of

the formulae derived in this section are specific to this technique, in the sense that they also applicable

to small-angle neutron scattering. One of the most significant changes occurs when converting the

measured intensity to an absolute scale. In the SANS case it is necessary to use the appropriately

weighted neutron scattering lengths b2
i
, instead of r2

0
.

4.5.7 Dynamics of the micelle to vesicle transition

Certain classes of organic molecules have the propensity to self organise into aggregates which assume

a wide variety of ordered structures. Such behaviour is particularly prevalent amongst surface active

molecules known as surfactants. The organic molecules forming a surfactant are amphiphilic, formed

from a head group that is hydrophilic and a tail group that is hydrophobic. Structures exhibited by

surfactants range from simple, particle-like structures, including micelles and vesicles, to extended

objects such as bilayers and membranes, and even crystalline forms of matter. SAXS, and its sister

technique small-angle neutron scattering, SANS, are ideally suited for studying these structures.

Here we consider the example of a time-resolved SAXS study of the micelle to vesicle transition

which occurs when two different types of micelle are mixed (Weiss et al. [2005]). The experiment was
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R[Å]

Fig. 4.15 � Effect of polydispersivity on the calculated SAXS curve. Solid blue line: form factor of a spherical particle, radius

R=50 Å (Eq. (4.23)). Dashed red line: average form factor for particles described by a Schulz distribution (Eq. (4.29)) with R̄=50
Å and a polydispersivity of p=10 % (z=99) (see inset). Dot-dashed green line: average form factor for particles described by

R̄=50 Å and p=20 % (z=24) (see inset).

performed on beamline ID2 at the ESRF in Grenoble, France. A remarkable feature of this experiment

was that a combination of a fast, two-dimensional detector and the high intensity of the incident beam

allowed a complete SAXS measurement to be made during an exposure lasting a few milliseconds.

A sketch of the structures of the micelles before mixing is given in the inset of Fig. 4.16(a). Micelles

M1 and M2 are rod and sphere like, respectively. (Details on the chemical formulae of the micelles and

other important information on the experiment can be found in Weiss et al. [2005].) Their morphologies

are confirmed by the SAXS data shown in Fig. 4.16(a). The data for M1 and M2 studied separately are

well accounted for by the expected small-angle scattering from a rod, and a sphere, respectively, as

indicated by the solid lines through the data. Within 5 ms after mixing the SAXS curve M1+M2 shows

that a drastic change to the structure has occurred. Analysis of the data establishes that a new, much

larger disk-like micelle has formed. The small-angle scattering from a disk of radius R and height H is

given by

I(Q) = V2
p Δρ

2

∫ π/2

0

[
2J1(QR sinφ)

QR sinφ

]2 [
sin(QH/2) cosφ

(QH/2) cosφ

]2

sin φ dφ (4.31)

where J1 is a Bessel function of the first kind. A good fit of the above expression to the M1+M2

data was obtained with R=75 Å and H=48 Å. Included in the fits shown in Fig. 4.16(a) was a small

polydispersivity in the size of the micelles.

Figure 4.16(b) shows the time evolution of the SAXS data from the mixture of micelles. For times

up to about 580 ms after mixing the SAXS data display a steady evolution. This is evident in Fig.
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Fig. 4.16 Time resolved SAXS data of the micelle to vesicle transition in a surfactant mixture. (a) Comparison of SAXS data

from solutions of micelle M1 (red, rod of radius 18.5 Å and length 150 Å), M2 (black, sphere of radius 10 − 12 Å), and M1+M2

(blue) within 4 ms after they were mixed. The solid line through the M1+M2 data represents the scattering from a disk of radius

R=75 Å and height H=48 Å (Eq. (4.31)). (b) Time dependence of SAXS from M1+M2. Offsets have been applied to the intensity

scale for successive data sets. For times within roughly 580 ms the data continue to be well accounted for by Eq. (4.31) (solid

lines). Beyond 580 ms the SAXS changes form and is instead described by the scattering from a spherical shell (Eq. (4.32)).
(c) Temporal evolution of the disk parameters within 580 ms of mixing. The solid line represents the behaviour expected for

exponential growth of the disk radius R with a time constant of τ=198 ms. (Data courtesy of Theyencheri Narayan.)
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4.16(c) which shows the results of an analysis of the data. Clearly, the main change to the morphology

of the micelles in this time interval is a smooth increase in their radius. Beyond 580 ms, the SAXS

data develops well-defined oscillations and can no longer be fitted by Eq. (4.31). Instead, the SAXS

data reveals that the micelles have undergone a transition to form vesicles, as indicated in the schematic

shown in the inset to Fig. 4.16(b). The expression for the small-angle scattering from a shell-like vesicle

is given by

I(Q) = 16π2Δρ2

[
R2

2

J1(QR2)

Q
− R2

1

J1(QR1)

Q

]2

(4.32)

This equation is obtained from a straightforward generalization of Eq. (4.23). Inspection of Fig. 4.16(b)

shows that Eq. (4.32), appropriately modified to allow for the effects of polydispersivity, gives a good

account of the data for t >580 ms. In this time interval, the main structural change is an increase

in the average radius of the vesicles, as can be seen directly from the data as a displacement in the

intensity oscillations to lower Q. Deviations at low Q between data and theory are due to the growing

importance of inter-particle correlations, which have not been included in the analysis. The growth of

disk-like micelles immediately after mixing is driven by the unfavourable edge energy. At later times,

once they are above a critical size, the bending energy of the bilayers favours closure of the disks to

form vesicles.

This example therefore not only serves to illustrate the detailed nature of the structural information

that can be obtained from SAXS experiments, but it also indicates the future direction of this field,

where brighter sources will be able to provide data on ever shorter time scales, allowing the in situ

study of chemical and biological processes.

4.6 Further reading

X-ray Diffraction, B.E. Warren (Dover Publications, 1990)

International Tables of Crystallography, (Kluwer Academic Publishers)

Introduction to the Theory of Thermal Neutron Scattering, G.L. Squires (Dover, 1996)

An Introduction to the Liquid State, P. A. Egelstaff (Oxford University Press, 1994)

Small-angle X-ray Scattering, O. Glatter amd O. Kratky (Academic Press, 1982)

Introduction to Polymer Physics, M. Doi (Oxford University Press, 1996)

4.7 Exercises

4.1 Account for the shift in energy of the inelastic component relative to the elastic one for the

data shown in Fig. 4.4, and estimate the FWHM of the electronic momentum distribution in

kapton.

4.2 The intensity of Compton scattering, IC, from an atom can be estimated by assuming that the

total scattered intensity, the sum of elastic and inelastic contributions, is constant and equal to

r2
0 per electron, i.e. in electron units 1 = IC+ | fn(Q)|2 where fn(Q) is the contribution to the total

atomic form factor from the n’th electron. Show that for the He atom IC= 2− 2/(1+ (Qa/2)2)4
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with a = a0/(Z − zs) where the symbols have their usual meaning. Compare this result with

the calculation shown in Fig. 4.5(a).

4.3 Consider a diatomic molecule with two identical atoms separated by a distance a and each

having the atomic form factor given by Z/[1 +(Qa/20)2]2. Calculate the scattered X-ray

intensity as a function of Qa and determine the value of Qa for the first two intensity maxima.

4.4 Calculate the scattered X-ray intensity for a linear triatomic molecule where the central atom

is distinct from its two neighbours. You may assume that the two outer atoms are identical, and

take the total length of the molecule to be 2a. Verify that in the limit that the central atom of

a triatomic molecule has negligible scattering length the expression for the scattered intensity

reduces to that of a diatomic molecule.

4.5 The difference between X-ray and neutron form factors (the latter being a constant because the

nuclear interaction potential is delta-function like) is apparent in scattering from gas molecules,

such as for example HgI2. This triatomic, linear molecule as an Hg-I bond length of 2.65 Å.

Calculate and plot the X-ray and neutron scattering intensities for Q up to 12 Å−1, normalized

to 1 at Q=0. Hint: the neutron scattering lengths for Hg and I are 12.7 fm and 5.3 fm,

respectively. For X-rays, use the expansion given in Eq. (4.10) with the following parameters

for I and Hg, respectively a=[20.1472 18.9949 7.5138 2.2735]; b=[4.3470 0.3814 27.76

66.8776]; c=4.0712; a=[20.6809 19.0417 21.6575 5.9676]; b=[0.545000 8.44840 1.57290

38.3246]; c= 12.6089.

4.6 The electronic density ρ(r) of the buckyball molecule C60 may be approximated as a thin shell

of charge of radius R with

ρ(r) =
A

4πR2
δ (R − r)

Determine the numerator A, and use this approximation to calculate the molecular form factor.

4.7 Show that the relative difference in intensity between the Guinier approximation and the exact

solution for spherical particles is less than 1% for QR<1.33.

4.8 Prove numerically that the r.m.s. width of the Schulz distribution with R = 1 is 0.1 (0.2) when

p = 10%(20%).

4.9 Show that the small angle scattering form factor for a vesicle is given by Eq. (4.32).

4.10 Equation (4.26) was derived for the specific case of a spherical particle of uniform density.

Establish its generality by considering the expansion in the small-angle scattering limit of the

phase factor appearing in the definition of the form factor, Eq. (4.21).
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Kinematical scattering II: crystalline order

It is by now universally appreciated that atoms in crystalline materials display long-range positional

order. Indeed, the establishment of this fact by von Laue, the Braggs, and others, was one of the

early triumphs of X-ray diffraction. The structural picture which emerged from these early studies of

elements and simple compounds was of the regular, periodic stacking of atoms in three dimensions.

Following on from this pioneering work, the power of X-ray diffraction techniques has developed

enormously along a number of distinct lines. For example, it is now possible to routinely study the

atomic arrangements in complex materials, including proteins and other biomolecules, or in lower

dimensional objects, such as in two dimensions on surfaces. In addition, the brilliance of modern

X-ray sources allows data to be taken in extremely short time intervals, currently less than 100

fs for a free-electron laser, opening up the possibility of studying chemical, biological and other

time-dependent processes. X-ray diffraction has even led to a new definition of the crystalline state

through the discovery of a new class of materials known as quasicrystals. These materials produce

sharp diffraction spots and yet lack the usual translational symmetry associated with conventional,

periodic crystal structures.

In this chapter we describe the scattering of X-rays from crystalline materials, and illustrate how

different types of long-range order may be revealed through diffraction experiments. The underlying

assumption employed throughout this chapter is that the X-ray is weakly scattered, allowing it to be

analysed within the kinematical approximation (see the beginning of Chapter 4 where this approxima-

tion is discussed more fully).

5.1 Scattering from a crystal

Our exposition begins by considering the X-ray scattering from conventional crystalline materials

where the atoms (or molecules) form periodic structures with translational symmetry. The detailed

classification of crystals is described in many texts on solid state physics and crystallography and will

not be repeated here. Instead we limit ourselves to reminding the reader of a few important facts that

are made use of later.

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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5.1.1 Crystal structure: lattice and basis

A crystalline material may be constructed by regularly repeating a basic structural motif, known as

the unit cell, so as to fill three-dimensional space. The points at which the origins of the unit cell are

located form a hypothetical lattice which may exist in one, two, three and, in certain mathematical

models, even higher dimensions. Thus a crystal is constructed by first specifying the lattice, and then

associating a unit cells worth of atoms (or molecules) known as a basis with each point in the lattice.

Lattices and unit cells

For ease of illustration, we consider a two-dimensional (2D) lattice which can be specified by a set of

vectors Rn with

Rn = n1 a1 + n2 a2 (5.1)

where a1 and a2 are the lattice vectors, and n1 and n2 are integers. The vectors a1 and a2 define the

unit cell, as illustrated in Fig. 5.1(a) for the case of a 2D rectangular lattice. It is important to note that

the choice of lattice vectors (including their origin) is to a large extent arbitrary. For example, in the

case of our 2D rectangular lattice we could equally well have chosen a′2 = 2a2 as shown in Fig. 5.1(b).

For any lattice, however, we can always choose the lattice vectors such that the resulting area of the

unit cell (or volume in three dimensions) is a minimum. This is known as the primitive unit cell, and

is defined by the primitive lattice vectors. It follows that the primitive unit cell contains just a single

lattice point. That this is the case can be seen by translating the origin by a small amount. When this

is done to the unit cell drawn in Fig. 5.1(a) it is clear that it is primitive, whereas the unit cell of Fig.

5.1(b) is non-primitive. From these comments it may seem desirable to always work with a primitive

unit cell, as that would seem to offer the best hope of minimizing any possible ambiguities. However,

in many situations it turns out to be more convenient to work with a non-primitive unit cell, usually

because it is easier to visualize the structure, and the unit cell that is mostly widely used for a given

structure is known as the conventional unit cell. As an example, in Fig. 5.1(c) we show a cell that is

indeed primitive, but one that does not readily reflect the rectangular symmetry of the lattice.

These considerations of course also apply in three dimensions where the lattice is specified by a set

of vectors of the form

Rn = n1 a1 + n2 a2 + n3 a3 (5.2)

A given lattice has characteristic symmetries, which not only include translations but also rotations,

reflections, and compound symmetries formed by combining a translation with rotations and/or

reflections. For example, the lattice shown in Fig. 5.1(a) has a two-fold rotation axis perpendicular

to the plane of the paper through the origin. The lattice is also invariant if reflected in either of two

orthogonal mirror planes. Lattices which have the property that each and every point in the lattice is

identical are associated with the name of (Auguste) Bravais. He showed that in two dimensions there

are five distinct types of lattice consistent with Eq. (5.1) (of which the rectangular lattice is but one),

while in three dimensions there are 14.

To complete the description of a crystal structure we need to associate a basis worth of atoms (or

molecules) with each and every lattice site. The construction of a two-dimensional crystal from a lattice

and a basis is illustrated schematically in Fig. 5.1(d). When the possible symmetries of the basis (known

as the point group) are combined with those of the lattice it turns out that all crystal structures can be

classified into one of 230 possible space groups, as described in standard books on crystallography.
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(d) Crystal=lattice basis�

Lattice Basis
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Fig. 5.1 Possible unit cells of the 2D rectangular lattice. (a) a primitive unit cell defined by a1 and a2. If we translate the origin
and produce a new unit cell (indicated by the dotted line) then it is apparent that the unit cell contains one lattice point and is

hence primitive. This is also the conventional cell of the 2D rectangular lattice. (b) non-primitive unit cell defined by a′
1

and a′
2
,

with a′
2
= 2a2. The unit cell produced by a shift of the origin is seen to contain two lattice points. (c) primitive, unconventional

unit cell defined by a′′
1

and a′′
2

. (d) The construction of a two-dimensional crystal structure from the convolution (designated by

the symbol �) of a lattice and a basis.
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a1

a2

a1

a2

(10) planes

d

d
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Fig. 5.2 Lattice planes and Miller indices for the 2D rectangular lattice: (a) the (10) planes; (b) the (21) planes. In both cases

the d spacing of the planes is indicated.

Lattices that exist in the real space occupied by the crystal are sometimes referred to as direct

lattices to distinguish them from ones that may be defined in other spaces.

Lattice planes and Miller indices

X-ray diffraction from a crystalline material is concerned with the scattering from atoms that may be

thought of as lying within families of planes. Hence it is desirable to have some way to specify families

of planes within a crystal. The Miller indices turn out to be the most convenient way to achieve this.

For a given family of planes, the Miller indices (h, k, l) are defined such that the plane closest to the

origin (but not including the origin) has intercepts (a1/h,a2/k,a3/l) on the axes (a1,a2,a3). (We note that

by convention a negative intercept is represented by writing a bar over the relevant Miller index.)

In Fig. 5.2 we indicate the (10) and (21) planes for the 2D rectangular lattice. This example serves

to illustrate two important features of planes specified by their Miller indices. The first is that the

density of lattice points in a given family of planes is the same, and that all lattice points are contained

within each family. The second is that, again for a given family, the planes are equally spaced, so that

it is possible to define a lattice spacing dhkl. For example, the d spacings of a cubic lattice are given by

dhkl =
a

√
h2 + k2 + l2

(5.3)

where a is the lattice parameter, as we shall establish later.

Crystal structure as a convolution of lattice and basis

Mathematically, the synthesis of a crystal from a lattice and a basis is properly described as the

convolution of two functions as defined in Appendix E. To establish this fact we consider a crystal

in one dimension of lattice spacing a. Let the function C(x) represent the crystal, and L(x) and B(x)

describe the lattice and basis, respectively. Using this language, the crystal structure is represented by

the function

C(x) =
∑

n

B(x − na)

which describes a series of copies of the basis B(x) separated by a distance a. The lattice is a purely

mathematical construct comprised of a series of infinitely sharp points which can be written as

L(x) =
∑

n

δ(x − na) (5.4)
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where δ(x − na) is the Dirac delta function. The reader is reminded of the definition and properties of

the Dirac delta function in the box on the next page. The convolution of the functions representing the

lattice and basis is then evaluated as

L(x) � B(x) =

∫ ∞

−∞
L(x1)B(x − x1)dx1 =

∫ ∞

−∞

∑
n

δ(x1 − na)B(x − x1)dx1

=
∑

n

∫ ∞

−∞
δ(x1 − na)B(x − x1)dx1 =

∑
n

B(x − na)

= C(x)

This proof can be readily extended to higher dimensions.

5.1.2 Decomposition of the scattering amplitude

Having introduced a way of describing the structure of a crystal we can now proceed to calculate

the scattering amplitude. Following Eq. (4.3), the scattering amplitude from a crystalline material

comprised of atoms can be written in general as

Fcrystal(Q) =

All atoms∑
�

f�(Q)eiQ·r�

where f�(Q) is the atomic form factor of the atom situated at position r�, and the factor of −r0 has been

dropped. As indicated in Fig. 5.1(d), for a crystalline material r� = Rn + r j, where Rn is a lattice vector

and r j labels the position of an atom within the unit cell. Writing the position vectors of the atoms in

this way facilitates the decomposition of the scattering amplitude into the product of two terms:

Fcrystal(Q) =

All atoms∑
Rn+r j

f j(Q)eiQ·(Rn+r j) =

Lattice︷������︸︸������︷∑
n

ei Q·Rn

Unit cell︷�������������︸︸�������������︷∑
j

f j(Q)ei Q·r j (5.5)

The first of these terms is a sum over the lattice, while the second is over the basis of atoms and is

known as the unit cell structure factor,

Fu.c.(Q) =
∑

j

f j(Q)ei Q·r j (5.6)

An alternative way to understand the decomposition of the scattering amplitude from a crystalline

material into a product of a lattice and basis term is by invoking the convolution theorem. In real

(or direct space) the crystal structure may be described as a convolution of a lattice and basis, as

described earlier. Since the scattering amplitude is nothing other than the Fourier transform of the

crystal structure, it follows from the convolution theorem that this must be equal to the product of the

Fourier transforms of the functions describing the lattice and basis. These are, respectively, the lattice

sum and the unit cell structure factor, which we consider separately in the following sections.

5.1.3 The Laue condition

Although conceptually the lattice sum is yet another step in building up the total scattering amplitude

from a crystalline material, it is in practice quite different from all of the summations we have
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The Dirac δ function

Usually a mathematical function such as ex, sin(x) · · · , etc., can be

tabulated and plotted. This is not the case for the Dirac δ function. It

represents the limiting case for a number of functions with a peak, such

as a box, triangle, Gaussian, or a Lorentzian, when the width tends

towards zero while the area remains constant.

The Dirac δ function is used in connection with integration. When an

arbitrary function, f (x), is multiplied by the δ function and integrated,

the result is by definition f (x = 0):

f (0) =

∫
f (x)δ(x) dx

If the argument of the δ function is not x, but rather a function of x, t(x)

say, one can use the following procedure:∫
f (x)δ(t(x)) dx =

∫
f (t(x))δ(t) (dt/dx)−1 dt

=
[
f (t)(dt/dx)−1

]
t=0

Suppose for example that t(x) = x − a. Then dt/dx = 1 and∫
f (x)δ(x − a) dx = f (a)

Another linear function is t(x) = x/a:∫
f (x)δ(x/a) dx = a f (0)

In connection with the derivation of the Lorentz factor we shall use and

evaluate

F(k) ≡
∫

x2 δ(x2 − k2) dx for k > 0

With t = x2 − k2 we obtain dt/dx = 2x and therefore

F(k) =

[
x2

2x

]
t=0

=
k

2

or in other words

1 =
2

k

∫
x2 δ(x2 − k2) dx for k > 0
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considered so far. The reason is that the number of terms in the lattice sum is enormous. A small

crystallite may be of order of 1 micron on each side, which is of order 104 times the length of a basis

vector, so that the number of terms is of order 1012 or more. Each of the terms is a complex number,

ei φn , located somewhere on the unit circle. The sum of phase factors is of order unity, except when all

phases are 2π or a multiple thereof, in which case the sum will be equal to the huge number of terms.

The problem is then to solve

Q · Rn = 2π × integer (5.7)

To find a solution, suppose that we now construct a lattice in the wavevector space (which has

dimensions of reciprocal length) spanned by basis vectors (a∗1, a∗2, a∗3) which fulfill

ai · a∗j = 2π δi j (5.8)

where δi j is the Kronecker delta, defined so that δi j = 1 if i = j and is zero otherwise. The points on

this reciprocal lattice are specified by vectors of the type

G = h a∗1 + k a∗2 + l a∗3 (5.9)

where h, k, l are all integers. It is now apparent that the reciprocal lattice vectors G satisfy Eq. (5.7)

since the scalar product of G and Rn is

G · Rn = 2π(hn1 + kn2 + ln3)

and as all of the variables in the parenthesis are integers, the sum of their product is also an integer.

In other words, only if Q coincides with a reciprocal lattice vector will the scattered amplitude from a

crystallite be non-vanishing. This is the Laue condition for the observation of X-ray diffraction:

Q = G (5.10)

It is worth emphasizing that the Laue condition is a vector equation, requiring that each component of

the wavevector transfer equals the corresponding component of the reciprocal lattice vector. Only when

this condition is fulfilled will all of the phases of the scattered waves add up coherently to produce an

intense signal. The Laue condition provides a mathematically elegant, but powerful way to visualize

diffraction, as we shall see1. In order to calculate intensities it is of course necessary to explicitly

evaluate the lattice sum, and we shall return to this in Section 5.1.6.

5.1.4 Reciprocal lattices

The reciprocal lattice vectors are generated through use of Eq. (5.8). In one dimension the construction

of the reciprocal lattice is trivial, since a1 · a∗1 = a1a∗1 = 2π, which implies a∗1 = 2π/a1 as shown in the

top panel of Fig. 5.3. In two dimensions it is also reasonably straightforward to use Eq. (5.8). If we

1We have defined the wavevector transfer as Q = k−k′, with the implication that Q points into the origin of reciprocal space.

The Laue condition should then read Q = −G, but this change of sign does not affect any of the discussion.
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Real Reciprocal
1D

2D

3D
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a1

a

a1

a1

a3

a2

a2

a

a1

a2

���a

a1*

���a

a1*

a2*

��
cos(30 ) a

oa1*

a1*

a2*

a2*

a3*

4 /a�a

fcc bcc

Fig. 5.3 Example of the construction of reciprocal lattices in one, two, and three dimensions.

write, in an appropriate coordinate system, a∗1 = (α, β) and a∗2 = (δ, γ), then substitution into Eq. (5.8)

generates four equations from which the unknown parameters α, β, δ and γ can be determined. The

second and third rows in Fig. 5.3, showing the reciprocal lattices of the two-dimensional square and

hexagonal lattices were generated using this method. The hexagonal lattice serves to illustrate the point

that if the axes in direct space are not orthogonal, then the basis vectors in real and reciprocal space are

not necessarily parallel.

In three dimensions it proves to be more convenient to work with explicit expressions for the
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reciprocal lattice basis vectors, given by

a∗1 =
2π

vc

a2 × a3 a∗2 =
2π

vc

a3 × a1 a∗3 =
2π

vc

a1 × a2

where vc = a1 · (a2 × a3) is the volume of the unit cell. These may be verified by direct substitution into

Eq. (5.8). In the bottom row of Fig. 5.3 we show the three-dimensional example of the face centred

cubic lattice which has primitive lattice vectors of

a1 =
a

2
(ŷ + ẑ) , a2 =

a

2
(ẑ + x̂) , a3 =

a

2
(x̂ + ŷ)

where we have chosen a set of Cartesian axes parallel to the cube edges. The volume of the unit cell is

vc=a1 · (a2 × a3), and the basis vectors of the reciprocal lattice are therefore

a∗1 =
4π

a
(
ŷ

2
+

ẑ

2
− x̂

2
) , a∗2 =

4π

a
(
ẑ

2
+

x̂

2
− ŷ

2
) , a∗3 =

4π

a
(
x̂

2
+

ŷ

2
− ẑ

2
)

These are in fact the primitive basis vectors of a body centred cubic lattice with a cube edge of 4π/a.

Reciprocal lattice: Fourier transform of the direct lattice

In Section 5.1.5 below we shall prove that the Laue condition for the constructive interference of waves

scattered from a crystal is equivalent to Bragg’s law. The proof of this equivalence relies on a particular

aspect of the relationship between the direct and reciprocal lattices: a family of planes (h, k, l) in direct

space is represented by the reciprocal lattice vector Ghkl in reciprocal space. The general relationship

between the direct and reciprocal descriptions of a crystal lattice can be understood by considering the

Fourier transform of the one-dimensional lattice function (Eq. (5.4)):∫ ∞

−∞
L(x) eiQxdx =

∫ ∞

−∞

∑
n

δ(x − na) eiQxdx =
∑

n

∫ ∞

−∞
δ(x − na) eiQxdx

=
∑

n

eiQna = a∗
∑

h

δ(Q − ha∗)

where the last step makes use of a result which we shall derive in Section 5.1.6. Thus the Fourier

transform of a one-dimensional direct lattice of spacing a is itself another lattice of spacing a∗ = 2π/a

which we recognize as the reciprocal lattice. When extended to higher dimensions, the general result

is obtained that the reciprocal lattice is nothing other than the Fourier transform of the direct lattice.

(If required, the reader should refer to Appendix E where we define the Fourier transform and provide

examples of its application to various functions.)

5.1.5 Equivalence of the Laue and Bragg conditions

It may be shown that the Laue condition is exactly equivalent to Bragg’s Law. In Fig. 5.4(a) the proof

of this equivalence is indicated for the specific case of a two-dimensional square lattice. The left hand

part of the figure shows the construction normally used to derive Bragg’s Law. X-rays are specularly

reflected from atomic planes with a spacing of d, and the requirement that the path length difference is

an integer multiple of the wavelength leads to the well-known statement of Bragg’s law: λ = 2d sin θ.

The same scattering event is drawn in reciprocal space in the right hand panel. The Laue condition

requires that Q = G. The reciprocal lattice in this case is also square with a lattice spacing of 2π/d,
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Bragg Laue

d 2 /� d

Real Reciprocal

� � Q

k k´

�

�

k

k´

(0,1) (1,1)

(1,0)(0,0)

Q=G��� �dsin

(a) Equivalence of Bragg and Laue

(b) Miller indices and reciprocal lattice vectors

Ghkl

v2

v1

a1/h

a2/k

a3/l

Fig. 5.4 (a) The equivalence of Bragg’s Law and the Laue condition for the particular case of the 2D square lattice. (b)

Construction to prove that the reciprocal lattice vector Ghkl is perpendicular to the (h, k, l) planes, and has a magnitude equal to

2π/dhkl.
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and in the figure we have chosen Q = 2π
d

(0, 1). From the geometry Q = 2k sin θ, since |k| = |k′|, and

we thus have 2π/d = 2k sin θ which can be rearranged to yield Bragg’s Law.

The general proof of the equivalence of Laue’s and Bragg formulations follows from the intimate

relationship between points in reciprocal space and planes in the direct lattice. We shall now show that

for each point of the reciprocal lattice given by Eq. (5.9) there exists a set of planes in the direct lattice

such that

(a) Ghkl is perpendicular to the planes with Miller indices (h, k, l).

(b) |Ghkl| = 2π
dhkl

, where dhkl is the lattice spacing of the (h, k, l) planes.

Consider the plane with Miller indices (h, k, l) shown in Fig. 5.4(b). Two vectors in this plane are

given by

v1 =
a3

l
− a1

h
v2 =

a1

h
− a2

k

Hence any point in this plane is specified by v = ε1v1 + ε2v2, where ε1 and ε2 are parameters. From Eq.

(5.8) the scalar product of G and v is

G · v = (ha∗1 + ka∗2 + la∗3) ·
(
(ε2 − ε1)

a1

h
− ε2

a2

k
+ ε1

a3

l

)
= 2π(ε2 − ε1 − ε2 + ε1) = 0

This establishes the first assertion. The plane spacing d is the distance from the origin to the plane, and

is found by taking the scalar product of Ĝ = G/|G|, the unit vector along G, and any vector connecting

the origin to the plane, a1/h say. The d spacing is thus

d =
a1

h
· G

|G| =
2π

|G|

as required.

To complete the general proof of the equivalence we note that the Laue condition may be re-written

in the form, k = G + k′. Taking the square of both sides and using the fact that the scattering is elastic

(|k| = |k′|) yields the result

G2 = 2G · k (5.11)

where we have also utilized the fact that, if G is a reciprocal lattice vector, then so is −G. From the

scattering triangle (Fig. 5.4(a)) it is apparent that G · k = Gk sin θ, and since we have already shown

above that G = 2π/d, Eq. (5.11) can be rearranged as λ = 2d sin θ, thus completing the proof.

The relationship between |G| and d is an extremely useful one, as once G is known for the Bragg

reflection of interest, d can be calculated. For example, for the simple cubic lattice G= 2π
a

(h, k, l), from

which it follows that |G|= 2π
a

√
h2 + k2 + l2, and hence d = a/

√
h2 + k2 + l2 as stated in Eq. (5.3).

5.1.6 Lattice sums in one, two and three dimensions

A key ingredient that needs to be considered before the intensity of a given Bragg reflection can be

calculated is the lattice sum defined in Eq. (5.5) as

S N (Q) =
∑

n

ei Q·Rn
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In this section we evaluate the sum in one, two and three dimensions. The reader is reminded that the

subscript n refers to the fact that the lattice vector Rn is specified by a set of integers that reflects the

dimensionality of the lattice. In three dimensions we require a set of integers (n1, n2, n3). As our main

aim is to arrive at an expression for the intensity we will also evaluate the modulus squared of the lattice

sum, |S N(Q)|2.

One dimension

In one dimension the lattice points are specified by Rn = na where n is an integer and a is the lattice

parameter. For a finite 1D lattice with N unit cells the sum may be written as

S N(Q) =

N−1∑
n=0

ei Qna

Evaluation of this geometric series has already been considered on page 52, which allows us to write

|S N(Q)| = sin(NQa/2)

sin(Qa/2)

For large N, |S N (Q)| exhibits a sharply defined peak whenever the denominator is equal to zero. This

condition requires that Qa/2 = hπ (h integer), or in other words Q = h(2π/a) = ha� = Gh, where Gh is

a reciprocal lattice vector. As expected, explicit evaluation of the lattice sum yields the Laue condition,

which we had previously derived using plausibility arguments in Section 5.1.3.

In order to study the behaviour of the lattice sum when the Laue condition is almost fulfilled in the

vicinity of a single reciprocal lattice point, a small parameter ξ is introduced which is defined by

Q = (h + ξ)a∗

The modulus of the lattice sum then becomes

|S N(ξ)| = sin(Nπξ)

sin(πξ)
→ N as ξ → 0

Its width for large N may be estimated by setting ξ = 1/(2N):

|S N (ξ =
1

2N
)| ≈ 1

π/(2N)
=

(
2

π

)
N ≈ N

2

With a peak height equal to N, and a full width at half maximum of approximately 1/N, the peak area

is approximately equal to unity. In fact it is possible to show that the area is exactly equal to unity, and

in the limit that N → ∞ we can write the modulus of the lattice sum as

|S N(ξ)| → δ(ξ)

where δ(ξ) is the Dirac delta function. This result can be rewritten in a more general form in terms of

the wavevector transfer Q as

|S N (Q)| → a∗
∑
Gh

δ(Q − Gh) (5.12)

where the sum is over all reciprocal lattice points. The factor of a∗ arises since δ(Q − Gh)= δ(ξa∗)
=δ(ξ)/a∗ (see the box on page 152).
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In a diffraction experiment it is the modulus squared of the lattice sum that is of interest. Using

similar arguments to those given above it is straightforward to show that

|S N(Q)|2 → N a∗
∑
Gh

δ(Q − Gh) (5.13)

which is plotted in the box on page 52.

Two and three dimensions

A two-dimensional lattice is shown in Fig. 5.1. The unit cell is spanned by the two basis vectors a1

and a2. A special case is when the macroscopic crystal has the shape of a parallelepiped, so that the

number of unit cells along the a1 direction is always N1, independent of the row number 1, 2, · · · ,N2.

Following the same method outlined for the 1D case above it is obvious that

|S N(ξ1, ξ2)|2 → N1N2 δ(ξ1) δ(ξ2)

for large (N1,N2). Again use is made of the Dirac delta function to write this in the form

|S N(Q)|2 → (N1a∗1)(N2a∗2 )
∑

G

δ(Q − G) = NA∗
∑

G

δ(Q − G) (5.14)

where G = h a∗
1+ k a∗2, A∗ is the area of the unit cell in reciprocal space, and N = N1N2 is the number of

unit cells. In the general case, one cannot evaluate the sum analytically and afterwards square it to look

at the limiting behaviour for large numbers of unit cells. However, the delta function character will be

maintained for any crystal shape as long as the number of unit cells in both directions is large.

Generalization of the above result to three dimensions is straightforward. For a parallelepiped the

summations can be carried out analytically, but for a general shape it cannot. When the number of unit

cells in all three dimensions is large, then independently of the actual crystal shape

|S N (Q)|2 → N v∗c
∑

G

δ(Q −G) (5.15)

where G = h a∗1 + k a∗2 + l a∗3, N is the total number of unit cells, and v∗c is the volume of the unit cell in

reciprocal space.

5.1.7 The unit cell structure factor

We now turn to the evaluation of the unit cell structure factor defined in Eq. (5.6). The starting point

is to choose the lattice and hence the unit cell, as this in turn defines the basis of atoms within the unit

cell. We illustrate this with a few simple examples.

The first example is the face centred cubic ( f cc) structure shown in bottom panel of Fig. 5.3. Here

the conventional cubic unit cell is chosen, as it reflects in a more obvious way the symmetry of the

structure. With this choice of unit cell the lattice is simple cubic with a lattice spacing of a, and the

basis consists of four atoms at

r1 = 0 , r2 =
1

2
(a1 + a2) , r3 =

1

2
(a2 + a3) , r4 =

1

2
(a3 + a1)
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(a) (b)

Fig. 5.5 The diamond lattice (a) can be formed from two inter-penetrating f cc lattices displaced by ( 1
4

1
4

1
4 ) with respect to each

other. For the zinc sulfide (also known as zinc blende) structure (b) the two lattices are occupied by different types of atom.

Here a1, a2 and a3 are parallel to the cube edges. The choice of unit cell implies that the reciprocal

lattice is also simple cubic with a lattice spacing of 2π/a, and as a result a reciprocal lattice vector is of

the form G=
(

2π
a

)
(h, k, l). For simplicity assume that all of the atoms in the unit cell are identical. The

atomic scattering factor can then be taken outside the summation in Eq. (5.6), and the problem then is

to sum the phase factors. The unit cell structure factor is evaluated as

F
f cc

hkl
= f (G)

∑
j

ei G·r j

= f (G)(1 + eiπ(h+k) + ei π(k+l) + ei π(l+h))

= f (G) ×
⎧⎪⎪⎨⎪⎪⎩4 if h, k, l are all even or all odd

0 otherwise

The (1,0,0) reflection, which is the shortest reciprocal lattice vector, has a vanishing structure factor,

since h is odd, but k and l are even: the reflection is said to be forbidden. The shortest reciprocal lattice

vector of an allowed reflection is the (1,1,1) reflection: all indices are odd. The next one is the (2,0,0)

reflection: here all indices are even.

The second example to consider is the diamond structure shown in Fig. 5.5(a). This is the structure

adopted by elemental silicon and germanium, and of course of carbon in its diamond form. The

diamond structure can be thought of in different ways. Choosing a conventional cubic unit cell implies

that the basis would then be comprised of eight atoms (as the reader should be able to confirm).

Alternatively, the diamond structure can be thought of as being formed from two interpenetrating f cc

lattices, displaced 1
4

of a body diagonal relative to each other. This suggests, following the discussion

of the application of the convolution theorem in Section 5.1.2, to consider the diamond structure as a

convolution of the f cc lattice and a two-atom basis, with one chosen to be at the origin, and the other

at (1/4,/1/4,1/4)a. The advantage of this approach is that the structure factor of diamond can be written
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Fig. 5.6 The Ewald circle in two dimensions. (a) In 3D the reciprocal lattice is generated by integer coordinates (h, k, l) of the

reciprocal basis vectors (a∗
1
, a∗

2
, a∗

3
). For simplicity a 2D lattice at points given by G = ha∗

1
+ ka∗

2
is shown. (b) The scattering

triangle. Monochromatic incident radiation specified by k = AO can be scattered to any wavevector k′=AB terminating on the

sphere of radius k. The bandwidth of the incident radiation Δk is indicated by the thickness of the circle. The scattering vector is

defined as the vector Q =BO. (c) The Ewald circle (or Ewald sphere in 3D) is a superposition of (a) and (b) with k terminating
on the origin of the reciprocal lattice. (d) Multiple scattering occurs if two or more reciprocal lattice points fall on the Ewald

sphere. The rotation of the crystal and detector are set to record the G2 reflection, but as G1 is on the circle, the incident wave

will also be scattered to kint. Inside the crystal kint is scattered to k′ by the reflection G2 − G1, and intensity may appear in the

direction of k′, even if the unit cell structure factor for this reflection vanishes.
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kmaxkmin

Fig. 5.7 The Ewald sphere construction for a white beam containing all wavevectors from kmin to kmax. All the reciprocal lattice

points in the shaded area will Bragg reflect simultaneously. Knipping, Friderich and von Laue’s discovery of the diffraction of
X-rays from a single crystal of ZnS was performed in this way using the bremsstrahlung spectrum from an X-ray tube, and with

a photographic film as detector. The exposure time was several hours. With today’s third generation synchrotron sources one can

register of order a 1000 reflections on an area detector within the duration of a single pulse from the electron bunch, i.e. about

100 ps.

Fig. 5.8 Pulsed Laue diffraction pattern from the photo-active yellow protein. The diffraction pattern was collected by averaging

over 10 exposures, each of 100 ps duration. This image contains about 3700 usable reflections from which the structure could be

obtained. (Data courtesy of Michael Wulff, European Radiation Facility, and Benjamin Perman, University of Chicago.)
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as the product of the structure factors of an f cc lattice and the two atom basis, or in other words

Fdiamond
hkl = (1 + ei π(h+k) + eiπ(k+l) + ei π(l+h))

× ( f C(G) + f C(G)ei 2π(h/4+k/4+l/4))

By inspection, the (1,1,1) reflection has a structure factor of 4(1− i), the (2,0,0) reflection is forbidden,

the (4,0,0) reflection has a structure factor of 8, the (2,2,2) reflection is forbidden2, etc.

The final example to consider is the important variant of the diamond structure which forms when

the two f cc lattices are occupied by different types of atom. This is known as the zinc sulfide (or zinc

blende) structure, see Fig. 5.5(b), and is the structure adopted by many semiconducting materials such

as GaAs, InSb, CdTe, etc. To take the specific case of GaAs, the structure factor is

FGaAs
hkl = (1 + ei π(h+k) + ei π(k+l) + ei π(l+h))

× ( f Ga(G) + f As(G)ei 2π(h/4+k/4+l/4))

It can then be seen that the structure factor for the (2,0,0) reflection, which is forbidden in the diamond

structure, is

FGaAs
200 = 4( f Ga(2, 0, 0)− f As(2, 0, 0))

which is non-zero since Ga and As have different numbers of electrons and f Ga(G) � f As(G).

5.1.8 The Ewald sphere

A useful way to visualize diffraction events in reciprocal space is provided by the Ewald sphere, or in

two dimensions the Ewald circle, construction. First consider the case where a monochromatic beam

is incident on a sample. In Fig. 5.6(a) part of a 2D reciprocal lattice is shown. The Laue condition

requires that the wavevector transfer Q is equal to a reciprocal lattice vector G = ha∗1 + ka∗2. In Fig.

5.6(b) the incident X-ray beam is labelled by k and originates at A and terminates at the origin O. A

circle is now drawn centred at A with a length of k, and hence passes through the origin. As shown

in Fig. 5.6(c), if any reciprocal lattice points fall on the circle, then the Laue condition is fulfilled, and

a diffraction peak observed if the detector is set in the direction of k′. The figure shows an example

where we have chosen the point h = 1 and k=2 to lie on the circle. Rotating the crystal (equivalent to

rotating the Ewald circle about the origin O) brings other reciprocal lattice points onto the Ewald circle.

These ideas can be generalized to three dimensions and give rise to the concept of the Ewald sphere.

In certain settings it could occur that more than one reciprocal lattice point falls on the Ewald circle

at the same time, giving rise to the simultaneous observation of several reflections (Fig. 5.6(d)). This is

known as multiple scattering.

A beam that is not completely monochromatic may be represented by allowing the Ewald circle

to have a finite width. Obviously, in the limit that the incident beam is ‘white’ all reflections will

be observed within the circles of radius equal to the maximum and minimum k vector in the beam,

as illustrated in Fig. 5.7. The discovery of X-ray diffraction by Knipping, Friderich and von Laue

was performed in this way. They used the bremsstrahlung spectrum from an X-ray tube to record

the diffraction pattern from a single crystal of ZnS. Diffraction data taken with a white beam are now

known as Laue patterns. This method is particularly suited to the study of complex structures, such as

2However, as shown schematically in Fig. 5.6(d) one can accidentally observe intensity with the spectrometer set for a

forbidden reflection such as (2,2,2) through a multiple scattering event. For example, the forbidden (2,2,2) reflection can be

thought of as the sum of two allowed reflections, (3,1,1)+ (1,1,1), and if both of these reciprocal lattice points happen to fall on

the Ewald sphere, then scattered intensity is observed.
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proteins, where it is necessary to record the intensity of perhaps thousands of Bragg reflections. It may

also be desirable to follow the kinetics of a chemical or biological process by monitoring the changes

to the structure that occur as the process proceeds. Using modern X-ray sources it is possible to collect

a complete Laue pattern from the radiation produced by a single bunch of electrons in the storage ring

(Fig. 5.8). This allows the kinetics to be studied on a time scale of 100 ps.

5.2 Quasiperiodic structures

The defining property of a crystal, in contrast to a liquid or gas, is that it displays long-range order

at the atomic level. Up to this point long-range positional order of the atoms has been interpreted as

meaning that the crystal structure is periodic. This allows it to be described in terms of a lattice of

unit cells, with lattice vectors given by Eq. (5.2). The requirement of periodicity restricts the set of

transformations which leave the properties of the lattice invariant. If we consider possible rotations,

then a periodic lattice may be invariant under a n-fold rotation only if n is equal to 2, 3, 4, or 6. In

two dimensions, for example, the fact that it is not possible to have a five-fold axis corresponds to the

well-known problem of trying to tile a 2D surface with pentagons, which cannot be achieved without

leaving holes.

It is no exaggeration to state that the whole edifice of crystallography was built on the assumption of

periodicity, and it therefore came as a considerable shock when a new class of materials was discovered

by Shechtman and co-workers in 1982 which displayed a sharp diffraction pattern with a 10-fold axis of

rotation. This discovery was met with a large degree of disbelief, and indeed it took over two years for

the results to be accepted for publication in a scientific journal [Shechtman et al., 1984]. The paradox

posed by these materials was that they had a 10-fold axis of rotation, which is forbidden for periodic

materials, while at the same time they produced sharp Bragg peaks, which can only occur if the system

has long-range order at the atomic level. The materials are now known as quasicrystals, and the solution

to the paradox is that they have long-range quasiperiodic order. The discovery of quasicrystals has led

to a profound redefinition of what constitutes a crystal, as will be explained here.

Incommensurably modulated crystals

Before proceeding it is worth pointing out that even prior to the discovery of quasicrystals it had been

known for a long time that certain crystalline materials are not periodic. In these materials the position

of the atoms is modulated with a wavelength that is an irrational fraction of a lattice parameter. Such

materials are said to be incommensurate, or modulated. This is illustrated in the upper panel of Fig. 5.9

for the case of a 1D lattice. The positions of the atoms are given by

xn = an + u cos(qan) (5.16)

where a is the lattice parameter, n is a positive integer, u is the amplitude of the displacement, and

q=2π/λm is its wavevector. In the case of an incommensurate material the modulation wavelength

is given by λm = c a, where c is an irrational number. If, as is sometimes found, the wavelength

is expressible as a rational fraction, then the material is said to posses a commensurate modulation.

Examples of commensurate and incommensurate modulations are shown in the upper panel of Fig. 5.9.

For incommensurate materials it is still possible to define an average, periodic lattice. The scattering

then consists of Bragg peaks from the average lattice, plus additional Bragg peaks known as satellite

reflections from the modulation. This can be verified by performing a numerical calculation of the

intensity of the scattering from an incommensurate chain of N atoms with positions given by Eq. (5.16).
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Fig. 5.9 Scattering from a 1D incommensurate chain. The top panel shows the position of atoms in a 1D chain with a

commensurate, λm= 5a, and an incommensurate, λm= (2/
√

3)a modulation wavevector. The bottom panel is the calculated

scattered intensity for a chain of N=2000 atoms, with positions given by Eq. (5.16), a modulation wavelength of λm= (2/
√

3)a,

and a displacement amplitude of u=0.2. For simplicity it has been assumed that the atomic scattering length is unity, and

independent of wavevector transfer Q.
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An example of such a calculation is shown in the lower panel of Fig. 5.9, where for simplicity the atomic

scattering length has been set equal to unity. The main Bragg peaks occur at integer multiples of the

modulus of the reciprocal lattice vector, (2π/a), while the satellite peaks are displaced from the main

peaks by multiples of the modulation wavevector q=2π/λm.

It is not a difficult exercise to show analytically that a modulation produces regularly spaced satellite

peaks. The scattering amplitude for an incommensurate 1D chain is

A(Q) =

N−1∑
n=0

ei Qxn =

N−1∑
n=0

ei Q(an+u cos(qan)) =

N−1∑
n=0

ei Qanei Qu cos(qan)

For simplicity the atomic scattering length has again been set equal to unity. The approximation is now

made that the displacement u is small. This allows the second phase factor to be expanded, and the

amplitude becomes

A(Q) ≈
N−1∑
n=0

ei Qan (
1 + iQu cos(qan)) + · · · )

=

N−1∑
n=0

ei Qan + i
(

Qu

2

) N−1∑
n=0

[
ei (Q+q)an + ei (Q−q)an

]
In the limit that N becomes large, the scattered intensity is given by

I(Q) = N
(

2π
a

) ∑
h

δ(Q − Gh) + N
(

Qu

2

)2 (
2π
a

) ∑
h

[
δ(Q + q − Gh) + δ(Q − q − Gh)

]
(5.17)

where G
h
= (2π/a)h is a reciprocal lattice vector, h the Miller index of the 1D lattice, and the results

derived in Section 5.1.6 have been used to replace the squared sums by Dirac delta functions. The

first term generates the main Bragg peaks at Q=G
h
, while the second generates satellite reflections at

Q=G
h
± q. In the numerical example shown in Fig. 5.9 satellites are also evident at ±2q and ±3q.

These do not appear in the analytical calculation of Eq. (5.17), as the expansion of the exponential was

truncated after the second term.

To index a given Bragg peak from an incommensurate system it is first necessary to specify the

main Bragg peak with which it is associated. In three dimensions this requires the usual three Miller

indices (h, k, l). The satellite peaks then require additional indices. In the example of a one dimensional

modulation shown in Fig. 5.9 one extra index suffices. It turns out that incommensurate systems regain

their periodicity if they are described in an abstract mathematical higher dimensional space. For a 1D

modulation in a 3D crystal the dimension would be four, and the actual physical structure is obtained

by making a particular three-dimensional cut through this 4D space.

Quasicrystals

Quasicrystals are fundamentally different from incommensurate crystals, as for one thing they lack

anything that can be identified with an average, periodic lattice. To make this clear we shall discuss the

properties of the Fibonacci chain or lattice. This is an example of a quasiperiodic system, and is often

used as a 1D model of a quasicrystal.

There are several ways to obtain a Fibonacci chain. One method is to employ what is known as a

substitution rule to generate a chain composed of two types of objects, or tiles, here labelled S for short

and L for long. We create a pyramid of the letters L and S by the following iterative procedure: a new
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Fig. 5.10 Generation of the Fibonacci chain by a substitution rule described in the text.

row of letters is generated from the last row by substituting L for S, and the two letters L and S for L

(see Fig. 5.10). Let the number of L’s and the total number of elements in a row be denoted by nL and

N, respectively. As can be seen by inspection, the ratio of nL/N has the following values in subsequent

rows: 1/1, 1/2, 2/3, 3/5, 5/8, 8/13, 13/21, · · · . This is obviously related to the Fibonacci series 1, 2,

3, 5, 8, 13, 21, · · · where any number is the sum of the two previous ones. It can be shown that the

limiting value of the series of fractions is τ − 1, where τ is the golden ratio, (1 +
√

5)/2. By way of

example a one-dimensional Fibonacci lattice of 21 elements could be constructed using the spacings in

the seventh row of the pyramid with the lattice spacings of S and L.

Consider now the diffraction pattern of a one-dimensional Fibonacci lattice where N is large. The

key question is whether or not its diffraction pattern exhibits sharp peaks, with a width proportional

to 1/N as would be expected for a periodic lattice. The answer to this question is, yes, as indicated

in Fig. 5.11�. The top panel of Fig. 5.11� illustrates a method for generating a 1D Fibonacci lattice

from a 2D square lattice. A strip of width Δ = 1 + τ is drawn with a slope of 1/τ on a square lattice of

spacing
√
τ2 + 1. All lattice points that fall inside the strip are projected onto the line denoted xn. The

projected points then have a series of spacings identical to the Fibonacci chain. The reader can check

the veracity of this statement by comparing the last row in the pyramid (Fig. 5.10) with the spacings

from the second to the fourteenth points (Fig. 5.11�, top panel). Since the two-dimensional lattice

has sharp Bragg peaks, so will the projected points on the line as illustrated in the lower panel of Fig.

5.11�. In general, a strip drawn at an irrational slope will generate a quasiperiodic lattice; the choice

of the slope 1/τ was made to obtain the Fibonacci chain.

The scattered intensity calculated for a Fibonacci chain derived from a 10x10 2D lattice is shown

in Fig. 5.11�. As the size of the lattice is increased the predominant peaks become sharper, but their

positions remain fixed. It is therefore apparent that a quasiperiodic lattice, which lacks anything that

may be identified with an average, periodic lattice, still produces a sharp diffraction pattern. Following

the discovery of quasicrystals, the International Union of Crystallographers in 1991 decided to change

the definition of a crystal to include the statement:

‘...by crystal we mean any solid having an essentially discrete diffraction diagram.....’
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Fig. 5.11 � The Fibonacci chain. The top panel illustrates how the Fibonacci chain may be obtained from a 2D square lattice
using the strip-projection method. The slope of the strip is irrational, equal to 1/τ, where τ=(1+

√
5)/2 is the golden ratio. Lattice

points inside the strip are projected down onto the axis xn , and the chain is then formed from two tiles S (short) and L (long)

in the sequence shown. The bottom panel plots the calculated intensity from the Fibonacci chain derived from the lattice shown

above. The predominant peaks are not regularly spaced, as would be the case for a periodic lattice. As the lattice size is increased

the peaks become sharper, showing that long-range quasiperiodic order produces sharp Bragg peaks.



5.3 Crystal truncation rods 169

a *1

a *3

G

a *3

a *1

(b)(a)

a1

a2

a3

Fig. 5.12 (a) Top: a map of reciprocal space in the plane spanned by a∗
1

and a∗
3

for the crystal shown in the bottom part of the
figure. (b) Same as (a) except that the crystal has been cleaved to produce a surface perpendicular to the a3 axis. This produces

streaks of scattering – known as crystal truncation rods – through all Bragg peaks in a direction perpendicular to the surface.

The definition thus shifted emphasis from a crystal thought of as a periodic structure in real space, to

one that produces sharp diffraction peaks in reciprocal space.

Quasicrystals have many fascinating properties, and the reader is referred to the book by Janot for

further information [Janot, 1992].

5.3 Crystal truncation rods

In Section 5.1.6 it was shown that in the case of an infinite three-dimensional crystal the lattice sum

produces a delta function. Scattering events are then restricted by the Laue condition such that Q =

G, and as this is a vector equation it applies to all three components of Q. For a finite size crystal
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this condition is relaxed and the scattering then extends over a volume in reciprocal space inversely

proportional to the size of the crystal. This is illustrated in Fig. 5.12(a). We now imagine that the

crystal is cleaved, so as to produce a flat surface. The scattering will no longer be isotropic and streaks

of scattering appear in the direction parallel to the surface normal as shown in in Fig. 5.12(b). These

are the crystal truncation rods (CTR) [Andrews and Cowley, 1985, Robinson, 1986].

Insight into the origin of the CTR’s follows once it is realized that the act of cleaving the crystal

may be represented mathematically as a multiplication of the original density of the crystal, ρ(z), by

a step function, h(z). (Here the coordinate system is chosen with z perpendicular to the surface.) The

scattering amplitude is proportional to the Fourier transform of the product of the density ρ(z) and

h(z). From the Convolution Theorem (see Appendix E) this is equivalent to the convolution of the

Fourier transforms of ρ(z) and h(z). The Fourier transforms of ρ(z) and h(z) are a delta function and

i/qz respectively, as described in Appendix E. Away from a Bragg peak the scattering amplitude is thus

proportional to 1/qz and the intensity to 1/q2
z . The effect of the surface is therefore to produce streaks

of scattering, known as crystal truncation rods, in the direction normal to the surface.

To develop an expression for the intensity distribution of the CTR we need only consider the lattice

sum in the direction of the surface normal, a3; the sum over the other two directions leads to the usual

product of delta functions δ(Qx − ha∗1) δ(Qy − ka∗2). If A(Q) is the scattering amplitude from a layer of

atoms (here for simplicity assumed to be the same for all layers), then the scattering amplitude from an

infinite stack of such layers is

FCTR = A(Q)

∞∑
j=0

ei Qza3 je−β j =
A(Q)

1 − ei Qza3e−β
(5.18)

where β = a3μ/ sin θ is the absorption parameter per layer. The intensity distribution along the crystal

truncation rod is

ICTR = |FCTR|2 = |A(Q)|2
(1 − ei Qza3e−β)(1 − e−i Qza3 e−β)

(5.19)

To examine how the intensity falls off close to a Bragg peak the wavevector transfer is written as

Qz = qz + 2πl/a3, where qz is the deviation in wavevector from the Laue condition as l is an integer

Miller index. Since qz is small the above simplifies to

ICTR ≈ |A(Q)|2
q2

z a2
3
+ β2

Thus ICTR is proportional to 1/q2
z , as expected from the introductory remarks made at the beginning of

this section. If we neglect for a moment the effect of absorption and write Qz=2πl/a3, where now l is a

continuous variable and not a integer Miller index, then Eq. (5.19) simplifies to read

ICTR =
|A(Q)|2

4 sin2(Qza3/2)
=

|A(Q)|2

4 sin2(πl)

The calculated intensity of the crystal truncation rod is plotted in the top panel of Fig. 5.13� as a

function of l in reciprocal lattice units (r.l.u.). The expression for ICTR is clearly only valid away from

the Bragg peaks when l is not an integer, otherwise sin(πl) is zero and the intensity diverges. The effect

of absorption can be calculated from Eq. (5.19) and is also plotted in Fig. 5.13�, where it is evident

that it mainly alters the intensity distribution in the vicinity of the Bragg peak.

The intensity distribution along the CTR depends on the exact way in which the surface is

terminated, and measurements of CTR’s have become a very useful probe of the structure of the surface
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Fig. 5.13 � Top: Crystal truncation rod from a perfectly flat surface. Solid line, no absorption (β = 0); dashed-dotted line with

absorption. Typically β is of order 10−5, as may be seen from the values of the absorption coefficient μ listed in Table 3.1. Here

β has been chosen to be 0.2, an unrealistically high value, but one that serves to illustrate the effects of absorption. For simplicity

A(Q) has been chosen to be unity. Bottom: Crystal truncation rod (β = 0) from a flat surface with an overlayer. The relative

displacement of the overlayer from the bulk lattice spacing is given by z0. The effect of the displacement of the layer is seen to

become more pronounced at higher wavevector transfers.
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and near-surface region of single crystals. This can be illustrated by imagining that the top most layer,

having j = −1 in Eq. (5.18), of the crystal has a lattice spacing that is different from the bulk value.

The total scattering amplitude is then

Ftotal = FCTR + F top layer

=
A(Q)

1 − ei 2πl
+ A(Q) e−i 2π(1+z0)l (5.20)

where z0 is the relative displacement of the top layer away from the bulk lattice spacing of a3. For z0 = 0

the same intensity distribution along the rod is found. If z0 is non-zero then the interference between

the scattering from the top layer and the rest of the crystal leads to characteristic features in the CTR,

as shown in the bottom panel of Fig. 5.13�. In Section 5.6.3 it is explained through the example of

oxygen deposited on the copper (110) surface exactly how determination of the CTR helps in solving

the surface structure.

In deriving Eq. (5.18) we assumed for simplicity a specular scattering geometry, so that the angle

of incidence is equal to the angle of reflection. The argument presented here can be generalized to

show that CTR’s arise from all Bragg peaks, with the direction of the rods being parallel to the surface

normal.

5.4 Lattice vibrations, the Debye-Waller factor and TDS

The lattices considered so far have been assumed to be perfectly rigid. Atoms arranged on a lattice

in a crystal vibrate, and here we explore the effect of these vibrations on the scattered intensity. The

vibrations are due to two distinct causes. The first is purely quantum mechanical in origin and arises

from the uncertainty principle. These vibrations are independent of temperature, and occur even at the

absolute zero of temperature. For this reason they are known as the zero-point fluctuations. At finite

temperatures elastic waves (or phonons) are thermally excited in the crystal, thereby increasing the

amplitude of the vibrations.

To start with we shall consider the scattering from a simple crystal structure in which there is one

type of atom located at each lattice point. From Eq. (5.5) the scattering amplitude is then

Fcrystal =
∑

n

f (Q) ei Q·Rn

The effects of vibrations are allowed for by writing the instantaneous position of an atom as Rn + un,

where Rn is the time-averaged mean position, and un is the displacement. By definition, 〈un〉 = 0, the

angle brackets 〈· · · 〉 indicating a temporal average. The scattered intensity is calculated by taking the

product of the scattering amplitude and its complex conjugate, and then evaluating the time average.

The intensity is thus

I =
〈∑

m

f (Q) ei Q·(Rm+um)
∑

n

f ∗(Q) e−i Q·(Rn+un)
〉

=
∑

m

∑
n

f (Q) f ∗(Q) ei Q·(Rm−Rn)
〈
ei Q·(um−un)

〉
(5.21)

For convenience, the last term on the right hand side is rewritten as〈
ei Q·(um−un)

〉
=

〈
ei Q(u

Qm
−u

Qn
)
〉
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where uQn is the component of the displacement parallel to the wavevector transfer Q for the n’th

atom. This expression can be further simplified by using the Baker-Hausdorff theorem, which was

introduced in the context of the scattering from rough surfaces in Section 3.8 on page 90. (The proof

of the Baker-Hausdorff theorem is given in Appendix D.) This theorem states that if x is described by

a Gaussian distribution then 〈
ei x〉 = e−

1
2
〈x2〉

Using this result the temporal average becomes〈
ei Q(u

Qm
−u

Qn
)
〉
= e−

1
2
〈Q2(u

Qm
−u

Qn
)2〉

= e−
1
2

Q2〈(u
Qm
−u

Qn
)2〉

= e−
1
2

Q2〈u2
Qm
〉e−

1
2

Q2〈u2
Qn
〉eQ2〈u

Qm
u

Qn
〉

Due to the translational symmetry 〈u2
Qm
〉 = 〈u2

Qn
〉, and for brevity we shall denote it by 〈u2

Q
〉 and write

e−Q2〈u2
Q
〉/2 as e−M . To proceed we write the last term in the above expression for the temporal average as

eQ2〈u
Qm

u
Qn
〉
= 1 +

{
eQ2〈u

Qm
u

Qn
〉 − 1

}
(5.22)

This allows the scattered intensity to be separated into two terms:

I =
∑

m

∑
n

f (Q) e−Mei Q·Rm f ∗(Q) e−Me−i Q·Rn

+
∑

m

∑
n

f (Q) e−Mei Q·Rm f ∗(Q) e−Me−i Q·Rn

{
eQ2〈u

Qm
u

Qn
〉 − 1

}
(5.23)

The first term is recognizable as the elastic scattering from a lattice except that the atomic form

factor is replaced by

f atom = f (Q) e−
1
2

Q2〈u2
Q〉 ≡ f (Q) e−M (5.24)

where the exponential term in known as the Debye-Waller factor. As the first term contains contribu-

tions for large values of |Rm −Rn| it still gives rise to a delta function in the scattering. This shows that

the elastic Bragg scattering is reduced in intensity by atomic vibrations, but its width is not increased.

The contribution from the last factor in Eq. (5.23) has a distinctly different character. It has an intensity

that actually increases as the mean-squared displacement increases, and has a width determined by the

correlations, 〈uQmuQn〉, between the displacements of different atoms. These turn out to be correlated

significantly only over short distances, so that the lattice sum extends only over a few lattice sites,

and the scattering has an appreciable width, much greater than the width of a Bragg peak. For these

reasons this contribution is known as thermal diffuse scattering, or TDS for short. In crystallographic

experiments TDS gives rise to a background signal which sometimes needs to be subtracted from the

data. Alternatively, the study of TDS may also be of interest in its own right, as it provides information

on the low-energy elastic waves in lattices. In this case the diffuse nature of TDS requires that the

scattering is mapped out over large volumes of reciprocal space. To compare the experimental results

with theory it is necessary to evaluate the second term in Eq. (5.23). This is achieved by performing a

calculation of the lattice dynamics, which yields the atomic displacements un, and hence the correlation

term 〈uQmuQn〉.
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Fig. 5.14 Thermal diffuse scattering (TDS) from Si. The data were collected in a transmission geometry (photon energy 28

keV) using an image plate detector. The data were collected on the UNI-CAT beamline at the Advanced Photon Source in an

exposure time of ∼10 s. The top and bottom left panels show the data taken with a (111) and a (100) axis parallel to the incident

beam respectively. The data are plotted on a logarithmic scale. The brighter spots are not Bragg peaks, as the Laue condition is

never exactly fulfilled, but are due to the build up of TDS close to the position of where the Bragg peaks would occur. The right

panels show the corresponding calculated images based on a simultaneous pixel-by-pixel fit to the data [Holt et al., 1999].

An example of TDS from Si is shown in Fig. 5.14 [Holt et al., 1999]. The data (left panels) were

recorded in a transmission geometry with a (111) (top) and a (100) (bottom) axis parallel to the incident

beam. The data are plotted on a logarithmic scale so that the weak diffuse scattering which peaks

along high-symmetry directions connecting reciprocal lattice points is enhanced. In the right panels are

shown the corresponding images obtained by fitting a model of the lattice dynamics to the data. Good

agreement was found for the phonon dispersion curves derived from this model and earlier neutron

scattering experiments.
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Fig. 5.15 (a) Representative snap shots of the atomic displacements associated with transverse acoustic phonons calculated for
two different wavevectors. (b) Phonon dispersion relation for a monoatomic crystal. The phonons can have either a longitudinal or

one of two transverse polarizations. In the Debye model the dispersion relation is assumed to be linear, ω = vq, up to some cut off

frequency ωD. In three dimensions the cut off frequency is defined by
∫ ωD

0
g(ω)dω = 3N, where g(ω) is the density of states and

N is the number of atoms. (c) Periodic boundary conditions produce quantization of the allowed wavevectors, q = (2π/L)(l,m, n)

with l, m and n integer, illustrated here in the positive octant. In general, the density of states taking into account the three

possible polarizations is g(ω)dω = 3V/(2π)34πq2dq. For the Debye model g(ω) = 9Nω2/ω3
D

with ω3
D
= 6Nπ2v3/V .

The separation of the total diffracted intensity into a sharp Bragg and a diffuse component in the

presence of thermal vibrations is analogous to the separation of the reflectivity from a rough interface

into specular and diffuse components, as described in Section 3.8. Indeed this separation is useful

whenever there are random atomic displacements, be they static or dynamic, from the lattice sites.

Here we have considered the case of dynamic displacements by elastic waves, but static distortions,

caused for example by lattice defects, can be studied through the diffuse scattering.

In the rest of this section we consider the properties of the Debye-Waller factor. It is straight forward

to generalize the above results to the case of a crystal with several different types of atom in the unit
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cell. In this case the unit cell structure factor (Eq. (5.6)) becomes

Fu.c. =
∑

j

f j(Q) e−Mj ei Q·r j

where

M j =
1

2
Q2〈u2

Q j〉 =
1

2

(
4π

λ

)2

sin2 θ 〈u2
Q j〉 = B

j

T

(
sin θ

λ

)2

refers to the j’th atom in the unit cell, and B
j

T
= 8π2〈u2

Q j
〉. The reason for writing it in this form is that

crystallographers prefer to express the wavevector transfer as sin θ/λ instead of as Q = 2k sin θ. If the

atom vibrates isotropically then
〈
u2

〉
=

〈
u2

x + u2
y + u2

z

〉
= 3

〈
u2

x

〉
=3

〈
u2

Q

〉
, so that

BT,isotropic =
8π2

3
〈u2〉 (5.25)

The effect of the vibrations can be viewed as being equivalent to a smearing of the electron distribution

around the point at R with a Gaussian distribution of radius σ, with
〈
u2

〉
/6=σ2/2. If the vibrations

are anisotropic, they can be described by a ‘vibrational ellipsoid’ with three principal axes of different

magnitude.

In a compound each type of atom will in general have a different Debye-Waller factor, as it should

be obvious that lighter atoms will generally vibrate more than heavier ones. The Debye-Waller factors

need not be isotropic, as the bonding will also restrict the vibrations along certain directions. For

example, it usually costs less energy to change a bond angle than a bond length, so the vibrations of

atoms at the ends of bonds will have a larger amplitude perpendicular to the bond than along it. These

subtleties are usually taken into account by including extra fitting parameters in the data analysis. Here,

however, we can simplify the discussion by restricting ourselves to consider only one type of atom

in cubic symmetry so that the vibrations are isotropic. Then within the harmonic approximation the

Debye-Waller factor depends on
〈
u2

〉
only. Excitation modes of such a monoatomic lattice can be

visualized as shown in Fig. 5.15(a). A mode of given wavevector q and polarization (transverse or

longitudinal) can only exist at a specific frequency ω with the two quantities connected by a dispersion

relation as shown in Fig. 5.15(b). In a real lattice the longitudinal mode is stiffer than the transverse

mode. This can be taken into account but for simplicity we shall neglect this detail.

The task is to calculate the mean-squared amplitude,
〈
u2

〉
, averaged over all phonon modes, where

the energy of the modes are those of an harmonic oscillator, i.e. equidistant with spacing �ω and a

ground state energy of �ω/2. For a harmonic oscillator, the average energy for a single mode is divided

equally between the kinetic and potential energies, allowing us to write

1

2
Eph =

1

2
NmAω

2
〈
u2

〉
where Eph is the phonon energy, and the right hand side is the kinetic energy of the mode for N atoms

each of mass mA. The phonon energy averaged over all modes, Ēph, is given by

Ēph =

∫ ∞

0

g(ω)

[
�ω

e�ω/kBT − 1
+
�ω

2

]
dω

where g(ω) is the density of phonon states as a function of mode frequency. The mean-squared

amplitude averaged over all modes is therefore given by〈
u2

〉
=

1

NmA

∫ ∞

0

g(ω)

ω2

[
�ω

e�ω/kBT − 1
+
�ω

2

]
dω
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Fig. 5.16 � Top: plot of the value of the integral φ(x) versus x = Θ/T . Middle: temperature dependence of the rms fluctuation

u in units of a/
√

2 for Al. Bottom: the relative intensity of the scattered intensity from Al as a function of temperature. The

curves were calculated for the (4,0,0) (solid line) and the (8,0,0) (dashed line) Bragg peaks respectively. The melting temperature
of Al is 933 K.
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A Θ B
4.2

B
77

B
293

(K) (Å2)

Diamond 12 2230 0.11 0.11 0.12

Al 27 428 0.25 0.30 0.72

Si 28.1 645 0.17 0.18 0.33

Cu 63.5 343 0.13 0.17 0.47

Ge 72.6 374 0.11 0.13 0.35

Mo 96 450 0.06 0.08 0.18

Table 5.1 The Debye temperature Θ, and the Debye-Waller factor BT at temperatures of 4.2, 77 and 293 K, for a

selection of cubic elements. The Debye-Waller factors have been calculated from the stated Debye temperatures

using Eq. (5.27).

It is convenient to calculate the density of states within the Debye model, in which the dispersion

relation is assumed to be linear up to some cut off frequencyωD (see Fig. 5.15(b)). The density of states

for this model is

g(ω) = 9N
ω2

ω3
D

(see Fig. 5.15(c)) and hence the expression for the mean-squared displacement becomes

〈
u2

〉
=

9�2T 2

mAkBΘ
3

∫ Θ/T

0

[
1

eξ − 1
+

1

2

]
ξdξ

where the Debye temperature Θ = �ωD/kB. Combining this result with Eq. (5.25), the explicit

expression for the thermal factor BT calculated within the Debye model is

BT =
6 h2

m
A
k

B
Θ

{
φ(Θ/T )

Θ/T
+

1

4

}
(5.26)

with

φ(x) ≡ 1

x

x∫
0

ξ

eξ − 1
dξ

where Θ and T are in degrees Kelvin. The thermal parameter B
T

has dimension of length squared,

which in practical units of Å2 is

BT [Å
2
] =

11492 T [K]

AΘ2[K2]
φ(Θ/T ) +

2873

AΘ[K]
(5.27)

and A is the atomic mass number. The function φ(x) is shown in the top panel of Fig. 5.16�. At or close

to absolute zero the first term in Eq. (5.26) is negligible, but B
T remains finite due to the second term of

1/4. This term arises from the zero-point motion, a purely quantum mechanical effect consistent with

the uncertainty principle. With increasing temperature it can be seen from Eq. (5.26) that B
T

increases

once the temperature becomes comparable to Θ.

To illustrate how the Debye-Waller factor alters the scattering let us take the example of Al, which

crystallizes in the face centred cubic structure (Fig. 5.3) with a cube edge of a=4.04 Å, and with Θ=428
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K, A=27. It is interesting to compare the r.m.s. vibrational amplitude as the temperature is raised

towards the melting temperature (933 K). This is shown in Fig. 5.16� (middle panel) where we have

normalized
√〈

u2
〉

by the nearest-neighbour distance a/
√

2. We note in passing that just below the

melting temperature
√〈

u2
〉

divided by the nearest-neighbour distance is approximately 0.1, which is

consistent with Lindemann’s empirical criterion for the melting of a solid: when the thermal vibrations

approach about 10% of the nearest-neighbour distance the solid melts. The lower part of Fig. 5.16�

shows that the Q2 dependence of the Debye-Waller factor has a dramatic effect on the intensity when

the scattering vector is increased in length. In Table 5.1 the Debye temperatures are given for a number

of cubic elements, along with calculated values of B
T at different temperatures.

5.5 The measured intensity from a crystallite

In this section the integrated intensity of a Bragg reflection from a small crystal is evaluated, as this is

the quantity that is readily determined in an experiment. This requires that we specify exactly how the

integrated intensity is to be measured. The starting point is to assemble the various expressions that

have been developed in the previous sections into a single formula for the intensity. However, instead

of referring to the intensity we shall be a little more precise and use instead the differential cross-section

(dσ/dΩ), which is discussed more fully in Appendix A. For the case considered here where the sample

is fully illuminated by the beam the differential cross-section is defined by(
dσ

dΩ

)
=

Number of X-rays scattered per second into dΩ

(Incident flux)(dΩ)

where dΩ is the solid angle. From Eqs. (1.8), (5.5), (5.6) and (5.15) we have that

(
dσ

dΩ

)
= r2

0P |F(Q)|2N v∗c δ(Q −G) (5.28)

where the superscript on F(Q), the unit cell structure factor, has been dropped, and P is the polarization

factor (Eq. (1.9)).

The experimental arrangement typically used for determining the integrated intensity of a Bragg

peak is sketched in Fig. 5.17. The incident beam is assumed to be both perfectly monochromatic

and collimated. The scattered beam will then also be perfectly monochromatic, since the scattering is

elastic. However, it will not necessarily be perfectly collimated. In Section 5.1.6 it has been shown

that the width of a Bragg peak is inversely proportional to N, the number of unit cells, and since N is

not infinite, the Bragg peak has a finite width. This means that the Laue condition does not have to

be exactly fulfilled for a measurable intensity to be recorded. This is represented in Fig. 5.18 by the

existence of an elliptical contour: if Q falls within this contour then appreciable intensity is obtained,

and the scattered beam will have some divergence. Let us assume that the geometry is such that all

of the slightly divergent scattered rays hit the detector. Therefore, referring to Fig. 5.18, all of the

scattering processes where k′ terminates on the heavy red line will be recorded. However, we are

interested in the sum of all the scattering processes where Q terminates within (or in the vicinity) of

the smeared Bragg point contour. This means that the crystal has to be rotated (or rocked) a little with

respect to the incident beam, and the measurement repeated, corresponding then to one of the other

light red lines in Fig. 5.18, and in this way the integrated intensity is accumulated. (We note in passing,
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2�

Detector

Sample

Fig. 5.17 Scattering from a small crystal. The incident beam is assumed to be perfectly collimated and monochromatic, and to

fully illuminate the crystal. The scattered intensity Isc is proportional to the flux Φ0 and to the differential cross-section (dσ/dΩ)

of the sample.

that the varying angle between k and G in the scan is equivalent to allowing the incident beam not to

be perfectly collimated.)

Thus the integrated intensity is recorded by rotating the crystal so that the angle θ varies. The

formula given in Eq. (5.28) applies to a single setting of the instrument, and in order to compare it with

the integrated intensity that is measured in an experiment we have to allow for both the integration over

k′ and over θ. This gives rise to an additional term known as the Lorentz factor, which is derived in

the following section. It is important to appreciate that the Lorentz factor depends on exactly how the

intensity is integrated and hence on the details of the experiment.

5.5.1 The Lorentz factor

Integration over k′

A unit vector along k′ is indicated by a hat. The element of solid angle dk̂′ is two-dimensional, and

integration over the directions of k′ is therefore equivalent to integrating over dk̂′. Instead of k′ we

introduce the vector s = k′ŝ, where ŝ is a unit vector (right panel Fig. 5.18). The problem then is to

integrate the delta function in equation Eq. (5.28) over dk̂′, i.e.∫
dk̂′ δ(Q −G) =

∫
dk̂′ δ(k − k′ − G)

The integral is rewritten as

∫
dk̂′ δ(k − k′ − G) =

1︷���������������������︸︸���������������������︷
2

k′

∫
s2δ(s2 − k′2) ds

∫
δ(k − s − G) dŝ

since the first integral on the right hand side is unity, as proven in the delta function box on page 152,

and in the second integral k′ has been replaced by s, as they are equal by definition. The point of this
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Fig. 5.18 Left: The scattering from a small crystallite is represented by the grey ellipse, which reflects the reciprocal of the

shape of the crystal. For a given orientation of the crystal the detector accepts all of the scattered wavevectors k′ which fall on

the red line. As the crystal is rotated the integration corresponds to the other light red lines. Right: The solid angle element dŝ

and the volume element ds are related by ds=s2 dŝ ds.

trick is to transform the two-dimensional integral into a three-dimensional one. This is made clear if

the above is rearranged as∫
dk̂′ δ(k − k′ − G) =

2

k′

∫
δ(s2 − k′2) δ(k − s −G) s2 dŝ ds

=
2

k′

∫
δ(s2 − k′2) δ(k − s −G) d3s

where d3s=s2 dŝ ds is the three-dimensional volume element. To proceed, the second delta function is

used to require that s = k − G, and this is then substituted into the first δ function, with the result that

the integral becomes ∫
dk̂′ δ(k − k′ −G) =

2

k′
δ((k −G) · (k −G) − k′2)

=
2

k
δ(G2 − 2 k G sin θ) (5.29)

In the second equation use has been made of the fact that the scattering is elastic, i.e. k′ = k. When

integrated over the directions of k′ the cross-section is(
dσ

dΩ

)
int. over k′

= r2
0 P |F(Q)|2 N v∗c

2

k
δ(G2 − 2kG sin θ)

Integration over θ

Evaluation of the integrated intensity is completed by integrating over the angular variable θ. The

remaining delta function is itself a function of θ, and using the results given in the box on page 152 the
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integral is ∫
δ(G2 − 2kG sin θ) dθ =

∫
δ(t(θ)) dθ =

⎡⎢⎢⎢⎢⎢⎣
(

dt

dθ

)−1
⎤⎥⎥⎥⎥⎥⎦

t=0

The derivative of the argument of the delta function is

d(G2 − 2kG sin θ)

dθ
= −2kG cos θ

with the result that ∫
δ(G2 − 2kG sin θ) dθ =

[
−1

2kG cos θ

]
t=0

=
−1

2k2 sin 2θ

Therefore the differential scattering cross-section integrated over both the directions of k′ and over

θ is (
dσ

dΩ

)
int. over k′ , θ

= r2
0 P |F(Q)|2 N v∗c

2

k

1

2k2 sin 2θ

= r2
0 P |F(Q)|2 N

λ3

vc

1

sin 2θ

In the second equation the volume vc of the unit cell in real space has been introduced, rather than the

volume v∗c of the unit cell in reciprocal space, and we have utilized the fact that 2π/k = λ.

The integrated intensity Isc is then found by multiplying the above by the incident flux Φ0 to yield

the final result

Isc

(
photons

sec

)
= Φ0

(
photons

unit area × sec

)
r2

0P |F(Q)|2 N
λ3

vc

1

sin 2θ
(5.30)

Equation (5.30) is the master equation for crystallography, and we shall therefore pause briefly to

discuss the various terms. Each electron in the unit cell has a differential scattering cross section of r2
0P,

where P is a polarization factor. The differential scattering cross section of a unit cell is r2
0 P |F(Q)|2

where, in the limit Q → 0, F(Q)=
∑

j Z j, the number of electrons in the unit cell. For general Q > 0 the

scattering is diminished due to different optical path lengths as given by F(Q). The total scattering is

proportional to the number of unit cells, N. Summation and proper integrations give rise to the last two

factors, the last of which is sometimes called the Lorentz factor. Finally, we note with satisfaction that

the dimensions are the same on the right and left hand sides, namely photons/s.

5.5.2 Extinction

The formula given in Eq. (5.30) applies to a single and idealized ‘small’ but otherwise perfect crystal,

with all of the diffracting planes in exact registry. Real macroscopic crystals on the other hand are

often imperfect, and may be thought of as being composed of small perfect blocks with a distribution

of orientations around some average value. The crystal is then said to be mosaic, as it is considered to

be composed of a mosaic of small blocks as shown in the left panel of Fig. 5.19. Typically the mosaic

blocks may have orientations distributed over an angular range of between 0.01◦ and 0.1◦.
Each block is ‘small’ in the sense that there is a negligible chance of the diffracted beam being

re-scattered before it exits the block, and the kinematical approximation applies. As the block size

becomes larger this approximation breaks down, and instead it is necessary to allow for multiple
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Fig. 5.19 Left: Real single crystals are often composed of small, ideal crystal grains, also called mosaic blocks which have

a narrow distribution of orientations, the so-call mosaic distribution. Right: For a given (h, k, l) reflection the crystal is rotated,

corresponding to rotating G about the origin. In this way the integrated intensity from each mosaic block is accumulated.

scattering effects. These are discussed in Chapter 6, where it is shown (Eq. (6.34)) that the integrated

intensity from a macroscopic perfect crystal takes on a form very different from that given in Eq. (5.30).

In fact, for reasons that will be discussed in Chapter 6, the integrated intensity from a macroscopic

perfect crystal is in general lower than that of an imperfect one. Thus, if the mosaic blocks are not

sufficiently small, then the measured integrated intensity of a given Bragg reflection will be less than

predicted by Eq. (5.30). The reflection is then said to be reduced by primary extinction effects.

There is a second way that the scattering from a mosaic crystal may be less than given by Eq. (5.30).

For a mosaic crystal it may happen that one or several mosaic blocks are shadowed by blocks which

have an identical orientation. The beam incident on one of the shadowed blocks will then necessarily

be weaker, since some of the beam has already been diffracted into the exit beam by the higher lying

blocks. If this is the case, then secondary extinction is said to be present. In the event that both primary

and secondary extinction are negligible, the crystal is said to be ideally imperfect.

The scattering diagram for an ideally imperfect crystal is shown in Fig. 5.19. Each mosaic block is

indicated by a little dot in the fan of reciprocal lattice vectors denoted by G. The spectrometer is first

set for a given (hkl) reflection at scattering angle 2θhkl. The crystal is then rotated or scanned through

the Laue condition Q = G, over an angular range that is large enough to capture the entire mosaic fan

and the integrated intensity recorded. Formula Eq. (5.30) can then be used to calculate the integrated

intensity from the mosaic crystal. All that needs to be done is to replace N, the number of unit cells by

N′Nmb, the product of the N′, the number of unit cells in a single mosaic block and Nmb, the number

of mosaic blocks. This follows from the fact that there is no definite phase relationship between waves

scattered from different blocks and it suffices to add the intensities. This should be contrasted with the

case of a single block where amplitudes are first added, and then the result multiplied by its complex

conjugate to give the scattered intensity.

The idea that an imperfect crystal is composed of mosaic blocks is an oversimplification. Although

it is true that dislocations and other defects produce a broadening of Bragg peaks, the micro-structure

of an imperfect crystal rarely resembles that shown in the left panel of Fig. 5.19. It follows that the

division of extinction effects into primary and secondary causes is not always valid. Indeed in many

situations the use of a mosaic model to describe an imperfect crystal is an expediency, and is justified

only in that it allows mathematical treatments of extinction effects, which can then be used to correct

data. One way to avoid extinction effects altogether is to make a very fine powder of the sample, and

powder diffraction is considered further in Section 5.6.1.
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A0

z

dz

�

Fig. 5.20 Extended face geometry. A beam of X-rays is incident on the flat face of a crystal at an angle θ. The cross-sectional

area of the beam is A0, and the illuminated volume of sample at a depth of z from the surface is (A0/ sin θ)dz.

5.5.3 Absorption effects: extended face geometry

Equation (5.30) has been derived by neglecting absorption effects. It should be clear that in general

these depend on the shape of the sample, and in practice various approximations are applied to correct

the measured intensities. (The correction of integrated intensities for absorption effects is described in

the International Tables of Crystallography.) One particularly useful and simple geometry for which

an analytical solution can be found is the case of the diffraction from a crystal with an extended, flat

face, as shown in Fig. 5.20, where it is assumed that the crystal is large enough to intercept the whole

beam. If N is the total number of unit cells that are illuminated by the incident beam, then for a mosaic

crystal we write N = N′ × Nmb, where N′ is the number of unit cells in a mosaic block, and Nmb is the

number of mosaic blocks. The number of mosaic blocks illuminated by a beam of cross-sectional area

A0 in the interval from z to z + dz is

Nmb =
A0 dz

sin θ
× 1

V ′

where V ′ is the volume of a mosaic block, and z is the depth of the beam in the crystal. At a depth z

from the surface absorption reduces the intensity by e−2μz/ sin θ, where the factor of 2 allows for the path

length of the incident and exit beams through the crystal. The integrated intensity is found from

Isc =
Φ0r2

0P |F(Q)|2 λ3

vc sin 2θ
N′

∫ ∞

0

e−2μz/ sin θ A0 dz

V′ sin θ

=
Φ0r2

0P |F(Q)|2 λ3

vc sin 2θ

A0N′

V ′

[−1

2μ
e−2μz/ sin θ

]∞
0

=

(
1

2μ

)
Φ0A0r2

0P |F(Q)|2 λ3

v2
c sin 2θ

(5.31)

The fact the scattered intensity is now proportional to the intensity of the incident beam, i.e. the product

of the flux Φ0 and cross-sectional area of the incident beam A0, arises from the fact that in deriving the
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Fig. 5.21 Scattering cross-section from a two-dimensional crystal consists of rods of constant weight passing through the points

of the 2D reciprocal lattice given by Ghk = ha∗
1
+ ka∗

2
.

above it has been assumed that the face of the crystal is extended enough that it intercepts the entire

beam (see also Appendix A for a discussion of the definition of the differential cross-section). The

above result for the integrated intensity from an extended face mosaic crystal with absorption effects

included is compared in Chapter 6 with the case of the scattering from a perfect crystal with an extended

face.

5.5.4 The Lorentz factor in 2D

In this section we consider briefly the two-dimensional (2D) equivalent of the Lorentz factor derived in

the last section for a 3D crystal. The differential cross-section in 2D has the form

(
dσ

dΩ

)2D

= r2
0 P |Fhk |2 N A∗ δ(Qx − ha∗1)δ(Qy − ka∗2) (5.32)

where N is the number of unit cells in the 2D lattice, A∗ is the area of the unit cell in reciprocal space

(see Eqs. (5.5), (5.6) and (5.14)). The Dirac delta functions restrict the scattering within the 2D plane

to points forming the 2D reciprocal lattice given by Ghk = ha∗1+ka∗2. The fact that there is no restriction

on the scattering in the direction perpendicular to the 2D means that the scattering consists of rods of

constant intensity passing through the points Ghk, as illustrated in Fig. 5.21.

In the 3D case the delta function in Eq. (5.29) is three dimensional, and in order to derive the

scattered intensity, Eq. (5.30), it was necessary to perform three integrations: one over the angle θ, and

a two-dimensional integral over the element of solid angle. It is the latter integration which is different

in the 2D case. Here it is only the in-plane part of the solid angle that involves an integration over a

delta function; the out-of-plane part of the solid angle must be considered separately.

Let us first carry out the in-plane integrations, and in order to keep the notation simple let all vectors
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Fig. 5.22 Reciprocal space diagram for a 2D system showing the intersection of part of the Ewald sphere with the Bragg rod.

The in-plane projection of reciprocal space is shown in the bottom part, and the out-of-plane projection in the top.

in the equations below be confined tacitly to the 2D plane. Utilizing the identity∫
x δ(x2 − k2) dx =

[
x

2x

]
x=k
=

1

2

we obtain

∫
dk̂′ δ(k − k′ −G) =

1︷������������������︸︸������������������︷
2

∫
s δ(s2 − k2) ds

∫
δ(k − kŝ −G) dŝ

= 2

∫
δ(s2 − k2) δ(k − s −G) d2s

= 2 δ((k −G) · (k −G) − k2)

= 2 δ(G2 − 2 k G sin θ)
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where d2s=s dŝ ds is the two dimensional volume element. The integral over θ is performed in a similar

way to the 3D case and yields ∫
2δ(G2 − 2kG sin θ) dθ =

−1

k2 sin 2θ

leading to (
dσ

dΩ

)
int. over k′xy , θ

= r2
0P |Fhk |2 N

λ2

A

1

sin 2θ

Here A is the unit cell area in direct space, and N is the number of illuminated unit cells. The scattered

wavevector has been written with the subscript xy to emphasize that it is the 2D part that has been

considered so far.

Having performed the integration over the in-plane part of the scattered wavevector k′xy it is now

necessary to integrate over the out-of-plane part of the solid angle. This is illustrated in Fig. 5.22,

which shows the in-plane and out-of-plane projections of reciprocal space. In contrast to the 3D case

the projected scattering triangle is no longer isosceles as |k′xy| ≤ |k| since
√

(k′xy)2 + (k′z)
2 = |k|, where

k′xy and k′z are the in-plane and out-of-plane components of the scattered wavevector respectively. The

out-of-plane projection is shown in the top of the figure. As the scattering is elastic the projection of k′

must lie within the circular band of the Ewald sphere. The finite thickness of the band represents the

bandwidthΔk of the incident beam. Only scattered wavevectors with an out-of-plane component within

the interval ΔQz are allowed. The corresponding component of the solid angle element is ΔΩz=ΔQz/k

and the scattered intensity is therefore

I2D
sc

(
photons

sec

)
= Φ0

(
photons

unit area × sec

)
r2

0P |Fhk |2 N
λ2

A

1

sin 2θ

(
ΔQz

k

)
(5.33)

5.6 Applications of kinematical diffraction

The objective of an X-ray diffraction experiment is to determine the structure, which for a crystalline

material means determining the unit cell and basis. The formulae derived so far in this chapter apply

mostly to the diffraction from a single crystal. Under favourable circumstances materials may indeed be

available as single crystals. The three-dimensional structure of the material is then solved by measuring

as many Bragg peaks as possible as a function of the Miller indices (h, k, l). In rough terms, the size

and symmetry of the unit cell are found from the position of the Bragg peaks, while the nature of

the basis and the position of the atoms (or molecules) within it determine the Bragg peak intensities.

Sophisticated techniques have been developed for going from the measured intensities to the final

structure, and for unit cells containing a modest number of atoms the whole process of structure solution

using single crystals is now routine and highly automated.

Many important materials cannot be obtained in single-crystal form, and may instead be in the

form of powders, or fibres. Alternatively, it may be that it is the two-dimensional structure of the

crystal surface, and not the three-dimensional structure of the bulk that is of interest. Understanding

the diffraction pattern in these situations requires further concepts to be developed. In this section these

concepts are introduced, and examples are used to illustrate how they apply in practice.



188 Kinematical scattering II: crystalline order

5.6.1 Powder diffraction

A good crystalline powder consists of many thousands of tiny crystallites oriented at random. Let us

focus our interest on a particular reciprocal lattice vector Ghkl specified by its Miller indices (h, k, l).

In the ideal powder sample the directions of the Ghkl vectors are isotropically distributed over the

sphere indicated in Fig. 5.23. Some of the grains have the correct orientation, relative to the incident

wavevector k, for Bragg scattering: in the figure they are represented by the circle, which is a cut

through the sphere of the plane perpendicular to k. The scattered wavevectors k′ are thus distributed

evenly on a cone with k as the axis and an apex half angle of 2θ. This cone is called the Debye-Scherrer

cone after the two physicists who first correctly interpreted X-ray scattering from a powder.

At first sight it might appear to be an impossible task to solve a full three-dimensional crystal

structure from a powder diffraction pattern, which is a two-dimensional projection. However, several

methods for achieving this have been developed. Probably the most commonly one used is Rietveld

refinement [Rietveld, 1969]. This seeks to use the entire diffraction profile, and not just the integrated

intensities of the powder lines, to constrain or refine the parameters in the structural model. The

Rietveld refinement which gives the method its name is in fact the last step in a process. The first step

is known as indexing, and involves finding the size and symmetry of the unit cell so that the powder

lines can be labelled with the appropriate values of (h, k, l). The second step is to extract the measured

intensities and to convert them into structure factors. The third is to use the measured structure factors

to build a structural model. Finally, the structural model is refined using the entire diffraction profile.

Here we restrict our discussion to showing how the measured intensity in a powder diffraction

experiment is related to the structure factor. For a certain fixed (h, k, l) reflection the number of powder

grains oriented to reflect is proportional to the circumference of the base-circle of the Debye-Scherrer

cone shown in Fig. 5.23. The circumference is given by Ghkl sin( π
2
− θ)= Ghkl cos θ. However,

permutations of (h, k, l) may have the same sphere of Ghkl vectors, and this is taken into account by

introducing the multiplicity of a reflection m
hkl

. For example, for a cubic lattice the multiplicity of

the (h, 0, 0) reflections is 6 as the (±h, 0, 0), (0,±h, 0) and (0, 0,±h) reflections will all Bragg reflect

to the same 2θ. So for a given Ghkl the intensity must be proportional to m
hkl

cos θ. At a different

Ghkl, and hence a different value of 2θ, the detector will see a different fraction of the base circle.

Independent of Ghkl, the circumference of the circle is 2πk sin 2θ. Thus the fraction seen by the detector

is kδ/(2πk sin 2θ), which is proportional to 1/ sin 2θ. Finally, for a single crystallite the observed

intensity will be proportional to the Lorentz factor we have already derived, 1/ sin 2θ. Altogether then

the observed intensity will be proportional to

Lpowder = mhkl cos θ
1

sin 2θ

1

sin 2θ
=

mhkl

2 sin θ sin 2θ
(5.34)

The structure factors squared can be derived on a relative scale from the observed diffraction

intensities. Suppose, for example, that it is required to determine the ratio of squared structure factors

for the (1,1,1) and (2,0,0) reflections from an f cc crystal. In addition to the combined Lorentz factor

given above, it is also necessary to allow for the polarization factor P which depends on the scattering

angle, so that the ratio of the intensities is

I
111

I
200

=

∣∣∣F111

∣∣∣2∣∣∣F
200

∣∣∣2
L

powder
(θ

111
)

Lpowder (θ200
)

P(cos 2θ111)

P(cos 2θ
200

)
(5.35)

The assumption of an isotropic distribution of orientations of the crystallites is not fulfilled trivially

in practice. When this condition is not fulfilled the powder is said to posses preferred orientations.
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Fig. 5.23 In an ideal powder there is an isotropic distribution of crystal grain orientations, as indicated by the sphere which

represents the terminal points of the reciprocal lattice vector G from all of the grains. For fixed incident wavevector k all of the G

vectors terminating on the circle will Bragg reflect, so that the scattered wavevectors k′ span a cone, the so-called Debye-Scherrer

cone. The angular acceptance of the detector is δ.
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Fig. 5.24 Powder diffraction patterns from InSb at (a) ambient pressure, and (b) at a pressure of 4.9 GPa. The patterns recorded

on an image plate detector are shown in the top row, and display rings where the detector intercepts the Debye-Scherrer cones.

The data were recorded with an incident wavelength of λ = 0.447 Å. In the bottom row the radially averaged patterns as a
function of 2θ are displayed. The results show that InSb undergoes a phase transition from the zinc sulfide structure to a phase

with an orthorhombic structure at pressures above 4.9 GPa. (Data courtesy of Malcolm McMahon, University of Edinburgh.)

Grains in a metal ingot, for example, may be highly textured in orientation due to mechanical rolling.

The texture is in fact of importance for the mechanical properties of the metal, and it can be determined

by suitable rotation of the sample. In other cases a powdered sample is prepared by crushing the

material into a powder and loading it into a glass capillary tube. An isotropic distribution is then ensured

by rotating the capillary tube around its axis during exposure. Powder diffraction is particularly useful

for studying the structure of materials under extreme conditions, such as the study of phase transitions

as a function of applied pressure.

In Fig. 5.24 data are shown from a study of the semiconducting material InSb as a function of

pressure. The data were obtained by loading a small quantity of powdered InSb into a diamond anvil

pressure cell, and then recording the powder diffraction patterns with an image plate detector. The data

shown in Fig. 5.24(a) were recorded at ambient pressure where InSb adopts the zinc sulfide structure

(see Fig. 5.5(b)) with a lattice parameter of 6.48 Å. The X-ray wavelength was 0.447 Å, and Debye-

Scherrer cones were observed at scattering angles of 2θ= 6.81◦, 11.15◦, 13.06◦, 15.78◦, 17.21◦, · · · ,
corresponding to the (1,1,1), (2,2,0), (3,1,1), (4,0,0), (3,3,1), · · · , Bragg peaks respectively. When

pressure is applied to the system a phase transition occurs, as shown in Fig. 5.24(b) for an applied
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pressure of 4.9 GPa, and the crystal structure transforms to become orthorhombic.

5.6.2 Diffraction from a fibre

From a crystallographic point of view a fibre can be considered as an extreme limit of anisotropy in

a powder: all the crystallites have one of their crystallographic axes, here denoted the c-axis, aligned

along the fibre axis, whereas the azimuthal orientation of the a − b plane is random. Fibres occur

frequently in nature, for example, in muscles and in collagen, and artificial fibres are widely used in

industry. The structure of fibres, as revealed by diffraction studies, is therefore of general interest and

is the subject of this section.

In fibre diffraction geometry, the monochromatic incident beam with wavevector k is perpendicular

to the vertical fibre axis, as shown in Fig. 5.25. Bragg reflections occur in the horizontal (equatorial)

plane due to the fact that each individual fibre in the sample is formed from a bundle of thinner long

filaments, which pack in a two-dimensional lattice perpendicular to the fibre axis. Each filament may

also exhibit periodicity along the axis, thus giving rise to Bragg reflections in the vertical (meridional)

plane.

The lower right part of Fig. 5.25 shows reciprocal space. The scattering vector Q is decomposed into

the vertical component Qz and the horizontal component Qh. For Bragg scattering Q must terminate in

layers at Qz = lc∗ with l = 0, ±1, ±2, · · · , etc., and c∗ = 2 π/c, where c is the period along the filament

axis. Furthermore, if the filaments making up the fibre are arranged in a 2D lattice, Bragg reflections

will occur in the different l-layers outside the meridional axis. The l=0 layer is called the equatorial

layer. For a certain l-layer, the angle β is constant. The scattered wavevector k′ must terminate on

a circle in the l-layer since the scattering is elastic: the scattering angle 2θ varies with the azimuthal

angle α according to cos 2θ = cosα cos β, so for certain values of α the Bragg condition λ = 2dhkl sin θ

will be fulfilled. In the bundle of many fibres making up the sample there will always be one with the

correct (a∗, b∗) orientation for Bragg reflection. Independent of the fibre structure, symmetry implies

that the Bragg spots occur symmetrically around the meridional plane at ±α.

Example: helices in biology and the structure of DNA

The primary structure of a protein is a polypeptide backbone, depicted in Fig. 5.26, onto which is

attached a sequence of amino acids. Around 1950 Linus Pauling formulated a seminal idea on the

structure of proteins which has had far reaching consequences [Pauling et al., 1951]. In Pauling’s

laboratory they had been studying the building blocks of polypeptide chains. As a result of this work

Pauling became convinced that a protein was formed by structural units which could be considered to

be rigid and planar, or at least approximately so. This is illustrated in Fig. 5.26 where the shaded

parallelograms indicate that the carbonyl and amide groups are planar. It follows that when the

polypeptide chain folds to form a protein the main degrees of structural freedom are the rotation angles

around the links between these rigid structural units. One of Pauling’s most important insights was that

the formation of a hydrogen bond between the carbonyl C=O of one unit and the amino N-H group

four units further along would cause the chain to curl up into a helix. This structure was christened

the α-helix, and has 3.7 residues for one period of rotation. Subsequent experiments established that

Pauling was indeed correct, and it is now known that α-helices are an important structural component

of many proteins.

Inspired by Pauling’s ideas, Cochran et al. calculated the generic diffraction pattern from a helix

[Cochran et al., 1952]. As the scattering from helices has assumed such significance in structural

biology an outline of this calculation is given here. The starting point is to imagine that a uniform and

continuous distribution of material lies on a infinitely long helical string of period P. The problem
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Fig. 5.25 Top: geometry of fibre diffraction. The fibre sample is perpendicular to the incident monochromatic beam. Bottom

left: the fibre sample comprises a large number of filaments, randomly orientated in the azimuthal angle. Bottom right: periodicity

along the fibre implies that Bragg reflections are restricted to layers.
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Fig. 5.26 A polypeptide chain is composed of planar moieties of carbonyl and amide groups. These planar moieties can be

rotated around either the N-Cα or the Cα-C bonds. Hydrogen bonding between the N-H and C=O groups causes the chain to fold

into a helical structure known as the α-helix after Pauling. Here R stands for an amino acid residue.
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Fig. 5.27 Scattering from a single, infinitely long helix of radius R and period P. The structure factor squared has principle

maxima arising from the peaks in the Bessel functions, and form a cross in reciprocal space as indicated by the blue circles. The

grey circles on the equatorial axis are the secondary maxima from the zeroth-order Bessel function. Here Qz and Q⊥ are the

components of the scattering vector parallel and perpendicular to the axis of the helix respectively.
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in calculating the diffraction pattern is to add up the phase factor for each differential element along

the helix. As the material is uniformly distributed the scattering amplitude is found by evaluating the

integral

A(Q) ∝
∫

ei Q·r dz

where z is taken to be along the axis of the helix. For a helix with a period of P and a radius of R, any

point r on the helix is given by

r =
(
R cos( 2π z

P
), R sin( 2π z

P
), z

)
As the helix is periodic, the integral decomposes into a sum over all periods (or lattice sites) multiplied

by the structure factor of a single period. The scattering amplitude then becomes

A(Q) ∝
∞∑

m=0

ei QzmP

z=P∫
z=0

ei Q·r dz

∝
z=P∫

z=0

δ(Qz − 2πn
P

) ei Q·r dz (5.36)

Here n is an integer, and use has been made of Eq. (5.12), which allows the sum over lattice sites to be

written as a delta function.

To evaluate the phase Q · r it is convenient to use cylindrical coordinates and express the scattering

vector as

Q =
(
Q⊥ cos(Ψ), Q⊥ sin(Ψ), Qz

)
=

(
Q⊥ cos(Ψ), Q⊥ sin(Ψ), 2πn

P

)
where Qz is the axial component, Q⊥ is the radial component and Ψ is the azimuthal angle. The

scattering amplitude from a helix then assumes the form

A1(Q⊥,Ψ,Qz) ∝ ei nΨ Jn(Q⊥R)

where Jn(Q⊥R) is the n’th order Bessel function of the first kind, and Q⊥R is a dimensionless argument.

The mathematics leading to this expression are explained in the box on the next page. The subscript

‘1’ is used as a reminder of the fact that the expression refers to the scattering from a single helix. The

scattered intensity given by the above equation is plotted in Fig. 5.27.

Perhaps the most celebrated helical structure in biology is the double helix of DNA (deoxyribose

nucleic acid). The structure of DNA was first solved by James Watson and Francis Crick [Watson and

Crick, 1953], who mainly used stereo-chemical arguments to build a model which helped them deduce

the correct structure. They were assisted greatly in their work by the X-ray diffraction experiments

performed around the same time by Wilkins et al. [Wilkins et al., 1953] and Franklin and Gosling

[Franklin and Gosling, 1953]. These experiments established the helical nature of the DNA molecule,

and provided decisive structural parameters, such as its period and radius. The discovery of the double

helix probably ranks as one of the most important scientific advances of the twentieth century. As the

authors note: ‘It has not escaped our notice that the specific pairing we have postulated immediately

suggests a possible copying mechanism for the genetic material’.
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Structure factor of a helix and the Bessel function Jn(ξ)

From Eq. (5.36) the scattering amplitude from a helix of period P and

radius R is

A(Q) ∝
z=P∫

z=0

δ(Qz − 2πn
P

) ei Q·r dz

Using cylindrical coordinates the scalar product of the scattering vector

Q and position r is

Q · r = Q⊥ cos(Ψ) R cos( 2πz
P

) + Q⊥ sin(Ψ) R sin( 2πz
P

) + Qzz

= Q⊥R cos( 2πz
P
−Ψ) +

(
2πz
P

)
n

It is convenient to rewrite this as

Q · r = ξ cosϕ + nϕ + nΨ

with ξ = Q⊥R and ϕ = (2πz/P − Ψ). The scattering amplitude can then

be written in the form

A(Q) ∝ ei nΨ

2π∫
0

ei ξ cos ϕ+i nϕ dϕ

The n’th order Bessel function of the first kind is given in integral form

by

Jn(ξ) =
1

2πin

2π∫
0

ei ξ cos ϕ+i nϕ dϕ

It is then apparent that the scattering amplitude from a single helix

assumes the form

A1(Q⊥,Ψ,Qz) ∝ ei nΨ Jn(Q⊥R)

A photograph of the fibre diffraction pattern from DNA is shown in the top part of Fig. 5.28�. This

is from the B phase, and is similar to one of the original patterns reported by Franklin and Gosling

[Franklin and Gosling, 1953]. In contrast to the type of pattern recorded from a single crystal, this

diffraction pattern arises from a large number of crystallites with random orientation about the chain

axis. The reflections are spread into arcs because the alignment of the crystallites along the chain

axis is not perfect. Although cylindrical averaging frequently occurs in fibres and results in overlap of

systematically related reflections, the loss of information is not normally severe. This type of diffraction

method has been used to determine the structures of four of the five principal DNA conformations. It is

also used to study other biomolecules including filamentous viruses, cellulose, collagen, flagella, etc.

The use of neutron diffraction in combination with X-ray methods is especially powerful since it allows

important insights into hydration of these molecules.

It is evident that the diffraction pattern from DNA possesses some of the features predicted by
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Fig. 5.28 � The double helix of DNA. Top: Fibre diffraction data for the B conformation of DNA. (Image provided by Watson

Fuller, University of Keele, UK.) Middle: The structure of DNA is formed from two intertwined helices displaced axially by 3/8

of a period. The backbone of the helices is formed from a sugar-phosphate polymer chains, and the ‘steps’ from a pairing of

hydrogen bonded bases, adenine with thymine, and guanine with cytosine. Bottom: The intensity calculated from Eq. (5.37) for

two helices displaced by 3/8’ths of a period.
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Cochran et al. for the scattering from a helix. In particular there is a characteristic cross of Bragg

peaks. From the position of these peaks along the meridional (vertical) axis the period of the helix is

found to be 34 Å, while from the angle of the cross it can be deduced that the radius of the helix is 10

Å. The double nature of the helix is only apparent from a detailed analysis of the pattern. Most tellingly

the reflections from the 4’th order layer are missing on the film, although the 3’rd and 5’th order are

clearly apparent. Indeed Rosalind Franklin herself was aware that this feature of the diffraction pattern

could be explained naturally by assuming that DNA is formed from two intertwined helices as shown

in the middle part of Fig. 5.28�. If the two helices are displaced along the common z axis by an amount

Δ, then this corresponds to an azimuthal angle Ψ = 2π(Δ/P), and the scattering amplitude becomes

A2(Q⊥,Ψ,Qz) ∝ (1 + e
i n

(
2π
P

)
Δ

) Jn(Q⊥R) (5.37)

with Qz = n(2π/P). The waves scattered by the two helices interfere in such a way that the intensity

of the 4’th layer reflections becomes vanishingly small when Δ/P=1/8, 3/8, 5/8, etc. In the bottom part

of Fig. 5.28� the intensity calculated from this equation is plotted. It can be seen that it accounts for

most of the qualitative features of the central part of the diffraction pattern. To obtain better agreement

it would obviously be necessary to specify the position of all the molecules in the structure and their

scattering factors. One feature not accounted for by the simple model described here is the existence

of strong, but diffuse reflections on the meridional axis close to the 10’th layer. These reflections arise

from the fact that the double helix has 10 pairs of bases per period.

5.6.3 Two-dimensional crystallography

One area that has benefitted greatly from the high flux produced by synchrotron sources is the study of

surfaces using X-ray scattering. Although X-rays are scattered only weakly by a monolayer of atoms

or molecules, it transpires that the sensitivity is still high enough that it is possible to study the structure

in great detail. Moreover, the fact that the scattering is weak simplifies the interpretation of the data

considerably, as the kinematical approximation then applies. This contrasts with the case of strongly

interacting probes, such as the electron, where the data analysis is complicated by the need to resort to

a full multiple scattering theory.

X-ray scattering experiments from surfaces are usually performed with the angles of the incident

and exit beams close to the critical angle, αc, for total external reflection, as this limits the penetration

depth of the beam which in turn reduces the background scattering from the bulk of the crystal. One

consequence of this is that it is necessary to correct the above formula for refraction effects. In Section

3.4 it was shown that the transmittivity, t(αi), of the incident beam is enhanced for angles close to αc

(Fig. 3.5). From Eq. (3.17) the amplitude transmittivity is

t(αi) =
2αi

αi + α′

where α′ refers to the transmitted beam. By reversing the direction of the incident and transmitted rays

one obtains a ray in the crystal at a glancing angle of α′ that exits the crystal at a glancing angle of

α f . Clearly, the transmission coefficient for this process must be t(α f )= 2α f /(α f + α
′). Including these

refraction effects, the integrated intensity given in Eq. (5.33) becomes

I2D
sc −→ I2D

sc

∣∣∣t(αi)
∣∣∣2 ∣∣∣t(α f )

∣∣∣2 (5.38)
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Fig. 5.29 Geometry of a grazing incidence diffraction (GID) experiment from a solid single crystal surface at a synchrotron.

The surface can be rotated around the surface normal n, and the detector can be both rotated around n in the vertical plane, and

moved perpendicular to it so as to scan along the crystal truncation rods.

A free standing two-dimensional crystal is difficult to realize in nature, and quasi two-dimensional

structures are instead studied on crystal surfaces. The structure may of course be the surface of the

crystal itself, as the difference in the bonding of the surface atoms often leads to a reconstruction of the

surface. Alternatively it may be the structure of an absorbed layer of atoms or molecules. In either case,

experiments on surfaces are performed in two distinct steps. The first is to study the in-plane structure

of the surface, in other words the positional coordinates of the topmost atoms within the plane of the

surface. To this end it may be convenient to define a new unit cell for the surface. For example, a unit

cell may be defined with the (a, b) axes in surface plane, and the c axis perpendicular to it. Conventional

crystallographic structure determination then requires that the structure factor |Fhk| of as many Bragg

peaks as possible are determined, with l ≈ 0. These can then be compared with calculations of the

structure factor for different models of the surface. The in-plane structure is most readily determined

when the Bragg peaks from the surface layer appear at different positions from those of the bulk. In

other words when the surface has a different in-plane periodicity to that of the bulk. This is often found

to be the case for either reconstructed surfaces, or absorbed layers. The second step is to study the

out-of-plane structure. Here the intensity distribution of the scattering is studied as a function of l with

the values of h and k set to coincide with a 2D Bragg peak. We have seen already (Section 5.3) that

for an ideally terminated surface the scattering is extended along l to form the crystal truncation rods

(CTR), and that the observed intensity distribution along the rods is sensitive to any modifications of
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the near-surface region.

A schematic of the experimental setup used to measure the scattering from a surface in grazing

incidence geometry is shown in Fig. 5.29. The sample here is a disc with a surface normal n in the

horizontal plane. The incident, monochromatic beam is horizontal and the incident wavevector ki is at

a glancing angle αi to the surface. The incident glancing angle is close to the critical angle for total

reflection, so that only a thin surface layer (thicknessΛ) is exposed to the X-rays, as discussed in Section

3.4. When the sample is rotated around n, the glancing incident angle should remain fixed which can

be monitored by requiring a constant value of the specularly reflected beam. For a certain (h, k,0) Bragg

reflection with reciprocal lattice vector Ghk the Bragg angle θ is calculated from 2k sin θ = Ghk. The

detector arm is turned around n to the angle 2θ, and for l � 0 the detector is then translated a small

angle α f (of order αi) along the surface normal. The sample lattice can be turned around n so that the

reflecting (h, k) planes bi-sect the angle between ki and k f . To obtain the intensity along the CTR’s the

detector is translated along the surface normal so that α f becomes much larger than αi.

Example: absorption of O on the Cu(110) surface

The example we shall use to illustrate many of the concepts introduced above is the structure of the

(110) copper surface with oxygen atoms chemisorbed onto it [Feidenhans’l et al., 1990].

Copper crystallizes in a face centred cubic structure as shown in the top part of Fig. 5.30. The Cu

atoms are located at the corners and at the centres of the faces of a cube. The copper crystal has been

cut so that a (110) plane forms the surface. A front-view of the truncated bulk (110) surface is shown

in the middle panel of Fig. 5.30. Cu atoms in the top layer are shown as large filled circles, whereas

Cu atoms in the second layer are represented by smaller ones. Cu atoms in the third layer sit directly

below those in the top layer, etc.

The cubic unit cell is not convenient for describing the positions of atoms in the surface layer. For

the surface we rather choose the unit cell as shown shaded in the middle panel. Clearly the length of

a is ac/
√

2 and the length of b is ac. The third axis of the unit cell, c, is perpendicular to the surface

and has the length ac/
√

2. With this choice there are two atoms per unit cell: one at (0,0,0) and one at

(1/2,1/2,1/2). We define a full monolayer of Cu atoms as that of the top layer. Referring to this unit cell

the reciprocal lattice (a∗, b∗) is shown to the right. The length of a∗ and b∗ are 2π/(ac/
√

2) and 2π/ac

respectively, so that a general reciprocal lattice vector in the plane of the surface is Ghk = ha∗ + kb∗.
If the bare Cu(110) surface terminated as the bulk structure, allowed (hk) reflections would require

an even sum of h and k since Fhk ∝ 1 + eiπ(h+k). These reflections are indicated by diamonds in

the reciprocal lattice shown in Fig. 5.30. However, when exposed to oxygen the surface undergoes a

reconstruction from that of the truncated bulk lattice. By LEED (Low Energy Electron Diffraction) one

can immediately see the symmetry of the surface unit cell, or rather that of the reciprocal lattice cell.

For a certain dosage of oxygen, it turns out to be exactly like the truncated unit cell along the k-axis, but

only half as large along the h-axis as indicated in the right panel by the h′ index. This means that the

unit cell in direct space must have doubled along the a direction as shown in the lower, left panel, and

one refers to the reconstructed cell as a (2×1) cell. Furthermore, one can by other surface techniques

(such as Scanning Tunnelling Microscopy, STM) determine that there is only half a monolayer of Cu

atoms in the top layer and half a monolayer of oxygen. Finally, one knows that in the bulk structure of

Cu2O, the oxygen is located midway between two Cu atoms with a Cu-O bond length of 1.852 Å, which

is only slightly larger than b/2 = ac/2=1.8075 Å. It is therefore a good starting point to assume a model

where every second row of Cu atoms along the b direction is missing (as this gives half a monolayer),

and where half a monolayer of oxygen atoms is formed by the oxygen atoms occupying positions

midway between neighbouring Cu atoms along the b direction. As Cu-O-Cu bonds are slightly larger
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Fig. 5.30 Top, left: The face centred cubic structure of Cu with a (110) plane indicated. The lattice vectors (ac,bc,cc) of the

conventional unit cell are shown. Middle, left: The structure of the (110) surface layer, with the unit cell defined by a and

b. Bottom, left: A model for the Cu surface exposed to O, with half of the Cu atoms in the surface layer missing along the a

direction. Right: The reciprocal lattice of the Cu surface after exposure to O. The reflections arising from the doubling of the unit
cell along the a direction (shown in the bottom, left panel) are represented by the filled circles, where their radius is proportional

to the measured Bragg intensity. The diamonds indicate the allowed Bragg reflections from bulk Cu.
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k

0 1 2 3 4

1 10.7 (10.7) 3.29 (3.85) 4.13 (4.23) 1.27 (1.01) 0.86 (0.75)

h′ 3 7.09 (7.04) 0.39 (0.68) 3.58 (3.72) 0.32 (0.15) 0.84 (0.96)

5 0.16 (0.52) 1.02 (1.23) 0.21 (0.23) 0.41 (0.48) -

Table 5.2 � Observed intensities in arbitrary units for (h′, k, l) reflections for O on Cu(110) with l = 0. The

intensities from the model described in the text are given in the brackets.

than ac/2=1.8075 Å it is also likely that the O is displaced an amount z Å above or below the Cu-plane,

with z given by (1.80752 + z2)=1.8522. As a refinement, one could further imagine that the Cu atoms

in the next layer are pushed towards the missing row by an amount δ. This model unit cell is shown in

the lower, left panel of Fig. 5.30.

The intensities observed in the experiment are given in Table 5.2�, where corrections have been

made for the Lorentz factor 1/ sin 2θ as well as for the crossed beam area, which is also proportional to

1/ sin 2θ. These data are also indicated in Fig. 5.30 as the shaded circles in reciprocal space. The area

of each circle is proportional to the measured intensity when corrected for Lorentz factor and scattering

area. In the reciprocal lattice the allowed bulk reflections are indicated by the diamonds.

Let us first discuss the in-plane data (l ≈ 0) given in Table 5.2�. For h′ odd and integer k, the

structure factor for the first two layers (i.e. the top layer of unit cells) is the sum of three terms:

Fh′k = FCu1 + FO + FCu2

where Cu1 and O refer to the first layer, and Cu2 to the Cu in the second layer. Using the unit cell

shown in the bottom panel on the left of Fig. 5.30 the structure factors are

FCu1 = f Cu e−MCu1

FO = f O ei 2π(k/2) e−MO = (−1)k f O e−MO

FCu2 = f Cu ei 2π(k/2) ei 2π(h′/4)
[
ei 2πh′δ − e−i 2πh′δ

]
e−MCu2

= f Cu ei πk ei πh′/2 2i sin(2πh′δ) e−MCu2

= (−1)h′/2+k+1/2 f Cu 2 sin(2πh′δ) e−MCu2

In evaluating the contribution from the second layer with Cu atoms we have utilized that for odd h′,
which we are dealing with in the table, ei 2π(3h′/4) = −e−i 2π(h′/4). We have also taken into account that

the thermal vibration (Debye-Waller) factor e−M may be different for Cu atoms in the first layer and in

the second layer, where the atoms are more tightly bound than in the first layer. The best fit to the data

are obtained for δ=0.00606, corresponding to a displacement of 0.031 Å, and Debye-Waller factors of

BCu1
T
= 1.7 ± 0.2 Å2, and BO

T
= 0 ± 0.4 Å2. (For the second Cu layer BCu2

T
was set equal to the value

of 0.55 Å2 for bulk copper.) The Debye-Waller factor is discussed in Section 5.4, and for the present

example the relationship between the parameters MX and BX
T

for element X is

MX = BX
T

(
sin θ

λ

)2

= BX
T

(
Gh′k

4π

)2

= BX
T

(
1

4π

)2 {(
h′a∗/2

)2
+ (kb∗)2

}
With these parameters the observed and calculated intensities for the in-plane reflections (given in

brackets in Table 5.2�) are seen to be in good agreement.
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Fig. 5.31 � Crystal truncation rods for (h =1, k =0) and (h =1, k =1) (see Fig. 5.30). The dashed-dotted curve corresponds to

the expression for FCTR
hkl

(l) given in the text. The dashed curve corresponds to the missing row structure of Cu with z0 = 0, i.e.

no displacement. The solid curve is the best fit with the O 0.34 Å (z1=0.0115) below the relaxed missing row, whereas the dotted

curve has O located 0.34 Å (z1=0.2775) above the missing row which is relaxed by z0=0.1445 relative to the bulk.

In addition to these measurements, CTR’s along (h = 1, k = 0, l) and (h = 1, k = 1, l) were also

measured with the results shown in Fig. 5.31�. The CTR data can be modelled by first considering

the crystal to be ideally terminated, and then by adding to the complexity of the model until agreement

with the data is reached. Successive layers along the surface normal direction have a phase factor of

eiΨ, where Ψ = π(h+ k+ l). The structure factor of the CTR from the ideally terminated surface is then

given by

FCTR
hk (l) = f Cue−MCu2

∞∑
n=0

ei nΨ

= f Cue−MCu2
1

1 − eiΨ
(5.39)

This is plotted as the dashed-dotted curve in Fig. 5.31�, and is in poor agreement with the data. What

is missing from the model is a description of the surface structure, here denoted by FS
hk

(l), so that the
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Fig. 5.32 Schematic of the side view of O on Cu(110) surface showing the possible displacements perpendicular to the surface

of the oxygen and copper atoms z1 and z0 respectively. The view is along the b axis of Fig. 5.30, and the displacements are not

to scale.

total structure factor is

F total
hk (l) = FCTR

hk (l) + FS
hk(l)

The simplest modification to the model is to allow for the missing row structure by adding half a

monolayer of Cu atoms by writing

FS
hk(l) =

1

2
f Cu e−MCu1 ei π(h+k) e−iπl

The last two phase factors arise because the origin in Eq. (5.39) was taken at n = 0, so that the next

layer up is displaced in the negative z direction by half of a lattice unit, and is displaced in the plane by

(1/2,1/2) (see middle left panel of Fig. 5.30). When this is added to FCTR
hk

it results in the dashed curve

in Fig. 5.31�. Better agreement with the data is achieved by allowing the topmost Cu layer to relax

outwards, and by including the oxygen (Fig. 5.32). The surface structure factor then becomes

FS
hk(l) =

1

2
ei π(h+k)( f Cu e−MCu1 e−i 2π(1/2+z0)l + f O eiπk e−i 2π(1/2+z1)l)

The best fit to the data is found with z0 = 0.1445 and z1 = 0.0115.

5.7 Further reading

Crystallography

An Introduction to X-ray Crystallography, M.M. Wolfson (Cambridge University Press, 1997).

X-ray Diffraction, B.E. Warren (Dover Publications, 1990).

International Tables of Crystallography, (Kluwer Academic Publishers).
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Solid State Physics

Solid State Physics, J.R. Hook and H.E. Hall (John Wiley & Sons, 1991).

Introduction to Solid State Physics, C. Kittel (John Wiley & Sons, 1996).

Surface Crystallography

Surface Structure Determination by X-ray Diffraction, R. Feidenhans’l, Surface Science Reports

10, 105 (1989).

Surface X-ray Diffraction, I.K. Robinson and D.J. Tweet, Rep. Prog. Phys. 55, 599 (1992).

Critical Phenomena at Surfaces and Interfaces: Evanescent X-ray and Neutron, H. Dosch

(Springer Tracts in Modern Physics 126, 1992).

5.8 Exercises

5.1 The primitive lattice vectors of the two-dimensional hexagonal Bravais lattice may be written

in Cartesian coordinates as a1= a(1,0) and a2= a(−1/2,
√

3/2) where a is the lattice constant.

(a) Sketch the direct lattice, indicate the (1,0) and (1,1) planes and use the sketch to calculate

their d spacings.

(b) Show that a reciprocal lattice vector G of the two-dimensional Hexagonal Bravais lattice

may be written as G = h(2π/a)(1, 1/
√

3) + k(2π/a) (0, 2/
√

3) where (h, k) are the Miller

indices.

(c) Sketch the reciprocal lattice.

(d) The Wigner-Seitz cell in two dimensions is defined to be the area enclosed by lines

drawn as perpendicular bisectors between the lattice point at the origin and its nearest

neighbours. Make sketches of the Wigner-Seitz cells of the direct and reciprocal lattices.

(e) Use the result in (b) to find an expression for the d spacing, and from this calculate the d

spacing of the (1,0) and (1,1) planes. (You should get the same answer as in (a).)

5.2 A diffraction experiment on a cubic crystal, using monochromatic X-rays with a wavelength

of 1.0 Å, reveals the first eight powder lines at the following scattering angles: 19.2◦, 27.3◦,
33.6◦, 38.9◦, 43.8◦, 48.2◦, 56.3◦, 60.0◦. Deduce the Bravais lattice type.

5.3 Imagine that the data in the Exercise 5.2 were recorded with neutron rather than X-ray

scattering. Make a sketch of the powder diffraction pattern expected, plotting the Bragg peaks

with the correct relative intensities. Note: for neutrons the scattering length of a nucleus is a

constant, and also there is no polarization factor P to consider. You may also neglect the effect

of thermal vibrations.

5.4 NaH crystallizes in the NaCl structure. Experimentally it is found that when studied with

X-rays reflections with (h, k, l) all odd or all even are visible, whereas when studied with

neutrons reflections with (h, k, l) all even are negligibly weak. Explain this result.
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5.5 The primitive lattice vectors of the hexagonal Bravais lattice in three dimensions may be

written in Cartesian coordinates as a1 = a(1,0,0), a2 = a(1/2,
√

3/2,0) and a3 = c(0,0,1). Show

that the modulus of a general reciprocal lattice vector is

|G| = 2π

(
4

3a2

(
h2 − hk + k2

)
+

l2

c2

)1/2

and use this result to to derive the general expression for the lattice spacing dhkl.

5.6 The hexagonal close packed structure is formed from convoluting a two atom basis with the

hexagonal Bravais lattice. The coordinates of the atoms in the basis may be taken as r1=(0,0,0)

and r2=(a/3, a/3, c/2), now written with respect to the direct lattice vectors (a1, a2, a3) given

above. Show that the unit cell structure factor is

Fhkl = 1 + e2πi(h/3+k/3+l/2)

Holmium crystallizes in the hcp structure with lattice parameters of a=3.57 Å and c=5.61 Å.

Assuming an X-ray wavelength of 1Å, calculate the scattering angles 2θ of the two observable

Bragg reflections closet to the origin.

5.7 Show that for a cubic material the Debye-Waller factor can be written as

e−M = e−BT (h2+k2+l2)/(4a2)

Silicon has a Debye temperature of 645 K and a lattice constant of 5.43 Å. On heating

silicon from 0 K which is the first Bragg peak to lose 5% of its Bragg peak intensity at room

temperature.

5.8 Show that for a one-dimensional crystal the mean squared atomic displacement diverges

causing the Debye-Waller factor to vanish.

5.9 Consider a simple model of the surface roughness of a crystal in which all of the lattice sites of

the z = 0 layer are fully occupied by atoms, but the next layer out (z = −1) has a site occupancy

of η, with η ≤ 1, the z = −2 layer an occupancy of η2, etc. Show that midway between the

Bragg points, the so-called anti-Bragg points, the intensity of the crystal truncation rods is

given by

ICTR =
(1 − η)2

4 (1 + η)2

What effect does a small, but finite, value of the roughness parameter η have on ICTR?

5.10 Half a monolayer is added randomly to the surface of a crystal, with the half-monolayer

composed of the same material as the bulk crystal. Calculate the crystal truncation rod intensity

for this situation, and determine the CTR intensity at the anti-Bragg position. What does this

result suggest for an experimental method to monitor layer-by-layer growth of a crystal?
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6
Diffraction by perfect crystals

The X-ray beam from a synchrotron source is polychromatic. Typical values for the bandwidth in

energy vary between a fraction of a keV for an undulator, up to a few hundred keV or so in the case

of a bending magnet. Many experiments require a monochromatic beam, where both the energy and

energy bandwidth can be set to convenient values. By far the most common type of monochromator is

a crystal that Bragg reflects an energy band, or equivalently wavelength band, out of the incident beam.

The band is centred around a wavelength λ given by Bragg’s Law, mλ = 2d sin θ, where d is the lattice

spacing, θ is the angle between the incident beam and the lattice planes, and m is a positive integer.

One requirement of a monochromator crystal is that it preserves the inherently good angular

collimation of the synchrotron beam, which is of order 0.1 mrad. For this reason, perfect crystals,

which are essentially free from any defects or dislocations, are often used. However, even a perfect

crystal does not have an infinitely sharp response, but instead has an intrinsic width. This width may

be defined in various ways, depending on the type of experiment imagined. Here we shall start out by

considering the relative wavelength band, ζ = (Δλ/λ), a perfect crystal reflects out of a white, parallel

incident beam.

Candidate monochromator crystals must not only be perfect, but they should maintain their

perfection when subjected to the large heat loads imposed by the incident white beam. In practice,

few materials can meet these exacting requirements. Most monochromators are either fabricated from

silicon, diamond or germanium, with each having its own advantages depending on the application, as

discussed later.

To develop a theory of the diffraction of X-rays from perfect crystals it is necessary to go beyond

the kinematical approximation used in Chapter 5. This approximation applies to imperfect crystals,

formed from microscopic mosaic blocks (see Fig. 5.19 on page 183). The size of these blocks is taken

to be small, in the sense that the magnitude of the X-ray wavefield does not change appreciably over

the depth of the block1. The scattering amplitude is then evaluated by summing together the amplitude

of the waves scattered by each unit cell, taking into account the appropriate phase factors. Diffraction

from macroscopic perfect crystals is fundamentally different from this scenario. As the incident wave

propagates down into the crystal its amplitude diminishes, as a small fraction is reflected into the exit

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

1The X-ray beam may of course be attenuated by absorption.
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Fig. 6.1 Diffraction by a crystal with a lattice spacing of d in (a) Bragg reflection and (b) Laue transmission geometries. Both

cases are symmetric since the incident and exit beams form the same angle with respect to the physical surface. The incident

beam is assumed to be parallel and white. The crystal reflects a width in wavevector given by Δk. The small variable ζ is defined
by ζ = ΔG/G ≡ Δk/k. The relative energy bandwidth or wavelength bandwidth is also equal to Δk/k.

beam as it passes through each atomic plane. In addition there is a chance that the reflected beam will

be re-scattered into the direction of the incident beam before it has left the crystal. The theory which has

been developed to allow for these multiple scattering effects is known as dynamical diffraction theory.

At the outset it is important to specify exactly the scattering geometry, as it transpires that this has

a profound influence on the diffraction profile from a perfect crystal. Diffraction may occur either in

reflection or transmission, which are known as Bragg and Laue geometries respectively, as shown in

Fig. 6.1. The angle that the physical surface makes with respect to the reflecting atomic planes is also an

important factor. The reflection is said to be symmetric if the surface normal is perpendicular (parallel)

to the reflecting planes in the case of Bragg (Laue) geometry. Otherwise it is asymmetric. Within the

kinematical approximation the scattering is independent of the geometry. To take one striking example

of how the diffraction profile from a perfect crystal is affected by the geometry, consider the symmetric

Bragg and Laue cases (Fig. 6.1), and imagine that the incident beam is perfectly collimated and white,

in the sense that it contains a continuous distribution of wavelengths. As we shall see, in the Bragg case

the collimation of the beam is preserved, whereas the Laue geometry imparts an angular divergence

to the reflected beam even though the incident beam is perfectly collimated. To start with we shall

examine the symmetric Bragg case, and later explain how the results are modified with the crystal set

in an asymmetric Bragg or Laue geometry.

The approach followed here is essentially the same as the one first developed by C. G. Darwin in

1914. In his method, Darwin treated the crystal as an infinite stack of atomic planes, each of which

gives rise to a weak reflected wave which may subsequently be re-scattered into the direction of the
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Fig. 6.2 A wave T incident on a sheet of unit cells will be partly reflected and partly transmitted. The reflected wave is −i gT ,

and the transmitted wave is T (1 − ig
0
), where g and g

0
are small parameters given in the text.

incident beam. An alternative approach was developed by Ewald (1916-1917), and later re-formulated

by von Laue (1931). They treated the crystal as a medium with a periodic dielectric constant, and then

solved Maxwell’s equations to obtain results in agreement with those derived earlier by Darwin.

Before deriving the dynamical theory, the reader is reminded of a few important results concerning

the reflectivity from a thin slab. The kinematical diffraction from a stack of thin slabs is then calculated.

This differs from the discussion in Chapter 5 as effects due to refraction are now included. The

kinematical approximation is of importance, as any dynamical theory must give the same results in

the limit of weak scattering.

6.1 One atomic layer: reflection and transmission

Consider an X-ray beam incident on a thin layer of electrons of density ρ and with a thickness d, such

that d � λ, as shown in Fig. 6.2. The incident wave, T , is partly reflected specularly from the layer, and

partly transmitted through it. From Eq. (3.24) in Chapter 3 we know that the reflected wave is phase

shifted by − π
2

(i.e. by a factor of −i) with respect to the incident wave, and has an amplitude equal to

g =
λr0
ρ d

sin θ

To generalize this expression so that it is applicable to the scattering from a layer of unit cells, the

density ρ is replaced by |F |/vc, where F is the structure factor of the unit cell, and vc is its volume. This

is a necessary step, as it can no longer be assumed that d is small compared to the wavelength, and

hence destructive interference will reduce the scattering at higher scattering angles (see Section 4.2).

Using Bragg’s law, mλ = 2d sin θ the above becomes

g =
[2d sin θ/m] r

0
(|F |/vc) d

sin θ
=

1

m

⎛⎜⎜⎜⎜⎝2d2r
0

vc

⎞⎟⎟⎟⎟⎠ |F | (6.1)
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Since vc is of order d3, g is of order r0/d � 10−5, and the reflectivity of even a thousand layers is

approximately 10−2 only2. For simplicity the incident wave has been assumed to be polarized with its

electric field perpendicular to the plane containing the wavevectors of the incident and reflected beams,

so that the polarization factor, P, is unity (see Eq. (1.8)).

The transmitted wave in Fig. 6.2 may be written as (1 − ig0)T ≈ e−i g0 T , since g0 is the small real

number given by Eq. (3.6) on page 75. This equation may be recast in terms of g as

g0 =
|F0|
|F | g (6.2)

Here F0 is the unit-cell structure factor in the forward direction, i.e. Q = θ = 0. We note that for

forward scattering the polarization factor is always equal to unity, independent of the polarization of

the incident beam.

6.2 Kinematical reflection from a few layers

A single layer of atoms reflects an X-ray beam only very weakly. It is straightforward to derive the

reflectivity from a stack of N layers as long as the product of N and the reflectivity per layer, g, is small,

i.e. Ng � 1. In this case we simply add the amplitude of rays reflected from layers at different depths

in the stack, taking into account the phase factor ei Qd j, where j labels the layer. This is the so-called

kinematical approximation, and the amplitude reflectivity for N layers is

rN(Q) = −ig

N−1∑
j=0

ei Qd je−i g0 je−i g0 j

= −ig

N−1∑
j=0

ei (Q d−2g
0
) j (6.3)

The phase shift is 2g0 rather than just g0 as each layer is traversed twice, once in the T direction, and

once in the S direction.

The reciprocal lattice of a stack of layers with layer spacing d is a line of points in reciprocal space

at multiples, m, of G = 2π/d. In general we are interested in small, relative deviations of the scattering

vector Q away from mG, so that

Q = mG (1 + ζ) (6.4)

where ζ is then the small relative deviation (see Fig. 6.1). This is equivalent to the relative bandwidth

in energy (or wavelength) since

ζ =
ΔQ

Q
=
Δk

k
=
ΔE
E =

Δλ

λ
(6.5)

2Writing Bragg’s law as mλ = 2d sin θ implies that d is the longest lattice spacing for a given family of planes (h, k, l). For

example, if one is considering the (220) reflection, say, then the d spacing is calculated for the (110) planes, and the appropriate

value of m is 2.
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The phase appearing in the exponential of Eq. (6.3) can thus be rewritten in terms of ζ as

Qd − 2g0 = mG(1 + ζ)
2π

G
− 2g0

= 2π
(
m + mζ − g0

π

)
The sum then becomes

N−1∑
j=0

ei (Q d−2g
0
) j =

N−1∑
j=0

ei 2πm jei 2π(mζ−g0/π) j

=

N−1∑
j=0

ei 2π(mζ−g0/π) j

and this geometric series can be summed (see page 52) to yield

|rN(ζ)| = g

∣∣∣∣∣∣ sin(πN[mζ − ζ
0
])

sin(π[mζ − ζ
0
])

∣∣∣∣∣∣ (6.6)

where ζ0 is the displacement of the Bragg peak defined by

ζ0 =
g

0

π
=

2d2|F0|
πmvc

r0 (6.7)

To derive the explicit expression for ζ0 above we have used the defining expression for g0 in Eq. (3.6)

with Δ = d, sin θ = mλ/(2d) and ρa f 0(0) = |F0|/vc.

From Eq. (6.6) the maximum amplitude reflectivity is Ng, and occurs when ζ = ζ
0
/m. Therefore

the reflectivity does not have its maximum at the reciprocal lattice points, but is displaced by a relative

amount ζ0/m. It follows from Eq. (6.4) that the absolute displacement is mG(ζ0/m) = Gζ0 which

according to Eq. (6.7) varies as 1/m. This displacement arises from the refraction of the incident wave

as it enters the crystal, an effect that is usually neglected in the derivation of Bragg’s law. The index of

refraction is less than unity for X-rays, and inside the crystal the modulus of the X-ray wavevector has

a smaller value than outside. For a fixed incident angle, the value of k outside of the crystal must be

larger than mG/(2 sin θ) in order to obtain maximal constructive interference, i.e. ζ0 > 0 as is also clear

from Eq. (6.7).

For the kinematical approximation to be valid it is required that Ng � 1. Adding more and more

layers with a reflectivity g per layer increases the peak reflectivity, but of course it can never exceed

100%. Close to ζ = ζ0/m the line shape starts to deviate from |rN(ζ)|2 given by Eq. (6.6), and we enter

into the dynamical diffraction as indicated by the shading in Fig. 6.3. However, when far enough away

from the Bragg condition, i.e. when ζ is sufficiently different from ζ
0
/m, the kinematical approximation

is still valid, even for many layers. When N becomes large the side lobes of the function |rN(ζ)|2 become

closely spaced, and the rapidly varying numerator sin2(Nπ[mζ−ζ0]) can be approximated by its average

value of 1/2 to obtain

|rN(ζ)|2 → g2

2 sin2(π[mζ − ζ0])
�

g2

2(π[mζ − ζ0])2
(6.8)
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Fig. 6.3 The intensity reflectivity from a stack of N atomic layers. The relative deviation from the Bragg condition is given by

the parameter ζ. The reflectivity is peaked not at ζ = 0, but at ζ
0 = g0/(mπ) due to refraction of the X-ray beam inside of the

crystal. When |ζ − ζ
0
| is large the reflectivity is small, and we are in the kinematical regime as indicated by the lighter shading.

As |ζ − ζ
0
| → 0 the kinematical approximation breaks down, and the reflectivity is then described by dynamical theory.

The significance of this result is that a correct dynamical diffraction theory must attain this limiting

form for large values of |ζ − ζ
0
|. In Fig. 6.3 the kinematical region is indicated by the lighter shading.

Dynamical reflection takes place near a reciprocal lattice point, and must join the kinematic

reflection regime in a continuous way. It has been shown in Section 5.3 that the surface gives rise

to rods of scattering in a direction perpendicular to the physical surface. Continuity then requires

that the region of dynamical diffraction and these so-called crystal truncations rods must be connected

in a continuous manner. This has the somewhat surprising consequence that the reflection from an

asymmetric cut crystal is no longer specular – specular reflection only occurs from a symmetrically cut

crystal in Bragg geometry. We shall return to this issue at the end of this chapter.

6.3 Darwin theory and dynamical diffraction

We now turn our attention to the problem of how to calculate the scattering from an infinite stack of

atomic planes, where each one reflects and transmits the incident wave according to the equations given

in Section 6.1. The planes are labelled by the index j, with the surface plane defined by j = 0 (Fig.

6.4(a)). The objective is to calculate the amplitude reflectivity, which is the ratio of the total reflected

wavefield S 0 to that of the incident field T0.
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Fig. 6.4 Definition of the T and S wavefields. (a) The amplitude reflectivity is given by S 0/T0. (b) Schematic used to derive the

difference equations. The S field at A′ is related to the S field just above the atomic plane at M by the phase factor eiφ. The field

S j+1eiφ is then the same as the S j field just below layer j. Above layer j it gets an extra contribution (−igT
j
), from reflection of

the T field. Similar arguments apply to the T field.
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Both outside and within the crystal there are two wavefields: the T field propagating in the direction

of the incident beam, and the S field in the direction of the reflected beam. These fields change abruptly

when they pass through the atomic planes for two reasons. First, a small fraction, equal to −ig, of the

wave is reflected. Second, the transmitted wave is phase shifted by an amount (1− ig
0
). The derivation

of Bragg’s law relies on the fact that the reflected wave from layer j + 1 is in phase with the one from

layer j if the pathlength differs by an integer number of wavelengths. In Fig. 6.4(b) this corresponds

to the requirement3 that the distance AMA′ is equal to mλ, or equivalently that the phase shift in going

from A to M is mπ. As we are interested in deriving the (small) bandwidth of the reflecting region, the

phase is restricted to small deviations about mπ, and the phase is then given by

φ = mπ + Δ

where Δ is a small parameter. The relative deviation in phase is therefore Δ/(mπ), which must be equal

to the corresponding relative deviation in scattering vector, ζ (Eq. (6.4)), so that

Δ = mπ ζ (6.9)

In our development of Darwin’s theory Δ will be used as the independent variable. We remind

the reader that we are considering a perfectly collimated incident beam, so that the variation of Δ is

through the variation of incident energy (or wavenumber), c.f. Eq. (6.5). Later when the algebra has

been worked through, the results will be recast in terms of ζ, which is more useful for comparisons

with experiment.

The fundamental difference equations

Let the T field just above layer j on the z axis be denoted T j, and similarly for S j. The S field just

above layer j + 1 is S
j+1

on the z axis, that is the point M in Fig. 6.4. At point A′ it is S
j+1

eiφ, and

indeed it must have this value at any point on the wavefront through A′, including the point on the z

axis just below the j’th plane. On being transmitted through the j’th layer it changes its phase by the

small amount −ig
0

so that the S field just above the j’th layer, which by definition is S
j
, can be written

as (1 − ig0)S
j+1eiφ. To obtain the total field, we must also add the part due to the reflection of the wave

T j. In total then we have

S j = −ig T j + (1 − ig0)S j+1ei φ (6.10)

Next consider the T field just below the j’th layer. This must be the same field that exits at M,

except that its phase is shifted by an amount that corresponds to the distance from M to A, i.e. T
j+1

e−i φ.

This field is composed of contributions from the field T
j

after it has been transmitted through the j’th

layer, and from the wave S
j+1

ei φ after it has been reflected from the bottom of the j’th layer. This leads

to the second difference equation

T j+1e−i φ = (1 − ig0)T j − ig S j+1ei φ (6.11)

The coupled T to S fields in Eq. (6.11) and (6.10) are separated in the following way.

3Here it should be understood that λ is the wavelength inside the crystal, not the wavelength of the incident beam outside of

the crystal.
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Separating the T and S fields

We rewrite Eq. (6.11) as

ig S j+1 = (1 − ig0)T je
−iφ − T j+1e−i 2φ (6.12)

The validity of this equation does not depend on the labelling, and in particular it must also hold for the

field S j. Replacing j + 1 by j, and j by j − 1 yields

ig S j = (1 − ig0)T j−1e−i φ − T je
−i 2φ (6.13)

The expressions for ig S
j+1 and ig S j given in Eq. (6.12) and (6.13) can now be substituted into Eq.

(6.10) (after multiplying it by a factor of ig) to obtain an equation purely in terms of the T fields:

(1 − ig0)T j−1e−i φ − T j e−i 2φ = g2 T j + (1 − ig0)[(1 − ig0)T j−T j+1e−iφ]

Collecting the coefficients of T
j+1, T j and T

j−1 together one finds

(1 − ig0)e−iφ[T j+1 + T j−1] = [g2 + (1 − ig0)2 + e−i 2φ]T j (6.14)

Trial solution for the T and S fields

Possible solutions to the equation for the T fields are now considered. The fields T j and T
j+1

are

almost out of phase, as is apparent from Eq. (6.11), since φ is approximately mπ and g
0

and g are small

parameters. Moreover, it is expected that the T field is attenuated as it penetrates into the crystal, since

a fraction of the incident beam is reflected out of the crystal when it passes through each atomic plane.

A suitable trial solution therefore has the form

T j+1 = e−ηei mπ T j (6.15)

where η is in general complex. In order that the beam is attenuated only slightly from one plane to the

next the real part of ηmust be small and positive. Inserting our trial solution into Eq. (6.14), and noting

that e−i φ= e−i mπe−iΔ and that e±i 2mπ = 1 yields

(1 − ig0)e−iΔ[e−η + eη] = g2 + (1 − ig0)2 + e−i 2Δ

Use is now made of the fact that all of the parameters in the above expression are small compared to

unity. By expansion one finds cancellation of zero and first-order terms on the left and right hand sides.

Equating second-order terms leads to the expression for η:

η2 = g2 − (Δ − g0)2

which has the solution

i η = ±
√

(Δ − g
0
)2 − g2 (6.16)

For the S fields the trial solution reads

S j+1 = e−ηei mπ S j

and it can be shown that it yields the same equation for η.
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Amplitude reflectivity, S 0/T0

We are now in a position to calculate the amplitude reflectivity r, i.e. the ratio of S
0
/T

0
. First we set

j = 0 in the above, and obtain S 1 = e−ηei mπ S
0
. This is inserted into Eq. (6.10), also with j = 0, to give

S 0 = −ig T0 + (1 − ig0)S 0e−ηei mπei mπeiΔ (6.17)

This is then rearranged to read

S 0

T
0

�
−i g

1 − (1 − i g
0
)(1 − η)(1 + iΔ)

�
−i g

ig
0
+ η − iΔ

=
g

iη + (Δ − g
0
)

Defining for convenience a new variable ε by

ε = Δ − g0 = mπζ − πζ0

and inserting the solution for iη into the expression for S 0/T0 leads to

r =
S

0

T
0

=
g

iη + ε
=

g

ε ±
√
ε2 − g2

(6.18)

This completes our derivation of the Darwin reflectivity curve. There is, however, one point left to

clarify, and that is the possible ambiguity over which sign to take with the square root in the above. To

resolve this we note that if we choose the positive sign for ε positive, then in the limit of ε � g the

intensity reflectivity decreases as (g/(2ε))2. For negative ε we choose the negative sign, as with this

choice for |ε| � g the intensity reflectivity will again decrease as (g/(2ε))2. For |ε| < g the square root is

purely imaginary, and the intensity reflectivity, evaluated as S 0/T0 multiplied by its complex conjugate,

is unity. This is the region of total reflection. In Fig. 6.5 we plot the intensity reflectivity as a function

of ε/g. The many interesting aspects of this curve are discussed in the following section.

6.4 The Darwin reflectivity curve

In order to obtain explicit formulae for the Darwin reflectivity curve the variable x is introduced and

defined by

x =
ε

g

This is related to the variable ζ through

x =
ε

g
=
Δ − g0

g
= mπ

ζ

g
−

g0

g
(6.19)



6.4 The Darwin reflectivity curve 217

-3 -2 -1 0 1 2 3
0

0.5

1

In
te

ns
ity

 r
ef

le
ct

iv
ity

out of phase in phase

� � �

�

�

�
�

��

��
�

�
�

��

�� �����
�
�

�

�

����

��
�	

Fig. 6.5 The Darwin reflectivity curve calculated from Eq. (6.21). For values of x between −1 and 1 the reflectivity is 100%.

This is known as the region of total reflection. For large values of |x| the intensity decays as 1/(2x)2. At x = 1 the X-ray wavefield
has its maxima on the atomic planes, whereas for x = −1 the nodes of the wavefield coincide with the atomic planes.

where m is the order of the reflection, i.e. m = 1 is the fundamental, m = 2 is the second-order, etc.

From Eq. (6.18) the amplitude reflectivity curve in terms of x is

r(x) =

(
S 0

T
0

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

x +
√

x2 − 1
= x −

√
x2 − 1 for x ≥ 1

1

x + i
√

1 − x2
= x − i

√
1 − x2 for |x| ≤ 1

1

x −
√

x2 − 1
= x +

√
x2 − 1 for x ≤ −1

(6.20)

It follows that the intensity reflectivity is

R(x) =

(
S

0

T
0

) (
S

0

T
0

)∗
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(
x −

√
x2 − 1

)2
for x ≥ 1

1 for |x| ≤ 1(
x +

√
x2 − 1

)2
for x ≤ −1

(6.21)

which is plotted in Fig. 6.5. A key feature of the Darwin reflectivity curve is that the phase shift

between the T0 and S 0 fields varies across it. This is illustrated in Fig. 6.6 where we plot the phase

of the amplitude reflectivity r as a function of x. The two fields are exactly out of phase by −π (or

equivalently π) for x ≤ −1, and in phase for x ≥ 1.
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Fig. 6.6 The relative phase shift between the incident T0 and reflected S 0 wavefields as calculated from Eq. (6.20). For reference,

the Darwin curve is shown in shaded relief in the background. The two wavefileds are out of phase, here chosen to be −π, for

x ≤ −1, and in phase for x ≥ 1.

The asymptotic form of R(x) for x � 1 is

R(x) =

⎛⎜⎜⎜⎜⎜⎝
√

x2(1 − 1

x2
) − x

⎞⎟⎟⎟⎟⎟⎠
2

�

(
x(1 − 1

2x2
) − x

)2

=
1

4x2
for x � 1 (6.22)

This should be compared to the expected asymptotic form for the kinematical region, discussed in

Section 6.2. In terms of the variable x, Eq. (6.8) reads

|rN(ζ)|2 → 1

2x2
for x � 1 (6.23)

i.e. twice the result given by dynamical theory. The reason for this is subtle. In Section 6.2 the equations

were derived on the assumption that the scattering arises from a finite stack of layers: the top and the

bottom of the stack. Hence the wave encounters two interfaces. By contrast, Darwin’s formalism

assumes an infinite stack of layers, with only a single interface, the surface. The two asymptotic forms

are therefore consistent.

6.4.1 Darwin width

One of the key parameters we are interested in obtaining is a measure of the width of the Darwin

reflectivity curve. From Fig. 6.5 it is clear that there are several alternatives. First of all there is the

region (|x| < 1) of total reflection itself, which has a width in x of 2. The relationship between x and

the variable ζ is given in Eq. (6.19). This is rearranged to read

ζ =
gx + g0

mπ
(6.24)
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ζFWHM

D
× 106

(111) (220) (400)

Diamond 61.0 20.9 8.5

a= 3.5670 Å 3.03 0.018 -0.01 1.96 0.018 -0.01 1.59 0.018 -0.01

Silicon 139.8 61.1 26.3

a= 5.4309 Å 10.54 0.25 -0.33 8.72 0.25 -0.33 7.51 0.25 -0.33

Germanium 347.2 160.0 68.8

a= 5.6578 Å 27.36 -1.1 -0.89 23.79 -1.1 -0.89 20.46 -1.1 -0.89

Table 6.1 The calculated Darwin widths for the (111), (220) and (400) reflections in symmetric Bragg geometry

from diamond, silicon, and germanium. For each reflection the values of f 0(Q), f ′, f ′′ have also been listed. The

values of f 0(Q) have been calculated from the coefficients given in Table 4.1, and the values of f ′ and f ′′ are for

a wavelength of 1.5405 Å, and have been taken from The International Tables of Crystallography. Here it has

been assumed that the incident beam is polarized perpendicular to the scattering plane (σ̂ polarization). For π̂

polarization the widths have to be multiplied by a factor of cos(2θ).

so that a width in x of 2 translates into a width in ζ of 2g/(mπ). Thus the width ζ total
D

of the region of

total reflectivity is

ζ total
D
=

2g

mπ
=

4

π

(
d

m

)2 r
0
|F |

vc

(6.25)

where g has been replaced by the expression given in Eq. (6.1). Alternatively, it is sometimes more

convenient to work with the full width at half maximum (FWHM), and from Eq. (6.21) this is given by

ζFWHM

D
=

(
3

2
√

2

)
ζtotal

D
(6.26)

For a given material and Bragg reflection the Darwin width ζD (Eq. (6.25)) is a constant, independent

of the wavelength4. The same is not true for the angular Darwin width. The expression for the width ζD

was derived by assuming a perfectly collimated, white incident beam. The other extreme is to consider

the reflectivity of a crystal in a perfectly monochromatic beam as the incident angle is varied. It is quite

straightforward to do this using the differential form of Bragg’s equation:

Δλ

λ
=
Δθ

tan θ
(6.27)

It follows immediately that the angular Darwin widths are

wtotal
D
= ζ total

D
tan θ (6.28)

4This is of course neglecting the small energy dependence of the dispersion corrections to the unit cell structure factor.
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and

wFWHM

D
=

(
3

2
√

2

)
ζ total

D
tan θ (6.29)

The angular Darwin width thus varies with energy through its dependence on tan θ: as the wavelength

is reduced the Bragg angle also becomes smaller, and hence so does the angular Darwin width.

Monochromators at synchrotron beamlines are most commonly fabricated from silicon. The reason

is that the semiconductor industry has created a huge demand for defect-free, perfect single crystals,

ensuring that the unit cost is low. In addition, silicon can be machined into complex optical elements

(focusing monochromators, etc.). It also has the convenient property that the coefficient of thermal

expansion passes through zero near the boiling temperature of liquid nitrogen, with the consequence

that possible distortions arising from the heat deposited by the intense white beam from a synchrotron

can be minimized by cryo-cooling. Silicon is by no means the only choice, and in recent years diamond

has become a popular alternative, due to the fact that it has the highest thermal conductivity of any solid,

and a low absorption. Both of these factors ensure that any thermal distortions produced by the incident

white beam are minimized. In Table 6.1 the Darwin widths ζFWHM

D
are listed for diamond, silicon,

and germanium. The values have been calculated from Eq. (6.26), but by neglecting the dispersion

corrections, f ′ and f ′′. The Darwin width is typically of order 100×10−6, or 0.1 mrad for a wavelength

1 Å, and is well matched to the natural opening angle, (1/γ), of a synchrotron source as described in

Chapter 2.

6.4.2 Extinction depth

As an X-ray beam penetrates into a crystal it becomes weaker as part of it is scattered every time it

passes through a plane of atoms. From Eq. (6.15) the incident beam is attenuated by an amount e−Re(η)

after passing through a single plane of atoms, where Re(η) is the real part of the variable η. After N

planes it is attenuated by an amount e−N Re(η), and in this way it is possible to define a characteristic

length for the attenuation of the incident beam. We define the effective number of reflecting layers,

Neff, by

e−Neff Re(η) = e−1/2 (6.30)

or

Neff =
1

2Re(η)
(6.31)

The depth that the beam penetrates into the crystal, the so-called extinction depth, is given by the

product of Neff and the lattice plane spacing d. The extinction depth Λext is given by

Λext = Neff d =
d

2Re(η)
(6.32)

The value Λext is not a constant, but varies across the Darwin reflectivity curve. This can be seen from

Eq. (6.16) which is rewritten as

η = g
√

1 − x2

As x → ±1, η → 0 and the extinction depth Λext diverges to infinity. This means that for |x| ≥ 1 the

attenuation due to absorption processes, which we have so far neglected, solely determines how far the

incident wave penetrates into the crystal. In any calculation of Λext it is necessary to specify which
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point on the Darwin reflectivity curve it refers to. Here the point x = 0 is chosen for which η = g, and

the extinction depth is defined by

Λext(x = 0) =
d

2g
=

1

4

(
m

d

)
vc

r
0
|F | (6.33)

where Λext refers to the 1/e reduction of intensity, not amplitude.

The extinction depth defined in Eq. (6.33) is inversely proportional to the modulus of the structure

factor |F |. For moderate or strong reflections it is much smaller than the absorption length. For example,

the (4,0,0) reflection in GaAs has a unit cell structure structure factor of

FGaAs(4, 0, 0) = 4 × [ fGa(4, 0, 0) + fAs(4, 0, 0)]

= 4 × [ f 0
Ga(4, 0, 0) + f ′Ga + i f ′′Ga + ( f 0

As(4, 0, 0)+ f ′As + i f ′′As)]

= 4 × [25.75 − 1.28 − i 0.78 + (27.14 − 0.93 − i 1.00)]

= 154.0 − i 7.1

(see Section 5.1.7 on page 159). Here the theoretical values of the dispersion corrections f ′ and f ′′

are given at an X-ray wavelength of λ = 1.54056 Å. The volume of the unit cell is vc = 180.7 Å3,

and the (4,0,0) has a d spacing of 1.41335 Å. Using these values the extinction depth of the (4,0,0)

reflection in GaAs is calculated to be 0.74 μm. The absorption depth is given by sin θ/(2μ)=7.95 μm,

where μ=0.0355 μm−1 is the absorption coefficient, and θ = 33.02◦ is the Bragg angle. It is evident

that for this strong reflection the extinction depth is approximately 10 times smaller than the absorption

depth. In contrast the (2,0,0) reflection is weak, as it corresponds to the Ga and As atoms scattering out

of phase. The structure factor of the (2,0,0) is

FGaAs(2, 0, 0) = 4 × [ fGa(2, 0, 0) − fAs(2, 0, 0)]

= 4 × [ f 0
Ga(2, 0, 0) + f ′Ga + i f ′′Ga − ( f 0

As(2, 0, 0)+ f ′As + i f ′′As)]

= 4 × [19.69 − 1.28 − i 0.78 − (21.05 − 0.93 − i 1.00)]

= −6.96 + i 0.91

and the extinction depth is 8.1 μm, more than a factor of two larger than the absorption depth of 3.9

μm.

6.4.3 The integrated intensity

It is also of interest to evaluate the integrated intensity of the Darwin reflectivity curve, and to compare

it with the kinematical result given by Eq. (5.31) in Chapter 5. In terms of the variable x, from Eq.

(6.21) the area under the Darwin curve shown in Fig. 6.5 is

2 + 2

∫ ∞

1

(
x −

√
x2 − 1

)2
dx =

8

3
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Using Eq. (6.19) this can be converted into an integrated intensity in terms of the variable ζ, with the

result that

Iζ =
8

3

g

mπ
=

8

3

1

mπ

2d2|F |r
0

mvc

=
8

3

1

mπ
2

(
mλ

2 sin θ

)2 |F |r
0

mvc

=

(
8

6π

)
λ2r

0
|F |

vc sin2 θ

The kinematical result was derived using the assumptions that the incident beam is monochromatic, and

that the intensity is integrated by rotating the crystal through the Laue condition. It is thus necessary to

multiply the expression above by a factor of tan θ to convert from units of ζ to angle (see Eq. (6.28)).

Here it is further assumed that the crystal is large enough that it intercepts the whole beam. The

scattered intensity is then proportional to the product of the flux, Φ0, and cross-sectional area, A0, of

the incident beam. Therefore the integrated intensity recorded by rocking a perfect crystal through the

Laue condition is

IP
sc = Φ0A0 Iζ tan θ

= Φ0A0

(
8

6π

)
λ2r

0
|F |

vc sin2 θ
tan θ

=

(
8

3π

)
Φ0A0λ

2r
0
|F |

vc sin 2θ

For completeness it is also necessary to allow for the polarization state of the incident beam. As

the integrated intensity given by the above is proportional to |F |, the appropriate polarization factor

assuming an unpolarized beam is (1+ | cos 2θ|)/2. Similarly the Debye-Waller factor is e−M . Altogether

the integrated intensity from a perfect crystal scattering in a symmetric Bragg geometry is

IP
sc =

(
8

3π

)
Φ0A0λ

2r
0
|F |

vc sin 2θ

(
1 + | cos 2θ|

2

)
e−M (6.34)

At first sight is might appear somewhat peculiar that the integrated intensity from a perfect crystal

depends on r0 |F |, and not r2
0 |F |2 as was the case for kinematical theory. The reason for this is apparent

from an inspection of Fig. 6.5, and Eq. (6.25). The central region of the Darwin curve has a reflectivity

of 100%, and as the width is proportional to |F |, so is the integrated area.

It is instructive to compare the expression for the integrated intensity from a perfect crystal with

the corresponding one derived using the kinematical approximation. This comparison has already

been discussed qualitatively in Chapter 5. There in the section on extinction (page 182) it was stated

that crystals are rarely ideally imperfect as the model of a mosaic crystal requires, and that measured

intensities are nearly always smaller than predicted by kinematical theory. One reason for this is that

the mosaic blocks have a finite size, and dynamical (or multiple) scattering effects will be present at

some level. The reduction of intensities from dynamical effects is known as primary extinction, and

here a quantitative comparison is made between the intensities predicted by kinematical and dynamical

theory.

We imagine that the reflection from a perfect crystal is measured where the extinction depth is much

smaller than that due to absorption. The integrated intensity is then given by Eq. (6.34). The crystal is



6.4 The Darwin reflectivity curve 223

now deformed to produce a mosaic structure. This can be done, for example, by heating it up to just

below its melting temperature, and then plastically deforming it5. In the limit that the deformed crystal

approaches the ideally imperfect mosaic crystal the penetration of the X-ray beam will be determined

by absorption. For a mosaic crystal with an extended face the integrated intensity is given by Eq. (5.31)

as

IM
sc =

(
1

2μ

)
Φ0A0λ

3r2
0
|F |2

v2
c sin 2θ

(
1 + cos2 2θ

2

)
e−2M (6.35)

where μ is the absorption coefficient. The integrated intensity from a mosaic crystal is therefore larger

than that from a perfect one by a factor of

IM
sc

IP
sc

=

(
3π

16

)
λr0|F |
μvc

(6.36)

For clarity, the polarization and Debye-Waller factors have been neglected.

To take a definite example, we consider again the (4,0,0) reflection from GaAs. With the values of

the parameters given in the section on the extinction depth above the ratio of integrated intensities is

IM
sc /I

P
sc ≈ 6. This illustrates the fact that in general the integrated intensity from a mosaic crystal exceeds

that from a perfect crystal, by a factor that is proportional to |F |. This presents the problem that when

performing a crystallographic study to determine the structure of a material, it has to be determined

whether it is appropriate to use kinematical or dynamical scattering theory. In practice most crystals

are neither completely perfect nor ideally imperfect, but yield integrated intensities somewhere between

the values predicted by the two theories. Data from crystallographic studies are nearly always analysed

using the kinematical approximation, and then corrections to the data are made for extinction effects.

(The reader is referred to the International Tables of Crystallography for a thorough discussion of

applying extinction corrections.) To complete this discussion we also calculate the intensity ratio for

the (2,0,0) reflection from GaAs. With the parameters given above the intensity ratio is IM
sc /I

P
sc ≈ 0.2.

Somewhat surprising in this case of a very weak Bragg reflection the kinematical theory appears to

predict a smaller intensity than the dynamical one. The reason is that so far absorption effects have

been neglected in the dynamical theory. Once these are included it can be shown that in the limit of

weak scattering (small |F |) the dynamical and kinematical theories yield the same result. Absorption

effects are considered further in Section 6.4.6.

6.4.4 Standing waves

The total wavefield above a crystal is composed of the incident T wave, proportional to eikyyeikzz, and

the diffracted S wave, proportional to eikyye−ikzz as depicted in Fig. 6.4. Here the y-axis points to the

right along the surface of the crystal, and the z-axis points vertically down. At z = 0 the two waves

have amplitudes T0 and S 0 in the complex ratio r as given by Eq. (6.20). Thus above the surface, z < 0,

the total wave amplitude is

Atotal = T0 eikyy
[
eikzz + re−ikzz

]
In general r = |r|eiφ, where both the modulus |r| and phase φ depend on the variable x = ε/g, as plotted

in Fig. 6.5 and 6.6. The intensity I(z, x) normalized to T0=1 above the crystal surface follows as

I(z, x) = |Atotal|2 =
[
eikzz + |r|eiφe−ikzz

] [
e−ikzz + |r|e−iφeikzz

]
= 1 + |r|2 + |r|eiφe−i2kzz + |r|e−iφei2kzz

5Amongst other things this technique is used to produce monochromator crystals for neutron scattering instruments. Single

crystal wafers of nearly perfect Ge are repeatedly deformed to produce a mosaic width of approximately 0.25◦.
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(a) in phase (b) out of phase

Fig. 6.7 The standing wavefield changes phase with respect to the lattice planes throughout the region of total reflectivity. (a)
On one side (x = 1, Fig. 6.5) the standing wave has nodes between the lattice planes, and on the other side (b) (x = −1) at the

lattice planes. The standing wavefield extends beyond the crystal surface, and the height of an absorbed layer (represented by

larger circles) can be determined by their fluorescent yield vs the phase of the standing wave.

Here the reader should note that z is a spatial variable with dimension of length, while x = ε/g is the

dimensionless independent variable we introduced to describe the Darwin reflectivity curve. Since the

modulus of the wavevector transfer for the geometry considered is given by Q=2kz, the above equation

for I(z, x) simplifies to become

I(z, x) = 1 + |r|2 + 2|r|cos(φ − Qz) (6.37)

This equation describes the standing wave intensity above the surface of a crystal. For x = 1 the

incident and diffracted waves are in phase (φ = 0), and I(z, x = 1)= 2(1 + cos(Qz)). For x = −1, the

two wavefields are out of phase (φ = −π), and I(z, x = −1)= 2(1 − cos(Qz)). Thus as a function of Qz

the standing wave intensities at x = −1 and x = 1 oscillate in quadrature. The standing wave intensity

for x = 1 is a maximum when Qz = 2pπ, p integer, i.e. when z = pd, whereas for x = −1 the intensity

is a maximum when z = (p + 1)d/2. The wavefield inside the crystal is also a standing wave, but with

an amplitude decaying with the penetration depth.

The existence of standing waves has some interesting consequences:



6.4 The Darwin reflectivity curve 225

-4 -2 0 2 4
0

1

2

3

4
(a) Qz = 0

In
te

ns
ity

-4 -2 0 2 4

(b) Qz = 1/3

x =
ε

g

-4 -2 0 2 4

(c) Qz = 2/3

Fig. 6.8 Illustration of the sensitivity of the intensity of X-ray standing waves to Qz. The solid lines have been calculated from

Eq. (6.37) using the phase φ and the modulus of the amplitude reflectivity |r| obtained from Eq. (6.20).

(a) For the in-phase point the intensity is maximal at the atomic planes, i.e. where the density

of absorbing electrons is high. For the out-of-phase point the opposite is true. Therefore the

influence of absorption is more pronounced when the X-ray wavefields are in phase than when

they are out of phase. When absorption is neglected the Darwin curve (Fig. 6.5) is symmetric, but

this symmetry will be broken when absorption is taken into account: the right hand side of the

curve will be more attenuated than the left hand side, i.e. the resulting reflectivity curve becomes

progressively more depressed at higher scattering vectors.

(b) The standing wavefield continues of course outside the crystal as shown schematically in Fig.

6.7. As x is scanned through the Laue condition the maximum of I(z, x) above the crystal moves

by half a lattice spacing. It follows that if a layer of atoms different to those in the bulk crystal

is absorbed on its surface then the atoms in the over layer will fluoresce as the maximum of

I(z, x) sweeps through them. To a first approximation it might reasonably be assumed that the

fluorescent yield is proportional to I(z, x). In Fig. 6.8 we plot I(z, x) (Eq. (6.37)) for various

values of Qz, from which it should be apparent that the fluorescent yield will depend sensitively

on the distance z of the over layer above the crystal. In this way X-ray standing waves provide

a sensitive method for measuring the spacing of layers deposited on perfect crystals [Batterman,

1964, Andersen et al., 1976].

6.4.5 Higher-order reflections

It has been shown in Section 6.2 that the centre of the Darwin reflectivity curve is offset from the

reciprocal lattice points G = m2π/d by an amount proportional to 1/m (Eq. (6.7)). While in Section

6.4.1 it was shown that the Darwin width varies faster than 1/m2 (Eq. (6.25)), since |F | decreases with

increasing m due to the reduction of the atomic form factor with increasing Q. This is illustrated in Fig.

6.9.

The variation of ζ
D

and the displacement ζ0 with m has some important implications when

considering higher-order reflections from a monochromator crystal. According to Bragg’s law a crystal

illuminated by a collimated but white beam will not only reflect the desired wavelength λ = 2d sin θ,
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Fig. 6.9 The reciprocal lattice of a stack of atomic planes separated by a distance d is a line of points at positions given by
mG = m2π/d, where m is an integer. The centres of the Darwin reflectivity curves are offset from these points by an amount

Gζ
0
, varying with m as 1/m, whereas the Darwin width ζD varies faster than 1/m2. (Note: the scale has been exaggerated.) The

crystal is set to reflect a central wavelength of λ1 = 2π/k1. If the incident spectrum also contains λ1/2 ≡ 2k1, then the different

dependences of ζD and Gζ
0

on m ensures that the reflectivity from this component is small.

but also all multiples of λ/m. When performing experiments this can be a major source of irritation,

and it is often necessary to take steps to reduce the higher-order contamination6. For perfect crystals

the situation is not as bad as it may first appear, as illustrated in Fig. 6.9. The different dependences

of ζ
D

and ζ0 with the reflection order m ensure that the contribution from the higher-order components

is suppressed. One way to increase the suppression of higher-order contamination is to use a double

crystal monochromator. Offsetting the angle of the second crystal by a small amount of order g0/(2π)

will further reduce the reflectivity of the higher-order components without affecting significantly that

of the fundamental wavelength.

From Eqs. (6.7) and (6.25) the explicit relationship between the refractive offset and the Darwin

width is

ζoffset =
ζ0

m
=
ζtotal

D

2

|F0|
|F | (6.38)

It follows that the angular offset Δθ in degrees is

Δθ =
ζ total

D

2

|F0|
|F | tan θ

360◦

2π
(6.39)

For example, the Si (111) reflection with λ = 1.54056 Å has a Darwin width of wtotal
D
= 0.0020◦ (see Eq.

(6.29)), and a refractive offset of 0.0018◦. An alternative expression for the offset Δθ in terms of δ, the

difference of the refractive index from 1 (Eq. (3.1)), is

Δθ =
2δ

sin 2θ

360◦

2π
(6.40)

which can be shown to be equivalent to Eq. (6.39).

6This can include the use of X-ray mirrors as explored in Chapter 3.
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6.4.6 Effect of absorption

For a real crystal absorption has to be included in any calculation of the Darwin reflectivity curve.

The way that this is achieved can be understood from a consideration of Fig. 6.2. If absorption is non

negligible, then the transmitted wave not only undergoes a change in phase, proportional to g
0
, but it is

also attenuated. Thus absorption effects can be included by allowing g
0

to become complex, where the

imaginary part of g0 is proportional to the absorption cross-section. Similar considerations apply to the

reflected wave. Equations (6.1) and (6.2) are therefore replaced by

g0 =

⎛⎜⎜⎜⎜⎝2d2r0

mvc

⎞⎟⎟⎟⎟⎠ F0 (6.41)

with

F0 =
∑

j

(Zj + f ′j + i f ′′j ) (6.42)

and

g =

⎛⎜⎜⎜⎜⎝2d2r
0

mvc

⎞⎟⎟⎟⎟⎠ F (6.43)

with

F =
∑

j

( f 0
j (Q) + f ′j + i f ′′j )ei Q·r j (6.44)

where f ′
j

and f ′′
j

are the real and imaginary parts of the dispersion correction to the atomic scattering

length f 0(Q), and j labels the atoms in the unit cell.

With these alterations the formulae for the reflectivity are essentially the same, except that the

variable x in Eq. (6.19) is now a complex number, xc, which is given by

xc = mπ
ζ

g
−

g
0

g
(6.45)

with g
0

and g complex. To calculate the reflectivity curves for a given value of ζ one can plot the result

versus the real part of xc, so that the amplitude reflectivity may be written as

r(Re(xc)) =

(
S

0

T
0

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

xc +
√

x2
c − 1

= xc −
√

x2
c − 1 for Re(xc) ≥ 1

1

xc + i
√

1 − x2
c

= xc − i
√

1 − x2
c for |Re(xc)| ≤ 1

1

xc −
√

x2
c − 1

= xc +
√

x2
c − 1 for Re(xc) ≤ −1

and as usual the intensity reflectivity is obtained by taking the absolute square of r(Re(xc)).

The effects of absorption on the Darwin reflectivity curve are illustrated in Fig. 6.10(a)�, where the

specific example of the Si (111) reflection has been taken. As expected the effect of absorption is more

pronounced near x ≈ 1 than at x ≈ −1, because near x ≈ 1 the X-ray wavefield is in phase with the

position of the atomic planes. As the photon energy is increased the effect of absorption is diminished.

In Fig. 6.10(b)� the Darwin curves are plotted versus the rotation angle of the crystal in milli degrees

at various energies. This part of the figure also serves to illustrate the point that, whereas the relative
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Fig. 6.10 � Effect of absorption and polarization on the Darwin curve of the Si (hhh) reflections. (a) Si (111) plotted as a

function of the variable x (see Eq. (6.19)) for σ̂ polarization. Solid line: λ=0.70926 Å, with F
0 = 8×(14+0.082−i 0.071) and F =

4|1−i|×(10.54+0.082−i 0.071). Dashed line: λ=1.5405 Å, with F
0
= 8×(14+0.25−i 0.33) and F = 4|1−i|×(10.54+0.25−i 0.33).

(b) Si (111) plotted as a function of the rotation angle of the crystal in millidegrees (see Eq. (6.28)) at various energies for σ̂

polarization. (c) Si (333) plotted with either σ̂ (magenta) or π̂ (blue) polarization.
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Fig. 6.11 Asymmetric Bragg reflection. The surface of the crystal is at an angle α with respect to the reflecting atomic planes.

The widths of the incident and scattered beams are then different. In this case the parameter b is greater than one.

bandwidth ζ (which is proportional to x from Eq. (6.45)) is independent of energy, the angular Darwin

width is not.

In Fig. 6.10(c) we provide an example of how the Darwin width depends on the polarization

of the incident beam. Up until now we have mostly assumed that the incident beam is polarized

perpendicular to the scattering plane, so-called σ̂ polarization, see Fig. 2.5, for which the polarization

factor P = 1. With the polarization in the scattering plane − π̂ polarization − the scattering amplitude

is reduced by a factor of cos(2θ). In this latter case the primary beam therefore penetrates more deeply

into the crystal producing a narrower Darwin width, as evidenced in Fig. 6.10(c). Another way of

describing the polarization dependence of the reflectivity curve is to say that in the tails of the Darwin

curve perfect crystals are birefringent, i.e. they exhibit a difference in the refractive index for waves

polarized in orthogonal directions. This birefringence allows the construction of X-ray phase plates for

manipulating the polarization of the beam. For example, a quarter-wave plate can be used to convert

the polarization from linear to circular.

6.4.7 Asymmetric Bragg geometry

In general the surface of a crystal will not be parallel to the atomic planes which reflect the incident

beam, as shown in Fig. 6.11. Let α be the angle between the surface and the reflecting planes. The

incident, θ
i, and exit, θe, glancing angles are then given by θi = θ + α and θe=θ − α. For a reflection

geometry it is required that both θe and θi are greater than zero, or in other words that α fulfills the

condition 0 < |α| < θ. In Fig. 6.11α has been chosen to be greater than zero. This implies a compression

of the width of the exit beam. The asymmetry parameter, b, is defined by

b ≡
sin θ

i

sin θe
=

sin(θ + α)

sin(θ − α)
(6.46)
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Symmetric Bragg diffraction corresponds to setting b =1. For the particular case shown in the Fig. 6.11,

b > 1. The widths of the incident, H
i
, and exit, He, beams are related by the equation

Hi = b He

It turns out that a compression in the width of the exit beam implies an increase in its angular

divergence. This is a consequence of Liouville’s theorem7. By the same reasoning the acceptance

angle of the incident beam must decrease to compensate for the increase in the incident beam width.

Let the angular acceptance of the incident beam be δθ
i
, and the reflected beam divergence be δθe. We

now assert that δθi and δθe are given in terms of the asymmetry parameter b and the Darwin width ζ
D

by the equations

δθe =
√

b
(
ζ

D
tan θ

)
(6.47)

and

δθi =
1
√

b

(
ζ

D
tan θ

)
(6.48)

These formulae are certainly correct in the symmetric case with b = 1 (see Eq. (6.28)). Moreover, since

δθi Hi =
1
√

b

(
ζ

D
tan θ

)
bHe =

√
b

(
ζ

D
tan θ

)
He = δθe He

the product of beam width and divergence is the same for the incident and exit beams, as required by

Liouville’s theorem.

An interesting application of asymmetric crystals is in the measurement of Darwin reflectivity

curves. The angular Darwin width is small, typically of order of ∼0.002◦, c.f. Fig. 6.10. Measurement

of the reflectivity curve then requires a detector system that has a much better angular resolution

than this value. This follows from the fact that the measured curve is the convolution of the Darwin

reflectivity curve of the crystal and the angular resolution of the detector, or analyser, system. So if the

angular divergence of the analyser is much smaller than that of the first crystal, then the measured curve

is determined solely by the Darwin reflectivity of the first crystal. One way to achieve high angular

resolution in the analyser is to use an asymmetric crystal. From Eq. (6.47), its angular acceptance can

be made arbitrarily small by decreasing the value of b. Double crystal spectrometers with two perfect

crystals are discussed further in the next section on DuMond diagrams.

In Fig. 6.12 we show data from a double crystal diffractometer composed of two perfect asymmetric

silicon crystals. With two asymmetric crystals there are four possible ways of configuring the

diffractometer. The narrowest curve is recorded when the first crystal is arranged with b<1, and the

second with b>1. In this case the diffracted beam from the first crystal has the smallest possible angular

divergence, which is matched to the narrow angular acceptance of the second.

6.5 DuMond diagrams

An optical element inserted into an X-ray beam is supposed to modify some property of the beam such

as its width, its divergence, or its wavelength band. It is useful to describe the modification of the beam

by a transfer function. The transfer function relates the input parameters of the beam upstream from

the optical element to the output parameters of the beam after the beam has passed the optical element.

7Liouville’s theorem states that for beams of particles, here photons, the product of beam width and divergence is a constant.
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Fig. 6.12 Measured rocking curves for a double crystal diffractometer formed from two asymmetric perfect silicon crystals. The

solid lines represent the calculated convolution of two Darwin curves with widths determined by how the asymmetric crystals

were configured.

When the optical element is a perfect crystal the relevant beam parameters are amongst other things

the beam divergence and the wavelength band. The DuMond diagram is a graphical representation of

the transfer function. In the diagram the horizontal axes are the beam divergence, with the input beam

to the left and the output beam to the right. The vertical axis is common and is λ/2d, the wavelength

normalized by twice the lattice spacing d. In the crudest approximation, where the finite width of the

Darwin curve and refraction effects are neglected, only the points of the incident parameter space in

the (θi, λ/2d) plane which satisfy λ/2d = sin θi will be reflected. For a white incident beam that falls

within an angular window θi,min < θi < θi,max the output side of the DuMond diagram consists of a line

given by λ/2d = sin θe with θi,min < θe < θi,max.

One crystal

According to Bragg’s law, constructive interference of waves scattered from an infinite crystal occurs

if the angle of incidence, θ
B
, and the wavelength, λ, are related exactly by

mλ = 2d sin θB



232 Diffraction by perfect crystals

Incident Exit

�i �e

�e

�e

�i

��

cos����

w0 D=sin� ��

si
n
� B

�i

�
2d

�
2d

Fig. 6.13 DuMond diagram for symmetric Bragg geometry. In this case the angles of the incident, θ
i
, and exit, θe, beams

relative to the crystal surface are the same. The DuMond diagram is a graphical representation of the Bragg reflection condition,

where the axes are angle, relative to the Bragg angle θ
B

, and λ/2d. In (a) the Darwin width has been neglected. The intensity is
non-zero for points on the line only. (b) The finite Darwin width broadens the line into a band with a width along the ordinate of

w0 = sin θBζD.

One way to represent this relationship is to plot a graph with λ/2d on the ordinate and θ
B

on the abscissa.

Any point on the sinusoidal curve gives values of λ/2d and θB that satisfy Bragg’s law. Perfect crystals

diffract over a small but finite range in angle and wavelength. When dealing with perfect crystals

it is therefore necessary to consider deviations of the incident angle θ
i around θB, and deviations of

wavelength around the value given by 2d sin θB. For asymmetric crystals it is also necessary to consider

the exit angle θe of the reflected beam.

The DuMond diagram is a graphical way to represent diffraction events, and is composed of two

parts: one is a plot of λ/2d against θ
i
− θ

B
, with θ

i
increasing to the left; and the other is a plot of λ/2d

against θe − θB, with θe increasing to the right. For small deviations away from the Bragg condition
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Fig. 6.14 DuMond diagram for asymmetric Bragg geometry. The ratio of the widths of the incident and exit beams is given by

the parameter b. This implies that the angular acceptance of the incident beam is reduced by a factor of 1/
√

b while that of the

exit beam is increased by the same amount. Thus in the DuMond diagram the incident bandwidth is reduced, and the exit one

increased. Points A and B on the incident side are associated with points A′ and B′ on the exit side. This shows that an incident

beam which is parallel and white acquires a finite angular divergence given by αe when it has been diffracted by a crystal set in
asymmetric Bragg geometry.

the sinusoidal dependence of λ/2d approximates to a straight line with slope cos θ. The top part of

Fig. 6.13 shows the DuMond diagram for a crystal diffracting according to Bragg’s law in a symmetric

reflection geometry. When neglecting the finite Darwin width, the reflectivity is non-vanishing only

on the line indicated, and the relative change in wavelength Δλ/λ and the deviation Δθ from the Bragg

angle are related by
Δλ

λ
=
Δθ

tan θ

For the symmetric Bragg geometry assumed here the surface coincides with the reflecting planes: the

reflection is specular, and the wavelength and exit angle are linked by the same condition as the one

above.

The lower part of Fig. 6.13 shows the DuMond diagram for symmetric Bragg geometry, but now

including the finite Darwin bandwidth: all wavelengths from a perfectly collimated white source within

a relative bandwidth ζ
D

have a reflectivity of 100%. Outside of this band, the reflectivity falls off quickly

as we move from the dynamical to the kinematical regimes (see Fig. 6.3 and 6.5). In the latter the

scattering is located along the crystal truncation rods which run parallel to the surface normal (Section

5.3). In terms of the DuMond ordinate λ/2d the width of the central band is

w0 =
Δλ

2d
=

(
λ

2d

) (
Δλ

λ

)
=

(
λ

2d

)
ζ

D
= sin θB ζD

(6.49)
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where ζ
D
= Δλ/λ is the Darwin width given by Eq. (6.25). As indicated, symmetry implies that a

perfectly collimated incident beam is reflected to a perfectly collimated exit beam.

This is not the case for an asymmetric crystal, where the surface does not coincide with the reflecting

planes, as is shown in Fig. 6.14. The exit beam width is now smaller than that of the incident beam. In

Section 6.4.7 it has been shown that this implies that the bandwidth of the incident beam is reduced by

a factor of 1/
√

b, while the bandwidth of the exit beam is increased by a factor of
√

b. It is important

to note that the crystal truncation rod is no longer parallel to the reciprocal lattice vector, since it runs

perpendicular to the surface. The consequences of these considerations are illustrated in the lower part

of Fig. 6.14. A perfectly collimated incident beam is reflected in the band AB. The scattering is elastic,

so the point A(B) is transferred to point A′(B′) on the exit part of the DuMond diagram. Since the

points A′ and B′ have different abscissa, displaced by the amount αe, a perfectly collimated incident

beam acquires a finite divergence after Bragg reflection.

In the examples of the symmetric and asymmetric Bragg geometries there is an ambiguity left to

resolve. This concerns the question of how to relate points on the DuMond diagram of the incident

beam with those of the exit beam. For the asymmetric Bragg case, shown in the lower part Fig. 6.14,

the point A on top of the incident band is shown connected to the point A′ on top of the exit band.

(The line runs at right angles to the λ/2d axis since the scattering is elastic.) The reason for this is

illustrated in Fig. 6.15, which should be compared with Fig. 6.1. The transition from the dynamical

to the kinematical regimes must be continuous. In the kinematical regime the scattering lies along the

crystal truncation rods (CTR’s). If the incident beam is white and parallel then the crystal reflects a band

Δk out of the incident beam. A given wavevector in the incident beam, k1
say, is scattered to a final

wavevector k′1, with |k1|= |k′1|. The direction of k′1 is found from where the Ewald sphere, indicated

by the circular arc, crosses the CTR. For the asymmetric Bragg case the truncation rod does not lie

along the direction of the wavevector transfer: it runs perpendicular to the physical surface. From Fig.

6.15(b) this implies that the scattering angle of the exit beam must increase as |k′| increases. This is

consistent with the choice of associating B with B′. Continuity between the dynamical and kinematical

regime also implies that the central band of the former does not lie along the wavevector transfer. In

other words the reflection is not specular.

The same construction is shown for symmetric Laue geometry in Fig. 6.15(c). From this it is

clear that a crystal diffracting in symmetric Laue geometry will impart a finite angular divergence to a

parallel, white incident beam.

Two crystals in symmetric Bragg geometry

In Fig. 6.16 a white beam is incident on a crystal at a certain Bragg angle. To simplify the discussion it

is assumed, as in the previous section, that the Darwin reflectivity curve may be approximated by a box

function. The beam incident on the first crystal is thus the vertical, light shaded band with an angular

width 2Δθ
in

in the DuMond diagrams in the lower part of the figure. A second crystal is set to reflect

the central ray. This can be done in two ways.

If the Bragg planes in the second crystal are parallel to those in the first crystal, a ray deviating

(dotted line) from the central ray by Δθ
in

will be reflected at the same setting as the central ray. In

a DuMond diagram this means that the response band of the second crystal is parallel to that of the

first crystal. In scanning the angle of the second crystal there is no overlap with the intensity provided

by the first crystal for any of the four settings shown. Only when the angular setting of the second

crystal is in between those labelled 2 and 3 will there be scattered intensity after the second crystal.

Since the bands are assumed to be box-like, the intensity versus angle will be triangular with a FWHM

equal to the angular Darwin width w1 of one crystal, independent of the incident angular bandwidth.



6.5 DuMond diagrams 235

A

B

A'
B'

�e


e

�i

�
2d

A

B

A'

B'

�e


e

�i

�
2d

A

B

A'

B'

�e�i

�
2d

(a) symmetric Bragg

(b) asymmetric Bragg

(c) symmetric Laue

k

CTR

CTR

CTR

k

k

k´

k´

k´

�k

�k

�k

Fig. 6.15 Scattering triangles (left) and DuMond diagrams (right) for (a) symmetric Bragg, (b) asymmetric Bragg and (c)

symmetric Laue geometries. In the scattering triangles the crystal truncation rod (CTR) is represented by the rectangular box,

with the darker shaded part being the central dynamical band. Continuity between the kinematical and dynamical regimes allows

points A, B and A′, B′ in the DuMond diagrams of the incident and exit beams to be associated with each other in an unambiguous

way.
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Fig. 6.16 Non-dispersive geometry (left): X-rays from a white source are incident on two crystals aligned in the same

orientation. The central ray (full line) will be Bragg reflected by both crystals and will emerge parallel to the original ray.

A ray incident at a higher angle than that of the central ray will only be Bragg reflected if it has a longer wavelength. The angle
of incidence this ray makes with the second crystal is the same as that it made with the first, and will be Bragg reflected. The

DuMond diagram in the lower part shows that a scan of the second crystal has a width equal to the convolution of the Darwin

widths of the two crystals, independent of the incident angular divergence. Dispersive geometry (right): A ray incident at a higher

angle than the central ray at the first crystal will be incident at a lower angle at the second crystal. The second crystal must be

rotated by the amount 2Δθin for Bragg’s law to be fulfilled. The geometry is therefore wavelength dispersive.

Furthermore, the reflected wavelength band from the second crystal equals that after the first crystal

and is determined by the angular spread 2Δθ
in

. This orientation is therefore termed non-dispersive.

On the other hand, in the alternative orientation, the response band of the second crystal has the

opposite slope to that of the first crystal. The angular width is now dependent of the incident width:

in the limit of a very small Darwin width w1 it is actually equal to that of the incident width. In the

DuMond diagram there will be scattering after the second crystal in all of the positions 2 through 4. The

wavelength bandwidth after the second crystal in position 3 is now much smaller than the wavelength

bandwidth after the first crystal, and the orientation is termed dispersive. It is clear that this qualitative

discussion of the dispersive setting can be sharpened to a quantitative estimate of both the angular and
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wavelength bandwidths after scattering from the second crystal.

6.6 Further reading

X-ray Diffraction, B.E. Warren (Dover Publications, 1990) Chapter 14.

The Optical Principles of the Diffraction of X-rays, R.W. James (Ox Bow Press) Chapter 2.

Dynamical Theory of X-ray Diffraction, A. Authier (Oxford University Press, 2001).

X-ray Monochromators, T. Matsushita and H. Hashizume, in the Handbook of Synchrotron

Radiation, Vol. 1b, Ed. E.E. Koch (North Holland, 1983) p.261.

6.7 Exercises

6.1 Consider a thick Si crystal where the normal to the surface is in the (100) direction.

(a) What are the Miller indices in symmetric Bragg geometry of the reflection with the lowest

Bragg angle?

(b) What is the reflectivity per atomic layer of that reflection?

(c) At a wavelength of 1.54 Å how far should one offset the rotation angle of the sample

from the Bragg angle before the reflectivity is reduced by a factor of 100?

6.2 From Eq. (6.20) show that the phase of r is equal to −π for x ≤ −1; −acos(x) for |x| ≤ 1, and 0

for x ≥ 1.

6.3 Prove Eq. (6.26).

6.4 Explain why Eq. (6.33) for the extinction depth refers to the 1/e reduction of intensity rather

than amplitude.

6.5 Prove Eq. (6.40).

6.6 Phonons energies are typically in the range 0−100 meV. Inelastic X-ray scattering offers the

possibility of measuring phonon dispersion curves. However, as X-ray energies are of order

10 keV, this requires devising a spectrometer with very high energy resolution to detect the

relatively small change in photon energy when it creates (or destroys) a phonon.

(a) Starting from Bragg’s law, derive a general expression for the resolution ΔE/E in terms

of the Bragg angle θ. Under what conditions is the maximum resolution obtained?

(b) Calculate the energy required to achieve the best resolution for a Si (12,12,12) mono-

chromator.

(c) By calculating the Darwin width at the appropriate energy calculate the resolution

provided by a Si(12,12,12) monochromator.

6.7 Estimate the extinction depths of the (111) reflections from diamond, silicon and germanium

by neglecting the Q and energy dependences of the atomic form factors.
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6.8 Consider the (200) reflection from GaAs at 12.4 keV. Compare the extinction depth to the

absorption depth. Discuss whether the integrated intensity in a rocking scan is proportional to

|F | or to |F |2.

6.9 Evaluate and compare the ratio of widths of the (111) and (333) reflections shown in Fig.

6.10(b) and (c).

6.10 Consider the experimental arrangement in which a white beam is monochromated by a perfect

crystal in symmetric Bragg geometry with a Bragg angle of 30◦. The monochromatic beam

then impinges on a second, asymmetrically cut perfect crystal in which the lattice planes are

at an angle of 15◦ with respect to the surface. The angle of incidence of the beam on the

second crystal required to diffract the second beam is either (a) 15◦ or (b) 45◦ depending on

its orientation. For the two cases make sketches of the expected variation of intensity of beam

diffracted by the second crystal as its angle is rotated through the Bragg condition. (You may

assume for simplicity that the Darwin curve may be represented by a top-hat function and

ignore refraction effects.)



7
Photoelectric absorption

Almost everyone has benefitted in one way or another from the characteristics of the X-ray

absorption cross-section. For example, most people have had the experience at the dentist of holding

a piece of photographic film inside of their mouth during the fraction of a second it takes to record a

shadow picture of a suspicious tooth. The ability to take shadow pictures, or radiographs, relies on two

basic aspects of the absorption process. The first is that X-ray absorption has a pronounced dependence

on the atomic number Z, varying approximately as the fourth power of Z. This feature provides the

necessary contrast between materials of different densities, such as skin, bone, etc. The second relates

to the penetrating power of the X-ray beam, which for a given element varies approximately as the

reciprocal of the photon energy E to the third power. By adjusting the energy of the beam it is thus

possible to obtain a suitable penetration depth into the material of interest.

The absorption cross-section per atom, σa, is in principle an easy quantity to measure. In a

transmission experiment the ratio of beam intensities is recorded with (I) and without (I0) the sample.

For a sample of thickness z the transmission, T , is given by

T =
I

I
0

= e−μz (7.1)

The absorption coefficient μ is related to σa through

μ =

(
ρmN

A

M

)
σa

where N
A
, ρm and M are Avogadro’s number, the mass density, and the molar mass, respectively

(Eq. (1.18)). However, in practice careful corrections have to be applied for other processes that

may attenuate the intensity of the beam. At X-ray energies, these comprise Thomson and Compton

scattering, while for energies above twice the rest mass of the electron (1.02 MeV) the cross-section for

pair production becomes significant.

An instructive way to illustrate the stated dependencies of σa on Z and E is shown in Fig. 7.1. Here

the experimentally determined values of σa have been scaled by dividing by Z4 and multiplying by E3.

Five elements have been selected, with values of Z ranging between 13 and 82, providing a range of

(82/13)4 ≈ 1500 for the dependence on Z. The energy range covered is one decade, so that altogether

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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E0 = 12.398 keV ≈ 1 Å
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Fig. 7.1 The scaled absorption cross-section as a function of photon energy for a selection of elements. The absorption cross-

section per atom, σa, has been scaled by dividing it by the atomic number Z to the fourth power, and multiplying it by the photon

energy E to the third power.

the total span for the Z and E dependencies is more than six decades. For Z < 47 (Ag), and for E ≥
25 keV, all of the scaled cross-sections collapse onto a single curve with a value of approximately 0.02

barn (1 barn ≡ 10−24 cm2). Below certain characteristic energies (approximately 25 keV for Ag, 14 keV

for Kr, 7 keV for Fe) the scaled cross-section drops to another value, approximately one decade lower,

where it joins the level that the heaviest element Pb has for E > 16 keV. The element-specific energies

of the discontinuous jumps in the absorption cross-section are called absorption edges, and the physical

reason for their appearance is quite simple to understand. Electrons are bound in atoms with discrete

energies. For example, the K electrons in Kr have a binding energy of 14.32 keV. At photon energies

greater than 14.32 keV there is the possibility that the photon can interact with the atom, removing one

of the K electrons in the process, with the photon being annihilated at the same time. This is known as

photoelectric absorption. When the photon energy drops below the threshold value of 14.32 keV this

particular process is no longer energetically possible, one of the channels for photoelectric absorption

closes, and therefore the absorption cross-section falls by a certain amount.

The K edge for Pb is 88 keV, beyond the range of energies plotted in Fig. 7.1. However, three other

discontinuities are apparent for Pb in the range 13-16 keV. These are the L edges, which correspond to

the removal of electrons from the L shell. The structure evident in the L edges arises from the fact that

the degeneracy of the electron energy in the L shell is lifted by two mechanisms. First, due to screening
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Fig. 7.2 A summary of the nomenclature used to label the absorption edges of the elements. The K edge corresponds to the

energy required to remove an electron from the 1s shell to the continuum of free states, etc. The electronic shells are labelled

as (n�
j
)2 j+1, where n, � and j are the principal, orbital angular momentum, and total angular momentum quantum numbers,

respectively, of the single-electron states. The multiplicity is 2 j + 1.

of the nuclear charge by the inner K electrons, the self-consistent one-electron potential drops faster

than the pure Coulomb potential, with the consequence that the energy of the 2s electrons is lower than

that of the 2p electrons. By convention the 2s energy is labelled L
I
. Furthermore the 2p level is split

by spin-orbit coupling into levels denoted L
II

and L
III

. The nomenclature used to label the absorption

edges is summarized in Fig. 7.2.

From a practical point of view the most useful way to quantify photoelectric absorption is not

in terms of absorption cross-section but in terms of the mass absorption coefficient, μ/ρm. Since at

fixed photon energy μ/ρm is a constant for a given element, independent of the form of matter being

considered, the mass absorption coefficient of a mixture (including compounds, alloys, solutions, etc.)

can be readily evaluated using

(
μ

ρm

)
mixture

=
∑

j

w j

(
μ

ρm

)
j

(7.2)

where wj is the fraction by weight of the j’th component.

Photoelectric absorption is sometimes referred to as true absorption. This is to distinguish it from

other processes that also act to reduce the intensity of a beam of photons. The photoelectric process
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usually dominates the absorption cross-section for all but the lightest elements, except perhaps at the

highest X-ray energies (� 100 keV) where it can weaken to become comparable to the cross-sections

for Thomson and/or Compton scattering1. The initial objective of this chapter in Section 7.1 is to

investigate whether from a first-principles calculation of the absorption cross-section, σa, it is possible

to account not only for the observed dependences on Z and E, but also for the absolute magnitude of

the jump in σa at the K edge. We then proceed in Section 7.2 to outline the theoretical description

of the oscillations in σa which are observed just above an absorption edge. These are known as

Extended X-Ray Absorption Fine Structure (EXAFS), and in Chapter 1 the example was already given

of crystalline Kr in Fig. 1.13 on page 21. Next, in Section 7.3 we provide an introduction to the use of

X-ray dichroism − the differential absorption of orthogonally polarized photon states − in the study of

magnetic materials. Finally, for completeness we discuss in Section 7.4 angle resolved photoemission,

where the energy and momentum of photoelectrons are studied to deduce unique information on the

electronic structure of materials.

In contrast to Thomson scattering, photoelectric absorption cannot be explained by classical

physics, and instead it is necessary to invoke a quantum mechanical description of both the X-ray

field and the photoelectron. Readers who are unfamiliar with this approach are referred to Appendix C.

While reading this chapter it is probably also worthwhile to bear in mind the Optical Theorem which

relates absorption to the imaginary part of the forward scattering amplitude (see Section 3.3, and in

particular Eq. (3.10)). The consequences of this theorem will be more fully explored in Chapter 8 on

resonant scattering.

7.1 X-ray absorption by an isolated atom

For the sake of definiteness an absorption process is chosen where a K electron is expelled from an

absorbing atom, although the calculation would be essentially the same if an electron in another shell

were to be considered.

Our starting point is the formula (Eq. (A.8)) for the absorption cross-section derived in Appendix

A:

σa =
2π

�c

V2

4π3

∫ ∣∣∣Mi f

∣∣∣2 δ(E f − Ei) q2 sin θ dqdθdϕ (7.3)

This equation comes directly from first-order perturbation theory. In the absorption process an X-ray

photon specified by k, ε̂ (where k and ε̂ are the wavevector and polarization) is annihilated from the

initial state |i〉, and a photoelectron is expelled into the continuum, where it ends in the final state | f 〉
with a momentum p = �q and energy E

f
= �2q2/2m. As the photoelectron may be expelled into any

direction, it is necessary to integrate over the entire solid angle, 4π, with the value of q2 restricted to

obey energy conservation by the introduction of the delta function in the integrand. The angles (θ, ϕ)

relate the direction of q to (k, ε̂) as shown in Fig. 7.3. It is also recalled that in order to normalize the

wavefunctions the system is confined to a box of volume V.

The crucial quantity in the formula for σa is the matrix element M
i f
=〈 f |H

I
|i〉, where H

I
is the

interaction Hamiltonian that produces transitions between the initial |i〉 and final | f 〉 states. Here we

refer to Appendix C where it is shown thatH
I

is conveniently expressed in terms of the vector potential

A of the incident photon field. Both the electric and magnetic fields may be derived directly from A,

1The pair production cross-section only becomes significant for gamma rays with energies above 2mc2=1.02 MeV.
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Fig. 7.3 The coordinate system relating the angles (θ, ϕ) to the wavevector of the photoelectron q and the wavevector and

polarization of the incident photon (k, ε̂). In this case the photon propagates along the z direction and has its electric field
polarized along x.

and hence quantizing the electromagnetic field amounts to quantizing the vector potential A. For a

plane wave the time-independent operator representing the vector potential is

A = ε̂

√
�

2ε
0
Vω

[
ak eik·r + a

†
k

e−ik·r] (7.4)

where a
k

and a
†
k

are the annihilation and creation operators. They act on the eigenstates of the photon

field, and either destroy or create a photon specified by (k, ε̂).

Neglecting any magnetic interactions, the interaction Hamiltonian, H
I
, contains two terms, one

linear in A and one that varies as A2 (Eq. (C.7)). As shall now be shown, in first-order perturbation

theory the linear term gives rise to absorption, whereas the squared term produces, amongst other

things, Thomson scattering of the photon (see Appendix C). The explicit form of the matrix element of

the linear term is

Mi f = 〈 f | e
m

p · A|i〉 (7.5)

This matrix element is evaluated by first neglecting the Coulomb interaction between the photoelectron

and the positively charged ion that is left behind. In other words the photoelectron is assumed to be free.

Its wavefunction must be normalized, and is thus proportional to V−1/2. This together with the V−1/2

dependence of A makes M
i f

proportional to V−1, and hence, according to Eq. (7.3), σa is independent

of V as required.

7.1.1 Free-electron approximation

In the initial state |i〉 there is one photon, specified by its wavevector and polarization, (k, ε̂), and one

K electron in its ground state. The initial state |i〉 is a product of the photon and electron states, and is
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hence written as |i〉 = |1〉
X
|0〉e. Similarly the final state is given by | f 〉 = |0〉

X
|1〉e, where the photon has

been annihilated and the photoelectron expelled from the atom. From Eqs. (7.5) and (7.4) the matrix

element for the absorption process is

Mi f =
e

m

√
�

2ε
0
Vω

[
e〈1|X〈0| (p · ε̂) a eik·r + (p · ε̂) a† e−ik·r|1〉

X
|0〉e

]
To facilitate the evaluation of this matrix element the operators are allowed to act to the left on the final

state. The advantage is that the final state of the electron is free, and is therefore an eigenfunction of

the momentum operator of the electron, p, with an eigenvalue �q. For the photon part it is recalled that

when operating to the left an annihilation operator transforms to become a creation operator, etc., with

the result that
X
〈n|a =(

√
n + 1)

X
〈n + 1| and

X
〈n|a† = (

√
n)

X
〈n − 1|, where n is the number of photons.

The terms of interest are

e〈1|X〈0|(p · ε̂) a = �(q · ε̂) e〈1|X〈1|
and

e〈1|X〈0|(p · ε̂) a† = 0

since in the second case there are no photons in the final state to annihilate. It follows that the absorption

matrix element simplifies to become

Mi f =
e

m

√
�

2ε
0
Vω

[
(� q · ε̂) e〈1|X〈1| eik·r|1〉

X
|0〉e + 0

]

=
e�

m

√
�

2ε
0
Vω

(q · ε̂) e〈1|eik·r|0〉e

=
e�

m

√
�

2ε
0
Vω

(q · ε̂)
∫
ψ∗e, f eik·rψe,i dr

The integral is over the position r of the photoelectron, and involves the plane wave ei k·r of the incident

photon field (Eq. (7.4)). Here the initial wavefunction of the electron, ψ
e,i

, is taken to be that of the

1s bound state, while the final wavefunction, ψ
e, f

, is assumed to be that of a free electron, which are

written respectively as

ψe,i = ψ1s(r)

and

ψe, f =
1
√

V
ei q·r

The matrix element for the photoelectric absorption process is thus

Mi f =
e�

m

√
�

2ε
0
Vω

(q · ε̂)
∫

e−i q·r
√

V
ei k·rψ1s(r) dr (7.6)

With the wavevector transfer defined by Q = k − q, the integral is written as

φ(Q) =

∫
ψ1s(r) ei (k−q)·r dr =

∫
ψ1s(r) ei Q·r dr
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This is nothing other than the Fourier transform of the wavefunction of the electron in its initial state.

The modulus squared of the matrix element for the particular process where the photoelectron is

expelled into the direction specified by the polar angles (θ, ϕ) is

∣∣∣Mi f

∣∣∣2 = (
e�

m

)2
�

2ε
0
V2ω

(q2 sin2 θ cos2 ϕ)φ2(Q)

since (q · ε̂)= q sin θ cosϕ, as can be seen from Fig. 7.3.

The absorption cross-section per K electron is found by substituting the above matrix element into

Eq. (7.3) to obtain

σa =
2π

�c

V2

4π3

(
e�

m

)2
�

2ε
0
V2ω

I3

=

(
e�

m

)2
1

4π2ε
0
cω

I3 (7.7)

where the three-dimensional integral I3 is defined by

I3 =

∫
φ2(Q) q2 sin2 θ cos2 ϕ δ(E f − Ei) q2 sin θ dqdθdϕ (7.8)

To proceed it is required to specify an explicit form for φ(Q) and hence also for ψ
1s

(r). Here it is

taken to be that of the 1s state of the hydrogen atom, but with a nuclear charge of Z. In this case the

wavefunction is

ψ1s(r) =
2√
4π
κ

3
2 e−κr (7.9)

where κ = Z/a0, and a0 is the Bohr radius. The Fourier transform of ψ1s may be evaluated using the

method described on page 119 for the Fourier transform of |ψ
1s
|2. The result is

φ(Q) =

∫
ψ1s(r) ei Q·r dr =

4
√

4π κ
5
2[

Q2 + κ2
]2

(7.10)

We are now in a position to evaluate the integral I3 defined in Eq. (7.8). The integration over ϕ is

straightforward: the integral over one period of cos2 ϕ is equal to π. Next, consider the integral over

the delta function. The energy of the initial state is Ei = �ω − �ωK
, i.e. equal to the difference between

the incident photon energy and �ωK, the binding energy of the K electron. The energy of the final

state is equal to the kinetic energy of the photoelectron, E
f
= �2q2/2m. It is convenient to introduce

τ = q2 as the integration variable, rather than to use q itself. The differential element dq then becomes

dq = dτ/(2q)= dτ/(2
√
τ). As far as the θ integration is concerned, the substitution μ = cos θ is made

to obtain

I3 = π

∫
φ2(Q) τ2 (1 − μ2) δ

((
�

2

2m

)
τ − (�ω − �ωK)

)
1

2
√
τ

dτdμ

Integrating over τ is achieved using the properties of the delta function (see the box on page 152). This

results in a factor of (2m/�2), with the integrand evaluated at

τ = τ0 =

(
2m

�2

) [
�ω − �ωK

]
(7.11)



246 Photoelectric absorption

Evaluation of integral I
1

and its limit when �ω� �ω
K

The integral I1 given in Eq. (7.12) may be expressed in the form

I1 = g

∫ 1

−1

(1 − μ2)

(aμ − b)4
dμ =

(
4

3

)
g

(a2 − b2)2

with the parameters g, a and b defined as

g = τ
3
2

0
κ5 = c−3

[
ωc(ω − ωK)

] 3
2

c−5ω5
A →c−8ω5

A[ωcω]
3
2

a = 2k
√
τ

0
= 2c−2ω

[
ωc(ω − ωK)

] 1
2 →2c−2ω[ωcω]

1
2

b = k2 + τ0 + κ
2 = c−2

[
ω2 + ωc(ω − ωK) + ω2

A)
]
→c−2[ωcω]

In the second equation we have introduced the following definitions of

energies (or cyclic frequencies): τ0
= 2m

�
(ω − ω

K
) =c−2ωc(ω − ω

K
),

�ωc = 2mc2 and �ω
A
=�cκ=Z�c/a

0
(see Fig. 7.4). Furthermore, the

arrows indicate the limit when �ω � �ω
K

, but still with �ω � �ωc.

In this limit b � a, and we find that

I1 →
(

4

3

)
g

b4
=

(
4

3

) ⎡⎢⎢⎢⎢⎣ ω2
A

ωωc

⎤⎥⎥⎥⎥⎦
5
2

In terms of the integration variables the square of φ(Q) is

φ2(Q) =
64π κ5[

k2 + τ − 2k
√
τμ + κ2

]4

since Q2 = (k − q) · (k − q)= k2 + q2 − 2k · q= k2 + τ − 2k
√
τμ. The three-dimensional integral I3

therefore reduces to a one-dimensional integral I1, with

I3 = 32π2

(
2m

�2

)
I1(τ0, κ)

and

I1(τ0, κ) =

∫ 1

−1

κ5(1 − μ2) τ
3
2

0[
k2 + τ

0
− 2k

√
τ

0
μ + κ2

]4
dμ (7.12)

Collecting the above results together the expression for the absorption cross-section given in Eq.

(7.7) becomes

σa =

(
e�

m

)2
1

4π2ε
0
cω

32π2

(
2m

�2

)
I1(τ0, κ)

=
e2

4πε
0
mcω

32 (2π )I1(τ0, κ)
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This can be simplified by noting that the Thomson scattering length is r0 = e2/(4πε0mc2), and that

ω = 2πc/λ. Hence the atomic absorption cross-section per K electron is

σa = 32λr0 I1(τ0, κ) (7.13)

with τ
0

given by Eq. (7.11) and κ = Z/a
0
. At this point it is interesting to note the following:

(a) If the dimensionless integral I
1

turns out to be of order unity, as indeed it does at the edge, then

the absorption cross-section per K electron is much larger than the scattering cross-section, which

is of order r2
0, since λ � r

0
.

(b) The dimension of the absorption cross-section is length squared, as expected.

(c) The volume, V , of the box introduced for normalization purposes has disappeared from the final

formula, also as expected.

The evaluation of the integral I
1
(τ

0
, κ) is given in the box on the facing page, along with its

asymptotic behaviour in the limit that the photon energy is much greater than the binding energy of

the K electron, but still much smaller than the rest mass energy of the electron. With energies as

defined in Fig. 7.4 one finds

σa = 32λr0

(
4

3

) ⎡⎢⎢⎢⎢⎣ ω2
A

ωωc

⎤⎥⎥⎥⎥⎦
5
2

for �ωK � �ω� �ωc (7.14)

It is apparent that σa varies as Z5 via ωA, and as ω−7/2 via the dependence of I1 on ω−5/2 and the factor

of λ = 2πc/ω. This behaviour is somewhat different from the experimental findings, summarized in

Fig. 7.1, where σa is approximately proportional to Z4 and ω−3. The reason for this discrepancy is

the approximation made at the beginning of this section, where we neglected the Coulomb interaction

between the photoelectron and the positively charged ion. The benefit is that we have been able to

obtain, with moderate effort, an analytical expression for σa. However, the price to be paid for this is

apparently high, as the result is not sufficiently accurate. It is therefore necessary to consider a treatment

of the problem beyond the free-electron approximation.

7.1.2 Beyond the free-electron approximation

Here the full calculation of the correct wavefunction of the photoelectron in the Coulomb field of

the ion is not given. Instead the result which was derived in the 1930s by Stobbe is stated without

proof [Stobbe, 1930]. Stobbe introduced the dimensionless photon energy variable

ξ =

√
ω

K

ω − ω
K

and conveniently enough, his result can be written as a correction factor f (ξ) to the asymptotic

expression for the integral I
1

given above in Eq. (7.14). The absorption cross-section per K electron
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Fig. 7.4 A schematic of the different energy scales involved in calculating the absorption cross-section. The energy of the
absorption edge is �ω

K
, and is proportional to Z2 in a simple hydrogen-like model of the atom. The energy �ω

A
is related to κ,

the inverse length scale of the wavefunction ψ
1s

(Eq. (7.9)). The relationship is �ω
A
≡ �cκ, and thus �ω

A
is proportional to Z.

The highest characteristic energy is �ωc and is defined to be twice the rest mass energy of the electron. i.e. 2×511 keV.

allowing for the Coulomb interaction between the photoelectron and the ion is then

σa = 32λr0

(
4

3

) ⎡⎢⎢⎢⎢⎣ ω2
A

ωωc

⎤⎥⎥⎥⎥⎦
5
2

f (ξ) (7.15)

Stobbe’s correction function, f (ξ), depends on both Z and �ω. When it is included in the formula for

σa it transpires that there is good agreement between the experimental and theoretical dependences on

Z and �ω, and reasonable agreement with the absolute value of the cross-section. The explicit form of

the correction function is

f (ξ) = 2π

√
ω

K

ω

(
e−4ξarccotξ

1 − e−2πξ

)
Two limits are particularly illuminating to consider, namely when the photon energy is much greater

than the binding energy, �ω� �ω
K

or equivalently ξ → 0, and when the photon energy approaches the

threshold energy from above, �ω → �ω+
K

or ξ → ∞. At high photon energies we have arccotξ → π/2,

so that e−4ξarccotξ → e−2πξ . Thus the high-energy limit of the correction factor is

f (ξ) → 2πξ

(
e−2πξ

1 − e−2πξ

)
→ 1 for �ω� �ωK

This result makes physical sense. When the photon energy is high, so is the energy of the photoelectron,

and it makes little difference whether the photoelectron is free or moves in the relatively weak attractive

field of the positive ion. For photon energies approaching the threshold (�ω → �ω+K, or ξ → ∞) we

have that arccotξ → 0 as 1/ξ, so that the product ξarccotξ → 1, and

f (ξ) →
(

2π

e4

)
for �ω→ �ω+K
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At threshold we therefore find a discontinuous jump in the absorption cross-section per K electron of

σa = 32λr0

(
4

3

) ⎡⎢⎢⎢⎢⎣ ω2
A

ω
K
ωc

⎤⎥⎥⎥⎥⎦
5
2
(

2π

e4

)
(7.16)

In order to evaluate either the energy dependence of σa (Eq. (7.15)) or the height of the step in σa

at the K edge (Eq. (7.16)) it is necessary to know how to calculate ω
A

and ω
K

. The simplest approach

is to take the model of a hydrogen atom as the starting point. The K shell ionization energy, �ω
K

, of

an atom with Z electrons is then approximately the binding energy of the hydrogen atom times Z2. We

thus can write �ω
K
= Z2e2/(4πε

0
2a

0
). The energy �ωA that we have introduced is given by Z�c/a

0
, and

hence scales with Z. Within the model of the hydrogen-like atom the ratio ω2
A
/(ω

K
ωc) is independent

of Z, and as a0 = 4π�2ε0/(me2), the ratio is equal to unity. The edge jump per K electron is therefore

σa(λK) � 32λKr0

(
4

3

) (
2π

e4

)

=

(
256π

3e4

)
λKr0 (7.17)

From Eq. (7.15), this approximation also allows the energy dependence of σa per K electron to be

written in a particularly convenient form as

σa � 32λr0

(
4

3

) [ω
K

ω

] 5
2

f (ξ) (7.18)

Comparison with experiment

As an example we have chosen the absorption cross-sections of the noble gas elements Ar (Z = 18),

Kr (Z = 36) and Xe (Z = 54). The energy dependences of σa are shown in Fig. 7.5 in the vicinity of

the K edges at 3.20, 14.32, and 34.56 keV for the three elements respectively. The dot-dashed lines

are obtained from state-of-the-art calculations performed within the self-consistent Dirac-Hartree-Fock

framework [Chantler, 1995] (See also Henke et al. [1993].).

Here a comparison is made of the absorption cross-sections shown in Fig. 7.5 with our simpler

model given by Eq. (7.18). This was derived using the hydrogen-like model of the atom, and has only

one free parameter, the energy of the K edge, �ωK. For a hydrogen-like atom �ωK is given by Z2 times

the binding energy of the hydrogen atom, 13.60 eV. For the three elements chosen here the K edges

are calculated to be 4.41, 17.63, and 39.66 keV. These are significantly greater than the experimental

values. Slight adjustments to our approach, such as replacing Z by (Z − 1), which allows for the

shielding of the nuclear charge by one of the K electrons, brings little improvement to the estimate of

�ω
K

, although Moseley showed in 1913 that is does give good agreement with the Kα fluorescence

energies, �(ω
K
− ωL) (see Eq. (1.20)). The hydrogen-like model probably works better in the case of

fluorescence than absorption as the former involves differences in energies of the inner shell electrons,

while the latter depends on being able to calculate the absolute value of the binding energy correctly.

In either case the model is expected to become less appropriate as Z increases due to multi-electron and

relativistic effects.
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Fig. 7.5 The photoelectric absorption cross-sections of Ar, Kr and Xe plotted on a double logarithmic scale for energies in the

vicinity of their K edges. The dot-dashed lines represent the results of calculations within the self-consistent Dirac-Hartree-Fock

framework [Chantler, 1995]. The solid lines are calculated from Eq. (7.18) with �ω
K

equal to the experimentally observed

values of 3.20, 14.32 and 34.56 keV respectively. In each case the result was multiplied by a factor of 2 to allow for the two K
electrons, and then the extrapolated contribution from the L electrons (dotted lines) was added to it to produce the final result.

For completeness the cross-sections for Thomson and Compton scattering are plotted as the dashed lines. The L edges of Kr (∼
2 keV) and Xe (∼ 5 keV) have been omitted for clarity.
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An alternative approach to calculating �ωK is to assume that Z scaling is approximately valid, and

to treat �ω
K

as an experimentally determined parameter to be put into the theory. This approach has

been adopted for Ar, Kr and Xe, and the photoelectron cross-section σa given by Eq. (7.18) with �ω
K

equal to the experimental values are represented by the solid lines in Fig. 7.5. In all three cases the

theory developed here is seen to reproduce the energy dependence of σa very well. Agreement with the

absolute value of σa is reasonable in the case of Ar, but becomes progressively worse for Kr and Xe.

This is in line with the expectation that the hydrogen-like model becomes a poorer approximation the

higher the value of Z. However, our intention here was not to derive exact values of σa, but rather to

show how a relatively simple model of the photoelectron absorption process is capable of accounting

for the main experimental features. Accurate methods for obtaining values of σa required for analysing

experimental data are described and tabulated in a number of places, including the International Tables

of Crystallography.

For completeness the cross-section from processes other than the photoelectric effect have also

been included in Fig. 7.5. At the energies shown, these include Thomson and Compton scattering: at

higher energies pair production becomes important. It is interesting to compare the limiting behaviour

of the contribution made by these scattering processes for the different elements. In the case of Ar,

the electrons can be considered to be effectively free for the highest photon energies shown, since the

photon energy is much greater than that binding the electrons to the atom. The cross-section should

then approach the value expected for a gas of Z electrons, i.e. 18×0.667= 12 barn per atom, similar

to the value shown in Fig. 7.5. (The total scattering cross-section per electron is 0.667 barn, see Eq.

(B.5) on page 353.) The other extreme is Xe at low energies, where the electrons are tightly bound.

The wavevector transfers, Q, accessible at these energies are small, and hence to a good approximation

the atomic form factor squared is equal to Z2 (Eq. (4.7)). The limiting cross-section in this case should

therefore be 54×54×0.667= 1945 barn per atom, again close to the value shown.

7.2 EXAFS and near-edge structure

The simple step-like change in the X-ray absorption cross-sectionσa evident in Fig. 7.5 is the behaviour

expected for isolated atoms only. For assemblies of atoms (molecules, crystals, etc.) the X-ray

absorption cross-section develops structure for photon energies in the vicinity of an absorption edge.

For example, in Fig. 1.13 the absorption cross-section is plotted for atomic Kr in various environments.

Comparing the cross-section for Kr in its gaseous phase with its behaviour when bound to the surface

of graphite it is clear that the absorption depends on the environment of the absorbing atom. The

structure in σa results from a variety of physical processes which are referred to collectively as X-ray

absorption fine structure (XAFS). The processes contributing to XAFS can be differentiated according

to the photon energy relative to the edge. For energies within approximately ±10eV of the edge the

absorption cross-section may appear to overshoot the step-like behaviour. This is referred to as the

X-ray absorption near edge structure (XANES) region. Physically it corresponds to transitions of core

electrons to unfilled bound states just below the continuum of free electron states. As the density of

such bound states close to the edge may be higher than the density of unbound states the absorption

has a peak. (For historical reasons this is sometimes known as the ‘white line’ as this is the way that

it appeared on photographic films used in early X-ray experiments.) For higher photon energies a

photoelectron is liberated, which propagates from the source atom as a spherical wave. This outgoing

wave may then be back scattered by neighbouring atoms producing oscillations in σa. Within 10−50

eV of the edge, the low energy of the photoelectron has the consequence that it undergoes multiple

scattering. This is known as the near edge X-ray absorption fine structure (NEXAFS) regime. At
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higher photon energies still, 50−1000 eV above the edge, the photoelectron acquires sufficient energy

that single scattering events dominate. This is the extended X-ray absorption fine structure (EXAFS)

region. A schematic of the origin of EXAFS oscillations in the interference between the outgoing and

back scattered waves is given in Fig. 7.6. The EXAFS regime, dominated as it is by single photoelectron

scattering events, is easier to analyse than the multiple scattering which is characteristic of NEXFAS.

This explains why EXAFS has found wide utility in the determination of the local structure of materials,

and also why it is the focus of this section.

7.2.1 Experimental considerations

In the analysis of EXAFS spectra it is customary to introduce the dimensionless quantity χ(q), defined

by

χ(q(E)) =
μχ(E) − μ

0
(E)

μ
0
(E)

(7.19)

Here μ
0
(E) is the absorption coefficient of the isolated atom (which obviously does not display EXAFS),

and μχ(E) is the absorption coefficient of the atom in the material of interest. Rather than the photon

energy E, the photoelectron wavenumber q is used as the independent variable:

�
2q2

2m
= E − �ωK (7.20)

The typical apparatus required for an EXAFS experiment is sketched in Fig. 7.7. A double crystal

monochromator (as described in Chapter 6) is used to produce a monochromatic beam from the ‘white’

synchrotron beam. For relatively low X-ray energies it is found that the energy resolution provided

by the Si(111) reflection is mostly adequate, whereas at higher energies the Si(311) or (511) may be

needed. For all of these reflections, the second-order is forbidden, but it is important to ensure that

higher orders in the beam are removed, either by offsetting slightly the angle of the second crystal as

described on page 225, or by the use of mirrors.

The absorption spectrum can be measured in a transmission geometry, as indicated in Fig. 7.7. The

transmission, defined as the ratio of intensities before, I
0
, and after, I

1
, the sample, is related to the

absorption coefficient μ(E) at photon energy E by

T =
I1

I
0

= e−μ(E)d

where d is the sample thickness (see Eq. (7.1)). The absorption coefficient μ(E) is then obtained from

the measured transmission as a function of E from the above equation.

The measured absorption coefficient can be partitioned into contributions from the atoms of interest,

μχ(E), and that due to all the other atoms in the sample, μA(E), so that we may write

μ(E) = μA(E) + μχ(E) = μA(E) + μ0(E)
[
1 + χ(q)

]
(7.21)

Both μ
A
(E) and μ0(E) vary smoothly as a function of E in the EXAFS region of interest, and can, by

a combination of theoretical knowledge and numerical spline methods, be subtracted from the data in

order to obtain χ(q). It is often of advantage to measure simultaneously a reference sample, as indicated

in Fig. 7.7.
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(a)
(b)

(d)

(c)

(e)

Fig. 7.6 Schematic of the EXAFS process. (a) An X-ray photon is incident on an atom located on a lattice. The energy of the

photon is high enough that it liberates an electron from a core state in the atom, and the photon is absorbed in the process. (b)-(c)

The outgoing wavefunction of the photoelectron propagates from the absorbing atom as a spherical wave until it reaches one of

the neighbouring atoms. (d)-(e) The photoelectron wavefunction is scattered by the neighbouring atoms, which then gives rise to

a back scattered wave. The interference between the outgoing and back scattered wavefunctions gives rise to EXAFS oscillations

in the absorption cross-section [After Stern, 1976].
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Fig. 7.7 Schematic layout of an EXAFS experiment in plan view. The energy of the incident beam is defined by a double-crystal

monochromator. Incident and transmitted beam intensities are recorded by ionization chambers IC1 and IC2. It is also possible

to measure the EXAFS signal by measuring the fluorescence yield with an energy sensitive detector. Also shown is an enlarged

view of the sample. From the geometry it can be seen that angle ABP=α+β and angle BAP=π/2−β. Invoking the sine rule gives

x′/ sin(π/2−β) = (d′ − x)/ sin(α+β). The analysis assumes that the incident beam enters the sample through the face containing

the point O, and that the beam exits the sample through the face containing the point A, i.e. effects arising from the ends of the
sample can be ignored.

A second possible way to determine χ(q) is to measure the fluorescent radiation, which is emitted

after the photoelectric absorption (Fig. 7.7). In this case an energy sensitive detector is preferred, as this

allows the fluorescent radiation (which is monochromatic) to be isolated. The unwanted contribution

from scattering processes can be further minimized by placing the detector at 90◦ to the incident beam

in the horizontal plane since the polarization factor will then minimize the scattered radiation (see Eq.

(1.8)). With a planar sample, as shown in Fig 7.7, having its normal tilted an angle β relative to the

incident beam, and with the fluorescent detector axis at an angle α from 90◦, we consider an absorption

process at a distance in the interval x to x + dx from the surface. The probability for the X-ray photon

to reach this depth is e−μx, and once the X-ray photon has reached this depth, the probability for an

absorption process is μdx, so the resulting probability for this part of the process is e−μxμdx. After

the absorption the atom may expel an Auger electron or alternatively a fluorescent X-ray photon. The

probability for the latter process is denoted ε. The fluorescent ray will then have to traverse the distance

x′ in the sample before reaching the detector which subtends a solid angle element ΔΩ. Therefore the

total probability that a fluorescent X-ray is recorded in the detector is e−μxμdx e−μ f x′(ΔΩ/4π). Here μ f

denotes the inverse absorption length at the fluorescent X-ray energy, μ f = μ(E f ). To obtain the total

fluorescent yield per incident photon, I f /I0, one must integrate over all depths, d′ > x > 0, with d′

being the sample thickness d divided by cosβ, i.e. d′ = d/ cos β. In the caption to Fig. 7.7 it is shown
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that x′ = a(d′ − x) with a = cos β/ sin(α + β). The final result is

I f

I0

= με

(
ΔΩ

4π

) ∫ d′

0

e−μxdx e−μ f x′

= ε

(
ΔΩ

4π

)
e−aμ f d′ μ

μ − aμ f

[
1 − e−(μ−aμ f )d′

] (7.22)

7.2.2 Theoretical outline

In this chapter it has been explained how a relatively simple model of the photoelectron process is

capable of accounting for the main features of the absorption cross-section of an isolated atom. The

key ingredient in this model was the matrix element 〈 f |H
I |i〉 of the interaction Hamiltonian, Eq. (7.5).

The interaction HamiltonianHI is fundamental, and does not depend on the details of the neighbouring

atoms. The initial state |i〉 describes the innermost electrons in the absorbing atom, and also cannot

depend greatly on the environment of the atom. It follows that the EXAFS oscillations must arise

from modification of the final state. This should come as no surprise. We have already seen that the

assumption of a truly free photoelectron was only asymptotically correct in the high-energy limit: good

agreement with experiment was found for a final state where the electron is unbound, moving in the

attractive field of the ionized atom.

Let the relatively small modification to the final state | f
0
〉 of the free atom due to neighbouring

atoms be |Δ f 〉, so that the final state becomes | f
0
+ Δ f 〉. The modulus squared of the matrix element is

then ∣∣∣〈 f0 + Δ f
∣∣∣HI

∣∣∣ i〉
∣∣∣2 = [

〈 f0

∣∣∣HI

∣∣∣ i〉 + 〈Δ f
∣∣∣HI

∣∣∣ i〉
] [
〈 f0

∣∣∣HI

∣∣∣ i〉 + 〈Δ f
∣∣∣HI

∣∣∣ i〉
]∗

�

∣∣∣〈 f0

∣∣∣HI

∣∣∣ i〉
∣∣∣2 + {

〈 f0

∣∣∣HI

∣∣∣ i〉∗〈Δ f
∣∣∣HI

∣∣∣ i〉 + c.c.
}

=
∣∣∣〈 f0

∣∣∣HI

∣∣∣ i〉
∣∣∣2

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 +

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 〈 f0

∣∣∣HI

∣∣∣ i〉∗〈Δ f
∣∣∣HI

∣∣∣ i〉∣∣∣〈 f
0

∣∣∣H
I

∣∣∣ i〉
∣∣∣2 + c.c.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎟⎠

where c.c. refers to the complex conjugate. By comparison with Eq. (7.21) it can be seen that the first

term describes the absorption coefficient of the free atom, μ
0
(E). It can also be inferred that the second

term must represent the EXAFS oscillations, with

χ(q) ∝ 〈Δ f
∣∣∣HI

∣∣∣ i〉 (7.23)

The initial state wavefunction is strongly localized within the absorbing atom, with an extension given

approximately by the Bohr radius, a0
=0.53 Å divided by Z. So as far as the modification is concerned,

the initial wavefunction of the electron is highly localized and can be approximated by a delta function.

We denote the change in the photoelectron wavefunction due to the neighbouring atoms by ψ
back.sc.

(r).

Physically, the EXAFS modification is due to back scattering of the photoelectron by the neighbouring

atoms, as sketched in Fig. 7.6. Referring back to Eq. (7.6) it can be seen that the appropriate form of

the matrix element is

〈Δ f
∣∣∣HI

∣∣∣ i〉 ∝
∫
ψback.sc.(r)ei k·rδ(r) dr = ψback.sc.(0)
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In comparison to Eq. (7.6) the plane wave of the photon field ei k·r has been retained, but the

wavefunction of the electron in its initial state, ψ
1s

(r), has been simplified to be a delta function δ(r),

and ψ
back.sc.

has been inserted for the perturbation of the final state 〈Δ f |. We thus assert that

χ(q) ∝ ψback.sc. (0)

and an expression for ψ
back.sc.

is now developed in a step-by-step procedure.

The wavefunction of the photoelectron emitted from the absorbing atom is an outgoing spherical

wave, i.e. of the form (ei qr/r), where r is measured from the centre of the absorbing atom. Let

us first assume that there is only one neighbouring atom at a distance R from the absorbing atom.

This neighbouring atom will scatter the incoming wave into a new spherical wave, with an amplitude

proportional to the amplitude of the incident wave, and to a scattering length t(q). Altogether then

the back scattered wave at r=0 will be proportional to t(q) (ei qR/R) ×(ei qR/R), or t(q)(ei 2qR/R2). The

free electron wavefunction, ei qr/r, used in this argument neglects the electrostatic potential between

the negatively charged electron and the ions of the lattice. Formally, such a potential can be taken

into account by a phase shift δ(q), with the result that the wavefunction is modified to be of the form

ei[qr+δ(q)]/r. The calculation of such a phase shift is a central problem in the branch of solid state physics

which is concerned with electrons moving in the periodic potential of ions on a lattice, and we shall see

an example of the result of such a calculation in the following section, Fig. 7.10. In the present context

of EXAFS one must distinguish between the phase shift produced by the absorbing atom, δa(q), and

that coming from the back scattering atoms, δ
back.sc.

(q). The total phase shift, δ(q), is of course the sum

of the two. Thus as a first step in obtaining an expression for the back-scattered wavefunction we write

ψ
(1)
back.sc.

(0) = t(q)
ei (2qR+δ) + c.c.

qR2

∝ t(q) sin(2qR + δ)

qR2

Following convention a factor of q has been included in the denominator, if for no other good reason

than to obtain a dimensionless expression for ψ(1)
back.sc.

(0).

The neighbouring atom is of course not stationary, but vibrates about its equilibrium position.

If the r.m.s. value of the displacement parallel to q is σ, then the amplitude of the back scattered

wave is reduced by the Debye-Waller factor of e−Q2σ2/2 (see Section 5.4). For a scattering vector of

Q = 2q sin 90◦ = 2q we have

ψ
(2)
back.sc.

(0) ∝ t(q) sin(2qR + δ(q))

qR2
e−2(qσ)2

It is the vibrations of the back scattering atom relative to that of the absorbing atom that is taken into

account in this way. Since the two atoms are close neighbours, acoustic, long wavelength phonons will

not contribute to σ, so it is smaller than determined from crystallography.

The state of a photoelectron and an atom left behind with a hole in its K shell is not a steady state:

it has a finite lifetime. The discussion we have given so far tacitly assumed that the back scattered

electron will find the atom in the initial state, but due to the lifetime there is a certain probability that

the hole in the K shell has been filled in the meantime. In addition, the photoelectron may be scattered

by other electrons in its round trip, so we introduce a phenomenological mean-free pathlength Λ to

obtain

ψ
(3)
back.sc.

(0) ∝ t(q) sin(2qR + δ(q))

qR2
e−2(qσ)2

e−2R/Λ
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Finally, we assume that the absorbing atom is surrounded by shells of neighbours, with Nj atoms

in the j’th shell at a distance R
j
. The shells may have different types of atoms, so the back scattering

amplitude t(q) also needs a suffix j, and we therefore write

qχ(q) ∝
∑

j

N j

t j(q) sin(2qR j + δ j(q))

R2
j

e−2(qσ
j
)2

e−2R
j
/Λ (7.24)

This is the standard expression used for analysing EXAFS data. The goal is to extract the radii of the

neighbouring shells, R
j, and their occupation number, Nj. The q dependence of the back scattering

amplitude t j(q), and of the phase shift δ j(q) is a subtlety that complicates the analysis. This is usually

overcome by a combination of theory, and use of reference samples where R
j
, N

j
and σ

j
are known.

7.2.3 Example: CdTe nano-crystals

EXAFS is now established as a powerful method for determining the structures of materials. It

should be emphasized that EXAFS is a local probe, in the sense that information on only the first

few neighbouring shells is obtained. This in itself should not be seen as a severe limitation of the

technique, as it means that EXAFS can not only be used to study well-ordered single crystals, but also

disordered materials such as glasses. Diffraction techniques discussed in Chapter 5 can also be applied

to both ordered and disordered materials, and in this way EXAFS and diffraction are complementary to

one another. In the example considered here this complementarity has been exploited in a study of very

small crystals, so-called nano-crystals, of the semiconducting material CdTe. This example has been

chosen for a number of reasons. First, the data turns out to be easier to interpret than most EXAFS data.

The reason is that in this case only the EXAFS signal from the nearest-neighbour shell is significant,

and the complication of the summation over neighbouring shells in Eq. (7.24) is avoided. Second,

the solid state physics of CdTe nano-crystals is interesting, and may turn out to be of technological

importance.

CdTe is a II-VI semiconductor compound. (The corresponding III-V compound is InSb.) The

homologous compound CdS may be known to the reader from its use as photoelectric cells in cameras,

and diodes in electronic circuitry. Perhaps the most important feature of CdTe nano-crystals is that the

electronic band-gap, which determines the photo-sensitivity in the visible part of the electromagnetic

spectrum, depends strongly on the size of the crystal when the size of the crystal is reduced to the

nano-meter scale. This is simply due to quantum mechanical confinement of the electrons within the

nano-crystal. The nano-crystal may be regarded as a large molecule with discrete electronic energy

levels, rather than the continuous band of allowed electronic energies found in bulk crystals. Nano-

crystals of CdTe with a well-defined size have been produced by chemical methods [Rogach et al.,

1996]. The core of the nano-crystal is formed from a tetrahedron of Cd and Te atoms packed in the cubic

zinc-blende structure, with an organic part, SCH2CH2OH, attached to the Cd atoms on the surface of the

tetrahedra. The absorption spectrum of these CdTe nano-crystals in the UV part of the electromagnetic

spectrum (see the original article for details) exhibits two distinct peaks at 2.9 eV (425 nm) and 2.7 eV

(460 nm). In contrast the band-gap of the bulk CdTe is 1.5 eV (827 nm).

The powder diffraction spectrum from CdTe nano-crystals is shown in Fig. 7.8. Here, a slight

digression from the main subject of this chapter is made to discuss this diffraction pattern. It serves to

illustrate nicely several of the subjects that have already been treated in Chapter 5, and is relevant for
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Fig. 7.8 Powder diffraction data for CdTe nano-crystals with an average diameter of around 15 Å. The X-ray wavelength was

1.54 Å. The graph was prepared by digitising the data of Rogach et al. [1996]

Relative Wavevector Peak Width No. of Miller

2θ intensity Q FWHM unit cells indices
Q

√
h2 + k2 + l2

(Degrees) (Å−1) (Degrees) N (h, k, l)

5.2 – 0.37016 3.17 – – –

24.6 1 1.7383 6.3 3.5 (1,1,1) 1.0

39.0 0.7 2.7239 8.5 4 (2,2,0) 0.96

46.0 0.5 3.1884 9.5 4 (3,1,1) 0.96

Table 7.1 Analysis of the diffraction data shown in Fig. 7.8 for CdTe nano-crystals. The data were taken from

Rogach et al. [1996].

interpreting the EXAFS spectra that will be considered a little later. The diffraction data were taken

with an X-ray wavelength of 1.54 Å, and are tabulated in Table 7.1.

The first peak in the diffraction pattern occurs at a scattering angle of 2θ = 5.2◦. This small-angle

scattering feature is the interference peak from particles a distance R apart (see Section 4.1). The

average distance R is given by QR = 2π. (Here recall that for elastic scattering the modulus of the

wavevector transfer is related to the scattering angle by Q=(4π/λ) sin θ.) In this particular case with the

peak at 5.2◦, and for an X-ray wavelength of 1.54 Å, this means that the nano-crystals are approximately

17 Å apart. If the nano-particles are roughly spherical in morphology, then this is also the diameter of

each sphere. Now consider the three peaks at higher scattering angles. These correspond to the powder

diffraction peaks from randomly oriented CdTe nano-crystals. To establish this we first need to index

the powder pattern, i.e. assign Miller indices to each of the high-angle diffraction peaks. Bulk CdTe



7.2 EXAFS and near-edge structure 259

has the zinc blende structure, which in order of increasing scattering angle has strong Bragg reflections

with Miller indices of (1,1,1), (2,2,0) and (3,1,1). The modulus of the wavevector transfer is related to

the d spacing for a given set of (h, k, l) planes by d = a/
√

h2 + k2 + l2, where a is the lattice parameter.

As Q=2π/d, this means that the ratio of Q to
√

h2 + k2 + l2 should be a constant, equal to 2π/a, if

the assignment of Miller indices given in Table 7.1 is correct. It is apparent that this ratio is indeed

almost constant with a value of ≈1.0 within error. Thus the lattice parameter of the CdTe forming

the nano-crystals is a ≈ 2π/1.0 ≈ 6.3 Å, somewhat smaller than the bulk value of 6.48 Å. It is also

important to compare the intensities of the high-angle peaks with what would be expected for a powder

of bulk CdTe. Using Eq. (5.35) the relative intensities of the peaks from bulk CdTe are evaluated to be

in the ratios 1:0.78:0.42, similar to the ratios given in Table 7.1.

It is apparent from the data shown in Fig. 7.8 that the diffraction peaks appear to be broad. They

are in fact much broader than the instrumental resolution. The width results from the fact that each

nano-crystal is built up from so few Cd and Te atoms. The width of a diffraction peak is inversely

proportional to the number N of unit cells that scatter coherently. From the box on page 52 we know

that the relative width (FWHM) is equal to 0.88/N, and thus from Table 7.1 the number of unit cells

in the nano-crystal is ≈4. From this it can be expected that the size of the nano-crystal is about four

times the unit cell length, i.e. 4×6.3=25.2 Å, a value reasonably close to the size of the nano-crystal

estimated from the interference peak at small scattering angles.

Now to the EXAFS data. The absorption spectra, in the vicinity of the K edge of Te, for bulk

and nano-crystalline CdTe are shown in the top row of Fig. 7.9. The first step in the data analysis is

to obtain the EXAFS part of the signal, χ(q), from its definition in Eq. (7.19). The smooth part of

the absorption coefficient, μ
0
, is derived from the inverse transmission curve in the top row, and is

represented by the dotted lines. The next step is to locate the energy of the K edge (here 31.813 keV)

which allows the photon energy scale in keV to be converted into electron wavenumber in Å−1 using

Eq. (7.20). It is then possible to generate χ(q) from Eq. (7.19). The result is shown in the second row

of Fig. 7.9, where it has been weighted somewhat arbitrarily by q3. Without performing any further

analysis it is clear that there is a difference between the nano-crystal and the bulk forms of CdTe. The

nano-crystal has one dominant frequency (or wavelength) which means that the EXAFS is dominated

by the distance to the nearest-neighbour shell. In contrast, the bulk data for q3χ(q) have a superposition

of at least two frequencies. Clearly to understand the bulk data it is necessary to take into account more

than the nearest-neighbour shell. These observations can be placed on a more quantitative footing by

taking the Fourier transform of q3χ(q). This is shown in the bottom panel of Fig. 7.9. These radial

distribution functions have peaks corresponding to the position of the shells neighbouring a Te atom.

The nano-crystal has one shell at a distance of 2.79 Å. This should be compared to the Te-Cd distance

in bulk CdTe of 6.48×
√

3/4=2.806 Å. The small contraction of the nano-crystal is presumably due to

the epitaxial strain from the interaction between the Cd ions on the surface of the tetrahedra and the S

ions of the organic shell.

Using Eq. (7.24) it is possible to extract more information from the EXAFS spectra than just the

distance from the absorbing Te atom to the nearest-neighbour shell. This is achieved by fitting Eq.

(7.24) to the data. To this end we need to know the q dependence of the phase shift δ(q), and of the

scattering length t(q) of the back-scattered wave. These can be calculated reliably using sophisticated

and accurate methods developed in solid state physics. The results for CdTe are given in Fig. 7.10.

The remaining ingredient is the Debye-Waller factor which is usually treated as a parameter to be

determined from fitting the full model to the data. In the present example data were recorded at several

temperatures down to 8 K. This enabled the Debye-Waller factor to be separated into a temperature

dependent part (12.6×10−3 Å2) corresponding to a Debye temperature of 260 K (see Section 5.4), a

zero point motion (3.5×10−3 Å2), and a static strain field (〈u2〉= 1×10−3 Å2).
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Fig. 7.9 A comparison of the EXAFS spectra from bulk and nano-crystalline CdTe. The data were taken near the K edge of Te

(31.813 keV) at a temperature of 8K. Top row: The absorption spectra. The dotted line indicates the smooth signal that would be

obtained from an isolated Te atom. Middle row: χ(q) multiplied by q3 as a function of the electron wavenumber q. Bottom row:

The Fourier transform of the data shown in the row above. The resulting radial distribution function has peaks corresponding to

the position of successive shells of atoms centred on a Te atom. The nano-crystal has one such shell at 2.79 Å. (Data supplied

by J. Rockengerger, L. Tröger, A.L Rogach, M. Tischer, M. Grundmann, A. Eychmüller, and H. Weller [Rockengerger et al.,

1998]).
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Fig. 7.10 Calculated phase and amplitude of the photoelectron at the Te K edge in CdTe.

By fitting the model to the data it could be deduced that the nearest neighbour shell to a Te atom

on average contains 3.55 Cd atoms, somewhat smaller than the coordination number of four in bulk

crystals. This number can be compared to a simple model of the nano-crystal, and it was found that the

following description gave reasonable agreement with the known experimental facts. The nano-crystal

is composed of a CdTe core with an organic shell. The core is modelled as a tetrahedron of Cd and Te

atoms coordinated as in the bulk. The tetrahedron is complete only for a certain sequence of ‘magic’

numbers, for example 54 Cd atoms and 32 Te atoms. The organic part is S-CH2-CH2-OH, and is bound

to the Cd sites on the surface of the core by the S atom. The nano-crystal can thus be visualized as

a large molecule with the chemical formula Cd54Te32(SCH2CH2OH)8−
52

. This model yields an average

coordination number to a Te atom of 3.63 in good agreement with the EXAFS data.

7.3 X-ray dichroism

Linear dichroism is defined as the preferential absorption of one of two orthogonal photon polarization

states. This is a well known phenomenon for wavelengths in the optical part of the spectrum. Perhaps

the most familiar example is Polaroid sheet, which is used to make sunglasses, amongst other things.

Polaroid contains long polymeric molecules aligned along a specific direction. When illuminated with

linearly polarized light it is found that light polarized parallel to the molecules is more strongly absorbed

than light polarized in the orthogonal direction. Polaroid sheet therefore displays linear dichroism by

virtue of a charge anisotropy. Dichroism is also produced whenever there is a magnetic anisotropy in a

material. Of particular interest is the circular dichroism exhibited by ferromagnetic materials which is

the difference in absorption of right and left handed circularly polarized light.

It is now established that materials also exhibit dichroism at X-ray wavelengths [Erskine and Stern,

1975, Thole et al., 1985, van der Laan et al., 1986, Schütz et al., 1987]. In recent years this has been

exploited to develop several very powerful techniques for the study of magnetic materials. In this

section a short introduction is given to one of the most popular of these techniques, X-ray magnetic

circular dichroism (XMCD), which is used to study ferromagnetic materials. As the name suggests,

an XMCD experiment consists of measuring the difference in absorption of left- and right-handed

circularly polarized X-rays. The difference, the magnetic dichroic signal, can then be used to deduce
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Fig. 7.11 Circular polarized X-rays can be depicted as a helical staircase where the steps in the staircase represent the electric

field vector. The two possible polarization states correspond to the staircase turning clockwise along the direction of propagation

k (right circularly polarized, RCP), or anticlockwise (left circularly polarized, LCP).

the magnetization in the material. In comparison with other techniques XMCD has several attractive

features. The first is that XMCD experiments provide information on the spin and orbital magneti-

zations separately: most other methods (bulk magnetization, neutron scattering, etc.) are sensitive to

the total magnetization only. Second, by studying the dichroism around absorption edges, as is in fact

usual practice, the technique is element specific. Lastly, XMCD is very sensitive which allows it to be

used to determine extremely small magnetic moments, and to study small quantities of materials. For

example, one of the most important applications of XMCD is in the study of nano-scale structures, such

as multilayers and thin films, which are the basis of modern data storage devices. In fact the sensitivity

of XMCD is such that magnetic magnetic moments of 0.001 μ
B

per atom can be detected.

The departure point for our discussion of the physics underlying XMCD is a description of a

circularly polarized electromagnetic wave. In a circularly polarized state the electric field of an

electromagnetic wave describes a helical path around the propagation direction, k, and rotates once

in each wavelength. The sense of rotation can either be clockwise or anticlockwise, as indicated

in Fig. 7.11. By definition, a right circularly polarized (RCP) electromagnetic wave has an electric

field which rotates in a clockwise sense as viewed along k, while for a left circularly polarized (LCP)

electromagnetic wave the sense of rotation is anticlockwise. A circularly polarized electromagnetic

wave in a quantum mechanical description is still composed of photons, but in this case the photon is

in an definite eigenstate of the angular momentum operator, Jz, where z is the direction of propagation

k. For RCP (LCP) photons the eigenvalue of Jz is +� (−�). Linearly polarized photons have the

expectation value of 〈Jz〉 = 0, since they are an equally weighted superposition of RCP and LCP

photons. The fact that a circularly polarized photon is in an eigenstate of Jz means that the selection

rules for the conservation of angular momentum in electronic transitions becomes particularly simple.
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The origin of the XMCD signal is easiest to understand by taking an atomic model as the starting

point, and to consider an electronic transition from a core state to a bound one at higher energy. It is

known from atomic physics that the probability of electronic transitions is controlled by selection rules

for the change in the quantum numbers describing the initial and final states. The main mechanism

driving electronic transitions is through the interaction of the electric field of the photon and the electric

dipole moment operator. This operator is the product of charge times distance and is therefore an odd

function. As the parity of the initial and final states is given by their respective orbital quantum numbers

�, a non-vanishing matrix element is obtained only if

Δ� = ±1

This is the dipole transition selection rule2. Since the photon is annihilated in the absorption process,

its angular momentum Jz must be transferred to the sample, so for circularly polarized photons one has

Δm =

⎧⎪⎪⎨⎪⎪⎩+1 , RCP photons

−1 , LCP photons

To illustrate how these selection rules produce a difference in the absorption of left and right

circularly polarized light, consider Fig. 7.12(a). Here the energy level scheme is shown of an atom

containing eight electrons: two in the 1s state, two in the 2s state, and four in the 2p state, leaving two

unoccupied states in the 2p level. A magnetic field has been applied parallel to the direction of photon

propagation k as shown in Fig. 7.12(b); this is the normal XMCD geometry. Through the Zeeman

effect, the field lifts the orbital degeneracy of the 2p state into the separate states |�,m〉 = |1,−1〉,
|1, 0〉 and |1, 1〉. To simplify things as much as possible only the orbital quantum numbers are shown,

and the spin-orbit interaction has been neglected. The origin of XMCD in the selection rules is now

apparent. When illuminated with RCP radiation the transition satisfies both selection rules in making

the transition from the 1s core state |0, 0〉 to the unoccupied state |1, 1〉. In contrast, for LCP photons,

the transition is forbidden as the only allowed final state |1,−1〉 is already occupied3.

The magnetic field in the above example served to provide a splitting of the final state. In a typical

ferromagnetic material the internal field from the magnetic moments is much greater than the applied

field, which then serves merely to define the magnetization direction.

In Fig. 7.13 a schematic is shown of the key components needed to perform an XMCD experiment.

After passing through the sample of thickness d the intensity of the two polarization states, indicated

by + or −, are

I+1 (E) = I+0 (E) e−μ
+(E)d

and

I−1 (E) = I−0 (E) e−μ
−(E)d

2One example of the application of this selection rule is the ratio of intensities of the Kα1 and Kα2 fluorescence lines. The

Kα fluorescence is created by an electron making the transition from the L to K shell. The degeneracy of the L shell is split

into three sub-levels as indicated in Fig. 7.2. The dipole selection rule then limits the allowed transitions to 2p3/2 →1s (Kα1)

and 2p1/2 →1s (Kα2), whereas 2s→1s is forbidden. As the 2p3/2 level has twice as many states as 2p
1/2

, it follows that the Kα1

fluorescence should be twice as large Kα2, in accord with observations.

3It should not be thought that all absorption processes involving LCP are forbidden. For example, a transition from 2s to the

continuum is allowed.
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(b) Normal XMCD geometry
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Fig. 7.12 (a) Simplified energy level diagram of an atom containing eight electrons. The Pauli exclusion principle limits the

occupation of each state to two electrons. Possible transitions are restricted by the dipole selection rule Δ� = ±1, and the selection

rule Δm = +1 for RCP photons, and Δm = −1 for LCP photons. In the latter case the transition cannot proceed because the

m = −1 state is already fully occupied, and hence a large XMCD signal results [After Lovesey and Collins, 1996]. (b) The

normal geometry for XMCD experiments. A circularly photon interacts with an atom which has the magnetic symmetry axis

parallel or antiparallel to k. The XMCD signal is the difference in the absorption when either the handedness of the X-ray or the

direction of the field is reversed.
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XMCD experimental layout

monitor
circularly polarized

Xrays

I0 I1

detectormagnet

Bk

sample

Fig. 7.13 Schematic layout of an XMCD experiment performed in a transmission geometry. The intensity I
0

of the incident
circularly polarized beam is recorded by a monitor. A magnetic field is used to polarize the ferromagnetic sample in a direction

either parallel or antiparallel to the propagation direction of the photon. After passage of the beam through the sample the

intensity I
1

is measured a detector. The XMCD is the difference in absorption on either reversing the handedness of the incident

radiation or by flipping the direction of the magnetic field.

where μ± is the absorption coefficient. The absorption coefficient is deduced from the measured

intensities using

μ+(E) =

(
1

d

)
loge

(
I+0 (E)

I+
1

(E)

)
(7.25)

with a similar expression for the other polarization state. The sensitivity of an XMCD experiment is

greatly enhanced when the photon energy is in the vicinity of an absorption edge. This is particularly

true if the photon produces an electronic excitation to a final state which is strongly magnetically

polarized. For the first series of transition metals this requires that the photon excites an electron to a

3d state, while for the rare earths it should be a 4f state. The edges which couple into these states for

a dipole transition (Δ� = ±1) are L
II (2p

1/2
→ 3d) and LIII (2p

3/2
→ 3d) in the case of the transition

metals, and MIV (3d3/2 → 4f) and MV (3d
5/2

→ 4f) in the case of the rare earths. (The reader is referred

back to Fig. 7.2 for a summary of the nomenclature used to label absorption edges.)

XMCD experiments are performed in one of several different ways depending on both the nature of

the X-ray source, and the energy of the edges under consideration. As explained on page 38 in Chapter

2, circularly polarized radiation can be obtained from a bending magnet by viewing the source out of

the orbital plane. Depending on whether the source is viewed above or below the orbital plane the

electrons will be seen to rotate in a clockwise or anticlockwise sense. This circular rotation imparts an

angular momentum to the photons, which can then be used for XMCD measurements. Alternatively,

helical undulators are now available which produce very intense beams with circular polarization, as

described on page 53. In either case the dichroic signal can either be obtained by reversing the helicity

of the photons, or by reversing the polarization direction of the magnetization. The two are entirely

equivalent, and both are used in practice. At high photon energies XMCD experiments are usually

performed in a transmission geometry, while for soft X-rays the XMCD signal is normally inferred by

recording either the fluorescent radiation or by measuring the photoelectron yield.

One of the reasons that XMCD has become such a popular technique is that it has been established

that the orbital, morb, and spin, mspin, moments can be obtained from sum rules, which relate integrals
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Fig. 7.14 X-ray absorption spectra from iron in the vicinity of the L edges. Circularly polarized light was used, and the spectra

were recorded with the spin of the incident photon parallel (I+, solid curve) and antiparallel (I− , dashed curve) to the spin of

the Fe 3d electrons. (a) Transmission spectra of Fe/parylene thin films, and of the parylene substrate alone, taken at opposite

saturation magnetizations; (b) the X-ray absorption spectra calculated from the transmission data shown in (a); (c) the XMCD
spectra; (d) the summed X-ray absorption spectra. In (c) and (d) the values of the integrals p, q and r which appear in the sum

rules are given by the dashed lines. The dot-dashed line in (d) indicates two steps in the absorption cross-section at the L
III

and

L
II

edges. These were removed from the data before integration of the spectra. (Taken from Chen et al. [1995].)
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of the dichroic signal over the relevant absorption edges directly to morb and mspin [Thole et al., 1992,

Carra et al., 1993]. Following Chen et al. [Chen et al., 1995], we write the sum rules in the case of the

3d metals as

morb[μB/atom] = −
4q(10 − n3d)

r
(7.26)

and

mspin[μB/atom] ≈ −
(6p − 4q)(10 − n3d

)

r
(7.27)

where n
3d

is the number of electrons in the 3d state, and p, q and r are given by

p =

∫
L

III

(μ+ − μ−) dE

q =

∫
LIII+LII

(μ+ − μ−) dE

r =

∫
L

III
+L

II

(μ+ + μ−) dE (7.28)

For the spin sum rule the expression given in Eq. (7.27) is only approximate as we have neglected the

so-called 〈Tz〉 term, which in the case of the 3d metals introduces an error of a few %.

The validity of the sum rules has been established through a number of experiments. In Fig. 7.14

we show the data for iron obtained by Chen et al. [Chen et al., 1995], who have performed one of the

most exacting tests of the sum rules to date. The L edges for the 3d elements fall in the soft part of the

X-ray spectrum. This usually means that the dichroic signal has to be inferred by measuring either the

fluorescent radiation or the photoelectron yield. Both of these approaches introduce systematic errors

which are difficult to correct for properly. By studying iron thin films grown on a parylene substrate,

Chen et al. were able to perform their experiments in a transmission geometry, hence avoiding these

complications. The absorption spectra for the parallel, μ+, and antiparallel, μ−, configurations are

shown in part (b). Strong white lines are evident at the positions of the L
III

and L
II

edges, corresponding

to the transitions (2p3/2 → 3d) and (2p1/2 → 3d), respectively. The dichroism signal is shown in part

(c), which also indicates the values of the integrals p, q and r appearing in the sum rules, Eqs. (7.26)

and (7.27). In part (d) the X-ray absorption spectra for the sum of the μ+ and μ− is plotted. With the

values of p, q and r indicated, and with n3d=6.61 taken from theory, good agreement (within 7%) was

found with other experimental techniques and theory for the values of the spin and orbital moments.

In addition to XMCD, materials may also exhibit X-ray magnetic linear dichroism

(XMLD) [van der Laan et al., 1986]. This is the analogue of the Faraday rotation effect in the X-ray

region. Although in principle it can be used to extract similar information to XMCD it is somewhat

more demanding from an experimental point of view, and has not yet gained widespread use.

It is worthwhile to consider briefly what implications follow from the optical theorem and the

observation of XMCD. The optical theorem states that absorption is proportional to the imaginary

part of the scattering length in the forward direction (Eq. (3.10)). This can of course be turned on

its head, so that a particular type of absorption must imply an imaginary component to the scattering

length: scattering and absorption are two sides of the same coin. As explained in the next chapter,

the Kramers-Kronig relations state that there then must also be a contribution to the real part of the

scattering length. Thus XMCD implies that there exists enhanced or resonant magnetic scattering at

certain absorption edges. This takes us beyond the scope of this book, although a few remarks on

resonant magnetic scattering are made at the end of the next chapter.
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7.4 ARPES

At the most fundamental level, the physical properties of a given material can be understood and

classified according to how electrons propagate within it. Electron band theory shows that electron

motion in crystals is described by a dispersion relation for which the electronic binding energy EB(q)

is a function of the wavevector q of the electron within the material. It is now established that

the most powerful technique for mapping electronic dispersion relations in solids is angle resolved

photoemission spectroscopy (ARPES). In this section we provide a brief description of the ARPES

technique. (The interested reader is referred to the review article by Damascelli et al. [2003] for a

more complete description.) ARPES is included here in spite of the fact that in most (but not all)

implementations it exploits photons with wavelengths (100-600 Å) lying just outside the X-ray band.

Apart from its pivotal role in the determination of electronic structure, the reasons for its inclusion here

are that ARPES beamlines can be found at most synchrotron facilities, and that ARPES is described by

the same theory of the photoelectron absorption cross-section developed in Section 7.1. The essential

idea of ARPES is that by measuring the energy and momentum of photoelectrons propagating freely

in the vacuum outside of a solid it is possible to deduce the dispersion relation EB(q) within the solid,

simply by applying conservation laws to energy and momentum.

A schematic of the energetics of the photoemission process is given in Fig. 7.15. Here both tightly

bound localized atomic states and more loosely bound valence electron band states in a crystal are

represented. The minimum energy required to remove an electron from the uppermost occupied state

to the vacuum is known as the work function, φ, which is characteristic of a particular material4. The

left hand panel in Fig. 7.15(a) illustrates the situation for a metal where the uppermost occupied state is

known as the Fermi level. In general, electrons can be removed from any state below the Fermi energy.

By applying conservation of energy to the process, the kinetic energy Ekin of the photoelectron follows

as

Ekin =
�

2q2
v

2m
= �ω − φ − EB (7.29)

where qv is the wavevector of the liberated electron in vacuum, �ω is the photon energy and EB is the

electron binding energy relative to EF, i.e. EB=EF − Ei (see Fig. 7.15(b)).

Thus armed with a knowledge of �ω and φ, EB can be deduced by measuring Ekin. For the localized

core states, the determination of EB alone is enough to provide a fingerprint of the chemical composition

of the near surface region of the sample. This is the basis of X-ray photoelectron spectroscopy (XPS)

which is widely used in various analytical techniques in surface science. In an ARPES experiment both

the energy and momentum of the photoelectron are determined. The momentum of the photoelectron

in vacuum �qv for convenience can be decomposed into components perpendicular and parallel to the

surface

�q⊥,v =
√

2mEkin cos θ and �q‖,v =
√

2mEkin sin θ (7.30)

(see the coordinate system in Fig. 7.3, but note that the same restriction on the propagation direction

of the photon does not apply here.) Measurement of the kinetic energy of the photoelectron and its

propagation direction therefore is enough to fully specify its kinematics. On modern ARPES beamlines

this is accomplished using an angle-mapping electron lens system combined with a hemispherical

electron energy analyser, as shown schematically in Fig. 7.16(a).

4In the simplest approach it is assumed that the photoemission process is completed before the system relaxes, and by ignoring

many-body interaction effects between the electrons in the solid. These are known as the sudden and independent electron

approximations, respectively.
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Fig. 7.15 (a) Left: schematic energy level diagram of a solid, indicating tightly bound localized atomic core states (EC ) and

more loosely bound valence band states filled up to the Fermi energy EF. The work function φ is the minimum energy required

to remove an electron from the top of the filled band to the vacuum with an energy Ev. The inner potential V0 corresponds to

the binding energy of the bottom of the valence band relative to Ev. Right: the photoemission process in which a photon of

energy �ω removes an electron from a solid. The kinetic energy Ekin of the photoelectron depends on the difference between �ω

and the total binding energy of the state from which the electron is removed. (Adapted from Hüfner [1995].) (b) Photoelectron

emission process for a band electron, showing a direct transition with the momentum supplied by the crytsal. (c) Corresponding
free-electron dispersion relation of the photoelectron. (Adapted from Pilo [1999].)
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Fig. 7.16 (a) Schematic of an ARPES experiment in which electrons are liberated from a solid by the absorption of a photon.

Both the energy and momentum of the photoelectrons are analysed from which it is possible to deduce the electronic dispersion

within the solid by applying conservation laws. (b)-(i) ARPES data on the opening of a charge density wave (CDW) gap in ZrTe3

[Hoesch et al., 2009]. Dispersion maps at three different position along the Brillouin zone boundary from B̄ to D̄ at T = 30 K

(f-h) and T = 200 K (i). (b)-(e) Momentum dependent cuts (MDC) at the Fermi energy EF . In panels (h)-(i) the dispersion is

determined by fits to the MDCs by two Lorentzians of equal width. The intensities of these fits are shown to the right of the panel
together with a Fermi occupation function (dashed line) at the corresponding temperature. The energy of the gap opened by the

CDW is indicated by the arrow in (h). (Image courtesy of Moritz Hoesch.)
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As a conceptual aid, the photoemission process is often broken down into three discrete steps,

although in reality no such division is possible: a photon excites an electron from the initial to the final

state; the electron propagates to the surface; the electron is liberated to the vacuum by passing through

the surface potential. The first of these steps for an electron confined to a band is illustrated in Fig.

7.15(b). The photoemission process in this case can either be described as a direct transition (q f=qi) in

a reduced zone scheme, or as an indirect transition (q f=qi+G) in an extended zone scheme for which

the process is enabled by the crystal providing the momentum �G. Figure 7.15(c) indicates how, after

the third step, the energy of the photoelectron propagating as a free particle in vacuum is related to the

final energy E f of the electron in the solid.

The determination of the electronic dispersion requires knowledge of both EB and q. The former

can be inferred from the measured kinetic energy of the photoelectron (Eq. (7.29)), while the latter

follows by applying conservation of momentum to the ARPES process. The first thing to note in this

context is that since the photon wavelength in a typical ARPES experiment is much longer than the

size of the unit cell, a, the photon momentum is small compared with that carried by band electrons

(of order �(2π/a)) and can be ignored. Secondly, the component of electron momentum parallel to the

surface is rigorously conserved, and hence �q‖ = �q‖,v. Lastly, the existence of the surface potential

means that �q⊥ is not conserved. Further approximations are then required, or an appeal made to the

results of calculations, in order to deduce its value. For example, if the final electronic states in the

solid can be approximated by a free-electron model then

�q⊥ =
√

2m(Ekin cos2 θ + V0) (7.31)

where V0 is the inner potential, which is the energy of the bottom of the valence band relative to the

vacuum (Fig. 7.15(b)).

An example of the type of detailed information on the electronic structure that can be obtained

with modern ARPES techniques is shown in Fig. 7.16(b)-(i) [Yokoya et al., 2005, Hoesch et al., 2009].

The material in this example is ZrTe3 which is of interest because it undergoes a charge density wave

(CDW) transition at TCDW= 63 K, before becoming a superconductor at much lower temperatures below

2 K. CDW transitions are typically found in low-dimensional metallic systems, where a periodic lattice

distortion opens a gap in the electronic structure at the Fermi energy EF thereby reducing the electronic

energy which more than offsets any increase in lattice energy. One of the key challenges in materials

of this type is to understand how the observed phase transitions emerge from the underlying electronic

structure. In Fig. 7.16(f)-(i) a selection of data is shown of the electronic dispersion as a function of qx

in this case for various slices near the Brillouin zone boundary. By comparing data taken above (200

K) and below (30 K) the CDW transition (Fig. 7.16(h)-(i)) is seen to result from the partial opening of

a gap near the D̄ point on the Brillouin zone boundary.

7.5 Further reading

The Analysis of Materials by X-ray Absorption, E.A. Stern, Scientific American 234 No. 4, p. 96

(1976).

The Quantum Theory of Light, R. Loudon (Oxford University Press, 1983).

The Quantum Theory of Radiation, W. Heitler (Dover Publications, 1984).

X-ray Scattering and Absorption by Magnetic Materials, S.W. Lovesey and S.P. Collins (Oxford

University Press, 1996).
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Angle-resolved Photoemission Studies of the Cuprate Superconductors, A. Damascelli, Z. Hus-

sain and Z.-X. Shen, Rev. Mod. Phys. 75 473 (2003).

7.6 Exercises

7.1 Prove Eq. (7.2).

7.2 Calculate the absorption length of a 10 keV X-ray beam in the compound GaAs. (Ga: μ/ρm(10

keV) = 34.21 cm2/g and M=69.723 g/mol; As: μ/ρm(10 keV) = 41.15 cm2/g and M=74.922

g/mol.)

7.3 Revaluate the absorption length in GaAs now for an X-ray energy of 15 keV, and explain why

it is shorter than at 10 keV. (Ga: μ/ρm(15 keV) = 85.37 cm2/g; As: μ/ρm(15 keV) = 98.56

cm2/g)

7.4 Estimate the absorption length of a 10 keV X-ray beam in air at STP (ρm= 1.29 × 10−3 g/cm3)

using the following data: Weight%=76.7, 23.3, 1.29; M= 28, 32, 40 g/mole; ρm=1.3 × 10−3,

1.4 × 10−3, 1.8 × 10−3; f ′′= 0.0224, 0.0414, 0.585, respectively, for N2, O2 and Ar.

7.5 Using the result above, estimate the absorption length of a 1 keV X-ray beam in air at STP.

7.6 Show that

σa [barns/atom] = 1.66 M
[
g/mol

] (
μ

ρm

) [
cm2/g

]
7.7 Prove the relationship stated in Eq. (7.10).

7.8 Show that the energy E at which the cross-sections for absorption and Thomson scattering are

equal is given by

E7/2 = 32

(
12.398

Zπr0

)
E5/2

K

where EK is the energy of the K edge. Here energies are expressed in keV, and r0 is in Å.

Estimate the value of this energy for beryllium (K edge energy equal to 0.11 keV).

7.9 An ion chamber is often used to monitor the intensity of the incident beam. Show that the

transmission T of a chamber of length L holding a gas of pressure P (in atmospheres) at room

temperature can be written as

T = e−Nσa with N = PLNA

24.0 × 103

where N is the number of atoms per unit area, and σA is the absorption cross-section in units

of cm2. What pressure of Ar gas should be used in an ion chamber with L =5 cm if it is to

transmit 99% of the incident beam at a photon energy of 10 keV. (σa(10keV)= 3.71 × 103

barns/atom.)

7.10 Referring to Section 7.2.3 on CdTe, determine the radius of the second neighbour shell of a Te

atom in the bulk, and compare the result to the data in the lower left panel in Fig. 7.9.
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7.11 Moseley’s law relates the energy of fluorescent radiation to the atomic number Z (see Eq.

(1.20)). An analogous relationship can be established for the dependence of absorption edge

energies on Z. In a hydrogen-like ion the electronic binding energy scales like EHZ2 where

EH=13.6 eV. A rough estimate of the binding energy EK of a K electron is therefore EK ≈
EH(Z − 1)2, since the other K-electron screens the nuclear charge of Z by one unit. Defining

the relative error in the estimate of EK as ε(Z), i.e.,

EK = EH(Z − 1)2 [1 + ε(Z)]

(a) find a semi-empirical expression for ε(Z) in the region of 20 < Z < 90 using the following

data: Z= 26, 36, 47, 57, 69, 79; EK [eV]=7111, 14324, 25516, 38924, 59390, 80725.

(b) use the result from (a) to estimate the K edges of Ga (Z = 31) and As (Z = 33) (see

Exercise 7.2).



274 Photoelectric absorption



8
Resonant scattering

In earlier chapters the scattering of X-rays has been discussed in terms of the classical Thomson

scattering from an extended distribution of free electrons. Within this approximation the scattering

length of an atom is written as −r
0

f 0(Q), where f 0(Q) is the atomic form factor, and r
0

is the Thomson

scattering length of a single electron. The atomic form factor is nothing other than the Fourier transform

of the charge distribution, and is hence a real number. We have also seen in Chapter 3 that with

absorption processes included, the atomic scattering length must be generalized to be complex, the

imaginary part being proportional to the absorption cross-section, σa (see Section 3.3 on page 75). It

seems clear therefore that in order to pursue a classical model for the scattering, and at the same time

require a complex scattering amplitude, a more elaborate model than that of a cloud of free electrons

must be invoked. An obvious extension is to allow for the fact that electrons may be bound in atoms.

In a classical picture they will respond to the driving field of the X-ray as damped harmonic oscillators,

with an associated resonant frequency ωs and a damping constant Γ.

As we shall see, the forced oscillator model does indeed give an imaginary component to the atomic

scattering length, and in addition produces a correction to the real part. Altogether the scattering

amplitude of the atom, in units of −r0, can be written in the form

f (Q, ω) = f 0(Q) + f ′(ω) + i f ′′(ω) (8.1)

where f ′ and f ′′ are the real and imaginary parts of the dispersion corrections. It should be clear that the

dispersion corrections are energy (or equivalently frequency) dependent. As they take on their extremal

values at the absorption edges they are also known as the resonant scattering terms. At one time it was

also common to refer to them as the anomalous scattering corrections, but since they are now mostly

understood, it is generally agreed that there is nothing really anomalous about them. The dispersion

corrections are dominated by electrons in the K shell, except perhaps for the heavier elements, where

the L and M shells become important. The electrons in these shells are so spatially confined that the

Q dependence can be neglected, and this explains why it has been omitted in Eq. (8.1). The Thomson

term, f 0(Q), on the other hand, does not depend on the photon energy, but only on the scattering vector

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Fig. 8.1 (a) Double logarithmic plot of the absorption cross-section as a function of photon energy. The absorption cross-section

σa has characteristic edges. In between these edges σa varies approximately as the inverse cube of the energy. (b) The absorption

cross-section for a K electron on a linear scale. (c) The absorption cross-section for an isolated atom may be modelled by a series

of harmonic oscillators described by a smooth weighting function g(ωs). (d) This often is not an adequate approach, as it does

not take into account near-edge structure, such as the white line, or EXAFS oscillations produced by neighbouring atoms.

Q. The Q dependence is due to the fact that the non-resonant scattering is produced by all atomic

electrons, which have a spatial extent of the same order of magnitude as the X-ray wavelength (see the

discussion of the atomic form factor on page 120).

It is important to emphasize that the resonant scattering considered here is elastic. That is, the

scattered X-ray has the same energy as that of the incident one. In a quantum mechanical picture of

resonant scattering the incident photon excites an electron to a higher lying level. The electron then

decays back to the initial state by emitting a photon of the same energy as the incident one. This type

of process, emission via some intermediate state, requires second-order perturbation theory to describe

it, and the resonant behaviour then arises from the energy denominator present in the theory.

At this stage it is worth pausing to anticipate one of the limitations of the single oscillator model.

The imaginary part of the dispersion correction f ′′ represents the dissipation in the system, or in other

words the absorption. Indeed the explicit relationship between f ′′ and σa has already been given in

Eq. (3.10) on page 76. It is known from elementary considerations that the imaginary part of the

response of a forced harmonic oscillator displays a resonance when the driving frequency is close to
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the natural frequency, and that the width of this resonance is small for light damping. It follows that

the single oscillator model can be expected to yield at best a peak in f ′′, and hence one also in σa.

This clearly does not resemble the absorption cross-section of an atom sketched in Fig. 8.1(a). This

has a discontinuous jump at an absorption edge, followed by a ω−3 fall-off, as discussed in Chapter 7

on absorption. In order to model this behaviour, one must instead assume a superposition of oscillators

with relative weights, so-called oscillator strengths, g(ωs), proportional to σa(ω = ωs).

The resonant scattering terms are of particular importance in the crystallography of complex

systems, such as in the determination of the structure of macromolecules. The reason is that in a

diffraction experiment it is the modulus squared of the unit cell structure factor that is measured, and

hence information on the relative phases of the scattering from different atoms in the unit cell is lost.

This is known as the phase problem in crystallography. This makes it difficult, if not impossible, to

solve uniquely the structure of a unit cell that may contain thousands of atoms. It turns out that a

solution to the phase problem may be found by recording data sets at several photon energies around

the absorption edge of one of the atoms (usually a heavy atom) in the structure. The technique that

exploits this approach is known as MAD, for Multi-wavelength Anomalous Diffraction. The success

of this technique depends on an accurate knowledge of the dispersion corrections.

In this chapter we shall explain the basic principles behind how f ′ and f ′′ are determined. In the

following section expressions for the dispersion corrections are derived by treating atomic electrons

as harmonic oscillators. This is obviously a crude approximation, but one that nonetheless allows us

to explore more general aspects of the relationship of f ′ and f ′′ to each other, and to the absorption

cross-section.

8.1 The forced charged oscillator model

Consider a classical model of an electron bound in an atom. Let the electron be subject to the electric

field of an incident X-ray beam, E
in
= x̂ E

0
e−iωt, linearly polarized along the x axis, with amplitude E

0

and frequency ω. The equation of motion of the electron is

ẍ + Γ ẋ + ω2
s x = −

(
e E

0

m

)
e−iωt

The velocity-dependent damping term, Γẋ, represents dissipation of energy from the applied field,

primarily due to re-radiation. The damping constant, Γ, which has the dimension of frequency, is

usually much smaller than the resonant frequency, ωs. By substituting the trial solution x(t) = x0e−iωt

into the above we obtain the following expression for x
0
, the amplitude of the forced oscillation:

x0 = −
(
e E0

m

)
1

(ω2
s − ω2 − iωΓ)

(8.2)

8.1.1 Dispersion corrections: real and imaginary parts

Explicit expressions for the frequency dependence of the dispersion corrections can be obtained using

similar arguments to those given in Section 1.2, where we evaluated the scattering cross-section from

a single, free electron. Here we are dealing with bound electrons; in both cases the derivation hinges

on the strength of the radiated field. For an observer at a distance R and at time t the radiated field is
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proportional to the acceleration ẍ(t − R/c) at the earlier time t′ = t − R/c:

Erad(R, t) =

(
e

4πε
0
Rc2

)
ẍ(t − R/c)

where for convenience we have set the polarization factor ε̂ · ε̂′ = 1. Inserting ẍ(t −
R/c)=−ω2x0e−iωtei (ω/c)R, with x0 given by Eq. (8.2), leads to

Erad(R, t) =
ω2

(ω2
s − ω2 − iωΓ)

(
e2

4πε
0
mc2

)
E0e−iωt

(
ei kR

R

)

or equivalently
Erad(R, t)

Ein

= −r0

ω2

(ω2 − ω2
s + iωΓ)

(
ei kR

R

)
The atomic scattering length, fs, is defined to be the amplitude of the outgoing spherical wave,

(ei kR/R). In units of −r
0

this is

fs =
ω2

(ω2 − ω2
s + iωΓ)

(8.3)

where the subscript ‘s’ is there to remind us that the result is for a single oscillator. For frequencies

large compared to the resonant frequency, ω � ωs, the electron can be considered to be free, and the

Thomson scattering expression is recovered, i.e. fs = 1.

The expression for fs given in Eq. (8.3) can be rearranged in the following way:

fs =
ω2 − ω2

s + iωΓ + ω2
s − iωΓ

(ω2 − ω2
s + iωΓ)

= 1 +
ω2

s − iωΓ

(ω2 − ω2
s + iωΓ)

� 1 +
ω2

s

(ω2 − ω2
s + iωΓ)

(8.4)

where the last line follows from the fact that Γ is usually much less than ωs. By writing it in this

form it is clear that the second term is the dispersion correction to the scattering factor. The dispersion

correction is then written as χ(ω) = f ′s + i f ′′s , so that

χ(ω) = f ′s + i f ′′s =
ω2

s

(ω2 − ω2
s + iωΓ)

(8.5)

with the real part given by

f ′s =
ω2

s (ω2 − ω2
s )

(ω2 − ω2
s)2 + (ωΓ)2

(8.6)

and the imaginary part by

f ′′s = −
ω2

sωΓ

(ω2 − ω2
s)2 + (ωΓ)2

(8.7)

The frequency dependence of the dispersion corrections for the single oscillator model are shown in

Fig. 8.2.
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Fig. 8.2 The real, f ′s , and imaginary, f ′′s , parts of the dispersion corrections as a function of the driving frequency ω relative to

the resonant frequency ωs calculated for a single oscillator model. In the example shown here the damping Γ has been chosen to

be equal to 0.1 ωs.

8.1.2 The total scattering cross-section

Here we recall that the total cross-section for the scattering of an electromagnetic wave by a single, free

electron is

σT =

(
8π

3

)
r2

0

as derived in Section 1.2 on page 5 (see also Appendix B). It follows from Eq. (8.3) that the free

electron result can be generalized to the case of a bound electron by writing

σT =

(
8π

3

)
ω4

(ω2 − ω2
s )2 + (ωΓ)2

r2
0 (8.8)

The frequency dependence of the total scattering cross-section is plotted in Fig. 1.8(a), where it is seen

to exhibit a peak when ω ≈ ωs.

In the limit that ω� ωs and Γ→ 0 the cross-section becomes

σT =

(
8π

3

) (
ω

ωs

)4

r2
0
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This is the limiting form appropriate for the scattering of electromagnetic radiation in the visible part

of the spectrum, and is known as Rayleigh’s law1. For this reason the scattering of X-rays from atoms

is also sometimes referred to as Rayleigh scattering. In the opposite limit, ω � ωs the total scattering

length approaches the value expected for the scattering from a free electron.

8.1.3 Dispersion corrections and the refractive index

It has been emphasized in earlier chapters (see, for example, Section 3.1) how scattering and refraction

are alternative ways to view the same physical phenomenon. The existence of resonant scattering terms

arising from the dispersion corrections can therefore be expected to lead to a frequency dependence of

the refractive index, n.

To understand the form that this takes we consider the response of a medium, described by an

electric susceptibility, χ = (ε/ε0 − 1), to a time dependent electric field E(t). We assume that the effect

of the applied electric field is to induce an electric polarization P(t) of the medium given by

P(t) = ε0χE(t) = (ε − ε0) E(t)

By definition the polarization density P(t) from N electrons contained in a volume V and all displaced

by the amount x(t) is

P(t) =
−Nex(t)

V
≡ −eρx(t)

From Eq. (8.2) this can be rewritten as

P(t) = −eρ

(
− e

m

) E0e−iωt

(ω2
s − ω2 − iωΓ)

which can be rearranged to read

P(t)

E(t)
= ε − ε0 =

(
e2ρ

m

)
1

(ω2
s − ω2 − iωΓ)

(8.9)

The connection to the refractive index can then be made since it is defined by

n2 =
c2

v2
=
ε

ε0

which on making use of Eq. (8.9) yields

n2 = 1 +

(
e2ρ

ε0m

)
1

(ω2
s − ω2 − iωΓ)

(8.10)

The real and imaginary parts of the refractive index are plotted in Fig. 1.8(b) and (c), respectively. The

imaginary part, which represents absorption or dissipation, peaks at ω = ωs. For frequencies less than

1The ω4 dependence of the cross-section explains, amongst other things, why the sky is blue in the middle of the day, and
turns red at sunrise and sunset. Blue light has a shorter wavelength than red, and is more strongly scattered. Light from the sun

is scattered from particles in the atmosphere. During the day the light reaching an observer comes partly from diffuse scattering,

and is hence dominated by the blue part of the spectrum. When the sun is viewed close to the horizon the blue light is scattered

out of the direct sun light, producing a red hue to the sky.
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ωs, n > 1, as is typically found in the optical part of the electromagnetic spectrum. Once the frequency

exceeds ωs, n < 1, as applies in the X-ray regime. In this limit, where ω� ωs � Γ, the expression for

the refractive index simplifies to read

n ≈ 1 − 1

2

e2ρ

ε0mω2
= 1 − 2πρr0

k2

in agreement with Eq. (3.2).

8.1.4 The absorption cross-section

An expression for the frequency dependence of the absorption cross-section can be obtained by

substituting the expression for f ′′s given in Eq. (8.7) into Eq. (3.10). Noting thatω/k = c, the absorption

cross-section for a single oscillator model becomes

σa,s(ω) = 4πr0c
ω2

s Γ

(ω2 − ω2
s )2 + (ωΓ)2

(8.11)

As the damping constant Γ is typically small compared to the resonance frequency ωs, the absorption

cross-section has a sharp peak at ω = ωs, the peak width being Δω
FWHM

≈ Γ. The effective absorption

cross-section may thus be represented by a delta function centred at ω = ωs:

σa,s(ω) = 4πr0c
π

2
δ(ω − ωs) (8.12)

The factor of π
2

ensures that when Eq. (8.12) is integrated over ω it gives the same result as integrating

Eq. (8.11); the region of integration in both cases being from 0 to ∞.

8.2 The atom as an assembly of oscillators

In Fig. 8.1(a) a schematic plot is shown of the atomic X-ray absorption cross-section as a function

of photon energy, where it is seen to exhibit characteristic absorption edges. For example, an X-ray

photon with energy greater than the K edge energy can expel an electron from the K shell of the atom.

This opens up a new channel for absorption, and produces an abrupt increase in the cross-section. In

Chapter 7 on absorption we have shown how the magnitude of the absorption edge may be calculated

from first principles, and also how the absorption between the edges varies approximately as ω−3. The

K absorption edge shown on a linear plot in Fig. 8.1(b) is clearly not the simple line spectrum of a

single oscillator predicted by Eq. (8.12), and instead a more elaborate model is required.

If there was only one discrete quantum state that the electron could be excited into, then the classical

line spectrum of a single oscillator would be an adequate description of the re-radiation. However,

there is a continuum of free states above the absorption edge that the electron can be excited into.

A different characteristic frequency ωs can be associated with each of these states. Explicitly, the

absorption cross-section given in Eq. (8.12) is generalized to

σa(ω) = 2π2 r0 c
∑

s

g(ωs) δ(ω − ωs)
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Fig. 8.3 The Kramers-Kronig relation can be derived from Cauchy’s theorem using the contour integral in the complex plane

shown here.

where g(ωs) is the relative weight of each transition, and where the narrow absorption lines have been

approximated by delta functions (Fig. 8.1(c) and (d)). The expression for the real part of the dispersion

correction, f ′, then also becomes the weighted superposition of single oscillators:

f ′(ω) =
∑

s

g(ωs) f ′s (ωs, ω)

8.3 The Kramers-Kronig relations

When trying to interpret experimental data it is sometimes better not to rely on theoretical values of

the dispersion corrections. The reason is simply that they may not be accurate enough. A more serious

difficulty is that it is not straight forward to allow for effects, such as the existence of a white line,

or EXAFS oscillations in σa which depend on the particular environment of the resonantly scattering

atom (see Fig. 8.1(d)). Instead a method has been developed for obtaining f ′(ω) indirectly from the

absorption cross-section σa(ω). The starting point is to determine σa(ω) experimentally, from which it
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Kramers-Kronig relations

The derivation of the Kramers-Kronig relations is based on Cauchy’s

theorem concerning the contour integral taken in the counter clockwise

direction of an analytic function F(z) in the complex plane, z. If F(z)

has a simple pole at z
0

which is encompassed by the contour, then the

value of the contour integral is equal to 2πi times the residue, which for

a simple pole is equal to (z − z
0
)F(z

0
).

Let us apply this theorem to the function χ(z)/(z − ω) with

χ(z) = ω2
s/(z

2 − ω2
s + izΓ) given by Eq. (8.5). It is straightforward

to show that the poles of χ(z) are in the lower half of the complex plane

at Im(z) = −Γ/2 as shown in Fig. 8.3. We shall then consider the contour

comprising the path with z = ω′ on the real axis from A(→ −∞) to

(ω− ε), then clockwise along the semi-circle c, then again along the real

axis from (ω+ ε) to B(→ +∞), and then finally back to A along the large

semi-circle C.

On the real axis, our function χ(z)/(z − ω) has a pole at ω′ = ω with

a residue equal to χ(ω). As the path did not encompass this pole, the

entire contour integral must be equal to zero. The contribution from the

large semi-circle C is also zero, because for large z our function decays

as |z|−3, whereas the path length is only proportional to |z|. Altogether

then, the sum of the principal integral, P
∫
χ(z)/(z − ω)dω′, and the

integral along c,
∫

c
χ(z)/(z − ω)dω′, is zero.

The clockwise integral along the small half circle is −πi χ(ω), since a

contour integral counter clockwise along the full circle around the pole

P must, according to Cauchy’s theorem, be equal to +2πi χ(ω). Splitting

χ(z) into its real and imaginary components (Eqs. (8.6) and (8.7)) finally

yields

iπ
(
f ′s (ω) + i f ′′s (ω)

)
= P

∫ ∞

−∞

f ′s (ω′) + i f ′′s (ω′)

ω′ − ω dω′

Identifying the real and imaginary parts on the left and right hand sides

leads to the Kramers-Kronig relations for a single oscillator.

Since f ′(ω) and f ′′(ω) are linear superpositions of single oscillators, the

Kramers-Kronig relations also apply to them.
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is possible to obtain f ′′(ω) through2

f ′′(ω) = −
(
ω

4π r
0

c

)
σa(ω) (8.13)

(see Eq. (3.10)). The next step is to exploit the general relationships that exist between f ′ and f ′′.
These are written as

f ′(ω) =
1

π
P

∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)
dω′ =

2

π
P

∫ +∞

0

ω′ f ′′(ω′)

(ω′2 − ω2)
dω′ (8.14)

f ′′(ω) =−1

π
P

∫ +∞

−∞

f ′(ω′)

(ω′ − ω)
dω′ = −2ω

π
P

∫ +∞

0

f ′(ω′)

(ω′2 − ω2)
dω′ (8.15)

and are known as the Kramers-Kronig relations. The meaning of these relations is that if the energy

dependence of the absorption cross-section is known, then f ′′(ω) can be found from Eq. (8.13), and

with this substituted into Eq. (8.14) it is possible to derive the associated real part of the dispersion

correction to the scattering amplitude. This method of obtaining f ′ from σa is illustrated in the next

section by considering the simple model introduced in Chapter 7 for the variation of σa in the vicinity

of a K edge.

The Kramers-Kronig equations relating f ′ to f ′′ require further comment. First, the P in front of

the integral stands for ‘principal value’. This means that the integration over ω′ is actually performed

by integrating from −∞ to (ω − ε) and from (ω + ε) to +∞, and then the limit ε → 0 is taken. Second,

the alternative form of the expressions for f ′(ω) and f ′′(ω) have been obtained by multiplying the

numerator and denominator by (ω′ + ω), and by utilizing the fact that f ′(ω′) is an even function,

and f ′′(ω′) an odd function according to Eq. (8.6) and Eq. (8.7) (see Fig. 8.2). The validity of the

Kramers-Kronig relations for the single oscillator expression given in Eqs. (8.6) and (8.7) may be

established either by direct substitution, or by the more general derivation given in the box on the

preceding page.

8.4 Numerical estimate of f ′

8.4.1 Simple model

In this section an estimate is made of f ′, the real part of the dispersion correction, for photon energies

near the K absorption edge. Equation (8.14) can be used together with (8.13) to relate f ′ to the energy

dependence of the absorption cross-section:

f ′(ω) =
2

π
P

∫ +∞

0

ω′ f ′′(ω′)

(ω′2 − ω2)
dω′

= −2

π

1

(4π r
0

c)
P

∫ +∞

0

ω′2 σa(ω′)

(ω′2 − ω2)
dω′ (8.16)

2 f ′′ is negative since σa is a positive real number. In other texts the sign convention is sometimes such that f ′′ is positive.



8.4 Numerical estimate of f ′ 285

0

0.5

1

0 0.5 1 1.5 2
-8

-6

-4

-2

0

f
′

σ
a
(x

K
)

σ
a
(1

)

xK =
(

�ω
�ωK

)

Fig. 8.4 Estimate of the dispersion corrections around the K edge. Top panel: The imaginary part of the dispersion correction

f ′′ is proportional to the absorption cross-section σa, here assumed to vary as 1/ω3 above the edge. In reality the discontinuity at

xK = 1 is broadened by the lifetime of the excited state in the presence of the hole created in the core electronic state (the so-called

core-hole lifetime, as discussed in the text). The broadening in energy, which is inversely proportional to the core-hole lifetime,

is represented by the parameter η in the text. Bottom panel: Numerical estimate of the real part of the dispersion correction f ′

for two K shell electrons in an atom. The curve for f ′ is given by Eq. (8.18) which has been derived from the Kramers-Kronig

transform of f ′′. The behaviour of f ′ in the vicinity of the resonance at xK = 1 is also determined by core-hole lifetime effects.
Here for illustrative purposes we have set the energy broadening parameter η to be equal to 0.004.

To evaluate this integral the frequency ω is normalized to that of the K edge by introducing x
K
=

ω/ωK as the independent variable, so that the integration variable becomes x=ω′/ω
K

. The energy

dependence of the absorption cross-section was discussed in Chapter 7, and this allows us to write

σa(ω′) in the form

σa

(
ω′

ω
K

)
�

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σa

(
ω′

ω
K

= 1
) (
ω′

ω
K

)−3

for
(
ω′

ω
K

)
≥ 1,

0 for
(
ω′

ω
K

)
< 1

This is plotted in the top panel of Fig. 8.4. With this functional form for σa(ω′) the principal value
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integral given in Eq. (8.16) is

P
∫ ∞

0

ω′2σa(ω′)

(ω′2 − ω2)
dω′ � σa(1) P

∫ ∞

1

x2x−3

(x2 − x2
K

)
ωK dx

= σa(1)ωK P
∫ ∞

1

1

x(x2 − x2
K

)
dx

= σa(1)ωK I(xK)

where the integral I(x
K

) is defined by

I(xK) = P
∫ ∞

1

1

x(x + x
K

)(x − x
K

)
dx (8.17)

Collecting these results together, the expression for the real part of the dispersion correction becomes

f ′(ω) = −2

π

1

(4π r
0

c)
σa(1)ωK I(xK)

= − 1

πλKr
0

σa(1) I(xK)

The magnitude of the discontinuity in the absorption cross-section at the edge, σa(1), can be found

from Eq. (7.17), which for two K electrons reads

σa(1) = 2 ×
(
256π

3e4

)
λKr0

In order to obtain a numerical value for f ′ it is necessary to perform the principal value integration

given in Eq. (8.17). The evaluation of this integral is outlined in the box on the next page. The real part

of the dispersion correction close to the K edge is therefore given by

f ′(ω) = −
(

512

3e4

)
I(xK, η) = −3.13 I(xK, η) =

3.13

2x2
K

� log(1 − z2) (8.18)

with z=x
K
+iη which is plotted in Fig. 8.4. It can be verified that the energy dependence of f ′ has

the correct asymptotic behaviour. From Eq. (8.17), for x
K
→ ∞ the integral I(x

K
→ ∞) → 0, in

accordance with the vanishing dispersion corrections at high photon energies. In the limit x
K
→ 0 we

have I(x
K
→ 0) =

∫ ∞
1

x−3 dx = 1/2, and at low energies f ′(ω � ω
K

) tends to the value −1.565. In

other words the contribution of the two K electrons to the Thomson scattering is partly quenched. Thus

the curve of f ′(xK) versus xK is not expected to be symmetric around xK = 1, as indeed is evident in

Fig. 8.4.

It should be appreciated that our simple model is incapable of capturing the behaviour of the

resonant scattering terms in the vicinity of the discontinuity at xK = 1. The reason is that close to

resonance the excited state, produced by removing an electron from a core state to create a hole, has a

finite lifetime. This leads to a broadening in energy of both f ′ and f ′′ which is inversely proportional

to the core-hole lifetime. The core-hole lifetime itself depends on the detailed nature of the electronic

states, and is thus affected by changes to the atomic environment from chemical bonding, etc. In our

treatment we have represented these important complexities by introducing a broadening parameter η.

In Fig. 8.4 we have chosen η = 0.004. In an experiment one would in addition have to convolute with

the experimental band width.
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Evaluation of the integral I(xK), Eq. (8.17)

First the integrand f (x) is decomposed using the following method:

f (x) =
1

x

1

(x + x
K

)

1

(x − x
K

)

=
1

2x2
K

[(
1

(x + x
K

)
− 1

x

)
+

(
1

(x − x
K

)
− 1

x

)]

which can be verified by inspection. With the integrand decomposed in

this way, we proceed to evaluate the limiting form of integrals of the type

lim
Λ→∞

∫ Λ

1

(
1

(x + x
K

)
− 1

x

)
dx = log

(Λ + x
K

)

(1 + x
K

)
− logΛ

= log(1 + xK/Λ) − log(1 + xK)

−−−−→
Λ→∞

− log(1 + xK)

In other words, ignoring for a moment the prescription ‘principal value’,

the integral in Eq. (8.17) can be evaluated as

2x2
KI(xK) = − log

[
(1 + xK)(1 − xK)

]
= − log(1 − x2

K)

However, the integral I(x
K

) is singular for x
K
=1. This can be circum-

vented by taking the principal value which amounts to adding a small

imaginary number to xK and then taking the real part. Thus we let

z=x
K
+iη from which we obtain

2x2
KI(xK, η) = −� log(1 − z2)

8.4.2 More realistic approaches

It is of course desirable to perform more accurate calculations of the dispersion corrections than

described here. Accurate values of the dispersion corrections are needed in several branches of

crystallography, including, for example, the derivation of electron density maps. In Fig. 8.5 examples

of the energy dependence of the dispersion corrections for the noble gases Ar and Kr are shown. These

have been calculated within the self-consistent Dirac-Hartree-Fock framework [Chantler, 1995]. (See

also Henke et al. [1993].) For Ar the K edge occurs at 3.203 keV. By comparing the curves shown in the

left panel of Fig. 8.5 with Fig. 8.4 it can be seen that our simpler model captures the essential features

of the energy dependence of the dispersion corrections.

In fact, even the most sophisticated theoretical methods are not always adequate. The reason

is that close to an absorption edge the dispersion corrections become sensitive to the details of the

environment of the resonantly scattering atom. For example, it has already been described in Chapter

7 how the absorption cross-section is modified by EXAFS oscillations. Under these circumstances

the best that can be done is to measure the absorption cross-section of the atom of interest in the

particular crystal being investigated over a range of energies around the edge, and then use the general

Kramers-Kronig relation to derive f ′(�ω) from σa(ω). In this way the effects of core-hole lifetime, as
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Fig. 8.5 The calculated energy dependence of the real, f ′ , and imaginary, f ′′, parts of the dispersion corrections (in units of r0)

for Ar and Kr. The calculations were performed within the self-consistent Dirac-Hartree-Fock framework, and are discussed in

the text. The K edge of Ar is evident at 3.203 keV. For Kr the K edge occurs at 14.32 keV, while the L edges are centred around
1.8 keV.

well as experimental resolution, are also included automatically.

In summary, the total atomic scattering amplitude is

f (Q, �ω) = f 0(Q) + f ′(�ω) + i f ′′(�ω)

where f 0(Q) is the form factor for all Z electrons in the atom, K electrons included, and the two extra

terms are the dispersion corrections. As f 0(Q) is the Fourier transform of the electrons density in

the atom, normalized to Z at Q = 0, it is independent of the photon energy. On the other hand, in

our model the dispersion corrections are due to the K electrons only. These are localized close to the

nucleus so that the Fourier transform of their wavefunction is essentially constant. This explains why to

a good approximation the dispersion corrections are independent of the scattering vector Q. For photon

energies below the K edge, the K electrons are so tightly bound that the electromagnetic field of the

incident X-ray cannot set them into full vibrations. In other words the scattering amplitude of the entire

atom is reduced compared to the Thomson value, and it follows that f ′(�ω) must be negative. Since

f (Q) decreases with increasing Q, whereas f ′(�ω) remains constant, the relative contribution of f ′(�ω)

to the total atomic scattering amplitude increases with increasing Q. Thus the relative importance of
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Fig. 8.6 Diffraction by two non-identical atoms. Analysis of the scattered intensities when the scattering vector is parallel to the

direction connecting the large and small atoms, or when it is in the opposite direction, shows that with the dispersion corrections
taken into account it is possible to tell whether the large atom is to the right or left of the smaller one.

the dispersion corrections increases at large scattering angles.

For heavier elements (La and beyond) the L edges fall in the X-ray region. Since the L shell contains

six 2p electrons compared to the two electrons in the K shell, the dispersion corrections are larger by a

factor of approximately three.

8.5 Breakdown of Friedel’s law and Bijvoet pairs

At the start of Chapter 4 it was shown that several important concepts in diffraction from materials

could be understood by considering the interference of waves scattered by a simple two electron system.

Here a similar approach is adopted to explain some of the important consequences that the existence of

dispersion corrections have for diffraction experiments. Instead of two electrons, the scattering system

is formed from two non-identical atoms, as indicated in Fig. 8.6.

The first issue to consider is whether it is possible in a diffraction experiment to determine the

absolute configuration of a system. For the present discussion this boils down to the question of whether

it is possible to deduce which atom sits to left, and which one to the right. One obvious way to attempt

this is to perform two different scattering experiments: one with the wavevector transfer to the right (a),

and one where it is to the left (b). Let the scattering amplitudes be f
1 and f2, as indicated, in units of

the Thomson scattering length −r0. To start with the dispersion corrections are neglected, so that the
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scattering amplitudes are real, positive numbers. Further, let the distance between the two atoms be x,

and the scattering vector component along this direction between the atoms be +Q in case (a) and −Q

in (b). For case (a) the total scattered amplitude is

A(Q) = f1 + f2 ei Qx

and the intensity is

I(Q) = ( f1 + f2ei Qx)( f1 + f2e−i Qx)

= f 2
1 + f 2

2 + 2 f1 f2 cos(Qx) (8.19)

Under the stated assumptions it is obvious that for the wavevector −Q, case (b), the same scattered

intensity is obtained, since cos(Qx) = cos(−Qx). Therefore it is not possible from a diffraction

experiment to determine the absolute position of the atoms. This argument can be generalized by

letting the pair of atoms form the basis in a unit cell of a three-dimensional crystal. In this case the

result is written as

I(Q) = I(−Q) (8.20)

which is known as Friedel’s law.

The assumption that the scattering amplitudes of the individual atoms are real positive numbers is

now lifted; in other words we allow for the effect of the dispersion corrections. The scattering length

of the two atoms is then written in the form

f j = f 0
j + f ′j + i f ′′j j = 1, 2

This can be re-expressed more conveniently as

f j = r j ei φ
j

where r j=| f j|. The amplitude A(Q) in case (a) then becomes

A(Q) = r1 ei φ
1 + r2 eiφ

2 ei Qx

and Eq. (8.19) takes the form

I(Q∗) = | f1|2 + | f2|2 + 2| f1|| f2| cos(Qx + φ2 − φ1)

As in general φ
1
� φ

2
it follows that

I(Q) � I(−Q)

since cos(Qx+φ
2
−φ

1
) � cos(−Qx+φ

2
−φ

1
). In other words Friedel’s law breaks down when dispersion

corrections are taken into account. Thus by measuring whether I(Q) is larger or smaller than I(−Q) it

is possible to determine which atom is to the left and which atom to the right in Fig. 8.6 once the sign

of (φ
2
− φ

1
) can be inferred independently.

It would, however, be wrong to conclude from this that Friedel’s law is never fulfilled. If the unit

cell is centrosymmetric, consisting for example of atoms of type 1 at ±x
1
, and atoms of type 2 at ±x

2
,

then the unit cell structure factor is

F = r1 ei (φ
1
+Qx

1
) + r1 ei (φ

1
−Qx

1
) + r2 ei (φ

2
+Qx

2
) + r2 ei (φ

2
−Qx

2
)

= [r1 2 cos(Qx1)] eiφ
1 + [r2 2 cos(Qx2)] eiφ

2 (8.21)
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Fig. 8.7 Argand diagram for a unit cell structure factor. (a) One atom per unit cell neglecting dispersion corrections. In this

case |F
hkl
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and the intensity is

I(Q) = |F |2

= 4| f1|2 cos2(Qx1)

+ 4| f2|2 cos2(Qx2)

+ 8| f1|| f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1) (8.22)

The intensity in this case is evidently an even function of Q, or in other words Friedel’s law is

reestablished for centrosymmetric structures.

The algebra presented here may appear to be a little complicated. If one is content with a qualitative

discussion, then it often suffices to plot the scattering amplitudes in a so-called Argand diagram. An

Argand diagram is a graphical representation of a complex number, where the real and imaginary parts

are plotted on the x and y axes respectively. We start by assuming that there is one atom in the unit cell,

and by neglecting dispersion corrections. The unit cell structure factor F
hkl

is a complex number, r ei φ1 ,

as shown in Fig. 8.7(a). The operation Q → −Q is equivalent to φ
1
→ −φ

1
. It is obvious from the

figure that the structure factor of the (h, k, l) reflection is found by reflecting Fhkl about the real axis.

The length of |Fhkl | is unaffected by this operation, or in other words |Fhkl |=|Fhkl|. Now imagine that

an atom is added to the structure which has significant dispersion corrections due to the presence of

resonant scattering terms. Let the scattering length of the atom be f + i f ′′, where the real part of the

scattering length is f = f 0 + f ′ and the imaginary part is f ′′. When placed in the unit cell it acquires

a phase factor ei Q·r
2 , or for brevity eiφ

2 . The construction of the total structure factor of the unit cell

is shown in Fig. 8.7(b). Consider first the contribution from f . This is added as a line of length f

originating from A at an angle φ
2

with respect to the real axis. In adding the contribution from i f ′′,
BC, it must be remembered that f ′′ is negative so that BC is turned π/2 in the clockwise direction

with respect to AB. The total structure factor Fhkl is then OC. Fhkl is constructed in a similar manner,

remembering that φ
2
→ −φ

2
. From this geometrical structure it is clear that |F

hkl
| � |Fhkl|.

Example: the absolute polar direction in ZnS

A striking and simple experimental example of these considerations was obtained around 1930 in-

dependently by two groups [Nishikawa and Matsukawa, 1928, Coster et al., 1930]. In a crystal of

ZnS with [111] faces they were able to determine which one of two opposite faces was terminated by

Zn and which one by S. ZnS has the zinc-blende structure as shown in Fig. 5.5: it consists of two

inter-penetrating f cc lattices, with one being occupied by Zn atoms and the other by S atoms. The

displacement of the two lattices is 1
4

of a cube diagonal, so that along a diagonal the structure can be

considered as double layers of Zn and S as depicted in the Fig. 8.8. This structure obviously is not

centro-symmetric, Friedel’s law does not hold, and there will be a difference between the intensities

I(111) and I
(111)

. From this one can conclude which side of the crystal is the Zn side and which one is

terminated by a plane of S atoms. The conclusions from such X-ray experiments have been confirmed

by other means, such as ion scattering.

8.5.1 Bijvoet’s experiment on chiral crystals

Having shown that it is possible to determine the absolute direction in a polar crystal, such as ZnS, by

comparing the intensities of Friedel pairs of reflections, a question naturally arises: is it also possible to

determine the absolute chirality of a molecule? It took approximately 20 years from the experiments on
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Fig. 8.8 The magnitude of intensity in symmetric Bragg reflection from a {111} ZnS crystal depends on whether one reflects

from the ‘Zn’ (top) or the ‘S’ side (bottom). In this way the absolute sense of the polar direction can be determined.

ZnS until around 1950 before Bijvoet and co-workers [Bijvoet et al., 1951] proved that this was indeed

possible. Before describing this important experiment a few comments are appropriate on the concept

chirality. The precise mathematical definition of a chiral structure reads: ‘A structure whose mirror

image cannot be made to coincide with the original structure by rotation and translation is chiral.’ A

familiar example from daily life is your hand: if you make a mirror image of a right-hand glove, say, it

becomes a left-hand glove, and no matter how you try to twist and slide it, it will not fit on your right

hand. Another comprehensible description is the comparison to a screw. A screw is characterized by a

direction (‘into or out of the wall’ ) and a rotation direction. For example if a screw for going ‘in’ has

to be rotated clockwise, it is called a right-hand screw.

The screw picture can be applied to a very common kind of chiral molecule, which is based on

a central carbon atom with four tetrahedrally bound moieties (see Fig. 4.6). The ‘direction’ is then

defined as the bond from the central carbon atom towards the lightest atom, often hydrogen. Figure

8.9(a) shows the tetrahedron looking along that direction, with the light atom and the central carbon

in that particular projection coinciding at the point O. Imagine now that the carbon atom has bonds to

three different atoms: Ol, Om, Os in Fig. 8.9(a)), or equivalently OA, OB and OC in Fig. 4.6. Here l
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Fig. 8.9 The effect of the dispersion corrections on the scattering from chiral molecules. (a) Definition of the chirality for a
molecule of type S and its enantiomer, a R molecule. (b) Argand diagram for the individual atomic scattering lengths of the

small ( fs), medium ( fm), and large atoms ( f
l
). (c) Construction of the total scattering lengths for the R and S molecules. It is

evident that |FS | < |FR |, and hence by measuring Friedel pairs of reflections it is possible to determine the absolute chirality of a

molecule.
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stands for large, m for medium, and s for small. There are then two different possible rotation directions

in going in the sequence l − m − s, namely clockwise or anti-clockwise. The normal convention is to

refer to the first case as an R molecule and the second case as an S molecule.

The issue that Bijvoet considered was whether for a given chirality of molecule (R or S) there would

be any difference in the diffracted intensity when scattering to the right (scattering vector +Q) or to the

left (−Q), or equivalently whether for a given scattering sense (+Q, say) R and S molecules would

produce different intensities. Instead of trying to answer this question by writing down the appropriate

formulae, we shall use a geometrical construction, as it serves to further illustrate the usefulness of

plotting structure factors in an Argand diagram.

The Argand diagrams for the S and R forms of the molecule are plotted in Fig. 8.9. To simplify

things as much as possible, it is assumed that the scattering vector Q is parallel to the direction lm. The

phase factor ei Q·r is then unity for atom s, as Os is perpendicular to Q. With this assumption there

are also symmetric phase factors ei Q·r= e±iφ associated with atoms l and m. The scattering lengths of

the three atoms s, m and l are drawn in part (b). They are all complex, as all atoms are assumed to

have a finite absorption cross-section. Furthermore, to go from the real part to the full complex value,

one has to go clockwise in the complex plane, since − f ′′ is proportional to the absorption cross-section,

which is itself positive (Eq. (3.10)). The angle one has to go clockwise increases with increasing atomic

number Z, as, f 0, the dominant contribution to the real part varies in proportion to Z, but the imaginary

part varies in proportion to Z4. The three complex scattering lengths must therefore appear as shown in

Fig. 8.9(b), i.e. turning clockwise with increasing magnitude in the sequence s − m − l. The absolute

phase of this set of scattering lengths is irrelevant, and fs has been chosen to be parallel to the real axis

in the complex plane. With these pieces in place, we are now ready to construct the Argand diagrams

for the S and R variants of the molecular structure, and these are shown in Fig. 8.9(c).

The scattering length of the ‘s’ atom is represented by the line Os of length | fs|. This line is along

the real axis since the scattering vector Q is perpendicular to Os, and hence the phase factor associated

with the scattering from atom ‘s’ for either variant is unity. Next consider the scattering from the m type

atoms, which has a scattering length of | fm|e−iφm . In case S the appropriate phase factor is Qx > 0=+φ,

as the scalar product of Om and Q is positive. This means that fm must be turned counter-clockwise

by an amount +φ. In the R case, it is the other way around, i.e. fm must be turned clockwise by the

same amount. The resulting scattering amplitude including the contributions from both ‘s’ and ‘m’

type atoms is Om in Fig. 8.9(c). To the point m it is now necessary to add the scattering length of

atom ‘l’ with the appropriate phase factor included. First consider case S. The phase is less than zero

as the scalar product of Ol and Q is negative. This means that the line mFS makes an angle −(φ + φ
l
)

with the real axis. For case R the phase is greater than zero and the line mFR makes an angle (φ − φ
l
)

with the real axis. From this construction it is evident that |FS| < |FR|, or in other words the total

scattering length from the three atoms is therefore different for the R and S molecules. It follows that

by analysing the systematic difference of pairs of reflections it is possible to determine the absolute

chirality of molecules. Pairs of reflections for which Friedel’s law does not hold are known as Bijvoet

pairs.

8.6 The phase problem in crystallography

In this section an outline is given of how the resonant scattering terms may be exploited to solve the

phase problem in crystallography. Although the methods described here could be applied to solve the

structure of any unit cell, they find their greatest utility in the crystallography of macromolecules, such

as proteins, where there may be thousands of atoms in the unit cell.
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The goal of macromolecular crystallography is to determine the structure of large molecules on an

atomic length scale. This is accomplished by diffraction techniques. The amplitude of the diffracted

X-ray beam is proportional to the molecular structure factor:

Fmol(Q) =
∑

j

f j(Q) e−Mj ei Q·r j

=
∑

j

( f 0
j + f ′j + i f ′′j ) e−Mj ei Q·r j

=
∣∣∣Fmol(Q)

∣∣∣ ei φ (8.23)

Here as before Q is the wavevector transfer (also known as the scattering vector), f
j
(Q) is the atomic

form factor, and e−M
j is the Debye-Waller temperature factor for the jth atom at position r j in the

molecule (see Chapter 5). In the last equation above we have emphasized that the molecular structure

factor is a complex number specified by a modulus, |Fmol(Q)|, and a phase, φ. With a knowledge of the

molecular structure factor one can determine the position vectors of the atoms in the molecule, or in

other words the structure of the molecule.

Even in the strongest X-ray beams the diffracting power of a single molecule is insufficient to obtain

a measurable diffraction pattern3. However, when molecules are assembled into an array in a crystal,

the diffracted waves from each molecule will interfere constructively whenever the scattering vector Q

coincides with a reciprocal lattice vector G: in other words the crystal acts as a diffraction amplifier for

certain values of the scattering vector. For simplicity, let us assume a crystal structure with only one

molecule per unit cell. The integrated intensity of a Bragg spot at Q around G is then

I(G) ∝
∣∣∣Fmol(G)

∣∣∣2
so the phase information of the molecular structure factor is lost by measuring the intensity rather than

the amplitude of the diffracted ray. In the case of small molecules, a direct solution of the phase problem

is possible from statistical relations among the intensities. However, these so-called direct methods do

not work for the large number of atoms in a typical macromolecule.

8.6.1 The MAD method

It transpires that one way to solve the phase problem is to utilize the dispersion corrections by measuring

the diffraction pattern at several wavelengths around the absorption edge of one of the types of atom

in the molecule. The method that uses this technique is known as Multi-wavelength Anomalous

Diffraction, or MAD for short [Karle, 1980, Hendrickson, 1985]. One obvious requirement for this

technique is that the resonant scatterer should have its K edge or L edge in the X-ray region, and it thus

needs to be a moderately heavy atom. For example, it could be a metal ion in a metalloprotein, or an

isomorphous replacement atom, such as selenium for sulfur, in a derivative of the native molecule, or

even a heavy rare earth metal replacing a calcium atom. In any eventuality it is likely that the number

of resonantly scattering atoms in the molecule is much smaller than the total number of atoms in the

molecule. Nevertheless, as the scattering power of the resonant atom(s) can be varied in a controlled

manner near an absorption edge, it will modulate the total scattering power of the molecule in such a

way that the phase can be determined. Here it will be shown how this is possible by performing some

relatively simple algebraic manipulations.

3It is hoped that the advent of free-electron sources will enable diffraction experiments on single molecules to be performed.
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The summation in Eq. (8.23) is split into a sum over the resonantly (or anomalously) scattering

atoms, A, and a sum over all the other atoms, B, which produce a non-resonant structure factor F
B
(G).

The sum over the resonant scatterers, assumed to be identical, can be written as∑
j′

(
f 0
A + f ′A + i f ′′A

)
ei G·r j′ =

(
f 0
A + f ′A + i f ′′A

) ∑
j′

ei G·r j′

= f 0
A

∑
j′

ei G·r j′ + ( f ′A + i f ′′A )
∑

j′

ei G·r j′

= FA(G) + FA(G)

⎡⎢⎢⎢⎢⎣ f ′
A
(λ)

f 0
A

+ i
f ′′
A

(λ)

f 0
A

⎤⎥⎥⎥⎥⎦
The second term on the right hand side is the resonant contribution from the atoms A, while the first

term is the non-resonant contribution from the anomalous scatterers A. The latter can be added to

FB(G) to give the total non-resonant structure factor

FT (G) = FA(G) + FB(G)

The molecular structure factor including both the resonant and non-resonant contributions becomes

Fmol(G) =
∣∣∣FT

∣∣∣ ei φ
T +

∣∣∣FA

∣∣∣ ei φ
A

⎡⎢⎢⎢⎢⎣ f ′A(λ)

f 0
A

+ i
f ′′
A

(λ)

f 0
A

⎤⎥⎥⎥⎥⎦
The squared structure factor, determined by the measured intensity, is therefore∣∣∣Fmol(G)

∣∣∣2 = ∣∣∣FT

∣∣∣2
+ a(λ)

∣∣∣FA

∣∣∣2
+ b(λ)

∣∣∣FA

∣∣∣ ∣∣∣FT

∣∣∣ cos(φT − φA)

+ c(λ)
∣∣∣FA

∣∣∣ ∣∣∣FT

∣∣∣ sin(φT − φA)

with

a(λ) =
( f ′

A
)2 + ( f ′′

A
)2

( f 0
A

)2
; b(λ) =

2 f ′
A

f 0
A

; c(λ) =
2 f ′′

A

f 0
A

The three coefficients a(λ), b(λ) and c(λ) are determined in the following way. First, f ′′
A

(λ) is

determined by assuming that it is proportional to the fluorescent yield. This allows f ′
A
(λ) to be computed

from f ′′
A

(λ) using the Kramers-Kronig relations. With this knowledge the three coefficients a(λ), b(λ)

and c(λ) may be evaluated, since the values of f 0
A

(G) are tabulated in many places. There are then three

unknowns in the problem: |F
T
|, |F

A
| and (φ

T
− φ

A
). A complete data set of reflections is then recorded

for at least three wavelengths, allowing the three unknowns to be determined. One can then proceed to

solve the structure. From the values of |F
A
| one can find the positions of the few A atoms in the unit cell

using the direct methods applicable to small molecules. This then allows the phases φ
A

to be calculated.

Since |FT | and (φT − φA) have already been derived, the entire complex molecular structure factor can

then be determined, thus facilitating the solving of the molecular structure.

A schematic representation of the MAD method is given in Fig. 8.10 where the energy dependence

is shown of the structure factor Argand diagrams just below, at, and above an absorption edge. Figure

8.11 illustrates the type of beautiful and complex protein structure that can be solved using the MAD

method.
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Fig. 8.10 A summary of the MAD method where the structure factors are plotted in the complex plane. The atoms in the crystal

are divided into two groups: the A atoms which produce the resonant, or anomalous, scattering, and all the other atoms. The

non-anomalous contribution from the A atoms has a structure factor F
A

(solid line) and phase φ
A

. When the structure factor of

all the other atoms are added to F
A

the total non-resonant scattering structure factor F
T

is obtained (dashed line) with phase φ
T

.

To obtain the molecular scattering factor the anomalous contribution from the A atoms must be added to F
T

. The anomalous

contribution has a component parallel to F
A

of magnitude |F
A
|( f ′/ f 0), and a component perpendicular to F

A
of magnitude

|F
A
|( f ′′/ f 0). (Note that both f ′ and f ′′ are negative.) Here it is illustrated what happens to the resulting molecular structure

factor for three choices of the incident energy. (a) First, the energy of the photon is below the edge, so that f ′′ is zero, and Fmol

is obtained from F
T

by subtracting an amount |F
A
|| f ′/ f 0| from F

T
. (b) Second, the photon energy equals the edge energy, and

the magnitude of both f ′ and f ′′ is a maximum, with the result that Fmol differs considerably from F
T

. (c) Third, the photon

energy is above the edge, and f ′ and f ′′ have a reduced, but still significant effect on Fmol.
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Fig. 8.11 Atomic model of a protein complex determined by the MAD method. The structure is a dimeric complex between
fibroblast growth factor (FGF1) and the ligand-binding portion of the receptor tyrosine kinase FGFR2. Crystals were grown from

the complex between variant proteins in which the methionine residues were all replaced by selenomethionine, and diffraction

data were measured at four wavelengths near the Se K absorption edge. These MAD data were first used to find the positions

of the selenium atoms (five per asymmetric unit) and then to evaluate phases and produce an image used to locate all 6,162

non-hydrogen atoms of the dimeric complex (D.J. Stauber, A.D. DiGabriele, and W.A. Hendrickson, Proc. Natl. Acad. Sci.

USA 97, 49, 2000). The selenium atoms are drawn as yellow spheres, the FGF ligand is represented by inter-atomic covalent

bonds drawn in red, and the receptor is shown with bonds drawn in blue.
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8.7 Quantum mechanical description

In this section a short introduction is given to the subject of the quantum mechanical description

of resonant scattering. The intention here is to explain how resonant scattering fits into the general

framework of the interaction of X-rays with matter that has been described in this book, and to give an

idea of the additional possibilities that resonant scattering offers for studying ordering phenomena in

condensed matter systems.

In a quantum mechanical derivation of the cross-section the quantity of interest is the transition rate

probability, W, which in first-order perturbation theory is given by

W =
2π

�

∣∣∣〈 f | HI |i〉
∣∣∣2 ρ(E f ) (8.24)

where |i〉 and | f 〉 are the initial and final states of the combined system of X-ray photon plus target

electron (Eq. (A.3)). The Hamiltonian, H
I
, describes the interaction between the photon and the

electron. Neglecting the spin of the electron, the interaction Hamiltonian is given by

HI =
eA · p

m
+

e2A2

2m
(8.25)

as described in Appendix C. The vector potential A of the photon field is linear in photon creation and

annihilation operators (Eq. (C.6)). The first contribution to H
I

is linear in A, and it follows that it can

either create or destroy a photon, but not both. It was shown in Chapter 7 that this term gives rise to

photoelectric absorption. The second contribution to H
I

is quadratic in A, and as such can first destroy

and then create a photon, while leaving the electron in the same state, |a〉 say. (Here it is important

to note that |a〉 is the initial state of the electron, while |i〉 is the ground state of the combined system,

photon plus electron.) This term therefore describes elastic Thomson scattering. These first-order

processes are represented schematically in Fig. 8.12(a) and (b).

To obtain resonant scattering terms it is necessary to take the calculation to higher-order. In second-

order perturbation theory the transition probability is given by

W =
2π

�

∣∣∣∣∣∣∣〈 f | HI |i〉 +
∞∑

n=1

〈 f | H
I
|n〉〈n| H

I
|i〉

E
i
− En

∣∣∣∣∣∣∣
2

ρ(E f ) (8.26)

where the sum is over all possible states with energy En. It can now be seen that the A ·p term, which is

linear in creation and annihilation operators, can produce scattering via an intermediate state. Reading

the matrix element that appears in the numerator of the second term from right to left the scattering

process can be described in the following way: the incident photon is first destroyed, and the electron

makes a transition from the ground state, |a〉, to an intermediate state, |n〉. In an elastic scattering

event the electron then makes a transition from |n〉 to |a〉 with the creation of the scattered photon. The

resonant behaviour arises when the denominator tends to zero. This occurs when the total incident

energy, Ei = �ω + Ea, is equal to the energy of the intermediate state En, or in other words when the

energy of the incident photon is equal to the difference in energy between the intermediate and ground

states, �ω = En − Ea. The resonant scattering process is shown schematically in Fig. 8.12(c).

Resonant scattering may be thought of as a probe of the intermediate atomic states. Transitions to

the intermediate states are controlled by two considerations. The Pauli exclusion principle requires that

only unoccupied intermediate states can be accessed, while the usual quantum mechanical selection

rules imply that electric dipole transitions dominate (as described on page 263). Interesting effects
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(a) Photoelectric absorption

(b) Thomson scattering

(c) Resonant scattering
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Fig. 8.12 Summary of the quantum mechanical description of the interaction of a photon with an atomic electron. Photoelectric

absorption (a) and Thomson scattering (b) can be explained by applying first-order perturbation theory to the terms in the

interaction Hamiltonian which depend on A · p and A2 respectively. Resonant scattering (c) is a second-order process and

occurs via an intermediate electronic state. This picture should not be taken too literally, however, as resonant scattering is a

virtual process, and does not occur in the two discrete steps suggested here.
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occur when the nature of the intermediate state is altered when atoms combine to form molecules,

solids, etc. For example, the symmetry of the intermediate state may be lowered if it is involved

in chemical bonding. Under this condition the dispersion corrections become dependent on the

polarization geometry used in the experiment, and forbidden Bragg reflections may become observable

which provide information on the phases of atoms in the unit cell [Templeton and Templeton, 1982].

Alternatively, the intermediate state may be split by magnetic interactions. Resonant scattering then

becomes a probe of the magnetic order in the solid [Namikawa et al., 1985, Blume, 1985, Gibbs et al.,

1988]. These and other aspects of resonant scattering, including inelastic processes, are presently at the

forefront of experimental and theoretical X-ray science, and are still in a phase of rapid development

[see, for example, Lovesey and Collins, 1996].

8.8 Further reading

Resonant Anomalous X-ray Scattering: Theory and Applications, Eds. G. Materlik, C.J. Sparks,

and K. Fischer (Elsevier, 1994).

Determination of Macromolecular Structures from Anomalous Diffraction of Synchrotron Radi-

ation, W.A. Hendrickson, Science 254, 51 (1991).

A Link Between Macroscopic Phenomena and Molecular Chirality: Crystals as Probes for the

Direct Assignment of Absolute Configuration of Chiral Molecules, L. Addadi, Z. Berkovitch-

Yellin, I. Weissbuch, M. Lahav, and L. Leiserowitz, Topics in Stereochemistry 16, 1 (1986).

8.9 Exercises

In all of these exercises the kinematical approximation should be invoked when calculating scattering

intensities.

8.1 Show that

μ
[
μm−1

]
≈ 4.214

⎛⎜⎜⎜⎜⎜⎜⎝ ρm

[
g/cm3

]
M

[
g/mol

] E[keV]

⎞⎟⎟⎟⎟⎟⎟⎠ ∣∣∣ f ′′∣∣∣
8.2 The alloy β−brass contains equal amounts of Cu and Zn. At room temperature the alloy is

ordered and the structure may be thought of as being formed from two inter-penetrating simple

cubic lattices, exclusively populated by either Cu or Zn atoms, respectively, displaced by half

a cube diagonal. At high temperature the alloy is disordered and the Cu and Zn atoms are

randomly distributed across the two lattices forming on average a bcc lattice.

(a) Calculate the structure factor Fhkl of the high-temperature disordered phase in terms of

fCu and fZn, and hence derive the selection rule in terms of the Miller indices (h, k, l) for

allowed Bragg peaks.

(b) Evaluate the structure factor Fhkl of the room temperature structure and investigate its

dependence on (h, k, l).

(c) Neglecting resonant scattering terms, estimate the intensity of the (100) peak relative to

the (200). (You may also ignore the Q dependence of fCu and fZn.)
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8.3 This exercise explores the change in the intensity of the weak (100) Bragg reflection from

β−brass when the photon energy is tuned to be close to the energy of the Cu K edge (8.9789

keV). To simplify the calculation we shall assume that the atomic scattering form factor of Zn

is constant over the energy interval of interest, and is equal to ( f 0 + f ′, f ′′)= (23.223,-0.568).

For energies -100, -1, 1, and 100 eV relative to the Cu K edge energy, the atomic scattering

factors of Cu at the (100) reflection are: (20.580,-0.493); (15.666,-0.483); (15.645,-3.902);

and (20.749,0.545). The lattice parameter of β−brass is 2.96 Å.

(a) Calculate the absorption coefficient for the four energies in the dimensionless form aμ,

where a is the lattice constant.

(b) Assuming that the intensity of the (100) reflection is measured in symmetric Bragg

geometry from an extended face sample, calculate the structure factors and intensity in

arbitrary units for the four photon energies,

(c) Sketch the energy spectrum observed using an energy resolving detector for energies of

-100 and 100 eV relative to the Cu K edge.

8.4 Here we consider the problem of the separation of elastic scattering from X-ray fluorescence

when the photon energy is tuned close to an absorption edge (Excercise 8.3(c)). This separation

requires the use of an energy resolving detector which we assume has an aperture of 1 mm

diameter. Imagine also that in the experiment the incident has a divergence of 1 mrad in both

the vertical and horizontal directions, and is focused to a 0.1×0.1 mm2 spot size on the sample.

(a) What is the maximum distance L that the detector can be placed from the sample for

which it is still possible to integrate fully the (100) Bragg peak?

(b) What is the solid angle of the detector subtended at distance L?

(c) Estimate the ratio of scattered to fluorescent intensities recorded in the detector at a

distance L for an incident photon energy 100 eV above the Cu K edge. Assume that

the fluorescent relative to total yield is approximately 0.3.

8.5 Referring to the ZnS structure in Fig. 8.8, show that the ratio of the structure factors for the

Friedel pair F111 and F1̄1̄1̄ is given by

F111

F1̄1̄1̄

=
( f ′

Zn
+ f ′′

S
) − i( f ′

S
− f ′′

Zn
)

( f ′
S
+ f ′′

Zn
) − i( f ′

Zn
− f ′′

S
)

where the atomic form factors of Zn and S have been written in terms of their real ( f ′) and

imaginary ( f ′′) components.

8.6 Show that the difference ΔI111−1̄1̄1̄ in the intensities of the (111) and (1̄1̄1̄) reflections is

proportional to 4( f ′
Zn

f ′′
S
− f ′′

Zn
f ′
S

).

8.7 Derive expressions for the ratios F222 /F2̄2̄2̄ and F333 /F3̄3̄3̄ , and show that ΔI222−2̄2̄2̄= 0, and

that ΔI333−3̄3̄3̄= −ΔI111−1̄1̄1̄.

8.8 γ−CuI crystallizes in the zinc-blende structure with a lattice parameter of 5.4 Å. The break-

down of Friedel’s law in this compound has been investigated by Bhalla and White [1971]

using an X-ray energy of 5.4147 keV. The ratios of the integrated intensities of the (111), (222),

and (333) type reflections were found to be 1.51, 0.983, and 0.470, respectively. Determine

whether these observations are consistent with theory. (The atomic form factors for copper at

the three types of reflection are (24.25,−1.19), (18.40, −1.19), and (13.42, −1.19); for iodine

they are (39.21,−12.54), (29.90,−12.54), and (23.05,−12.54).)
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9
Imaging

9.1 Introduction

X-ray imaging encompasses many fields of endeavour, although it is sometimes difficult to see what, if

anything, they have in common. That is apart from the obvious desire to produce an image in real space

of an object that would otherwise be invisible to the naked eye. They also all of course make use of the

special properties of X-rays, but do so in a variety of ways. Compared with optical imaging, the two

obvious advantages of X-rays are the fact that they are capable of penetrating through matter, and the

fact that they have a much shorter wavelength and hence the potential to produce images with higher

spatial resolution. The former combined with an imaging contrast due to absorption varying as Z4 (see

Chapter 7) endows X-ray radiography with its usefulness, and explains its wide-spread utility from

medicine to materials science. The wave properties of X-rays on the other hand give rise to a number of

advanced imaging techniques which allow the visualization of structures via their ability to scatter (or

equivalently refract) an X-ray beam. In particular, it should at least seem like a reasonable proposition

that imaging based on analysing the amplitude and phase of X-rays scattered from materials may hold

some advantages over conventional radiography. This indeed proves to be the case as we shall describe

in this chapter. Although X-ray imaging dates back to the discovery of X-rays themselves, many

of these newer imaging techniques rely on the high-brightness and tunability of modern synchrotron

sources and consequently have been developed only in recent years.

To understand the great versatility of X-rays in the context of imaging it is necessary to recall the

nature of their interactions with matter. In the simplest approach X-rays can either be scattered or

absorbed. These effects are enshrined in the expression for the refractive index n=1 − δ + iβ, where δ

is proportional to the scattering length density, and β to the absorption cross-section (see Chapter 3).

As in general the imaging contrast depends on the spatial variation of n within the sample, it can be

made element specific by tuning to an absorption edge around which both δ and β may vary rapidly.

Beyond imaging electronic charge densities with X-rays, it is also possible to exploit the terms in the

interaction Hamiltonian that depend on the spin and orbital magnetization densities, allowing imaging

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Fig. 9.1 Two expressions of progressively higher accuracy can be derived for the phase difference between two spherical waves

originating from points O and P when they arrive at the detection point D. In the far-field limit (also known as the Fraunhofer

region) the two waves are approximated as plane waves, and the phase difference between the waves scattered from O and from

P is Q · r, where Q is the wavevector difference (k − k′). For simplicity, k is taken to be perpendicular to r, so that the phase

difference in the far-field approximation is k′ · r, corresponding to the path length difference OF′ = k̂′ · r, the hat designating a
unit vector. However, the true path length difference is OF. The error in the path length difference, Δ, is OF′-OF which is given

by Δ = R−R cosψ ≈ R(1− (1−ψ2/2)) = a2/(2R). When Δ is comparable to the wavelength λ, the so-called Fresnel region, there

is a significant error in the far-field approximation. If R � a2/λ − the contact regime − an image of the objects is formed only

from differences in absorption between O and P.

of magnetic domains to be performed.

Much of our discussion will turn on the phase of a scattered wave, and it turns out that in order to

understand certain modern imaging methods we need to re-examine two assumptions that have been

used more or less tacitly throughout this book. First, that the irradiated sample volume is smaller than

the coherence volume of the beam, so that amplitudes from different parts of the structure should be

added before squaring to obtain the intensity. Second, that the distance from object to detector is large

enough allowing the diffracted beam to be approximated by a plane wave.

The question of beam coherence will be deferred to later in the chapter. Let us begin instead by

considering the issue of the distance from object to detector, as this proves to be helpful in developing

a general classification of imaging techniques. Figure 9.1 depicts an incident coherent plane wave

interacting with two objects at P and O. The objects might be distinct, or they could be infinitesimal

volumes that one later may integrate up to the full sample size. Each of these objects acts as a point

source for a spherical wave. At the detection point D there will exist a phase difference due to the

different path lengths experienced by the spherical waves. In the far-field limit both spherical waves

can be approximated as plane waves of wavevector k′. As we have discussed at length in previous

chapters, the phase difference in this case is simply Q · r, where Q = k′ − k , and r is the vector

connecting the two points. In Fig. 9.1, k is perpendicular to r, so that the phase difference in the

far-field limit is k′ · r. The far-field limit is also called the Fraunhofer regime. If the detection point is

closer to the scattering objects, a more accurate algorithm is required to calculate the phase difference.

This is because the path length difference is shortened by an amount given by Δ=OF′−OF in Fig. 9.1,
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with Δ ≈ a2/(2R). If Δ is of order λ then the far-field approximation breaks down and we are in the

so-called Fresnel or near-field regime. As the detector is brought closer to the sample it becomes

meaningless to consider the phase difference between the scattered waves. This is the contact regime

where imaging contrast arises from differences in absorption between O and P only.

In terms of the three length scales in the problem a, R and λ, we have

Fraunhofer region : R � a2/λ

Fresnel region : R ≈ a2/λ

Contact region : R � a2/λ

Where the detector is placed clearly has a bearing on the type of image that one may expect to observe.

Imagine, for example, that we wish to image objects separated by a=1 Å with X-rays for which we shall

take λ=1 Å. The ratio a2/λ is then also equal to 1 Å, and for all practical purposes imaging of objects at

atomic resolution is restricted to the far-field limit. Now consider what happens if we set a=1 μm. The

ratio a2/λ becomes equal to 10 mm, allowing the experimenter the possibility of selecting the imaging

mode by the appropriate positioning of the detector. Finally, if a=1 mm, the ratio is equal to 10 km.

Clearly in this case it would be difficult to escape the contact region.

These ideas are put on a more concrete footing in Fig. 9.2 where we show an example of the

scattering calculated from a simple model of discs of diameter 5 μm. As described in the figure caption,

two types of idealised discs are considered: perfect absorbers (red), and perfect phase objects (blue). In

the contact region imaging arises from absorption contrast only. As we move to the near field (Fresnel

regime) and beyond the phase objects become visible. Once the distance from object to detector is

well beyond the Fresnel region, the shape of the diffraction image does not change any more, although

of course it gets weaker in intensity per unit area of detector as the inverse square of the distance and

correspondingly covers more detector area.

9.2 Absorption contrast imaging

9.2.1 Radiography and tomography

The first revolution in medical imaging with X-rays began in Roentgen’s laboratory in 1895. The

second had to wait until the 1970’s when Godfrey Hounsfield invented the technique of Computer

Axial Tomography, now commonly referred to as CAT or CT scanning. The theory underlying CT

had been worked out independently in the previous decade by Allan McLeod Cormack, and in 1979

Hounsfield and Cormack were awarded the Nobel Prize in Medicine1. In common with Roentgen’s

original discovery, the diagnostic benefits of CT scanning were immediately recognized by clinicians

so that by the time Hounsfield and Cormack delivered their Nobel Lectures in 1979 there were already

more than a thousand CT systems operating in hospitals worldwide.

CT scanning overcomes the obvious main limitation of conventional radiography which measures

a projection of any three-dimensional object onto a two-dimensional plane with a concomitant loss of

spatial information. It does this by recording radiographic projections of the object over a wide range

of projection angles, from which it is then possible to reconstruct the full three-dimensional structure.

To understand how this works we consider the absorption of a perfectly narrow X-ray beam in the plane

1Here the reader is referred to the transcripts of Cormack’s and Hounsfield’s Nobel Prize lectures avaialable at

http://nobelprize.org.

http://nobelprize.org
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Fig. 9.2 X-ray radiographs simulated to illustrate the transition from pure absorption contrast (in the contact regime) via edge-

enhancing in-line phase contrast (near field) to stronger phase contrast (Fresnel region) and towards the far-field regime (although

the Fraunhofer image is not given). The phantom object used in this simulation is an ensemble of small disk-like objects, some
of which are taken to be ideal absorbers (red: zero transmission) and the rest ideal phase objects (blue: no absorption, phase shift

π). The diameter of each disk was 5 μm. The gray scale images show simulated radiographs of the phantom, for illumination by

a monochromatic X-ray plane wave of wavelength 1 Å, at different distances between sample and detector (0.1, 1, 10, 100, and

1000 mm). The simulation of the wavefront propagation was performed with the XWFP propagation code (Weitkamp [2004])

using a pixel size of 100 nm. (Image courtesy of Timm Weitkamp.)

of a two-dimensional object as sketched in Fig. 9.3. The beam along the y′ axis views the object at an

angle θ with respect to the fixed x − y coordinate system. For generality we assume that the absorption

coefficient μ(x, y) of the object is non-uniform. The intensity recorded in a detector located behind the

sample is

I = I0 e−
∫
μ(x,y)dy′

which can be rearranged to read

loge

(
I0

I

)
=

∫
μ(x, y)dy′

It is thus possible to deduce the line integral of the absorption coefficient, which defines the function

R(θ, x′ = 0), from the ratio of the intensity of the primary beam to that measured in the detector.

Imagine now that the beam is scanned parallel to x′ for fixed θ. This process will produce an intensity

distribution R(θ, x′) which depends on x′ and the viewing angle θ. The function R(θ, x′) is known as the

Radon transform. The CT scan may therefore be thought of as a series of Radon transforms collected

at a set of viewing angles.
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Fig. 9.3 In a radiography experiment an object is represented by a distribution of absorption coefficients which in two
dimensions is μ(x, y). When a narrow X-ray beam is incident on the object the intensity recorded in the detector is a measure of

the line integral of the absorption coefficient along the propagation direction of the beam. The line integral R(θ, x′) is known as

the Radon transform and is a function of the viewing angle θ and the coordinate x′ perpendicular to the direction along which the

line integral is performed.

The reconstruction of the two-dimensional image of the object from the Radon transform can

be accomplished either algebraically, which is computationally inefficient, or using Fourier analysis

techniques. The latter is the most widely adopted approach. It utilizes the Fourier slice theorem, which

is derived in the next section.

Fourier slice theorem

Consider a general two-dimensional function f (x, y) which is projected, or more precisely integrated,

along the y axis to generate a new function of x only, defined by

p(x) =

∫
f (x, y) dy

The Fourier transform of p(x) is

P(qx) =

∫
p(x) eiqx x dx

It is then natural to ask what relationship does the Fourier transform of the projected function have to

the Fourier transform of the original function f (x, y). Again, by definition, the Fourier transform of

f (x, y) is

F(qx, qy) =

�
f (x, y) ei(qx x+qyy) dxdy

Now we examine what happens when we set qy=0. This defines a slice through F(qx, qy) given by

F(qx, qy = 0) =

∫ [∫
f (x, y) dy

]
eiqx x dx
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Fig. 9.4 Illustration of the Fourier slice theorem. Here the function in real space f (x, y) is taken to be a two-dimensional top

hat function which has a Fourier transform given by F(qx , qy) = [sin(qx x)/(qx x)][sin(qyy)/(qyy)]. When f (x, y) is projected

(integrated) down the y axis this generates a one-dimensional top hat function, p(x), which depends on x only. The Fourier

transform of the projected function p(x) is P(qx)= sin(qx x)/(qx x), which is nothing other than the qy = 0 slice through F(qx , qy).
These considerations can be readily generalized for arbitrary rotation of f (x, y) around the axis perpendicular to the x − y plane.

For example, for a rotation angle of 45◦ , p(x) becomes triangular, with a Fourier transform P(qx)= [sin(qx x)/(qx x)]2 which by

inspection indeed is the equation of a slice taken at 45◦ through F(qx , qy).

The integral in the square brackets can then be readily identified as p(x), allowing us to write

F(qx, qy = 0) =

∫
p(x) eiqx x dx = P(qx)

In other words the Fourier transform of the projection along a particular line of a two-dimensional

function f (x, y) is equal to a slice through the Fourier transform of f (x, y) taken along a line passing

through the origin in the propagation direction. This is known as the Fourier slice theorem, which we

illustrate in Fig. 9.4 for the particular case where f (x, y) is a two-dimensional top hat function.

Implementing the Radon transform and its inverse

From the above considerations, the process of CT scanning can be thought of as comprising three key

steps. The first is the acquisition of the data as a series of radiographs. In mathematical terms, the data

are described as a set of Radon transforms R(θ, x′) taken at different viewing angles. Second, the data

R(θ, x′) are Fourier transformed. From the Fourier slice theorem the Fourier transform of the object

can be constructed. Finally, an inverse Fourier transform is performed to obtain the reconstructed

image of the object. In Fig. 9.5� we show a numerical example of this procedure for a test object,

which in imaging is often referred to as a phantom. In panels (a) and (b) the results of a calculation

of the Radon transform are shown for two particular viewing angles θ. The Radon transform for the

full range of viewing angles is plotted in (d) as a function of the two variables θ and x′, the latter

being the position on the detector. When plotted in this way, strongly absorbing features in the object
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Fig. 9.5 � Numerical example of the reconstruction of a two-dimensional object from its Radon transform. The object is
plotted in (c). In (a) and (b) the Radon transforms have been calculated and are plotted in the right most columns for two

particular choices of viewing angle. (d) The sinogram for θ in the range 0 to 180◦ . (e) The reconstructed image. This numerical

example was computed using the functions radon.m and iradon.m which are part of MATLAB’s image processing toolbox.

produce sinusoidal trajectories in the Radon transform. For this reason the plot is known as a sinogram.

From the Radon transform, the two dimensional Fourier transform of the object is constructed, and the

reconstructed image is then obtained via an inverse Fourier transform. In this simple example there is

excellent correspondence between the original object and the reconstructed image. For the analysis of

real-life data, sophisticated smoothing and filtering algorithms are required to improve the fidelity of

the reconstructed image.

Medical CT scanning

A schematic of the type of CT scanner commonly found in hospitals is shown in Fig. 9.6 along with

a series of images of a patient’s head taken using the CT technique. The patient sits at the centre

of a rotation axis around which the X-ray source and detector rotate. The simplest implementation

of CT to consider (one in fact close to the one originally used by Hounsfield) is where for a fixed

rotation the X-ray source produces a series of parallel X-ray beams. These impinge on the patient at

a particular height, and the Radon transform is recorded on a position sensitive detector. The source-

detector carousel then rotates to its next setting and the process repeated until the whole sinogram is

collected. A two-dimensional image of the internal structure of the irradiated sheet of the body is then
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Fig. 9.6 Schematic of the medical application of CT scanning. The X-ray tube source and detector are configured to sit at

diametrically opposite points on a circle with the patient at its centre. At fixed angle of rotation, the source produces a series
of beams, which are collimated to be parallel. The beams intersect the patient at a particular height (here the upper part of the

cranium) and the intensity of the beams passing through the patient is collected as a function of detector position. The combined

source-detector system then rotates and another measurement performed. Once the full sinogram has been collected it can be

processed as described in the text to produce a two-dimensional map of the absorption coefficient. Examples of CT scans of a

patient’s head taken at three different heights are shown in the bottom three panels. (CT images supplied courtesy of Mikael

Häggström.)

computed using numerical methods similar to those described above. The patient’s height relative to

the X-ray beam is then adjusted, and a new sheet image is obtained, with the process iterated until a

full three-dimensional image is obtained as a stack of two dimensional images.

Many improvements to the basic CT scheme have been introduced in the years since the first scanner

was unveilled in 1972. These include innovations such as high-resolution medical CT scanning capable

of resolving anatomical details down to 0.5 mm, the ability to collect volumetric data on internal organs

in a single rotation, helical CT scanning, etc. A key driver for these developments is to improve the

data quality while minimizing the radiation dose given to the patient2.

2In a medical CT scan the patient receives a radiation dose in the range 1-10 mSv depending on the type of scan. This can be
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The use of CT scanning methods is not restricted to the clinical environment. In fact X-ray

tomography is widely applied to many problems in the materials and biological sciences to the extent

that it has now become an indispensable analytical tool. An example of a three-dimensional CT

reconstruction of a human vetebral bone is shown in Fig. 1.14. Indeed commercial micro-CT scanners

are available, optimized for various types of application, which provide a spatial resolution of better

than 10 μm.

9.2.2 Microscopy

In general terms, X-ray microscopy allows the imaging of structures on length scales that are inter-

mediate between those probed by optical (<1 μm) and electron (∼1 Å) based techniques. Common to

all microscopies is the need for efficient focusing optics3. For X-rays we have seen in Chapter 3 that

focusing can be achieved using either mirrors or lenses, even though the refractive index differs only

slightly from one. An important milestone in the field of X-ray microscopy was the pioneering work

by Patrick Kirkpatrick and Albert Baez in 1948 who demonstrated a system based on a pair of curved

mirrors arranged to focus successively in orthogonal planes (Kirkpatrick and Baez [1948]). The ‘KB’

mirror system as it is commonly known has endured to the present day where it is routinely deployed

in microscopes with a focused beam of around 100×100 nm2 or so.

For lens based systems, focusing of the X-ray beam can be achieved either using a compound

refractive lens (Snigirev et al. [1996]) or a Fresnel zone plate, as discussed on page 101. Due to

absorption, compound refractive lenses work best at photon energies above about 10 keV, where a

lateral resolution below 100 nm can be achieved. The performance of Fresnel zone plates, on the other

hand, is much less compromised by attenuation of the primary beam, and can be designed to work

over a very wide range of photon energies, including into the soft-part of the X-ray spectrum which

facilitates the imaging of biological tissue. In this section we describe the use of Fresnel zone plates

applied to X-ray microscopy.

The principles underlying the operation of the Fresnel zone plate were described on page 106

in terms of refraction. It was remarked that while a kinoform zone plate has certain attractive

characteristics, in many situations a binary approximation is a more practicable solution. In Fig. 9.7(a)

a schematic is shown of how a binary Fresnel zone plate acts on an incident parallel beam to focus it

to a point. The radius rm of a Fresnel zone is defined such that the waves radiated from that zone and

arriving at f have an integrated phase shift of mπ, equivalent to mλ/2, relative to the incident beam.

Waves radiated from successive zones therefore tend to interfere destructively. It follows that a large

increase in the radiation arriving at f can be achieved by introducing material into alternate zones that

either completely absorbs the incident beam, or introduces a phase shift of π. These two alternative

approaches are sometimes referred to as absorption and phase Fresnel zone plates, respectively.

From Fig. 9.7(a), we have

r2
m + f 2 =

(
f +

mλ

2

)2

from which it follows that for X-rays the expression for the radius of the m’th Fresnel zone is

rm ≈
√

mλ f

compared with the dose received in a conventional X-ray radiograph of approximately 0.1 mSv.

3Here we set aside simple microscopies based on pin holes and shadow projection methods. The latter has in fact been of

important historical significance to the field of X-ray microscopy, although in a modern context its capabilities are somewhat

limited. Diffraction based microscopy is an emerging type of ‘lensless’ imaging which will be dealt with later in the chapter.
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Fig. 9.7 (a) Schematic of the focusing of a parallel beam by a Fresnel absorption zone plate which is formed from a series of

concentric rings, with the zones between the rings alternating from being transparent to opaque. The m’th ring has a radius given

by rm ≈
√

mλ f where f is the focal length of the lens. (b) Scanning electron microscope (SEM) images of a Fresnel zone plate

fabricated using electron beam lithography. The white horizontal lines correspond to a length scale of 1 μm in the main image,

and 150 nm in the detail showing the outermost region of the zone plate. The Fresnel zone plate was designed to be used in a

soft X-ray microscope operating at photon energies below 1 keV. The Fresnel zone plate was manufactured from a single crystal
silicon membrane. The outermost zone has a width of ΔrM = 30 nm which determines its spatial resolution. The zone plate has

a diameter of D=4MΔr
M
=100 μm, and a focal length of f=2400 μm for 1 keV photons. (SEM images courtesy of Christian

David and Joan Vila-Comamala.)

A critical parameter of the binary zone plate is the width ΔrM of the outermost zone:

ΔrM =
√
λ f

(√
M −

√
M − 1

)
≈

√
λ f

⎛⎜⎜⎜⎜⎜⎜⎜⎝√M −
√

M

√(
1 − 1

M

)⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≈
√
λ f

2
√

M

In terms of ΔrM , the focal length of the zone plate is given by

f = 4M
(ΔrM)2

λ

and its diameter D is

D = 2rM = 2
√

Mλ f = 2
√

M
√
λ f = 4MΔrM
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Fig. 9.8 Fresnel zone plate based X-ray microscopes. (a) In the scanning transmission X-ray microscope (STXM) a zone plate

is used to focus an incident parallel beam down to a small focal spot and the sample is then rastered through the beam to produce

the image. (b) The full-field transmission X-ray microscope (TXM) utilizes a zone plate as an objective lens which projects a

magnified image on a two-dimensional, pixelated detector. The magnification is determined by the ratio of the objective-detector

to sample-objective distances, a ratio which can exceed 1000. (c) Schematic layout of a TXM. The schematic is based on the

XM-1 soft X-ray microscope at the Advanced Light Source, Lawrence Berkeley National Laboratory, although the basic layout
may be regarded as being generic to modern TXMs, including those designed to operate with hard X-rays. (After an image

created by David Attwood.) The beam emanating from the source is first deflected by a plane mirror, after which it impinges on

a condenser zone plate which fulfills several functions. Not only does it focus the beam down to a spot size on the sample of

several microns, but in combination with a pin hole it serves as a monochromator. The beam transmitted by the sample is then

collected by the micro zone plate which projects it onto a two dimensional, pixelated detector, normally based on charge-coupled

device (CCD) technology.
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Recalling the Rayleigh criterion, which states that the minimum detail resolvable by a perfect lens is

given by

Δx = 1.22
λ f

D
,

we see that for a binary Fresnel zone plate operating at X-ray wavelengths the resolution is given by

Δx = 1.22ΔrM

Therefore the best resolution is achieved by minimizing the width of the outermost zone. In practice,

X-ray zone plates are manufactured using electron beam lithographic techniques. Figure 9.7(b) shows

an example of a binary Fresnel zone plate fabricated in this way which has a 30 nm outermost zone

width. The highest spatial resolution that has been demonstrated to date for a binary Fresnel zone plate

based X-ray microscope is 15 nm (Chao et al. [2005]); it is believed that this can be reduced further

down to the nanometre level.

A binary Fresnel zone plate can also be thought of as a variable period diffraction grating. The

formula derived above refer to the first, positive diffraction order only. Other diffraction orders exist

which have to be taken into account in any practical implementation of a binary zone plate. In Fig.

9.15�we compare the full calculated wavefields produced by binary Fresnel zone plates that either use

absorption or a phase shift of π in alternate zones to produce the focused beam.

Fresnel zone plates can be deployed in X-ray microscopes in two distinct ways. Either the zone

plate can be used to focus a parallel beam down to a small focus, or it can be used to magnify an image.

The former is the basis for the scanning transmission X-ray microscope (STXM). In an STXM the

sample sits on a mechanical stage which allows it to be raster scanned through the focused beam to

build up the image (see Fig. 9.8(a)). The image in an STXM can be formed either from absorption

contrast in a transmission geometry, or more usually by collecting the fluorescence, in which case the

image from an STXM acquires element specificity.

The alternative geometry of using the zone plate as a magnifying lens leads to the transmission

X-ray microscope (TXM) as shown in Fig. 9.8(b). In a TXM a full-field image of the sample is

collected in a single exposure on a two-dimensional, pixelated X-ray detector. The full-field TXM

thus has the advantage of speed over the STXM, and does not require a highly parallel (i.e. transversely

coherent) incident beam. The scanning microscope on the other hand allows element specific imaging

via fluorescence, including the analysis of bulk samples in reflection geometry, and has a field of view

that is less constrained by the optical components.

Example: X-ray transmission microscopy

In Fig. 9.8(c) we show the typical layout of a full-field TXM beamline at a synchrotron source. An

example of data taken with this microscope is shown in Fig. 9.9(a). The image captures the moment of

cell division in the unicellular yeast Schizosaccharomyces pombe. Captured clearly in exquisite detail

is the organisation of organelles, and their duplication on either side of the septum that will eventually

close to produce two daughter cells. Compared with electron microscopy, TXM applied to biological

materials has the advantage that no sectioning is required to expose intra-cellular structure, indeed no

sample preparation is required apart from flash freezing of the sample prior to imaging.

An example of data taken with an STXM is shown in Fig. 9.9(b). The sample in this case is a Co/Pt

multilayer, where the ferromagnetic order of the Co breaks up into a series of worm-like domains in

which the magnetic moments point either ‘up’ or ‘down’. Contrast between these two possible types of

domains is obtained by tuning to the Co L3 edge, and measuring the XMCD signal (see Section 7.3).

Several other techniques exist for visualizing magnetic domains, but STXM combined with XMCD is
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Fig. 9.9 X-ray microscopy images. (a) Transmission X-ray microscopy (TXM) image of cell division in the unicellular yeast

Schizosaccharomyces pombe. The data were collected using the X-ray microscope XM-1, Advanced Light Source (ALS), at a

wavelength of λ=24.0 Å. This wavelength was chosen as it lies in the middle of the ‘water window’ in which the X-ray absorption
by organic material exceeds that of water by approximately an order of magnitude, thereby considerably increasing the imaging

contrast. Left: single radiographic projection image revealing detailed, sub-micron information on the organization of organelles

within the dividing cell. Right: Three-dimensional image of the cell from tomographic reconstruction. Typical exposure time

for a single projection is of order one second, while a tomographic data sets takes three minutes or less. (Image courtesy of

Carolyn Larabell.) (b) Scanning X-ray microscopy image of a Co/Pt multilayer film. The image was recorded on beamline

11, ALS, and reveals a pattern of worm-like magnetic domains. Imaging of the magnetic domains was achieved by utilizing the

contrast provide by XMCD (see Section 7.3). The image shown is the difference between images recorded with opposite photon

helicities with the photon energy tuned to the Co L3 edge (λ=15.9 Å). The black and white areas correspond to domains in which
the magnetic moments point either parallel or anitparallel to the incident beam. The spatial resolution is less than 50 nm. (Image

courtesy of Joachim Stöhr.)
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Fig. 9.10 The energy dependence of the real (δ) and imaginary (β) contributions to the refractive index of water. Although it

might be expected that β of water is low − due to the weakness of the absorption cross-section − it turns out that in the hard part

of the X-ray spectrum, above 5 keV or so, δ exceeds β in all materials.

the only one that combines extremely high spatial resolution (tens of nanometers) along with elemental

specificity.

9.3 Phase contrast imaging

An important family of imaging methods that relies not on the absorption or diffraction of X-rays but

on the fact that they are refracted when they impinge on a material. Although X-rays undergo only

an extremely small angular deviation α when they are refracted, since the amount δ by which the

refractive index n differs from one is tiny, it proves possible to determine α with great accuracy using

a variety of methods, as we shall describe in this section. Imaging methods that exploit the refractive

properties of materials are normally known as phase contrast imaging, as the angular deviation α is

directly proportional to the gradient of the phase φ(r) =k′ · r of the refracted beam. This can be

readily seen by considering the direction of the refracted beam which is specified by the unit vector n̂=

k′/k′=(λ/2π)∇φ(r). It follows that the angular deviation as a function of the coordinates (x, y) in the

plane perpendicular to the direction of propagation of the incident beam is

αx =
λ

2π

∂φ(x, y)

∂x
and αy =

λ

2π

∂φ(x, y)

∂y

Thus by measuring α as a function of (x, y) the gradient of the phase can be determined from which

φ(x, y) can be calculated by integration.

The fact that refraction is capable of providing sufficient imaging contrast for X-rays can be seen by

inspecting Fig. 9.10 where we plot the energy dependence of the real (δ) and imaginary (β) deviations
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Fig. 9.11 Relationship between angular deviation α due to refraction and δ. An X-ray beam incident in the vertical direction

passes through a wedge shaped sample of uniform density (a) or a plate where the density steadily increases towards the right

(b). X-ray wave-crest are indicated by the red lines. The wavelength λ in vacuum increases its magnitude to λ(1 + δ(x)) in the

material at position x, and therefore the wavecrest after passing the material is no longer horizontal.

of n from unity. The data in Fig. 9.10 are for water, for which it is evident that δ greatly exceeds β.

Hence for weakly absorbing biological samples, imaging via refraction would seem to be more efficient

than imaging via absorption. In fact even for heavy elements, δ is usually greater than β for hard X-rays,

indicating that phase contrast imaging is viable in principle for all materials.

In Fig. 9.11 we consider the angular change due to refraction in more detail. To the left is shown a

wedge of material of uniform electron density. The angle of the wedge is denoted ω. At the left corner

of the wedge the wavefront (red) passes from material to vacuum. The wedge width Δx is chosen so

that also at the right corner a wavefront passes into vacuum. (Here we use the term wavefront to denote

a certain phase of the wave, say a wavecrest with the phase being some integer multiple of 2π.) A

little geometry as indicated in the figure shows that the exit ray has changed its direction by an amount

α = δ tanω in passing through the wedge. To the right is shown a piece of material with a constant

thickness, but with varying density as indicated by the shading. As the density increases towards the

right, the wavelength also increases towards the right, and the transmitted ray is refracted by an angle

α = λ∂δ(x)/∂x. Thus in general the angular deviation α is directly related to the spatial derivative of δ,

which is itself proportional to the number density of electrons.

It should be clear that the essential requirement of phase contrast imaging is to determine α

accurately. Most methods of accomplishing this can be classified into one of three categories:

free-space propagation; interferometric based techniques or analyser systems. The last of these methods

uses an analyser crystal (often based on perfect crystal optics as described in Chapter 6) with a small

acceptance angle to select rays refracted at a specified angle. Here we consider first imaging via

free-space propagation, followed by grating interferometry.
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Fig. 9.12 Phase contrast imaging via free-space propagation. A finely focused X-ray beam is incident on a sample which has
negligible absorption. Refraction causes the X-ray beam to be deflected by an angle αx = (λ/2π)∂φ(x, y)/∂x, etc., where φ(x, y)

is the phase of the refracted ray in the plane perpendicular to the direction of the incident beam. The deflection of the refracted

ray recorded on a position sensitive area detector situated a distance L downstream of the sample is αL. In the figure the blue

spot on the area detector corresponds to the direct beam without a sample in place, and the red spot to the deflected beam when

the sample is at a fixed position (x, y) relative to the focal point of the incident beam. Scanning the sample in the (x, y) plane

allows a map of the phase gradient to be built up, from which an image of δ(x, y) can be computed.

9.3.1 Free-space propagation

Perhaps the simplest realization of a phase contrast imaging method is when the refracted ray is allowed

to propagate freely after exiting a thin (negligibly absorbing) sample, as shown schematically in Fig.

9.12. Here an incident beam of X-rays is focused to a small spot so as to impinge on the sample of

interest at a selected point in the (x, y) plane. The beam traverses the sample and is refracted so that it

exits the sample at a small angle α relative to the direction of the incident beam. A two-dimensional,

pixelated detector positioned a distance L downstream from the sample is then used to record the

deflection of the refracted beam. The translation (x, y) of the sample perpendicular to the incident beam

is then adjusted and the experiment repeated so as to determine the deflection as a function of x and y.

As indicated in the figure, the deflection is proportional to α times L, allowing an image of δ(x, y), and

hence the number density of electrons ρ(x, y) to be obtained.

Two examples of phase contrast imaging via free-space propagation are now considered. The first

example is a sample fabricated from an etched Si wafer as shown in cross section in the bottom left

panel of Fig. 9.13(a). The 350 μm thick (100) wafer has been etched in a central region, so as to remove

the part indicated by the hatched region. The etching process is very anisotropic in single crystal Si with

the result that slanted (111)-type faces form at an angle ω fulfilling tanω= d100/d110=
√

2. A Si wafer

etched in this way forms a convenient substrate, since the frame is thick and robust, while the bottom

can be made very thin (typically 10 μm) and therefore, in terms of absorption, essentially transparent to

the X-ray beam. The perfect single crystal structure means that the scattering is predominantly confined

within a Darwin width or so of a reciprocal lattice vector (see Chapter 6), plus much weaker thermal

diffuse scattering. Thus in terms of scattering the substrate may be thought of as being essentially

transparent. In the second example the sample was placed on such a Si wafer, but first let us have a

look at the refractive imaging of the wafer itself. In scanning the sample in the x direction, the narrow
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Fig. 9.13 Phase contrast imaging of a trough etched in a Si wafer as described in the text. (a) The cross section of the wafer

is shown in bottom part of panel (a) in grey outline. The X-ray beam is refracted at a constant angle α after impinging on the

sloped parts of the trough, where the α is proportional to the phase gradient in the scan direction. When the wafer is scanned

along the x direction, (a), the slopes occur between points 1 and 2, and 3 and 4. The false colour scale encodes the average pixel

position at which the beam was recorded in a detector placed 7.15 m downstream from the sample. The pixel size was 172 μm.

When the beam impinges anywhere between point 2 and 3, the beam is detected in pixel position 19.00, c.f. the colour bar scale.

When it traverses the sloped sides of the trough it is refracted so that the beam is detected at a slightly higher or lower average

pixel number depending on the sign of the gradient of the slope. The angle α may be readily evaluated from the geometry, from
which the slope angle ω may be deduced (see Fig. 9.11) (b) Shows the results of scanning the sample in the y direction, where

only the sloped end of the trough is imaged. (Data courtesy of Martin Bech and Torben Jensen.)

X-ray beam traverses the line indicated in white in Fig. 9.13(a). From point 1 towards point 2 the beam

encounters a negative sloping face, as indicated by the colour bar as blue. From point 2 to point 3

the X-ray beam traverses the thin part part of the sample with constant thickness, as indicated by the

colour bar as green. Then from point 3 to point 4 there is an upward sloping face, indicated by red.

In a scan parallel to the white line but on the north-south slope there is no colour change because the

incident beam does not hit the north-south slope in the scanning direction. On the other hand, as shown

in Fig. 9.13(b), in scanning in the north-south direction (the y direction) one indeed images the slope of

that face. So the etched Si wafer represents a very simple example of imaging by observing the slight

change in direction of the incident beam: this is usually not done because one conventionally puts up a

beam stop to block the incident beam.

The second example shown in Fig. 9.14 illustrates the potential of this technique for analysing the

structure of samples of biological importance. The images here are of single red blood cells, contrasting
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(a) (b)

Fig. 9.14 Differential phase contrast images of human red blood cells. (a) A normal, healthy cell imaged on a Si substrate (see

Fig. 9.13). (b) A red blood cell infected by a malaria parasite. The parasite consumes the haemoglobin in the cell, apart from the
central heme molecule which in free form is toxic, but harmless in the crystalline form known as hemozoin. After the parasite

has replicated several times in the cell, the red blood cell ruptures, liberating the parasites and leaving a number of sub-micron

sized hemozoin crystals outside of the cell (upper right). The field of view is approximately 10×10 μm2 in both images. The

images were recorded by stepping the sample in increments of 20 nm, with each image taking around 12 hours to record. (Images

courtesy of Martin Dierolf, Martin Bech and Torben Jensen.)

a healthy cell with one that has been infected by a malaria parasite.

The mathematics of wavefield propagation

Here we outline a mathematical approach to the description of wavefield propagation. Apart from

providing an insight into a more rigorous approach to the problem, direct use will be made of the

results derived here when we consider the grating interferometer.

Consider a monochromatic, plane wave propagating along the z-axis, eikz. The wavefronts are

planes perpendicular to the z-axis with a separation of λ = 2π/k. Let this plane wave pass through a

sample, or an optical element, for example, a grating. The wavefront is then distorted, and the wavefield

in a plane perpendicular to the z-axis, say at z=0, is now a function of x and y, ψ0(x, y). We wish

to evaluate the wavefield at a distance z further downstream by constructing a propagation operator

D̂z defined such that ψz(x, y) = D̂z ψ0(x, y). To accomplish this it is convenient to use the Fourier

transform of ψ0(x, y). For the sake of simplicity of notation, let us keep explicitly the dependence of

the x-coordinate only, when needed we can always revert to the full dependence on (x, y). Then by

definition

ψ0(x) =
1

2π

∫
ψ̃0(kx) e−i kx x dkx (9.1)

This equation states that at z=0 the wavefield is a superposition of plane waves each of which is a
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Fig. 9.15 � Example of the wavefield propagation method (see Eq. (9.2)). The images show the wavefield calculated for Fresnel

zone plates illuminated with incident plane waves from above. The left hand column refers to a Fresnel zone phase plate while the

righthand column refers to a Fresnel zone absorption plate. The parameters used in the calculations are: focal length, f = 10 cm,
X-ray wavelength, λ = 1 Å and lens width equal to 100 μm. Both the convergent m = 3 and the divergent m = −1 wavefields are

evident as weak features.

function of the wavevector k=(kx, kz), with kz =
√

k2 − k2
x. We shall now make the assumption that

kx � k, so that kz ≈ k−k2
x/(2k). Each of the plane waves ψ̃0(kx)e

−i kx x propagates to z by multiplication

with the phase factor ei kzz, or by using the expansion of kz, by the phase factor ei [kz−k2
xz/(2k)] (see

footnote4). We can thus understand the action of the operator as proceeding in a number of steps:

(a) Fourier transform the wavefield at z=0 to obtain a single, plane-wave component

ψ̃0(kx) = FT [
ψ0(x)

]
=

∫
ψ0(x) ei kx x dx

(b) Multiply the plane-wave component ψ̃0(kx) by the propagator ei kze−ik2
xz/(2k) to obtain ψ̃z(kx)

4For a periodic structure like a grating of period p, kx will be an integer multiple of 2π/p. In that case the incident wavefield

is repeated downstream at z values fulfilling (z/2k)(2π/p)2= 2πm where m is an integer, i.e. z = m(2p2/λ), where 2p2/λ is the

so-called Talbot length of the grating. If the grating has a period of 1 μm, and the X-ray wavelength is 1 Å then the Talbot length

is 20 mm.
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(c) Construct the full propagated wave from inverse Fourier transformation as

ψz(x) = FT−1
[
ψ̃z(kx)

]
=

1

2π

∫
ψ̃z(kx) e−i kx x dkx

The propagated wavefield, now back to the full two-dimensional notation, is therefore given

explicitly as

ψz(x, y) = D̂z ψ0(x, y) = ei kz FT−1
[
e−iz(k2

x+k2
y )/(2k) FT [

ψ0(x, y)
]]

Note that the final Fourier transformation, FT−1, involves the product of two functions in k-space,

namely e−iz(k2
x+k2

y )/(2k) and FT [
ψ0(x, y)

]
, so by the convolution theorem the result is the convolution of

the Fourier transform of the two functions in (x, y) space. The latter is in fact the input function ψ0(x, y)

itself. The Fourier transform of the first function, e−iz(k2
x+k2

y )/(2k), can be evaluated as follows. For the

simplified one-dimensional form, we write the Fourier transform as

P(x) =
1

2π

∫ ∞

−∞
e−ik2

x z/(2k) e−i kx x dkx

≡ 1

2π
e−i x2(2k/z)/4

∫ ∞

−∞
e−i(kx/(2k/z)

1
2 +x(2k/z)

1
2 /2)2

dkx

This integral is of the form already considered in the box on page 73, viz.,

I(a) =

∫ ∞

−∞
e−iat2

dt = e−iπ/4

√
π

a

where in the present context a = z/(2k). In two dimensions the Fourier transform may be written as

P(x, y) = P(x) P(y) =
1

4π2

−iπ

a
e−ik(x2+y2)/(2z) = −i

k

2πz
e−ik(x2+y2)/(2z)

Thus the propagated wavefield is found by convolution (designated by the symbol �)

ψz(x, y) = −i
eikz

λz

[
e−ik(x2+y2)/(2z)

]
� ψ0(x, y) (9.2)

An example of a calculation performed using the wavefield propagation method is given in Fig.

9.15�, which compares the wavefields created by two different types of binary Fresnel zone plates

when illuminated by incident plane waves. The fundamental operating principles of binary Fresnel

zone plates and examples of their application in X-ray microscopy are presented in Section 9.2.2. The

left-hand and right-hand columns in Fig. 9.15� refer to phase and absorption zone plates, respectively.

For the phase zone plate the thickness of the phase plate parallel to the optical axis has been chosen

so that the dark blue stripes introduce a phase shift of π relative to the white stripes. The action of

the binary Fresnel zone phase plate on the incident beam can be described in terms of a diffraction

grating: the first, positive diffraction order focuses the beam at the primary focal length, f ; higher

positive orders have focal lengths progressively shorter than f ; negative orders are divergent. Focusing

of the beam is still evident in the case of the absorption zone plate (with the various different diffraction

orders exhibiting qualitatively similar behaviour to the phase zone plate), but in this case the efficiency

is seen to be approximately one half of that of the phase zone plate.
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9.3.2 Grating interferometry

In contrast to the method described in the previous section − scanning phase contrast imaging −
interferometric based imaging systems are capable of producing full-field images. Various types

of interferometer have been developed for phase contrast X-ray imaging. In Fig. 9.16(a) we show the

schematic layout of an X-ray interferometer based on gratings. The basic idea behind its operation

is that it can be configured such that the lateral positions (i.e. perpendicular to the optical axis)

of the interference fringes established behind a grating (G1) are extremely sensitive to any angular

perturbations of the incident X-ray wavefield produced by refraction from a sample placed in front of

G1. Changes in the positions of the fringes are analysed using a second grating (G2) thus providing

information on the phase gradient of the X-ray wavefield. This particular type of interferometer is

often associated with the name of Talbot who in the 19th century made some important observations

on Fresnel diffraction from an optical grating. The first demonstration of a Talbot interferometer for

phase contrast X-ray imaging occurred only in the early years of this century (David et al. [2002],

Momose et al. [2003], Weitkamp et al. [2005]). Here we have chosen to focus on this particular type

of interferometer due to its relative simplicity and mechanical robustness. These attributes open the

benefits of phase contrast imaging to a much wider community of users than has hitherto been the case,

including most especially clinicians.

To understand in detail the operation of the Talbot interferometer we return to consideration of Fig.

9.16(a), where we shall first neglect the perturbation of the wavefront by the sample. An incident plane

wave impinging on a grating (G1) with period p1 is diffracted into distinct orders at different directions,

symmetric around the optical axis. The angular splitting of the first order is ±λ/p1, and is small since

λ ∼ 1 Å and p1 ∼ 1 μm. Hence these beams overlap and interfere. As Talbot discovered, the resulting

lateral pattern is repeated downstream at any multiple of the length dT = 2p2
1/λ which is known as

the Talbot length (see footnote on page 323). The repetition of the pattern over one Talbot length is

illustrated in Fig. 9.16(c) for three different kinds of gratings: an absorption grating (top) and phase shift

gratings (middle and bottom). It turns out that for particular phase shifts, the patterns are reproduced at

rational fractions of the Talbot length. In addition, for a π-phase grating the lateral period becomes half

of the period of the incident grating. For this type of grating the intensity pattern at a particular distance

downstream from grating G1 may be represented schematically by the pink box pattern in the top part

of Fig. 9.17. An absorption grating with period p1/2 placed at this distance will therefore occlude the

intensity completely when the absorption stripes are in registry with the box pattern, or transmit the

intensity completely when in anti-registry, and partly transmit the intensity pattern when in between

these two extremes. The transmission versus the lateral position xg of the absorption grating is thus a

triangular pattern as indicated in the bottom part of Fig. 9.17.

In practice, a position sensitive area detector is placed behind the absorption grating G2, which is

scanned, or sheared, in the direction xg perpendicular to the optical axis over a period p2. (In this type

of shearing interferometer, as it is more generally known, the action of scanning G2 is referred to as

phase scanning, since it provides information on the phase of the fringe pattern.) The spatial resolution

of this type of imaging is ultimately determined by the size of a pixel, which at the time of writing can

be as small as 10 μm.

The triangular variation of intensity with xg drawn in Fig. 9.17 represents the ideal case of a point

source and perfectly sharp gratings. The latter is in fact pretty well achievable in practice since the

gratings are etched out of a Si single crystal (Fig. 9.16(b)). The finite source size on the other hand

limits the transverse coherence length of the incident beam as discussed in Sec. 1.5. Suppose that the

ideal point source, located at a distance R, is displaced a distance D (see Fig. 1.16). The intensity pattern

at the grating G2, a distance d from the first grating, is then translated by d(D/R), which typically at a
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Fig. 9.16 (a) Schematic layout of a Talbot X-ray interferometer. (b) Scanning electron microscopy (SEM) images of gratings

designed for use in a Talbot interferometer. The gratings were fabricated from Silicon using photo-lithography. Silicon is chosen

partly as it can be processed with great accuracy, but also due to its low absorption of hard X-rays. This means that in practice

G1 is a good approximation to a pure phase grating; the absorption grating G2 has to be formed by depositing gold in the grating
channels. (Images courtesy of Franz Pfeiffer.) (c) Calculated wavefields for an ideal absorption grating (top), an ideal π/2 phase

grating (middle), and an ideal π phase grating (bottom). The wavefields were calculated following the formalism outlined on

page 322. (After an image by Weitkamp et al. [2006].)



9.3 Phase contrast imaging 327

Intensity

After
beam splitter

�

After absorption
grating

absorption grating

Detector pixel
xg

xg

Intensity

Fig. 9.17 Illustration of phase stepping of the analyser grating G2 in a Talbot shearing interferometer. The topmost row

represents the box-like intensity pattern at a distance d = p2
1
/8λ downstream of a π phase grating as a function of the lateral

coordinate xg perpendicular to the optical axis. Pink (blue) refers to the wavefield without (with) a sample. The absorption

grating is represented in the middle section by the black (no transmission) and white (no absorption) rectangles. The absorption

grating is drawn at three lateral positions. (It is also translated parallel to the optical axis, but this is for illustrative purposes

only.) The intensity pattern behind the absorption grating but immediately above the detector pixel is triangular in the ideal case,

becoming sinusoidal-like when effects such as grating imperfection, finite coherence length of beam, etc., are included.

synchrotron source is small compared with the period p1. A real source may be thought of as a Gaussian

superposition of point sources, so the ideal box distribution should be folded with a Gaussian of root

mean squared (r.m.s) width σ = d(D/R), D being the r.m.s. size of the source. The ideal triangular

transmission curve is concomitantly modified to a sinusoidal-like curve, represented as a red full line in

Fig. 9.17. In particular the maximum intensity is reduced, and the minimum intensity will exceed the

ideal value of zero. Quantitatively, one introduces the visibility V , defined as

V =
Imax − Imin

Imax + Imin

which obviously is unity for the ideal, triangular shearing pattern. For the Gaussian smearing model

discussed above it is left as an exercise to establish that at small smearing, σ/p1 � 1,

V ≈ 1 − 8
√

2π

σ

p1
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(e) (f) (g)

Fig. 9.18 Examples of images acquired with a Talbot X-ray interferometer. (a)-(d) are of a test sample containing two plastic

containers filled with a liquid (water, left, A) and a powder (sugar, right, B). (a) Conventional X-ray transmission image, (b)

differential phase-contrast image, (d) dark-field image. (c) Intensity oscillations observed in detector pixels corresponding to the

three indicated regions of the sample, extracted from a series of eight images taken at different values of xg (averaged over 50
pixels). (e)-(g) Imaging of a biological (and culinary!) specimen: a chicken wing. (e) X-ray transmission image, (f) dark-field

image and (g) differential phase contrast image. The photon energy was 28 keV, pixel size is 172 micron, and eight images each

of 5 seconds exposure time were used for these results. In (b) the image of the inside of the right-hand container (B) appears as

a random array of black and white pixels. This is due to the fact that the visibility of the intensity oscillations is zero for this part

of the sample, as shown by the red line in (c). (Images courtesy of Martin Bech and Franz Pfeiffer.)

So much for the shearing pattern with no sample in the beam. Now we consider how an absorbing

and refracting sample modifies the shearing pattern, thereby enabling several imaging modes of the

sample. First consider a part of the sample as small as one detector pixel of the detector. This part of

the sample will attenuate the beam by a certain factor due to absorption, and it will refract the incident

beam direction by a certain angle. Consequently the beam profile at the second grating will ideally look
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like the blue boxes in the top part of Fig. 9.17: reduced in height due to absorption, and displaced due

to refraction. Including smearing effects of the box pattern, the shearing pattern will resemble the blue

curve in the bottom of Fig. 9.17. It is fully determined by the intensity obtained in the detector pixel

for just three settings of xg, thus by a simple algorithm (in practice a Fast Fourier Transform analysis)

one obtains the absorption (a), the phase shift (b), and the visibility shift (c) of the pattern. This applies

to every detector pixel, therefore producing three types of image: absorption, phase gradient, and what

has been termed ‘dark field’ from the change in visibility. The last of these refers to optical microscopy.

In the Talbot X-ray interferometer the reduced visibility is due to the third effect the beam undergoes

in passing through the sample, namely scattering which in the shearing pattern shows up as a general

background level. In other words the reduced visibility is a measure of the scattering, just as for dark

field images in optical microscopy.

From what we have discussed so far, it should be clear that the Talbot interferometer has many

features that make it attractive as an X-ray imaging system. The grating length can be made several

inches long, thereby providing a large field of view which is particularly useful in medical applications.

To add to the list of features, we note that it is possible, by taking a series of images as the sample is

rotated, to operate it in a tomographic mode (see Sec. 9.2.1). This allows three-dimensional images

of both the real and imaginary parts of a sample’s refractive index to be determined from a single

data set. Finally, we note that by placing a third grating in front of the sample means that the Talbot

interferometer can even be used to produce high-quality phase contrast images using a conventional

X-ray tube source (Pfeiffer et al. [2006]).

Examples of the three imaging modes recorded with a grating interferometer are shown in Fig. 9.18.

9.4 Coherent diffraction imaging

We have seen in earlier chapters how the diffraction pattern collected in the far-field (Fraunhofer) limit

is directly related to the Fourier transform of a sample’s electron density5. It should be clear that

under normal circumstances it is not possible to recover an image of the electron density by performing

an inverse Fourier transform of the diffraction pattern because of the phase problem. If, however, a

small but finite sized object is illuminated with coherent radiation, then it turns out that the phases

can be retrieved and a real space image of the sample reconstructed by Fourier inversion. This type

of imaging is known as coherent X-ray diffraction imaging (CXDI, or simply CDI). It is an example

of a ‘lensless’ imaging technique with the obvious benefit of obviating the need to fabricate complex

optical elements. Another benefit includes the fact that it has been demonstrated to work on imaging

both crystalline and non-crystalline materials.

Before describing the phase retrieval methods we first consider the effect of illuminating an object

with coherent radiation.

9.4.1 Coherent beams and speckle patterns

When developing the expression for the diffracted intensity from a collection of point-like objects as

I =
∣∣∣∑ j eiQ·r j

∣∣∣2 an implicit assumption is that the incident beam is fully coherent over the volume

spanned by the position of the objects. In the opposite limit, where the beam is fully incoherent, the

scattered intensity from each object has to be first evaluated, with the individual contributions being

5This statement applies strictly only to a non-absorbing, weak phase object. More accurately speaking, the diffraction

amplitude is proportional to the Fourier transform of the complex X-ray optical transmission function of the specimen.
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(a)

(b) (c)

(d) (e)

Fig. 9.19 Coherent X-rays beams and speckle. (a) shows the SAXS pattern calculated for an isolated sphere. (b)-(c) scattering

from seven randomly positioned spheres. In (b) the scattering intensity I has been calculated from the spheres’ centre-of-mass

coordinates r j where for a fully coherent X-ray beam I =
∣∣∣∑ j eiQ·r j

∣∣∣2. A finely textured, but non-random, diffraction pattern

results, known as the speckle pattern. (c) The total diffraction pattern is obtained by multiplying the speckle pattern by the square

of the form factor of a single sphere. (d)-(e) same as (b)-(c) except for a different arrangement of spheres. The simulated data in

panels (a), (c) and (e) are plotted on a logarithmic scale.
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Fig. 9.20 Small angle X-ray scattering data from silica spheres of 500 nm diameter, 2% vol. in a H2O/glycerol mixture. The

measurements were performed at ID10C, ESRF using a coherent beam (10 × 10 μm2) at a photon energy of 8.02 keV. The
images are averages of 200 exposures each of 0.7 s duration, i.e. 140 seconds in total. Insets: circles show the azimuthally

averaged intensity; the red line a single representative radial cut. The CCD detector was 2.41 m downstream from the sample,

with a pixel size of 22.5 micron. Image (a) was recorded above the glass transition where the movement of the silica spheres

produces a dynamic speckle pattern, which when averaged over 200 exposures produces the same result as if the sample had

been illuminated with an incoherent beam. (b) was recorded below the glass transition where the motion of the silica spheres is

frozen, and the speckle pattern is correspondingly static. (Data courtesy of Anders Madsen.)

added to obtain the total intensity. In many experimental situations the coherence of the beam lies

somewhere between the two extremes, and the beam is said to be partially coherent. Experimentally one

can control the degree of transverse coherence by an aperture situated upstream from the sample, and

this has been the approach used to date in coherent X-ray diffraction imaging. While the longitudinal

coherence length can be controlled through the choice of monochromator crystal.

In Fig. 9.19 we depict the small-angle X-ray scattering (SAXS) pattern calculated from spheres

under the condition of coherent illumination. SAXS from a single sphere was discussed at length in

Chapter 4 and is plotted in Fig. 9.19(a) where it is seen to consist of a series of intensity maxima lying

on rings with a spacing inversely proportional to the diameter of the sphere. In Fig. 9.19(b) and (c) we

show the scattering from seven randomly positioned spheres. Frame (b) is calculated purely from the

spheres’ centre-of-mass coordinate (indicated by the crosses), where the diffraction pattern is seen to

consist of a multitude of ‘speckles’. The speckle pattern is not completely random, however, but reflects

the location of the scattering centres. This is clear by comparing (b) with (e) which was calculated for

a different configuration of spheres: the speckle patterns are quite distinct. Panels (c) and (e) show the

full diffraction patterns calculated by multiplying (a) with the appropriate speckle pattern6. These two

sets of patterns can be contrasted with the outcome of illumination with a beam coherent only across

the width of a sphere, where the average pattern in (a) would be observed.

An example of a speckle pattern measured in a SAXS experiment is given in Fig. 9.20. The sample

consisted of a dilute suspension of silica spheres (500 nm diameter) which was illuminated with a

coherent beam created by passing an X-ray from an undulator through a 10 × 10 μm2 aperture. A

6Another example of the convolution theorem.
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Fig. 9.21 Schematic of the iterative, phase retrieval algorithm used to reconstruct real space images from coherent X-ray

diffraction images. In the right hand panel a test object is illuminated by a coherent X-ray beam and the diffracted intensity, I(Q),

is recorded on a position sensitive area detector placed in the far-field. The diffraction pattern in this case is that of a portrait of
W.C. Röntgen.

two-dimensional detector was used to record the diffraction pattern. In both (a) and (b) 200 exposures,

each 0.7 s long, were averaged to produce the detector images. Around room temperature Fig. 9.20(a),

the silica beads diffuse more or less freely through the suspension. Although there might be a speckle

pattern in each exposure, the averaging over different sphere configurations results in a smoothly

varying signal. This is made clear by plotting in the inset a radial cut averaged over all radial directions

(open circles), where the intensity is seen to follow closely the form factor expected for an isolated

sphere. On cooling the sample, Fig. 9.20(b), the suspension and the position of the spheres freeze. The

speckle pattern is now completely static, and is easily visible directly in the detector images and in the

radial cuts, even when averaging over a number of exposures.
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|Amplitude|2 Phase Reconstructed object

(a) Loop 1

From data Random

(b) Loop 10 Partial Retrieval

(c) Loop 374 Full Retrieval

Fig. 9.22 Numerical example of phase retrieval using an iterative, phase retrieval algorithm that proceeds in a number of loops.

The test object and its calculated diffraction pattern are given in Fig. 9.21.
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9.4.2 Phase retrieval via oversampling

Solving the phase problem using coherent X-ray diffraction imaging relies first and foremost on the

concept of oversampling of a diffraction pattern.

We know from the Laue condition that the diffraction pattern from an extended, three-dimensional

crystal consists in essence of a series of delta functions, δ(Q −G), in reciprocal space. It can therefore

be measured, or sampled, when Q = G only. The frequency of the sampling in reciprocal space is |G|
= 2π/d, proportional to the inverse of the unit cell parameter. In signal processing language sampling at

a frequency equal to the inverse system size is associated with the name of Nyquist. When sampled at

the Nyquist frequency, the diffraction pattern thus provides only half of the possible information: |A(Q)|
from the square root of the measured intensity but not the phases. Sayre [Sayre, 1952, 1980] building on

earlier work of Shannon [Shannon, 1949] showed that if a diffraction pattern could be sampled at half

of the Nyquist frequency, in other words oversampled, then it would be possible to retrieve information

on both |A(Q)| and the phases, thus allowing the electron density to be reconstructed. One interpretation

of oversampling for the case of spatially limited objects (i.e. rather than crystals) was provided by Miao

et al. [Miao et al., 1998] who proposed that it corresponds to surrounding the sample with a no-density

region, and that once this exceeds the volume of the region in which the electron density is non-zero

then the phases can be retrieved.

For oversampling to be possible, the diffraction pattern itself must be extended in reciprocal space.

This occurs naturally when dealing with any finite-sized single object, be it non-crystalline or crystalline

in nature. For example, in the case of a single molecule, there are no Bragg peaks and the diffraction

pattern is a continuous function (as discussed in Chapter 4) which can hence be sampled at any Q.

Oversampling of the diffraction pattern from a crystalline material is also possible if the crystal itself

is finite, as a crystal of volume L3 in direct space, produces a diffraction pattern occupying a volume in

reciprocal space proportional to 1/L3 surrounding each Bragg peak.

While oversampling provides for an unambiguous solution (in 2D or 3D, at least), it does not

suggest a practical method of finding it. Formulation as a computer algorithm elegantly incorporates

the oversampling as real-space constraints. Fienup (Fienup [1982]) described the numerical imple-

mentation of phase retrieval algorithms that apply constraints in different ways. Here we outline the

principles and application of one of these, the error-reduction algorithm.

The schematic operation of the error-reducion, iterative algorithm used to retrieve the phases from

an oversampled diffraction pattern is shown in Fig. 9.21. The algorithm works by successively Fourier

transforming the data between real and reciprocal space, with constraints being applied in both spaces at

each step in the iteration. As this requires the processing of numerical data, the appropriate transforms

are most efficiently performed using a fast Fourier transform (FFT) protocol (and its inverse the IFFT).

The effect of applying the constraints is to gradually reduce the errors in the estimate of the phases.

To start the algorithm it is necessary to form an initial guess ρ′(r) of the electron density7. This

is accomplished by performing an inverse Fourier transform of the scattering amplitude estimated

by multiplying the square root of the measured intensities with a random phase factor. Real-space

constraints are then applied to ρ′(r). These might include requiring ρ′(r) to be real and positive (although

not always), and the application of a mask known as the ‘support’ which sets ρ′(r) to be zero outside

of a region estimated from the spatial distribution of the auto-correlation function of the intensity. The

new estimate of electron density ρ(r) is then Fourier transformed to obtain an updated estimate of the

complex scattering amplitude. However, only the phase information is retained, as the reciprocal space

constraint is applied that the modulus of the complex scattering amplitude must be equal to the square

7The prime here does not refer to the derivative; rather it signifies an estimate of the electron density before the application

of real-space costraints.
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root of the measured intensity. The next loop of the iterative procedure then begins and continues until

convergence is achieved.

Various loops in the progressive retrieval of the phases of a test object (Fig. 9.21) are summarized

in the example shown in Fig. 9.22. In the first step, the complex scattering amplitude is estimated by

multiplying the square root of the measured intensity by random phase factors. An inverse Fourier

transform is next applied to yield a reconstructed image of the object’s electron density. Unsurprisingly

at this stage the electron density does not resemble that of the test object. The iterative, phase retrieval

algorithm is then executed. Already by loop 10, the phases have been partly retrieved as is evidenced

by the correspondence between the simulated and measured intensities, and the emergence of structure

in the reconstructed image that begins to resemble the test object. Convergence in this example is

achieved after 374 loops of the algorithm.

Example: Imaging of gold nanoparticles

The first demonstration of coherent X-ray diffraction imaging with the phases retrieved using the

oversampling method was reported by Miao et al. [1999] who employed a SAXS geometry to image a

micron sized non-crystalline sample.

The technique was later extended to crystalline materials by Robinson et al. [2001] who illuminated

a gold, nanometre sized crystal with coherent radiation, and then oversampled the extended diffraction

pattern emanating from a Bragg peak with a finite reciprocal lattice vector, i.e. not in a SAXS geometry.

The application of coherent X-ray diffraction imaging to crystalline materials is illustrated in Fig. 9.23.

In real space a finite size crystal can be described mathematically as the multiplication of a function

representing the infinite direct lattice and a function, S (r), describing the crystal’s morphology. From

the convolution theorem, the scattering is the convolution of the Fourier transform of the infinite direct

lattice, i.e. the reciprocal lattice, and the Fourier transform of S (r). It follows that each reciprocal

lattice point is decorated with a copy of the Fourier transform of S (r), as indicated in Fig. 9.23(a). In

this type of imaging, data are usually collected using a two-dimensional, position-sensitive detector

which is set to record maps of the extended diffraction pattern in the vicinity of a particular Bragg

peak. By taking a series of maps as the sample angle is rotated through the Bragg condition, a three-

dimensional data set may be acquired as shown in Fig. 9.23(c). This data set is then processed using

the phase retrieval algorithm described above to produce the full electron density in three dimensions.

A rendering of the electron density of the nanoparticle is given in Fig. 9.23(b) by showing a number

of two-dimensional slices at different heights. For comparison we also show an image taken with

a conventional scanning electron microscope of a gold nanoparticle from the same batch as the one

analysed with X-rays. This serves to emphasise the fact that coherent X-ray diffraction imaging probes

the electron density throughout the entire volume of the sample, whereas an SEM is mostly sensitive to

its surface.

Like all forms of microscopy, the spatial resolution achievable with coherent X-ray diffraction

imaging is ultimately limited in principle by the wavelength. In practice it is determined by the inverse

of the maximum wavevector transfer at which the diffraction pattern can be sampled8. This in turn

is currently limited by the low coherent flux delivered by synchrotron sources. The image shown in

Fig. 9.23(b) is close to the state of the art at the time of writing, and has a spatial resolution of around

30 nm. It is hoped that the future availability of ultra-brilliant, fully (transversely) coherent radiation

from free-electron lasers, will allow the resolution of coherent X-ray diffraction imaging to approach

the atomic scale.

8Here the wavevector transfer is measured relative relative to the straight through beam or relative to the Bragg peak of

interest, depending on the geometry of the experiment.
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Fig. 9.23 (a) Schematic of a finite sized crystal (left) and its diffraction pattern (right). (c) Coherent X-ray diffraction from a gold

nanoparticle. The data were collected on beamline 34-ID-C at the Advanced Photon Source. The four images were collected in a

rocking scan through the (111) reflection which is identified by the label 0.0◦. Data collected in this way provides information on

the three-dimensional structure of the crystal. The field of view of each diffraction pattern is approximately 0.07× 0.07 Å−2, and

the intensity scale in both (a) and (c) is logarithmic. (b) Colour panels: real space images of the gold nanoparticle reconstructed
from the diffraction data shown in (c). The individual images show planes of electron density, plotted on a false colour scale, at

different heights through the nanoparticle. These are superimposed with a translucent isosurface (3D contour) of the crystal. The

nanoparticle is approximately 180 nm across, and 70 nm deep. Grey-scale panel: SEM image of a gold nanoparticle taken from

the same batch as the one used for the diffraction experiments. (Data courtesy of Ian Robinson.)
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Fig. 9.24 Schematic layout of the experimental setup used to record Fourier transform holograms of magnetic domains on

beamline 56 SGM at BESSY-II. Circularly polarized X-rays from an undulator were monochromated by a grating (not shown)

and impinged on a 20 μm pin hole which served to define the transverse coherence length of the beam. The X-ray beam
illuminated the combined mask and sample which had been grown on a Si3Ni4 membrane. The sample was the same Co/Pt

multilayer for which an STXM image is shown in Fig. 9.9. The diameter of the sample aperture in the Au mask was 1.5 μm and

defined the field of view of the object beam. The reference beam was defined by a conical shaped aperture which tappered down

to 100 nm. The holograms were recorded on a CCD camera with the photon energy tuned to the Co L3 edge (λ=15.9 Å). (Image

courtesy of Joachim Stöhr.)

9.5 Holography

X-ray holography has some features in common with coherent diffraction imaging (CDI): it is also a

lensless imaging technique that requires coherent radiation. The key difference is that in holography

the phase problem is overcome by arranging for a reference beam to interfere with the object beam, i.e.

the beam scattered by the sample. X-ray holography has been developed over many years by various

groups. The first synchrotron radiation study was performed by Aoki and co-workers in 1972 (Aoki

et al. [1972]) who produced holographic images using radiation at λ=6 nm. The great potential of X-ray

holography was demonstrated later in 1992 by McNulty et al. (McNulty et al. [1992]), who working at

λ=3.4 nm imaged gold nanoparticles with a resolution of around 60 nm.

In Fourier transform holography the interference between the reference and object beams is

recorded in the far-field limit. The total scattering amplitude AT (Q) of the Fraunhofer diffraction pattern

is simply the sum of the scattering amplitudes associated with the reference, AR(Q), and object beams,
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Left Circular Polarization

(a) Holograms

(b) Fourier transform reconstruction

Right Circular Polarization

Fig. 9.25 (a) Fourier transform holograms of a Co/Pt multilayer using the setup shown in Fig. 9.24. The holograms were

recorded using photons with either left circular polarization (left panel) or right circular polarization (right panel). Typical
exposure times were 500 seconds. The images correspond to an area in reciprocal space of 0.067×0.067 nm−2. The series of

narrow concentric rings in the centre of the images arise from Fraunhofer diffraction by the sample aperture. A broader ring with

a radius of approximately 0.036 nm−1 is due to small angle scattering from the domains in the Co/Pt multilayer and is broken

up into a series of speckles. (b) Fast Fourier transforms of the holograms shown in (a) where real space images of the magnetic

domain pattern in the Co/Pt multilayer appear symmetrically around the central region. Close inspection of the domain images

obtained with RCP and LCP reveals that the images are negatives of each other: dark becomes light, and light becomes dark.

The reason is that X-ray resonant magnetic scattering measures a projection of the magnetization, which is reversed for RCP and

LCP. (Images courtesy of Joachim Stöhr.)

AO(Q). It follows that the intensity recorded in the hologram is

|A(Q)T |2 = |A(Q)R + A(Q)O|2

= |A(Q)R|2 + |A(Q)O|2 + A(Q)RA(Q)∗O + A(Q)OA(Q)∗R

Thus in addition to encoding information on the contributions from the object and reference beams
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(a) Reconstruction from holography (b) STXM

(c) Comparison of line profiles

Fig. 9.26 Comparison of images of the magnetic domain structure in a Co/Pt multilayer obtained with Fourier transform
holography (a) and STXM (b). (c) Shows the results of taking a line cut through the images and demonstrates that the two

techniques have comparable spatial resolution. (Images courtesy of Joachim Stöhr.)

separately (the first two ‘auto-correlation’ terms in the above), the hologram also records information

on the cross correlation between the reference and object beams and its conjugate (the last two terms).

To illustrate how an image of the real space structure is obtained in practice from a recorded

hologram, we consider the example shown in Fig. 9.24 due to Eisebitt et al. [2004]. In this example the

sample is a Co/Pt magnetic multilayer. It is in fact the same sample for which the image recorded with

STXM is shown in Fig. 9.9(b). Contrast with sensitivity to magnetism for the STXM image is provided

by XMCD. As noted in Section 7.3, resonant absorption implies resonant scattering (the two sides of the

same coin), and the hologram in the present example is formed from resonant scattering which includes

a magnetic component. To isolate the purely magnetic scattering, holograms are recorded with both

right-circularly and left-circularly polarized light as shown in Fig. 9.25(a), and then their difference
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taken. As the reference beam is provided by a hole drilled through the sample, it does not experience a

phase shift and hence A(Q)R is real. The fact that it is also offset laterally from the object beam has the

consequence that the cross-correlation terms A(Q)RA(Q)∗
O

and A(Q)OA(Q)R produce features that are

spatially separated from the auto-correlation terms when the hologram is Fourier transformed into real

space. This is clear from inspection of Fig. 9.25(b) which shows the Fast Fourier Transforms (FFT) of

the images shown in Fig. 9.25(a). The bright central region of the FFT arises from the auto-correlation

terms, while the twin diagonal features arise from the cross terms. Finally, since the reference hole is

much smaller than the object hole, the former may be approximated by a delta function, which means

that to a good approximation the twin diagonal features then represent real space images of the magnetic

scattering amplitude9.

In Fig. 9.26 we show a comparison of the magnetic domain patterns of the Co/Pt multilayer

obtained with STXM and Fourier transform holography, where it is apparent that the data from the two

techniques are in good agreement with comparable resolution. In both cases the ultimate resolution is

of course determined by the wavelength of the X-rays, but in practice for STXM it is limited by the

outer zone width of the Fresnel zone plate, while for Fourier transform holography it is the finite size

of the reference beam.

9.6 Further reading

Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications, David Attwood

(Cambridge University Press, 2007).

Optics, Eugene Hecht (Addison Wesley, 2001).

Coherent X-ray Optics, David Paganin (Oxford University Press, 2006).

Magnetism: From Fundamentals to Nanoscale Dynamics, J. Stöhr and H.C. Siegmann (Springer,

2006).

9.7 Exercises

9.1 In conventional projection radiography the subject contrast is defined by C = (IA − IB)/IA

where A and B refer to two parallel paths that the X-ray takes through the patient, and where

IA > IB. Calculate C for the situation where path A is of length z1 with absorption coefficient

μ1, and path B comprises first a length of (z1 − z2) with absorption coefficient μ1 followed by

a length z2 with absorption coefficient μ2.

9.2 The human femur has a diameter of around 3 cm. Calculate the energy dependence of the

contrast C expected in a projection radiograph of the human femur. (μ (bone,muscle) in units

of cm−1: 30 keV (1.7, 0.38); 50 keV (0.57, 0.23); 100 keV (0.30, 0.17); 150 keV (0.24, 0.15).)

9From the convolution theorem, the Fourier transform of the cross term A(Q)OA(Q)R becomes a convolution of the Fourier

transforms of the two amplitudes. If the Fourier transform of A(Q)R is a delta function, then the convolution integral yields the

Fourier transform of A(Q)O, which in the example considered is a real space image of the projection of the magnetic moment

along the incident beam direction.
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9.3 Estimate the contrast C of the rib bones expected in a projection radiograph of the human

chest. Estimate the contrast for a lung tumour of 5 cm thickness. (At 50 keV, μ in units of

cm−1: chest wall, 0.15; rib bone, 0.57; lung, 0.06; tumour, 0.13.)

9.4 X-ray imaging of cells can be performed using the absorption contrast between water and

organic matter in the so-called ‘water window’ at energies below the oxygen K edge but

above the carbon K edge. (a) Estimate the limits in energy of the water window using the

solution to Exercise 7.11. (b) Very roughly speaking, the elemental composition of proteins is

53% carbon, 23% oxygen, 17% Nitrogen and 7% Hydrogen. Estimate the X-ray absorption

lengths of water and protein at 500 eV. You may neglect the contribution from hydrogen. (μ/ρm

[cm2/g] at 500 eV: 1.37 ×104, C; 1.85 ×104, N; 1.36 ×103, O.)

9.5 The MATLAB function given below is designed to retrieve the phases of a one-dimensional

density distribution rho_in using the error-correcting algorithm described in the text.

(a) Study the code with the aim of understanding how it works.

(b) Incorporate the function in a MATLAB programme (or convert the function to an

alternative computing language) to explore the robustness of the algorithm in recovering

different density distributions.

(c) Explore possible improvements to the algorithm.

1 function [rho]=phaseret(rho_in,n_iter)
2 %
3 % Retrieves phases and reconstucts rho
4 %
5 In=abs(fft(rho_in)).^2; % calculate intensities from input electron density
6 pha=2*pi*(rand(1,length(In))-0.5); % random phases
7 rho=ifft(sqrt(In).*exp(sqrt(-1)*pha));% initialise: use sqrt(In) and random phases
8

9 rho=abs(rho); % real space constraints: rho real and positive
10 s=log(conv(fftshift(In),fftshift(In)));% form mask from autocorrelation function
11 mask=s(1:2:end)./max(s(1:2:end)); mask(find(mask<0.5))=0; mask(find(mask>0.5))=1;
12

13 for ii=1:n_iter;
14

15 % mask rho
16 rho=rho.*mask;
17

18 % improved amplitude from sqr(In) and new phases
19 A=sqrt(In).*exp(sqrt(-1)*angle(fft(rho)));
20

21 % back into real space and apply constraints
22 rho=ifft(A); rho=abs(rho);
23

24 end

9.6 Referring to the silicon wafer depicted in Fig. 9.13, calculate the transmission and the refracted

angle versus the beam position across the wedge. Take the X-ray wavelength as 1.12 Å, for

which the attenuation length of silicon is 184 μm.

9.7 This exercise deals with the smearing of the triangular intensity pattern of the lower panel

in Fig. 9.17. The intensity after smearing is indicated in the figure by the red line, which

represents the folding of the triangular pattern of period p with a Gaussian of r.m.s. width σ.

(a) Show that the maximal intensity is reduced by a factor [1− (4/
√

2)(σ/p)], and discuss

why this result is valid only when (σ/p) � 1.
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(b) Using the result from part (a), show that the visibility V varies linearly with (σ/p) when

(σ/p) � 1, and sketch the entire dependence of V versus (σ/p).

9.8 In this exercise you are required to estimate the spatial resolution achievable in a coherent

diffraction imaging experiment of a gold nanoparticle (see Fig. 9.23). You may assume that

the particle has a diameter of around 200 nm, a unit cell parameter of 0.4 nm, and is illuminated

with a coherent beam of intensity 1010 photons/s and area 10 × 10 μm2.

9.9 A binary, π−phase Fresnel zone plate has an outer zone width of 50 nm and a depth 20 times

the width, filled with Au. The diameter D of the lens is 100 μm. Determine the wavelength λ

and the first order focal length f . Estimate the depth of focus.



A
Scattering and absorption cross-sections

Basic definitions

In this section the basic definitions of the cross-section are recalled for processes that involve either

the scattering or absorption of an X-ray photon. The cross-section is an important quantity, as it

is the meeting point of experiment and theory. Although its definition is straightforward, confusion

sometimes arises as there are several, but essentially equivalent, definitions. As illustrated in Fig.

A.1 the definition depends on the situation considered, and in particular on whether or not the cross-

sectional area of the beam is larger or smaller than that of the sample.

We start by considering the scattering event shown in Fig. A.1(a) in which an X-ray beam of

intensity I
0

photons per second is incident on a sample, and where the sample is large enough that

it intercepts the entire beam. Our objective is to calculate the number of X-ray photons, Isc, scattered

per second into a detector that subtends a solid angle ΔΩ. If there are N particles in the sample per unit

area seen along the beam direction, then Isc will be proportional to N and to I
0
. It will of course also

be proportional to ΔΩ. Most importantly it will depend on how efficiently the particles in the sample

scatter the radiation. This is given by the differential cross-section, (dσ/dΩ), so that we may write

Isc = I0 N ΔΩ

(
dσ

dΩ

)

Thus the differential cross-section per scattering particle is defined by

(
dσ

dΩ

)
=

No. of X-ray photons scattered per second into ΔΩ

I
0

NΔΩ
(A.1)

Here no restriction has yet been placed on whether or not the scattering event is elastic or inelastic.

The corresponding absorption experiment is simpler to analyse, as the detector is placed directly

in the incident beam, and the change in intensity recorded when a sample is introduced into the beam.

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Fig. A.1 (a) A beam is incident on a sample with a larger cross-sectional area. In this case the intensity Isc scattered into a solid

angle ΔΩ is proportional to the incident intensity I
0

of the beam, i.e. the number of photons per second. (b) A beam is incident on

a sample with a smaller cross-sectional area. Now the scattered intensity Isc is proportional to the incident flux Φ
0

of the beam,
i.e. the number of photons per second per unit area.

The number of absorption events, W
4π

, per second is proportional to I
0

and N as before. The subscript

is used to remind us that the photoelectron liberated from the atom in the absorption process may be

emitted into any direction in 4π steradians. The absorption cross-section, σa, is defined by

W4π = I0N σa

so that

σa =
W4π

I
0
N

Alternatively a different situation could have been imagined in which the incident beam is larger

than the sample, as shown in Fig. A.1(b). It should be clear that in this case it is necessary to consider
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the flux of the incident beam, i.e. the number of photons per second per unit area, and not its intensity.

The scattered intensity is now given by

Isc = Φ0 ΔΩ

(
dσ

dΩ

)
(A.2)

where Φ
0

is the flux of the incident beam, and the differential cross-section refers to the whole sample.

The absorption cross-section for this geometry is

σa =
W4π

Φ
0

These are the definitions of the cross-sections which are operational for analysis of an experiment.

Having defined what exactly is meant by the cross-section the next question is how it may be calculated.

The classical description of the scattering of an electromagnetic wave by a single electron is used in

Chapter 1 and Appendix B to derive the Thomson scattering cross-section. This description is usually

sufficient in many fields such as reflectivity, crystallography, etc. In contrast there is no classical model

of the absorption process, and instead a quantum mechanical approach must be taken.

Quantum mechanical treatment

In a quantum mechanical treatment the scattering process is described by time-dependent perturbation

theory. The interaction between the incident radiation and sample is specified by an Hamiltonian H
I
,

which produces transitions between the initial |i〉 and final | f 〉 states. Here |i〉 and | f 〉 refer to the

combined states of the X-ray field and sample. The number of transitions, W, per second between |i〉
and | f 〉 is given in first-order perturbation theory by Fermi’s Golden Rule as

W =
2π

�

∣∣∣Mi f

∣∣∣2 ρ(E f ) (A.3)

where the matrix element M
i f
=〈 f |H

I
|i〉, and ρ(E

f
) is the density of states, defined such that ρ(E

f
)dE

f
is

the number of final states with energy in the interval dE
f

centered around E
f
. (The correct dimensions

of 1/[time] for W can be confirmed by inspection.)

Scattering

To evaluate the differential cross-section for scattering the number of transitions per second into the

solid angle ΔΩ needs to be found, and as we are mostly interested in elastic scattering, the restriction

E
f
= Ei needs to be placed.

Here we follow the standard method to calculate the density of states ρ(E
f
), where it is assumed

that the total system (X-rays + sample) occupies a box of volume V . Periodic boundary conditions are

applied to the X-ray wavefunctions, resulting in a uniform density of states in wavevector of V/(2π)3.

By definition ρ(E
f
)dE

f
is the number of states with energy between E

f
and E

f
+ dE

f
, which is equal

to the number of states with wavevectors between k
f

and k
f
+ dk

f
. We can therefore write

ρ(E f )dE f =

(
V

8π3

)
dk f
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Fig. A.2 Illustration of the quantum mechanical derivation of (a) the differential scattering and (b) the absorption cross-sections.

For the differential scattering cross-section, one must integrate over the values of k
f

accessible within the solid angle element

ΔΩ. For the photoelectric absorption cross-section all directions of the expelled electron must be integrated over. In both cases,
energy conservation is ensured by introducing a delta function in the integrand.
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or

ρ(E f ) =
(

V

8π3

) dk
f

dE
f

(A.4)

The differential cross-section can then be calculated from Eq. (A.2) and (A.3) as(
dσ

dΩ

)
=

W
ΔΩ

Φ
0
ΔΩ

where W
ΔΩ
≡ Isc is the number of transitions per second into ΔΩ. The restriction on elastic scattering

events is introduced by including a delta function δ(E
f
− E

i
) in Eq. (A.3), and then integrating over all

E
f
, which yields

W
ΔΩ
=

2π

�

∫ ∣∣∣Mi f

∣∣∣2 ρ(E f ) δ(E f − Ei) dE f (A.5)

According to Eq. (A.4)

ρ(E f ) =
(

V

8π3

)
k2

f

⎛⎜⎜⎜⎜⎜⎝ dk
f

dE
f

⎞⎟⎟⎟⎟⎟⎠ΔΩ
where the differential volume element dk

f
has been replaced by k2

f
dk

f
ΔΩ as indicated in Fig. A.2. The

expression for W
ΔΩ

may be simplified considerably. Since E
f
= �k

f
c, it follows that

k2
f

⎛⎜⎜⎜⎜⎜⎝ dk
f

dE
f

⎞⎟⎟⎟⎟⎟⎠ = 1

�3c3
E2

f (A.6)

With the flux given by Φ
0
= c/V , we obtain

(
dσ

dΩ

)
=

(
V

2π

)2 1

�4c4

∫
|Mi f |2E2

f δ(E f − Ei) dE f (A.7)

Absorption

Calculation of the absorption cross-section proceeds along similar lines, with two main differences.

The first is that the condition on the δ function that appears in Eq. (A.5) is altered, since the process is

no longer elastic. In an absorption process the incident photon expels an electron from an atom with

binding energy E
b
. The difference between the energy of the incident photon, E = �ω, and the binding

energy of the electron, E
b
, is the kinetic energy of the photoelectron, Epe = �

2q2/2m. The second

difference is that there is no restriction on the direction of q, the wavevector of the photoelectron, so

that instead of integrating over the states in ΔΩ, as was the case for the scattering cross-section, it is

now necessary to integrate over the entire solid angle of 4π. Thus the absorption cross-section is

σa =
W

4π

Φ
0

with

W
4π
=

∫
2π

�

∣∣∣Mi f

∣∣∣2 ρ(Epe) δ(Epe − (E − Eb))dEpe
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The density of states for the photoelectron is evaluated using the same box normalization introduced

for the density of X-ray states in the case of scattering discussed above. The result for the photoelecton

is

ρ(Epe) = 2
(

V

8π3

) (
dq

dEpe

)
where the factor of 2 allows for the two possible spin states of the electron. The absorption cross-section

is evaluated by replacing the volume element dq in the above by q2 sin θdqdθdϕ, with the integral taken

over the entire solid angle of 4π, as indicated in Fig. A.2(b). It follows that the absorption cross-section

is

σa =
2π

�c

V2

4π3

∫ ∣∣∣Mi f

∣∣∣2 δ(Epe − (E − Eb)) q2 sin θdqdθdϕ (A.8)

where once again the incident flux is given by Φ0 = c/V .

It remains of course to calculate the matrix elements M
i f

of the interaction Hamiltonian: this is

described in Appendix C for the Thomson scattering cross-section, and in Chapter 7 for the absorption

cross-section.

Further reading

Quantum Mechanics, A.I.M. Rae (Adam Hilger, 1986)

Quantum Mechanics, F. Mandl (John Wiley & Sons,1992)



B
Classical electric dipole radiation

In Chapter 1 a classical model was used to describe the scattering of X-rays by electrons. The

equation relating the strength of the radiated to incident X-ray electric fields (Eq. 1.5) was stated without

proof. Here the derivation of this equation is outlined more fully.

We imagine that an electromagnetic plane wave with an electric field E
in

is incident on a charge

distribution, which oscillates in response to this driving field, and hence acts as a source of radiation.

The problem then is to evaluate the radiated electric field at some observation point X, as shown in Fig.

B.1(a). This is simplified considerably if it is assumed that r is much greater than the spatial extent of

the charge distribution, and also if r is much greater than the wavelength of the radiation λ. The first of

these is the dipole approximation, while the second assures that we can interpret the electromagnetic

effects at X as radiation. Here it is further assumed that the electrons forming the charge distribution

are free.

The electric and magnetic fields at X can be derived from the scalar potential Φ and the vector

potential A:

E = −∇Φ − ∂A
∂t

and

B = ∇ × A (B.1)

The task of evaluating the fields at X is further simplified if it is recalled that electromagnetic waves

are transverse, with the fields being perpendicular to the propagation direction n, as shown in Fig.

B.1(b). We then have that n is colinear to E×B, and by solving the wave equation it can be shown that

|E| = c|B|. It is therefore sufficient to derive B from A (Eq. (B.1)), and then E follows immediately.

The vector potential is given by

A(r, t) =
1

4πε
0
c2

∫
V

J(r′, t − |r − r′|/c)

|r − r′| dr′

where J(r′, t) is the current density of the source. As the fields propagate at a finite velocity, the fields

experienced at the observation point X at time t depend on the position of the electron at an earlier time

t − |r − r′|/c. For this reason A given by the above is known as the retarded vector potential.

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow

© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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The dipole approximation allows us to ignore r′ in comparison with r, so that

A(r, t) ≈ 1

4πε
0
c2r

∫
V

J(r′, t − r/c) dr′

To proceed it is noted that the current density is equal to the product of the charge density ρ and the

velocity v,

J = ρv.

For a distribution of discrete charges q
i
the integral is replaced by a sum so that∫

V

J dr′ =

∫
V

ρv dr′ =
∑

i

qivi =
d

dt′

∑
i

qir
′
i

The last term is recognizable as the time derivative of the electric dipole moment which is written as ṗ.

We now let the incident beam be linearly polarized along the z axis, so that the dipole moment and

hence the vector potential will have a component along this direction only (Fig. B.1(b)). Thus for a

single dipole we have

Az =

(
1

4πε
0
c2r

)
ṗ(t′)

and Ax = Ay = 0. From Eq. (B.1) the components of the B field follow as

Bx =
∂Az

∂y
; By = −

∂Az

∂x
; Bz = 0 (B.2)

For the x component of the B field we evaluate the partial derivative of Az with respect to y as

∂Az

∂y
=

(
1

4πε
0
c2

)
∂

∂y

(
ṗ(t′)

r

)

=

(
1

4πε
0
c2

) [
1

r

∂ṗ(t′)

∂y
− ṗ(t′)

r2

∂r

∂y

]
Since we are interested in the far-field limit of B, we can neglect the second term in the above, while

the partial derivative of the first term with respect to y can be evaluated by noting that

∂

∂y
=
∂

∂t′
∂t′

∂y

=
∂

∂t′
∂

∂y

(
t − 1

c

√
x2 + y2 + z2

)

= −1

c

(
y

r

)
∂

∂t′

Hence the x component of the B field in the far field limit is

Bx ≈ −
(

1

4πε
0
c2

)
1

cr
p̈(t′)

(
y

r

)
and the y component follows by interchanging x and y, and allowing for the minus sign in Eq. (B.2).

Recalling that p̈(t′) is implicitly along the z axis we can generalize to any direction of p̈(t′) by writing

B ≈
(

1

4πε
0
c2

)
1

cr
p̈(t′) × r̂
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(a) Charge distribution
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Fig. B.1 (a) The coordinate system used to calculate the electromagnetic field radiated from a charge distribution when placed

in an incident plane wave. (b) An electromagnetic plane wave polarized with its electric field along the z axis forces an electric

dipole at the origin to oscillate. In the far-field limit the field radiated from the dipole is approximately a plane wave with the E

and B fields perpendicular to the propagation direction as indicated in the figure.
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where r̂ is the unit vector (x/r, y/r, z/r). The numerical value of the vector cross product is p̈ cosψ

where ψ is defined in Fig. B.1(b). The direction of the electric field is perpendicular to both r̂ and B in

such a way that the cross product of E × B is along r̂. In particular we note that for ψ = 0 the E field

has the opposite direction of p̈. Its magnitude is given by |E| = c|B| so that

E(t) = −
(

1

4πε
0
c2

)
1

r
p̈(t′) cosψ (B.3)

The next step is to calculate the magnitude of p̈ in terms of the incident driving field Ein =

E
0
e−iω(t−r/c). By definition we have

p̈ = qz̈ = q
Force

mass
= q

q Ein

m
=

q2

m
E0e−iω(t−r/c)

which when inserted into Eq. (B.3) with q = −e, and remembering that ω/c = k, leads to

E(t) = −
(

e2

4πε
0
mc2

) (
ei kr

r

)
Ein(t) cosψ

The prefactor is the Thomson scattering length r
0
, so that the ratio of the radiated to incident electric

fields is given by
E(t)

E
in

(t)
= −r0

(
ei kr

r

)
cosψ (B.4)

The factor cosψ in Eq. (B.3) is the origin of the polarization factor for X-ray scattering, as p̈(t′) cosψ

may be thought of as the apparent acceleration as seen by the observer. This is clear if we return to the

case when E
in

is along the z axis. If ψ=0 the maximum acceleration is observed, whereas for ψ = 90◦

the apparent acceleration is zero. The polarization factor is discussed further in Chapter 1.

We note that the minus sign means that there is a phase shift of π between the incident and scattered

fields, and it follows that the index of refraction is necessarily less than unity (see Chapter 3). This

result holds in the X-ray region, where most if not all of the atomic electrons may be treated as though

they are essentially free. In the visible part of the spectrum, however, we have to allow for the fact

that the electrons are bound. This produces resonances in the frequency dependence of the index of

refraction, and on the low frequency side of the resonances, corresponding to the visible part of the

spectrum, the index of refraction is greater than one.

One way to characterize the efficiency with which an electron scatters the incident radiation is to

calculate the total scattering cross-section. The power per unit area is proportional to |E|2, and by

definition the differential cross-section is the power scattered into the solid angle dΩ, normalized by

the incident flux (see Appendix A). From Eq. (B.4) it follows that the differential cross-section is

(
dσ

dΩ

)
= r2

0 cos2 ψ

where the factor of r in the denominator of (B.4) cancels on taking the square with a factor of r2 that

arises in converting from surface area to solid angle. The total cross-section for Thomson scattering is
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found by integration over the polar angles ϕ and θ:

σ
T
= r2

0

∫
cos2 ψ sin θdθdϕ = r2

0

∫
sin2 θ sin θdθdϕ =

(
8π

3

)
r2

0

= 0.665 × 10−24cm2

= 0.665 barn (B.5)

The classical cross-section for the scattering of an electromagnetic wave by a free electron is therefore

a constant, independent of energy.

Further reading

Foundations of Electromagnetic Theory, J.R. Reitz, F.J. Milford, and R.E. Christy (Addison-

Wesley Publishing Company, 1992)

Classical Electromagnetic Radiation, M.A. Heald and J.B. Marion (Saunders College Publishing,

1995)
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C
Quantization of the electromagnetic field

The cross-section for either scattering or absorption is evaluated from time-dependent perturbation

theory, as outlined in Appendix A. In any perturbation problem it is of course first necessary to specify

completely the non-interacting Hamiltonian, H
0
, of the system, before the effect of the perturbing

Hamiltonian, HI , may be calculated. For the scattering or absorption of an X-ray this amounts to

establishing a quantum mechanical description of both the electromagnetic field and the sample. The

former may well be unfamiliar to many readers and here we explain briefly how this is achieved.

The starting point in quantizing the electromagnetic field is the classical expression for its energy

in terms of the electric and magnetic fields, both of which may be derived from the vector potential A

(Appendix B). When seeking a quantum mechanical description of the electromagnetic field it would

therefore seem natural to focus on A. Indeed quantizing the electromagnetic field amounts to quantizing

the vector potential. It also transpires that the Hamiltonian, H
I
, that describes the interaction of the

X-ray and the sample, is a simple function of A. As a consequence the matrix elements of H
I

that

enter into the perturbation theory may be calculated readily, and in the last section we work through the

example of the Thomson cross-section.

Classical energy density of the radiation field

The total energy of the electromagnetic field in free space is

Erad =
1

2

∫
V

[
ε0〈E2〉 + μ0〈H2〉

]
dV

=

∫
V

ε0〈E2〉 dV

Here it is assumed that the field is confined to some volume V , and ε0〈E2〉 =μ0〈H2〉, where the brackets

〈· · · 〉 indicate a temporal average. The E field is related to vector potential A through

E = −∂A
∂t

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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The most general approach for dealing with A would be to write it as a Fourier sum of plane waves.

For clarity we shall consider just one term in this series and write the vector potential as

A(r, t) = ε̂A0

[
ak ei(k·r−ωt) + a∗k e−i(k·r−ωt)

]
(C.1)

The direction of A is specified by the polarization unit vector ε̂, and in addition to the amplitude

coefficients a
k

we have introduced a normalization factor A
0
. The electric field is

E = ε̂A0

[
(iω)ak ei(k·r−ωt) − (iω)a∗k e−i(k·r−ωt)

]
and its modulus squared is

E2 = E · E = 4ω2A2
0 a∗kak cos2(k · r − ωt)

The temporal average of the modulus squared of the field is

〈E2〉 = 2ω2A2
0 a∗kak

since 〈cos2(k · r − ωt)〉= 1
2
. The total energy of the electromagnetic field is therefore equal to

Erad = ε0 2ω2A2
0 a∗kak V

= �ωa∗kak (C.2)

where A0
has been chosen to be equal to

A0 =

√
�

2ε
0
Vω

It should be emphasized that so far we have only considered one particular k and polarization state, and

in general we would need to sum over these quantities to obtain the total energy.

Quantization of the vector potential, A

The normalization constant A0 in the last section was chosen to reveal the formal equivalence of the

Hamiltonian of the electromagnetic field to that of the harmonic oscillator. The quantum mechanical

Hamiltonian of the latter is usually written in the form

Hosc = �ω

(
a†a +

1

2

)
(C.3)

A direct comparison of this expression with Eq. (C.2) should at least make this equivalence plausible

(apart from the additive term of 1
2

which we shall return to later). The reason for this equivalence is

that when our form for A (Eq. (C.1)) is substituted into the wave equation, the coefficients a
k

obey the

equation of motion of the harmonic oscillator.

The operators a and a† appearing in Eq. (C.3) are known as the annihilation and creation operators,

since they have the properties

a|n〉 =
√

n|n − 1〉 (C.4)
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and

a†|n〉 =
√

n + 1|n + 1〉 (C.5)

where |n〉 is an eigenfunction of Hosc with an eigenvalue

En = �ω(n +
1

2
)

and n is an integer 0, 1, 2, · · · . We thus quantize the electromagnetic field by requiring that the coeffi-

cients a
k

in Eq. (C.2) become operators that obey the same commutation relations as the annihilation

and creation operators of the harmonic oscillator. Here we must extend our notation to allow for the

different possible polarization states of the photon, so that the commutation relations read[
a

uk
, a

†
vk′

]
= δkk′δuv[

a
uk
, a

vk′

]
=

[
a
†
uk
, a

†
vk′

]
= 0

where the first subscript, u or v, refers to the polarization state.

The Hamiltonian of the radiation field is thus given by

Hrad =
∑

u

∑
k

�ω
k
a
†
uk

a
uk

For a given value of k and polarization u, the eigenfunctions of H
rad

are |n
uk
〉, where n

uk
is the number

of photons in that state. The n
uk

’s are sometimes referred to as the occupation numbers. It follows that

a general state of the field, involving photons with different wavevectors and polarizations is a product

of such states, since they are all independent. In writing down H
rad

we have followed convention and

set the energy of the vacuum state (all n
uk
=0) equal to 1

2

∑
u

∑
k �ωk

.

The operator form of the vector potential is

A(r, t) =
∑

u

∑
k

ε̂u

√
�

2ε
0
Vωk

[
a

uk
ei(k·r−ωt) + a

†
uk

e−i(k·r−ωt)
]

(C.6)

The interaction Hamiltonian, HI

In the absence of any interaction between the photon field of the X-ray and the electrons in the sample

the Hamiltonian is

H0 = He +Hrad

where He refers to the electrons and H
rad

is given above. The eigenfunctions of H
0

are a product of

the eigenfunctions of He and H
rad

.

Classically, it can be shown1 that the interactions between an electromagnetic field and a charge

q may be allowed for by replacing the momentum p by p − qA. For simplicity we shall consider the

1The substitution of p by p − qA can be shown to produce the correct equation of motion of a charged particle in an

electromagnetic field.
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case of a free electron for which He = p2/2m. This allows us to write down the Hamiltonian of the

interacting system as

H = (p + eA)2

2m
+Hrad

=
p2

2m
+

eA · p
m
+

e2A2

2m
+Hrad

= He +HI +Hrad

where HI is the interacting Hamiltonian

HI =
eA · p

m
+

e2A2

2m
(C.7)

The first term is linear in A and gives rise to absorption of the X-ray, whereas the second is quadratic

in A and gives rise to scattering, as we shall now explain.

The operator for A is linear in the annihilation and creation operators. Hence when it acts on a state

|n
uk
〉 it can either destroy or create a photon in that state. Absorption corresponds to the former, and it is

clear that the first term inHI results in absorption. Scattering on the other hand involves the destruction

of a photon in one state (labelled by k say), and the creation of a new photon in a state (labelled by

k′). This process then requires a combination of operators of the form a
†
k′ak

to act on the product states

|n
k
〉|nk′ 〉 that are the eigenfunctions ofH

rad
. Such combinations of operators can arise only from a term

in the Hamiltonian that is quadratic in A. In the next section we explicitly calculate the cross-section

arising from the second term in H
I
, and show that it is equivalent to the classical Thomson scattering

of an X-ray by an electron. The absorption cross-section is derived from the first term in H
I

in Chapter

7.

Thomson scattering cross-section

We imagine that an X-ray photon of wavevector k and polarization ε̂u is scattered by an electron to k′

and ε̂v. The scattering is restricted to be elastic, i.e. �ω = �ω′, which is equivalent to assuming that the

energy of the X-ray is large compared to the binding energy of the electron. As the scattering is elastic

the electron can be assumed to remain in its ground state |p〉. The eigenfunction of the photon field on

the other hand changes so that one photon is removed from the state |n
uk
〉, and one photon added to the

state |n
vk′ 〉. Before the scattering event we have nuk = 1 and nvk′ = 0, and after n

uk
= 0 and nvk′ = 1. We

therefore write the initial and final eignestates of H
0

as |i〉=|p〉|u1, v0〉 and | f 〉=|p〉|u0, v1〉 respectively.

The scattering cross-section is calculated by taking the matrix element of the second term in Eq.

(C.7), and using Eq. (A.7). The matrix element we need to evaluate is

Mi f = 〈u0, v1|〈p| e
2

2m
A2|p〉|u1, v0〉

When we form the square of A from Eq. (C.6) there will be cross terms in the annihilation and creation

operators such as a
†
ikk

a
jkl

, which can destroy a photon in state |n
jkl
〉, and create one in state |n

ikk
〉. These

terms give rise to scattering and, as there are two such terms, the matrix element becomes

Mi f =
e2
�

2mε
0
V

[
ε̂u · ε̂v

]
(ωω′)

1
2

〈p|ei (ω−ω′)tei (k−k′)·r|p〉
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The cross-section given in Eq. (A.7) involves an integral with respect to the final X-ray energy, E
f
≡

�ω′, whereas the matrix element is given in terms of ω. We therefore rewrite Eq. (A.7) as(
dσ

dΩ

)
=

(
V

2π

)2 1

�2c4

∫
|Mi f |2ω′2 δ(ω − ω′) dω′

Taking the square of the matrix element and inserting it into the above gives

(
dσ

dΩ

)
=

(
e2

4πε
0
mc2

)2 [
ε̂u · ε̂v

]2 | f (Q)|2

This is the Thomson scattering cross-section, and should be compared with the classical result given

in Chapter 1. The two descriptions are entirely equivalent, with the polarization factor given by P =[
ε̂u · ε̂v

]2, and the form factor by

f (Q) = 〈p|ei Q·r|p〉

Further reading

Quantum Field Theory, F. Mandl and G. Shaw (John Wiley & Sons, 1996)
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D
Gaussian statistics

In scattering theory the problem of evaluating the double sum

I(q) =
∑
n,m

eiqrn e−iqrm

is often encountered, where the atomic positions rn vary statistically around some average value. One

example is the thermal vibrations of atoms, which leads to a reduction of the intensity of Bragg peaks

with increasing wavevector Q as described by the Debye-Waller factor (see Section 5.4). By invoking

translational invariance the double sum reduces to N〈ei qR〉, where R = rn− rm, and the brackets indicate

an average formed by moving the origin of R over all lattice sites. We shall now prove that if the

statistical variation of R is Gaussian then

〈eiqR〉 = e−q2〈R2〉/2 (D.1)

This is known as the Baker-Hausdorff theorem.

The proof of this theorem follows from the fact that the Fourier transform of a Gaussian is a

Gaussian, as shown in Appendix E. Here a normalized Gaussian in one dimension is used, which

has a Fourier transform given by

1√
2πσ2

∫ ∞

−∞
e−x2/(2σ2) ei qx dx = e−q2σ2/2

The left hand side of this equation is by definition the average value of ei qx:

〈ei qx〉 = 1
√

2πσ2

∫ ∞

−∞
e−x2/(2σ2) ei qx dx

Also 〈x2〉=σ2 (see the section on Gaussian integrals below), and it therefore follows that

〈eiqx〉 = e−q2〈x2〉/2

This establishes the validity of the Baker-Hausdorff theorem.
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Gaussian integrals

Here the recursion relation between Gaussian integrals defined by

Im(a = 1) =

∫ ∞

−∞
xme−x2

dx

is derived for m = 0, 2, 4, · · · . For m = 0 the integral is most readily evaluated by considering its square:

I2
0 =

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy

≡
∫ 2π

0

dθ

∫ ∞

0

r e−r2

dr = 2π
1

2
= π

The integral for m = 0 is therefore

I0 =

∫ ∞

−∞
e−x2

dx =
√
π (D.2)

and

I0(a) = f (a) =

∫ ∞

−∞
e−ax2

dx =
√
π a−1/2 (D.3)

By differentiating Eq. (D.3) with respect to a one finds

−I2(a) = f ′(a) = −
∫ ∞

−∞
x2 e−ax2

dx =
√
π

(
−1

2

)
a−3/2

I4(a) = f ′′(a) = +

∫ ∞

−∞
x4 e−ax2

dx =
√
π

(
−1

2

) (
−3

2

)
a−5/2

−I6(a) = f ′′′(a) = −
∫ ∞

−∞
x6 e−ax2

dx =
√
π

(
−1

2

) (
−3

2

) (
−5

2

)
a−7/2

etc.

and in general the integrals obey the recursion relation

I2m = I2m−2
2m − 1

2a



E
Fourier transforms

Fourier transforms occur naturally and ubiquitously in the mathematical description of scattering.

The reason is that the scattering amplitude from an extended body often appears as a Fourier transform.

Here we remind the reader of a few important definitions, and work through some illustrative examples.

E.1 Definitions

The Fourier transform of the one-dimensional function f (x) is defined by

F(q) =

∫ ∞

−∞
f (x) ei qx dx

and the inverse transform is

f (x) =
1

2π

∫ ∞

−∞
F(q) e−i qx dq.

Evaluation of the Fourier transform is simplified if the function is either symmetric or antisymmetric

with respect to the line x = 0. For a symmetric function f S(x) the Fourier transform is

F(q) =

∫ ∞

−∞
f S(x) ei qx dx

=

∫ ∞

−∞
f S(x) cos(qx) dx + i

∫ ∞

−∞
f S(x) sin(qx) dx

The second integral on the right-hand side is identically zero, since the product of f S(x) and sine is

itself antisymmetric, and the integral of an antisymmetric function over a symmetric domain is zero.

Therefore the Fourier transform of a symmetric function is real and is given by the cosine transform

F(q) = 2

∫ ∞

0

f S(x) cos(qx) dx
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Similar arguments can be used to show that the Fourier transform of an antisymmetric function f A(x)

is purely imaginary and is the sine transform

F(q) = i 2

∫ ∞

0

f A(x) sin(qx) dx

E.2 Examples

Gaussian

Here the Gaussian function is written as

f (x) = A e−a2 x2

(E.1)

and is plotted in Fig. E.1(a). As it is a symmetric function its Fourier transform is

F(q) = 2

∫ ∞

0

A e−a2 x2

cos(qx) dx

This may be evaluated by writing the cosine as the real part of a complex exponential, cos(qx) =

Re{ei qx}. The Fourier integral then becomes

F(q) = 2A Re

{∫ ∞

0

e−a2 x2

ei qx dx

}
= 2A Re

{∫ ∞

0

e−a2 x2+i qx dx

}

= 2A e−q2/(4a2) Re

{∫ ∞

0

e−(ax−i q/(2a))2

dx

}

= 2A e−q2/(4a2) Re

{
1

a

∫ ∞

0

e−κ
2

dκ

}

where κ is a complex variable defined by κ = (ax− i q/(2a))2). The real part of the last integral is equal

to the standard integral ∫ ∞

0

e−y2

dy =

√
π

2

(see Eq. D.2). The Fourier transform of a Gaussian is thus

F(q) =
A
√
π

a
e−q2/(4a2) (E.2)

which is itself a Gaussian.

It is instructive to consider the width Δx (full width at half maximum) of the Gaussian function

and the width Δq of its Fourier transform. From Eq. (E.1), Δx=2
√

loge(2)/a, and from Eq. (E.2),

Δq=4a
√

loge(2). The product of the widths is a constant equal to

ΔxΔq = 8 loge(2)

This illustrates the reciprocal nature of the description of an object in real or direct space, and the

description of its Fourier transform in q space, also known as reciprocal space. If an object is extended
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Fig. E.1 A selection of functions (left panel) and their Fourier transform (right panel).
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(e) Box function

f(x) =

⎧⎨
⎩

A if |x| < a

0 if |x| > 0
F (q) = 2Aa sin(qa)

qa

−a a

A

x qa

(f) Triangular function

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

A(a − x)/a, for 0 < x < a

A(a + x)/a, for −a < x < 0

0, for |x| > 1

F (q) = A sin2(qa/2)
(qa/2)2

−a a

A

x qa

Fig. E.2 A selection of functions (left panel) and their Fourier transform (right panel).

in real space, Δx is large, and its Fourier transform is well localized in reciprocal space, i.e. Δq is small.

Correspondingly, if an object is well localized in real space, then its Fourier transform is extended in

reciprocal space. One extreme limit of this is a 2D object. This is infinitely thin in one direction, and

hence its Fourier transform in this direction is perfectly delocalized, or in other words it has a constant

value. This explains why the scattering from a two dimensional sheet of atoms forms rods perpendicular

to the sheet.

Decaying exponential: symmetric

The symmetric decaying exponential is defined by

f (x) = A e−a|x|

and is plotted in Fig. E.1(b). Its Fourier transform is

F(q) = 2A

∫ ∞

0

e−ax cos(qx) dx

The integral may be integrating by parts once to yield∫ ∞

0

e−ax cos(qx) dx =
a

q

∫ ∞

0

e−ax sin(qx) dx
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The right-hand side may also be integrated by parts again with the result that the cosine transform of

e−ax is ∫ ∞

0

e−ax cos(qx) dx =
a

q

[
1

q
− a

q

∫ ∞

0

e−ax cos(qx) dx

]
This can be rearranged to give ∫ ∞

0

e−ax cos(qx) dx =
a

a2 + q2

It follows that the Fourier transform of a symmetric decaying exponential is a Lorentzian:

F(q) =
2Aa

a2 + q2
(E.3)

The product of the widths in real and reciprocal space for the symmetric decaying exponential

function is

ΔxΔq = 4 loge(2)

Decaying exponential: antisymmetric

The antisymmetric decaying exponential function is defined by

f (x) =

⎧⎪⎪⎨⎪⎪⎩ A e−a|x|, for x > 0

−A e−a|x|, for x < 0

and is plotted in Fig. E.1(c). Its Fourier transform is purely imaginary and is

F(q) = i 2

∫ ∞

0

A e−ax sin(qx) dx

The sine transform of e−ax is evaluated by integrating by parts twice, which yields∫ ∞

0

e−ax sin(qx) dx =
q

a2 + q2

The Fourier transform of the antisymmetric decaying exponential is plotted in the right-hand panel of

Fig. E.1 and is given by

F(q) =
i 2Aq

a2 + q2
(E.4)

Step function

The step function

f (x) =

⎧⎪⎪⎨⎪⎪⎩ A, for x > 0

−A, for x < 0
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is plotted in Fig. E.1(d). Its Fourier transform is equal to the Fourier transform of the antisymmetric

decaying exponential in the limit that a → 0. From Eq. (E.4) the Fourier transform of the step function

is

F(q) =
i 2A

q
(E.5)

Box function

The box, or top hat, function

f (x) =

⎧⎪⎪⎨⎪⎪⎩A, for |x| ≤ a

0, for x > a

is plotted in Fig. E.2(e). Its Fourier transform is

F(q) =

∫ a

−a

Aeiqxdx =
A

iq

[
eiqa − e−iqa

]
which can be rewritten as

F(q) = 2Aa
sin(qa)

qa
(E.6)

which is plotted in the right-hand column of Fig. E.2(e).

Symmetric triangle

A symmetric triangular function is plotted in Fig. E.2(f) and is given by

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A(a − x)/a, for 0 < x < a

A(a + x)/a, for −a < x < 0

0, for |x| > 1

The Fourier transform of a symmetric triangle then follows as

F(q) = 2

∫ ∞

0

A

a
(a − x) cos(qx) dx

which can be integrated by parts to yield

F(q) = A
sin2(qa/2)

(qa/2)2
(E.7)

which is plotted in the right-hand column of Fig. E.2(f).
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E.3 Convolution theorem

One particularly useful result in the context of scattering is the Convolution Theorem. This states that

the Fourier transform of the convolution of two functions f (x) and g(x) is equal to the product of the two

individual Fourier transforms F(q) and G(q). The convolution or folding integral h(x) of two functions

f (x) and g(x) is defined by

h(x) =

∫ ∞

−∞
f (x1) g(x − x1) dx1

Its Fourier transform is

H(q) =

∫ ∞

−∞
h(x) ei qx dx

=

∫ ∞

−∞
f (x1) ei qx1 dx1

∫ ∞

−∞
g(x − x1) ei q(x−x1) dx

= F(q) G(q)

The great utility of this result is that in many scattering problems the object of interest may be

described mathematically as the convolution of two component functions in real space. One important

example is a crystal lattice, for which the density may be viewed as the convolution of a lattice function

and a function that describes what sits at each lattice point. The scattering amplitude is proportional to

the Fourier transform of the density, and hence from the convolution theorem is equal to the product of

the Fourier transforms of the component functions. If the latter are known, as is often the case, then the

scattering amplitude may be obtained almost by inspection.

E.4 Patterson function

The Patterson function P(r) is the quantity that is derived by direct Fourier transformation of the

measured intensity I(Q). Although the Patterson function does not contain any direct information

on the phases (as it is the modulus squared of the scattering amplitude,A(Q), it nonetheless is a useful

quantity to consider as it can be used to place constraints on the relative spacings of the scattering

centres (atoms or molecules).

In one dimension, the scattered intensity I(Q) may be written as

I(Q) = A�(Q)A(Q)

=

∫ ∞

−∞
f �(r′) e−iQr′dr′

∫ ∞

−∞
f (r′′) eiQr′′dr′′ =

∫ ∞

−∞

(∫ ∞

−∞
f �(r′) f (r′′) eiQ(r′′−r′)dr′′

)
dr′

=

∫ ∞

−∞

(∫ ∞

−∞
f �(r′) f (r + r′)dr′

)
eiQrdr =

∫ ∞

−∞
P(r) eiQrdr

The Patterson function is therefore defined by

P(r) =

∫ ∞

−∞
f �(r′) f (r + r′)dr′ (E.8)

It is recognizable as the autocorrelation of the function f (r). These concepts are readily extendible to

higher dimensions.
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E.5 Displacement theorem

If the function f (x) is displaced by an amount x0, then the Fourier transform Fd(q) acquires the phase

factor eiqx0 since

Fd(q) = eiqx0

∫
f (x − x0)eiq(x−x0)dx = eiqx0 F(q) (E.9)

Further reading

A Handbook of Fourier Transforms, D.C. Champeney (Cambridge University Press, 1987)

A Student’s Guide to Fourier Transforms, J.F. James (Cambridge University Press, 1995)



F
Comparison of X-rays with neutrons

The relationship given in Eq. (3.1) between the refractive index, n, and the scattering length density

ρr0 can be derived in a different way when considering neutrons entering a material. Here the material

is viewed as a continuum of nuclei, each having the scattering length b, and with a density of ρ.

An incident particle that experiences a potential V(r) from the material will be scattered. The

scattering length b of a particle is related to the scattering potential V(r) in first-order perturbation

theory by

V(Q) = 4π

(
�

2

2mn

)
b

Here V(Q) is the Fourier transform of the scattering potential:

V(Q) =

∫
V(r) ei Q·r dr

and as usual Q = k − k′ is the wavevector transfer in the scattering process. This relation appears

plausible when it is recalled that

(a) there is a phase difference of Q ·r between the scattering from volume elements around the origin

and around r;

(b) the scattering can be thought of as a weighted superposition of the scattering from such volume

elements, the weight being V(r) times the phase factor;

(c) the dimensionality in the equation relating b and V(Q) is correct, i.e. the term (�2/2mn) occurs

naturally.

Of course, the factor of 4π must rely on a more rigorous treatment.

Fermi suggested that one could define a pseudo-potential between thermal neutrons and nuclei in

such a way that this general first-order perturbation result would reproduce the correct scattering length.

The nuclear scattering of neutrons is due to a short range potential between the neutron and the nucleus.

The range of the potential is extremely short (of order 10−15 m) in comparison with the wavelength of
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thermal neutrons (of order 10−10 m) so the shape of the potential is well approximated by a Dirac delta

function allowing us to write

VF(r) = C δ(r)

so that

VF(Q) = C × 1

since the Fourier transform of a Dirac delta function is unity. (The properties of the Dirac delta function

are reviewed in Chapter 5 on page 152.) Equating this expression forVF(Q) with the general one given

above for V(Q) allows us to identify the constant C and to write

VF(r) = 4π

(
�

2

2mn

)
b δ(r)

In refraction, the medium is considered to be a homogeneous continuum, and the change in wavenum-

ber from k outside to nk inside the medium is due to a corresponding change in kinetic energy from

(�2/2mn)k2 to (�2/2mn)(nk)2. Energy conservation then immediately leads to(
�

2

2mn

)
k2 =

(
�

2

2mn

)
(nk)2 + 〈V〉

or

k2 − (nk)2 =

(
2mn

�2

)
〈V〉

Inserting the average potential

〈V〉 =
∫

V
VF(r) dr∫

V
dr

= 4π

(
�

2

2mn

)
bρ

yields

k2(1 − n2) = 4π bρ

and since (1 − n2) = (1 + n)(1 − n) ≈ 2δ we obtain Eq. (3.2) with the neutron scattering length b

substituting for the X-ray scattering length r0.

Further reading

Introduction to the Theory of Thermal Neutron Scattering, G.L. Squires (Dover Publications,

1996)

Neutron Optics, V.F. Sears (Oxford University Press, 1989)



G
MATLAB� computer programs

Listings are given here of MATLAB� files which have been used to generate some of the figures

in this book.

The files may be downloaded from the World Wide Web by following the link given on the home

page of this book at the official John Wiley & Sons site (http://www.wiley.co.uk).

MATLAB� is a registered trademark of The MathWorks, Inc. Further information can be found at

http://www.mathworks.com.

Chapter 2: Sources

Undulator characteristics, Fig. 2.11 on page 50

1 function wout=undulator
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Undulator characteristics
7 % Calls to: w1tcalc (observer phase from emitter phase)
8 close all; clear all;
9 set(gcf,’papertype’,’a4’,’paperunits’,’centimeters’,’units’,’centimeters’,...

10 ’position’,[0.1 -8 21 26],’paperposition’,[0.1 0.1 21 26]);
11

12 % (c) on-axis harmonic content for K=2
13

14 axes(’position’,[0.1 0.1 0.35 0.35]);
15

16 wutp=0:0.01:2*pi; % Emitter phase
17 K=2; w1t=w1tcalc(wutp,K,0); % Observer phase for K=2
18

19 xn=0:0.01:2*pi; yn=spline(w1t,2*sin(wutp),xn);
20 f=fft(yn); % Fourier transform displacement
21 h1=line(xn,-2*imag(f(2))/length(xn)*sin(xn),’linestyle’,’--’,...
22 ’linewidth’,1.0,’color’,’r’)
23 h3=line(xn,-2*imag(f(4))/length(xn)*sin(3*xn),’linestyle’,’--’,...
24 ’linewidth’,1.0,’color’,’g’)
25 h5=line(xn,-2*imag(f(6))/length(xn)*sin(5*xn),’linestyle’,’--’,...

Elements of Modern X-ray Physics, Second Edition. Jens Als-Nielsen and Des McMorrow
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.

http://www.wiley.co.uk


374 MATLAB� computer programs

26 ’linewidth’,1.0,’color’,’b’)
27 line(xn,-2*imag(f(2))/length(xn)*sin(xn)...
28 -2*imag(f(4))/length(xn)*sin(3*xn)-2*imag(f(6))/length(xn)*sin(5*xn),...
29 ’color’,’m’,’linewidth’,1.0)
30

31 axis([0 2*pi -2 2]); axis square
32 set(gca,’Xtick’,[0 pi/2 pi 3*pi/2 2*pi],’Xticklabel’,[],’Ytick’,[-2 -1 0 1 2])
33 set(gca,’FontName’,’Times’,’Fontsize’,16,’xgrid’,’on’,’ygrid’,’on’,’box’,’on’)
34 ylabel(’Transverse displacement’)
35 xlabel([’$$\omega_1 t$$’],’position’,[pi -2.5 0],’interpreter’,’latex’);
36 text(0,-2.3,’0’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
37 text(pi/2,-2.3,’\pi/2’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
38 text(pi,-2.3,’\pi’,’horizontalalignment’,’center’,...
39 ’Fontname’,’Times’,’Fontsize’,16)
40 text(1.5*pi,-2.3,’3\pi/2’,’horizontalalignment’,’center’,...
41 ’Fontname’,’Times’,’Fontsize’,16)
42 text(2*pi,-2.3,’2 \pi’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
43 text(0.7,0.925,’On axis, {\it K=2} (c)’,’horizontalalignment’,’center’,...
44 ’Fontname’,’Times’,’Fontsize’,14,’units’,’normalized’)
45 legend([h1 h3 h5],’1^{st}’,’3^{rd}’,’5^{th}’,’location’,’southwest’)
46

47 % (d) Harmonic content for K=2
48

49 axes(’position’,[0.6 0.1 0.35 0.35]);
50

51 hc=([-2*imag(f(2)) -2*imag(f(4)) -2*imag(f(6)) -2*imag(f(8))]/length(xn));
52 ic=(abs(hc).*[1 3^2 5^2 7^2]).^2;
53 h=bar([ic(:)/ic(1) abs(hc(:))/hc(1)],0.85,’grouped’);
54 axis([0.5 4.5 0 2]); axis square
55

56 set(gca,’Box’,’on’,’xgrid’,’on’,’ygrid’,’on’,’FontName’,’Times’,’Fontsize’,16,...
57 ’xticklabel’,[’1’;’3’;’5’;’7’])
58 set(h(1),’facecolor’,’k’); set(h(2),’facecolor’,’w’)
59 xlabel(’Harmonic’); ylabel(’Intensity [arb. units]’)
60 text(0.7,0.925,’On axis, {\it K=2} (d)’,’horizontalalignment’,’center’,...
61 ’Fontname’,’Times’,’Fontsize’,14,’units’,’normalized’)
62

63 % (a) On axis radiation for for K=1, 2 and 5
64

65 axes(’position’,[0.1 0.5 0.35 0.35]);
66 wutp=0:0.01:2*pi;
67

68 w1t=w1tcalc(wutp,1,0); % K=1
69 htp_k1=line(wutp,sin(wutp),’linestyle’,’--’,’color’,’r’,’linewidth’,1.0);
70 htt_k1=line(w1t,sin(wutp),’linestyle’,’-’,’color’,’r’,’linewidth’,1.0);
71

72 w1t=w1tcalc(wutp,2,0); % K=2
73 htp_k2=line(wutp,2*sin(wutp),’linestyle’,’--’,’color’,’b’,’linewidth’,1.0);
74 htt_k2=line(w1t,2*sin(wutp),’linestyle’,’-’,’color’,’b’,’linewidth’,1.0);
75

76 w1t=w1tcalc(wutp,5,0); % K=5
77 htp_k5=line(wutp,5*sin(wutp),’linestyle’,’--’,’color’,’m’,’linewidth’,1.0);
78 htt_k5=line(w1t,5*sin(wutp),’linestyle’,’-’,’color’,’m’,’linewidth’,1.0);
79

80 axis([0 2*pi -6 6]); axis square
81 set(gca,’Xtick’,[0 pi/2 pi 3*pi/2 2*pi],’Xticklabel’,[],’box’,’on’,’ygrid’,’on’)
82 set(gca,’Ytick’,[-6 -4 -2 0 2 4 6],’FontName’,’Times’,’Fontsize’,16,’Xgrid’,’on’)
83 ylabel(’Transverse displacement’)
84 xlabel([’$$\omega_u t^\prime$$ (’ ’$$\omega_1 t$$)’],...
85 ’position’,[pi -7.8 0],’interpreter’,’latex’);
86 text(0,-7.0,’0’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
87 text(pi/2,-7.0,’\pi/2’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
88 text(pi,-7.0,’\pi’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
89 text(1.5*pi,-7.0,’3\pi/2’,’horizontalalignment’,’center’,...
90 ’Fontname’,’Times’,’Fontsize’,16)
91 text(2*pi,-7.0,’2 \pi’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
92 legend([htt_k1 htt_k2 htt_k5],’{\it K}=1’,’{\it K}=2’,’{\it K}=5’,...
93 ’location’,’southwest’)
94 text(0.8,0.925,’On axis (a)’,’horizontalalignment’,’center’,...
95 ’Fontname’,’Times’,’Fontsize’,14,’units’,’normalized’)
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96

97 % (b) Off-axis for K=2
98

99 axes(’position’,[0.6 0.5 0.35 0.35]);
100

101 wutp=0:0.01:2*pi;
102 w1t=w1tcalc(wutp,2,0);
103 hona=line(w1t,2*sin(wutp),’linestyle’,’-’,’color’,’k’,’linewidth’,1.0);
104 w1t=w1tcalc(wutp,2,1);
105 hofa=line(w1t,2*sin(wutp),’linestyle’,’--’,’color’,’m’,’linewidth’,1.0);
106

107 axis([0 2*pi -6 6]); axis square
108 set(gca,’Xtick’,[0 pi/2 pi 3*pi/2 2*pi],’Xticklabel’,[])
109 set(gca,’Ytick’,[-6 -4 -2 0 2 4 6],’FontName’,’Times’,’Fontsize’,16);
110 set(gca,’xgrid’,’on’,’ygrid’,’on’,’box’,’on’)
111 ylabel(’Transverse displacement’)
112 xlabel([’$$\omega_1 t$$’],’position’,[pi -7.8 0],’interpreter’,’latex’);
113 text(0,-7.0,’0’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
114 text(pi/2,-7.0,’\pi/2’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
115 text(pi,-7.0,’\pi’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
116 text(1.5*pi,-7.0,’3\pi/2’,’horizontalalignment’,’center’,...
117 ’Fontname’,’Times’,’Fontsize’,16)
118 text(2*pi,-7.0,’2 \pi’,’horizontalalignment’,’center’,’Fontname’,’Times’,’Fontsize’,16)
119 text(0.85,0.925,’{\it K=2} (b)’,’horizontalalignment’,’center’,...
120 ’Fontname’,’Times’,’Fontsize’,14,’units’,’normalized’)
121 legend([hona hofa],’On axis’,’Off axis’,’location’,’southwest’)
122

123 function [w1t]=w1tcalc(wutp,K,ratio)
124 %
125 % MATLAB function from:
126 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
127 %
128 % Calculates: observer phase (w1t) from emitter phase (wutp)
129

130 w1t=wutp+0.25*K^2/(1+ratio^2+K^2/2)*sin(2*wutp)-2*K/(1+(ratio^2)+K^2/2)*ratio*sin(wutp);

Chapter 3: Reflection and refraction

Fresnel reflectivity characteristics, Fig. 3.5 on page 80

1 function FresnelR
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Fresnel reflectivity characteristics
7

8 figure; axes(’position’,[0.35 0.7 0.3 0.2]);
9

10 % Intensity reflectivity for different values of b_mu
11

12 tpos=-0.80;
13 q=0.01:0.001:2.5;
14 b=0.1; qp=sqrt(q.^2-1+2*sqrt(-1)*b); rq=(q-qp)./(q+qp);
15 Rq=rq.*conj(rq); Rn=Rq.*(q.^4)*(2^4);
16 iq1=find(q<1.5); iq2=find(q>1.5);
17 [ax,h1,h2]=plotyy(q(iq1),Rq(iq1),q(iq2),Rn(iq2));
18 set(h1,’color’,’r’); set(h2,’color’,’r’)
19

20 axis([0 2.6 0 1.1])
21 yl=str2mat(’ R(q) ’,’ Fresnel ’,’reflectivity’);
22 text(tpos,0.5,yl,’FontName’,’Times’,’rotation’,90,’horizontalalignment’,’center’);
23

24 b=0.05; qp=sqrt(q.^2-1+2*sqrt(-1)*b); rq=(q-qp)./(q+qp);
25 Rq=rq.*conj(rq); Rn=Rq.*(q.^4)*(2^4);
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26 line(q(iq1),Rq(iq1),’color’,’g’)
27 axes(ax(2)); line(q(iq2),Rn(iq2),’color’,’g’)
28

29 b=0.01; qp=sqrt(q.^2-1+2*sqrt(-1)*b); rq=(q-qp)./(q+qp);
30 Rq=rq.*conj(rq); Rn=Rq.*(q.^4)*(2^4);
31 axes(ax(1)); line(q(iq1),Rq(iq1),’color’,’b’)
32 axes(ax(2)); line(q(iq2),Rn(iq2),’color’,’b’)
33

34 b=0.001; axes(ax(1)); qp=sqrt(q.^2-1+2*sqrt(-1)*b); rq=(q-qp)./(q+qp);
35 Rq=rq.*conj(rq); Rn=Rq.*(q.^4)*(2^4);
36 line(q(iq1),Rq(iq1),’color’,’m’)
37 axes(ax(2))
38 text(3.2,1.6,’R(q).(2Q/Q_c)^4’,’FontName’,’Times’,’rotation’,90,...
39 ’horizontalalignment’,’center’)
40 axis([0 2.6 1 2.1])
41 set(ax,’Ycolor’,[0 0 0],’Ytick’,[0.5 1.0 1.5 2.0 2.5],’Xticklabels’,[])
42 set(ax,’FontName’,’Times’,’Fontsize’,12,’box’,’on’);
43

44 % Penetration length
45

46 axes(’position’,[0.35 0.5 0.3 0.2])
47

48 q=0.01:0.01:1.4;
49 b=0.1; qp=sqrt(q.^2-1+2*sqrt(-1)*b);
50 line(q,1./imag(qp),’color’,’r’)
51

52 b=0.05; qp=sqrt(q.^2-1+2*sqrt(-1)*b);
53 line(q,1./imag(qp),’color’,’g’)
54

55 b=0.01; qp=sqrt(q.^2-1+2*sqrt(-1)*b);
56 line(q,1./imag(qp),’color’,’b’)
57

58 b=0.001; qp=sqrt(q.^2-1+2*sqrt(-1)*b);
59 line(q,1./imag(qp),’color’,’m’)
60

61 axis([0 2.6 0 1000]);
62 yl=str2mat(’ \Lambda Q_c’,’ Penetration ’,’ length ’);
63 text(tpos,30,yl,’FontName’,’Times’,’rotation’,90,’horizontalalignment’,’center’);
64 set(gca,’Xticklabels’,[],’Yscale’,’log’,’Ytick’,[1 10 100])
65 set(gca,’FontName’,’Times’,’FontSize’,12,’box’,’on’)
66

67 % Evanescent intensity
68

69 axes(’position’,[0.35 0.3 0.3 0.2])
70

71 q=0.01:0.01:2.5;
72 b=0.1; qp=sqrt(q.^2-1+2*sqrt(-1)*b); ttq=2*q./(q+qp);
73 h1=line(q,ttq.*conj(ttq),’color’,’r’);
74

75 b=0.05; qp=sqrt(q.^2-1+2*sqrt(-1)*b); ttq=2*q./(q+qp);
76 line(q,ttq.*conj(ttq),’color’,’g’)
77

78 b=0.01; qp=sqrt(q.^2-1+2*sqrt(-1)*b); ttq=2*q./(q+qp);
79 line(q,ttq.*conj(ttq),’color’,’b’)
80

81 b=0.001; qp=sqrt(q.^2-1+2*sqrt(-1)*b); ttq=2*q./(q+qp);
82 line(q,ttq.*conj(ttq),’color’,’m’)
83

84 axis([0 2.6 0 4]);
85 yl=str2mat(’ T(q) ’,’Evanescent’,’intensity ’);
86 hl=text(tpos,2,yl);
87 set(hl,’FontName’,’Times’,’rotation’,90,’horizontalalignment’,’center’);
88 set(gca,’Xticklabels’,[],’Ytick’,[1 2 3],’Yticklabel’,[’1’;’2’;’3’])
89 set(gca,’FontName’,’Times’,’FontSize’,12,’box’,’on’)
90

91 % Phase shift of reflected wave
92

93 axes(’position’,[0.35 0.1 0.3 0.2])
94

95 q=0.01:0.01:2.5;
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96 b=0.1; qp=sqrt(q.^2-1+2*sqrt(-1)*b); rq=(q-qp)./(q+qp);
97 line(q,angle(rq),’color’,’r’)
98

99 b=0.05; qp=sqrt(q.^2-1+2*sqrt(-1)*b); rq=(q-qp)./(q+qp);
100 line(q,angle(rq),’color’,’g’)
101

102 b=0.01; qp=sqrt(q.^2-1+2*sqrt(-1)*b); rq=(q-qp)./(q+qp);
103 line(q,angle(rq),’color’,’b’)
104

105 b=0.001; qp=sqrt(q.^2-1+2*sqrt(-1)*b); rq=(q-qp)./(q+qp);
106 line(q,angle(rq),’color’,’m’)
107

108 set(gca,’FontName’,’Times’,’FontSize’,12,’box’,’on’)
109 axis([0 2.6 -pi pi/4]);
110 yl=str2mat(’Phase shift of’,’ reflected ’,’ wave ’);
111 text(tpos,-pi/2,yl,’FontName’,’Times’,’rotation’,90,’horizontalalignment’,’center’);
112 text(-0.25,0,’0’,’horizontalalignment’,’center’,’FontName’,’Times’,’FontSize’,12);
113 text(-0.25,-pi,’-\pi’,’horizontalalignment’,’center’,’FontSize’,14);
114 xlabel(’q=Q/Q_c or \alpha/\alpha_c’)
115 set(gca,’Yticklabels’,[],’Ytick’,[-pi -pi/2 0 pi/2],’Xtick’,[0.5 1.0 1.5 2.0 2.5])

Kiessig fringes from a thin film, Fig. 3.7 on page 83

1 function kiessig
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Reflectivity from a thin film of tungsten
7

8 axes(’position’,[0.2 0.2 0.6 0.6]);
9

10 r0=2.82e-5; % Thompson scattering length in Angs
11 rho=4.678; % electron density in electrons/Angs^3
12 b=0.0409; % parameter b_mu
13 Delta=10*2*pi; % thickness of film in Angs
14 sigma=0.0; % surface roughness in Angs
15

16 Qc=4*sqrt(pi*rho*r0);
17

18 Q=0:0.001:1;
19 q=Q/Qc;
20 Qp=Qc*sqrt(q.^2-1+2*sqrt(-1)*b);
21

22 rQ=(Q-Qp)./(Q+Qp);
23 r_slab=rQ.*(1-exp(i*Qp*Delta))./(1-rQ.^2.*exp(i*Qp*Delta));
24 r_slab=r_slab.*exp(-Q.^2*sigma^2/2);
25 line(Q,r_slab.*conj(r_slab),’LineWidth’,1.0,’Color’,’b’);
26

27 axis([0.0 1.0 1e-10 1.5]); grid on
28 set(gca,’FontName’,’Times’,’FontSize’,16,’box’,’on’)
29 set(gca,’Ytick’,[1e-10 1e-8 1e-6 1e-4 1e-2 1e0],’yscale’,’log’)
30 xlabel(’Wavevector transfer Q (Å^{-1})’)
31 ylabel(’|{\it r}_{slab}|^2’,’position’,[-0.175 1e-5 0])

Parratt and kinematical reflectivity, Fig. 3.9 on page 88

1 function par_kin
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Parratt and kinematical reflectivities from a multilayer
7 % Specific case of W/Si, 10 bilayers of [10 Angs W, 40 Angs Si]
8
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9 r0=2.82e-5; % Thompson scattering length in Angs
10 Q=0.01:0.001:0.3; % Wavevector transfer in 1/Angs
11 lambda=1.54; % wavelength in Angs
12 rhoA=4.678; muA=33.235e-6; % density and absorption coefficient of W
13 rhoB=0.699; muB=1.399e-6; % density and absorption coefficient of Si
14

15 bl=[rhoA*r0+i*muA rhoB*r0+i*muB]; % bilayer scattering factor
16 dbl=[10 40]; % bilayer d-spacings
17 ml=[bl bl bl bl bl bl bl bl bl bl 0.1e-20]; % multilayer scattering factor
18 dml=[dbl dbl dbl dbl dbl dbl dbl dbl dbl dbl]; % multilayer d-spacings
19 sml=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; % roughness at each interface
20

21 %------ Parratt reflectivity
22 R=parratt(Q,lambda,ml,dml,sml);
23

24 axes(’position’,[0.2 0.15 0.7 0.4]); line(Q,R)
25 axis([0 0.3 8e-6 2]);
26 set(gca,’FontName’,’Times’,’FontSize’,18,’box’,’on’)
27 set(gca,’Ytick’,[1e-4 1e-3 1e-2 1e-1 1],’Yscale’,’log’)
28 text(0.15,5e-7,’Wavevector transfer Q (Å^{-1})’,...
29 ’FontName’,’Times’,’FontSize’,18,’horizontalalignment’,’center’)
30 text(-0.05,1,’Reflectivity’,’FontName’,’Times’,...
31 ’FontSize’,18,’horizontalalignment’,’center’,’rotation’,90)
32 text(0.20,0.7,’(b) Parratt’,’FontName’,’Times’,’FontSize’,16)
33

34 %----- kinematical reflectivity
35 sld=bl;
36 sigma=0; N=10; Lambda=50; Gamma=0.2;
37

38 R=kinematicalR(Q,lambda,sld,sigma,N,Lambda,Gamma);
39

40 axes(’position’,[0.2 0.55 0.7 0.4]); line(Q,R)
41 set(gca,’FontName’,’Times’,’FontSize’,18,’box’,’on’)
42 axis([0 0.3 8e-6 2]);
43 set(gca,’Xticklabel’,’’)
44 set(gca,’Ytick’,[1e-4 1e-3 1e-2 1e-1 1],’Yscale’,’log’)
45 text(0.20,0.7,’(a) Kinematical ’,’FontName’,’Times’,’FontSize’,16)
46

47 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48 function [R]=kinematicalR(Q,lambda,sld,sigma,N,Lambda,Gamma)
49 %
50 % MATLAB function from:
51 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
52 %
53 % Calculates: kinematical reflectivity of a multilayer
54 % Inputs: Q wavevector transfer 1/Angs
55 % lambda wavelength of radiation Angs
56 % sld scattering length density 1/Angs^2
57 % sld=[sldA+i*muA sldB+i*muB]
58 % sigma rouhgness Angs
59 % N number of bilayers
60 % Lambda length of bilayer Angs
61 % Gamma fraction of bilayer that is A
62 % Outputs: R Intensity reflectivity
63

64 muA=imag(sld(1));
65 muB=imag(sld(2));
66

67 Dsld=real(sld(1))-real(sld(2));
68 zeta=Q/2/pi*Lambda;
69 beta=2*Lambda*Lambda*(muA*Gamma+muB*(1-Gamma))/lambda./zeta;
70 r_1=-2*i*Dsld*Lambda*Lambda*Gamma./zeta;
71 r_1=r_1.*sin(pi*Gamma*zeta)./(pi*Gamma*zeta);
72 r_N=r_1.*(1-exp(i*2*pi*zeta*N).*exp(-beta*N))./(1-exp(i*2*pi*zeta).*exp(-beta));
73 r_N=r_N.*exp(-((Q*sigma).^2/2));
74 R=r_N.*conj(r_N);
75

76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77 function [RR]=parratt(Q,lambda,sld,d,sigma)
78 %
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79 % MATLAB function from:
80 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
81 %
82 % Calculates: Parratt reflectivity of a multilayer
83 % Inputs: Q wavevector transfer 1/Angs
84 % lambda wavelength of radiation Angs
85 % sld scattering length density 1/Angs^2
86 % sld=[sld1+i*mu1 sld2+i*mu2 ....]
87 % d thickness of layer Angs
88 % d=[d1 d2 .....];
89 % sigma rouhgness Angs
90 % Outputs:R Intensity reflectivity
91

92 k=2*pi/lambda;
93

94 %----- Calculate refractive index n of each layer
95 delta=lambda^2*real(sld)/(2*pi); beta=lambda/(4*pi)*imag(sld);
96 n=size(sld,2);
97 nu=1-delta+i*beta;
98

99 %----- Wavevector transfer in each layer
100 Q=reshape(Q,1,length(Q));
101 x=asin(Q/2/k);
102 for j=1:n
103 Qp(j,:)=sqrt(Q.^2-8*k^2*delta(j)+i*8*k^2*beta(j));
104 end
105 Qp=[Q;Qp];
106

107 %----- Reflection coefficients (no multiple scattering)
108 for j=1:n
109 r(j,:)=((Qp(j,:)-Qp(j+1,:))./(Qp(j,:)+Qp(j+1,:))).*...
110 exp(-0.5*(Qp(j,:).*Qp(j+1,:))*sigma(j)^2);
111 end
112

113 %----- Reflectivity from first layer
114 RR=r(1,:);
115 if n>1
116 R(1,:)=(r(n-1,:)+r(n,:).*...
117 exp(i*Qp(n,:)*d(n-1)))./(1+r(n-1,:).*r(n,:).*exp(i*Qp(n,:)*d(n-1)));
118 end
119

120 %----- Reflectivity from more layers
121 if n>2
122 for j=2:n-1
123 R(j,:)=(r(n-j,:)+R(j-1,:).*...
124 exp(i*Qp(n-j+1,:)*d(n-j)))./(1+r(n-j,:).*R(j-1,:).*exp(i*Qp(n-j+1,:)*d(n-j)));
125 end
126 end
127

128 %------ Intensity reflectivity
129 if n==1
130 RR=r(1,:);
131 else
132 RR=R(n-1,:);
133 end
134

135 RR=(abs(RR).^2)’;

Reflectivity from a Langmuir film, Fig. 3.13 on page 99

1 function lang_ref
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Reflectivity from a lanngmuir layer
7 % Data: Langmuir Vol. 10 (1994) 826
8



380 MATLAB� computer programs

9 axes(’position’,[0.15 0.20 0.60 0.75])
10

11 Q=0:0.01:1; % wavevector transfer in 1/Angs
12

13 %----- (a) pH
14

15 rho_hw=2.28; % density of head group, rho_head/rho_water
16 rho_tw=1.08; % density of tail group, rho_tail/rho_water
17 l_h=6.2; % length of head in Angs
18 l_t=22.0; % length of tail in Angs
19 sigma=1.36; % roughness in Angs
20 Qc=0.0217; % critical Q for water in 1/Angs
21 mc=0.75; % monolayer coverage
22

23 phi1=Q*(l_h/2+l_t); phi2=Q*(l_h/2);
24 phi=exp(-Q.^2*sigma^2/2).*(rho_tw*exp(-i*phi1)+...
25 (rho_hw-rho_tw)*exp(-i*phi2)-(rho_hw-1)*exp(i*phi2));
26 R=mc*abs(phi).^2;
27 line(Q/Qc,R,’linewidth’,1.5)
28

29 data_a=[0.90 1.11;1.20 1.19;1.50 1.35;1.58 1.41;1.88 1.51;2.09 1.60;2.35 1.73;...
30 2.48 1.82;2.65 1.97;2.86 2.09;3.25 2.17;3.89 2.40;4.27 2.43;4.61 2.33;4.91 2.19;...
31 5.25 2.03;5.51 1.87;5.94 1.52;6.28 1.25;6.45 1.04;6.79 0.82;7.18 0.58;7.35 0.46;...
32 7.65 0.31;8.12 0.17;8.54 0.12;9.06 0.19;9.44 0.34;9.70 0.52;10.12 0.92;10.51 1.36;...
33 10.72 1.81;11.15 2.43;11.53 3.03;11.83 3.38;12.22 3.92;12.52 4.49;12.77 4.97;...
34 13.20 5.23;13.58 5.66;13.88 5.61;14.18 5.73;14.48 6.02;14.82 5.96;15.04 5.89;...
35 15.55 5.80;15.89 5.43;16.23 5.00;16.62 4.53;16.96 4.00;17.26 3.65;17.60 3.14;...
36 17.86 2.78;18.28 2.48;18.54 1.90;18.92 1.86;19.18 1.68;19.57 1.39];
37 line(data_a(:,1),data_a(:,2),’Marker’,’square’,’MarkerSize’,8,’linestyle’,’none’)
38

39 %----- (b) pH
40

41 rho_hw=3.35; % density of head group, rho_head/rho_water
42 rho_tw=1.01; % density of tail group, rho_tail/rho_water
43 l_h=2.7; % length of head in Angs
44 l_t=23.4; % length of tail in Angs
45 sigma=2.74; % roughness in Angs
46 Qc=0.0217; % critical Q for water in 1/Angs
47 mc=0.75; % monolayer coverage
48

49 phi1=Q*(l_h/2+l_t); phi2=Q*(l_h/2);
50 phi=exp(-Q.^2*sigma^2/2).*(rho_tw*exp(-i*phi1)+...
51 (rho_hw-rho_tw)*exp(-i*phi2)-(rho_hw-1)*exp(i*phi2));
52 R=mc*abs(phi).^2;
53 line(Q/Qc,R,’linewidth’,1.5)
54

55 data_b=[1.03 1.03;1.24 1.17;1.46 1.27;1.88 1.41;2.40 1.54;2.65 1.63;2.95 1.70;...
56 3.34 1.71;3.64 1.76;4.15 1.76;4.41 1.66;4.67 1.62;5.18 1.47;5.52 1.31;5.69 1.12;...
57 6.12 1.00;6.51 0.81;6.89 0.60;7.28 0.46;7.49 0.34;7.79 0.23;8.26 0.11;8.56 0.06;...
58 8.82 0.12;9.25 0.19;9.54 0.34;9.76 0.50;10.10 0.69;10.40 0.90;10.87 1.19;...
59 11.13 1.44;11.56 1.70;11.94 1.98;12.20 2.13;12.71 2.51;12.93 2.70;13.40 2.62;...
60 13.57 2.73;14.12 2.79;14.34 2.75;14.81 2.79;15.19 2.86;15.54 2.71;15.88 2.62;...
61 16.22 2.46;16.69 2.32;17.08 1.78;17.38 1.57;17.76 1.16;18.15 1.36;18.49 0.87;...
62 18.96 0.79;19.18 1.09;19.56 0.81];
63 line(data_b(:,1),data_b(:,2),’Marker’,’diamond’,...
64 ’MarkerSize’,8,’MarkerFaceColor’,’b’,’linestyle’,’none’)
65

66 axis([0 20 0 7])
67 set(gca,’FontName’,’Times’,’FontSize’,36,’Xtick’,[5 10 15 20 ])
68 xlabel(’Q/Q_c’); ylabel(’{\it R}/{\it R_F}’,’position’,[-2.5 3.5 0])
69 box on; grid on
70 text(13.5,2.0,’(b)’,’FontName’,’Times’,’FontSize’,24)
71 text(13.5,5.,’(a)’,’FontName’,’Times’,’FontSize’,24)
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Chapter 4: Kinematical diffraction I: non-crystalline materials

Dependence of SAXS on shape and dimensionality, Fig. 4.14 on page 141

1 function SAXS
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Calculates SAXS from a sphere, disk and rod
7 % Calls to:
8

9 close all; clear all;
10

11 Q=0:0.001:2; Q2=0.1:0.002:1; Q3=0.11:0.002:1; Q4=0.25:0.002:2;
12 FS=12; % Font size
13 disp(’Running: may take sometime to complete’)
14

15 subplot(1,2,1) % Plot on linear scale
16 axlm=[0 10 0 1.1]; axis(axlm);
17 c1=[0.9 0.9 1];
18 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
19 [0 0 0 0],c1);
20 set(gca,’layer’,’top’)
21

22 % Spehre
23

24 R=50;
25 Rg=sqrt(3/5)*R;
26 F1=3*(sin(Q*R)-(Q*R).*cos(Q*R))./(Q*R).^3;
27 hs=line(Q*Rg,F1.*F1,’color’,’b’,’linewidth’,1.5,’linestyle’,’:’);
28

29 % Disk
30

31 R=50;
32 Rg=sqrt(1/2)*R;
33 p17=2./(Q*R).^2.*(1-besselj(1,2*Q*R)./(Q*R));
34 hd=line(Q*Rg,p17,’color’,’r’,’linewidth’,1.5,’linestyle’,’--’);
35

36 % Rod
37

38 L=50;
39 for ii=1:length(Q)
40 x=Q(ii)*L;
41 p15(ii)=2*quadl(@si,0,x)/x-4*sin(x/2).^2./(x)^2;
42 end
43 Rg=sqrt(1/12)*L
44 hr=line(Q*Rg,p15,’color’,’m’,’linewidth’,1.5,’linestyle’,’-.’);
45

46 set(gca,’xscale’,’linear’,’yscale’,’linear’,’fontname’,’times’,...
47 ’fontsize’,FS,’linewidth’,1.0,’gridlinestyle’,’:’)
48 ylabel(’$$\left| \mathcal F(\mathrm Q)\right|\,^2$$’,’interpreter’,’latex’)
49 text(0.5,-0.1,’$$\mathrm Q R_g$$’,’interpreter’,’latex’,’FontName’,’Times’,...
50 ’FontSize’,12,’horizontalalignment’,’center’,’units’,’normalized’)
51 axis square
52 box on; grid on
53 legend([hs hd hr],’Sphere’,’Disk’,’Rod’)
54 text(0.07,0.07,’(a)’,’FontName’,’Times’,’FontSize’,12,...
55 ’interpreter’,’latex’,’units’,’normalized’)
56

57 subplot(1,2,2) % Plot on Log scale
58 axlm=[1 20 1e-4 1.1]; axis(axlm);
59 c1=[0.9 0.9 1];
60 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
61 [0 0 0 0],c1);
62 set(gca,’layer’,’top’)
63

64 % Spehre
65
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66 R=50;
67 Rg=sqrt(3/5)*R;
68 F1=3*(sin(Q*R)-(Q*R).*cos(Q*R))./(Q*R).^3;
69 hs=line(Q*Rg,F1.*F1,’color’,’b’,’linewidth’,1.5,’linestyle’,’:’);
70 line(Q2*Rg,0.0000017./Q2.^4,’color’,’b’,’linewidth’,1.0,’linestyle’,’-’)
71

72 % Disk
73

74 R=50;
75 Rg=sqrt(1/2)*R
76 p17=2./(Q*R).^2.*(1-besselj(1,2*Q*R)./(Q*R));
77 hd=line(Q*Rg,p17,’color’,’r’,’linewidth’,1.5,’linestyle’,’--’);
78 line(Q3*Rg,0.00095./Q3.^2,’color’,’r’,’linewidth’,1.0,’linestyle’,’-’)
79

80 % Rod
81

82 L=50;
83 for ii=1:length(Q)
84 x=Q(ii)*L;
85 p15(ii)=2*quadl(@si,0,x)/x-4*sin(x/2).^2./(x)^2;
86 end
87 Rg=sqrt(1/12)*L;
88 hr=line(Q*Rg,p15,’color’,’m’,’linewidth’,1.5,’linestyle’,’-.’);
89 line(Q4*Rg,0.075./Q4.^1,’color’,’m’,’linewidth’,1.0,’linestyle’,’-’)
90

91 set(gca,’xscale’,’log’,’yscale’,’log’,’fontname’,’times’,’fontsize’,FS,...
92 ’linewidth’,1.0,’minorgridlinestyle’,’none’,’gridlinestyle’,’:’)
93 text(0.07,0.07,’(b)’,’FontName’,’Times’,’FontSize’,12,...
94 ’interpreter’,’latex’,’units’,’normalized’)
95 text(0.7,0.28,’$$1/\mathrm Q^4$$’,’FontName’,’Times’,’FontSize’,12,...
96 ’interpreter’,’latex’,’units’,’normalized’)
97 text(0.7,0.6,’$$1/\mathrm Q^2$$’,’FontName’,’Times’,’FontSize’,12,...
98 ’interpreter’,’latex’,’units’,’normalized’)
99 text(0.7,0.83,’$$1/\mathrm Q^1$$’,’FontName’,’Times’,’FontSize’,12,...

100 ’interpreter’,’latex’,’units’,’normalized’)
101 ylabel(’$$\left| \mathcal F(\mathrm Q)\right|\,^2$$’,’interpreter’,’latex’)
102 text(0.5,-0.1,’$$\mathrm Q R_g$$’,’interpreter’,’latex’,’FontName’,’Times’,...
103 ’FontSize’,12,’horizontalalignment’,’center’,’units’,’normalized’)
104 axis square; box on; grid on;

Effect of polydispersivity on SAXS, Fig. 4.15 on page 143

1 function Poly_Schulz
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Caclulates effect of polydispersivity using Schulz
7 % distribution
8 % Calls to:
9

10 close all
11

12 axlm=[0 0.2 1e-4 5]; axis(axlm)
13 c1=[0.9 0.9 1];
14 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
15 [0 0 0 0],c1);
16 set(gca,’layer’,’top’)
17 box on; grid on
18

19 Q=0.01:0.001:1;
20

21 R=50;
22 V=4*pi/3*R^3;
23 line(Q,(3*besselj(1,Q*R)./Q/R).^2,’linewidth’,1.5)
24

25 z=99;
26 line(Q,Ischulz(R,z,Q)/V^2,’linestyle’,’--’,’color’,’r’,’linewidth’,1.5)
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27

28 z=24;
29 line(Q,Ischulz(R,z,Q)/V^2,’linestyle’,’-.’,’color’,’g’,’linewidth’,1.5)
30

31 set(gca,’xtick’,[0 0.05 0.1 0.15 0.2],’ytick’,[1e-4 1e-2 1])
32 set(gca,’FontName’,’Times’,’FontSize’,14,’yminortick’,’off’,’xminorgrid’,...
33 ’off’,’yminorgrid’,’off’,’yscale’,’log’)
34 ylabel(’Intensity [arb. units]’)
35 xlabel(’Q [$$\mathrm \AA^{-1}$$]’,’interpreter’,’latex’)
36 pos=get(gca,’position’); box on;
37

38 axes(’position’,[pos(1)+2/3*pos(3) pos(2)+2/3*pos(4) 0.3*pos(3) 0.3*pos(4)])
39 box on
40 Rv=0:0.01:100;
41 line(Rv,schulz(Rv,50,99),’linestyle’,’--’,’color’,’r’,’linewidth’,1.5);
42 line(Rv,schulz(Rv,50,24),’linestyle’,’-.’,’color’,’g’,’linewidth’,1.5);
43

44 set(gca,’FontName’,’Times’,’FontSize’,14,’yminortick’,’off’)
45 ylabel(’$$D(R)$$’,’interpreter’,’latex’)
46 xlabel(’$$R [\mathrm \AA]$$’,’interpreter’,’latex’)
47

48 function Icalc=Ischulz(R,z,Q)
49 %
50 % MATLAB function from:
51 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
52 %
53 % Calculates: Calculates SAXS intensity for a polydispersed ensemble of
54 % spheres described by the schulz distribution
55 % Calls to:
56 alphaq=(z+1)./(Q*R);
57

58 A=8*pi.^2*R^6*(z+1).^(-6).*(alphaq).^(z+7);
59

60 Icalc=A.*(...
61 alphaq.^(-1.0*(z+1))-(4+alphaq.^2).^(-1.0*(z+1)/2).*cos(zetaii(z,alphaq,1))...
62 +(z+1)*(z+2)*(alphaq.^(-1.0*(z+3))+(4+alphaq.^2).^(-1.0*(z+3)/2)...
63 .*cos(zetaii(z,alphaq,3)))...
64 -2*(z+1)*(4+alphaq.^2).^(-1.0*(z+2)/2).*sin(zetaii(z,alphaq,2)));
65

66 function Sd=schulz(R,Rbar,z)
67 %
68 % MATLAB function from:
69 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
70 %
71 % Calculates: Calculates schulz distribution
72 % Calls to:
73

74 Sd=((z+1)/Rbar).^(z+1)*R.^z.*exp(-1.0*(z+1)*R/Rbar)/gamma(z+1);

Chapter 5: Kinematical diffraction II: crystalline materials

The Fibonacci chain, Fig. 5.11 on page 168

1 function [xn]=quasi
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Positionso of atoms xn in a Fibonacci chain
7 % from the strip projection method,
8 % and calculates the scattered intensity
9 % Calls to: pline, isinpoly, arrow

10

11 figure; axes(’position’,[0.15 0.15 0.8 0.8],’visible’,’off’); axis equal
12
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13 tau=(1+sqrt(5))/2; % golden mean
14 latp=sqrt(1+tau^2); % lattice parameter of 2D lattice
15 Nx=10; Ny=10; % number of lattice points
16 angle=atan(1/tau)*180/pi; % angle of strip
17 Delta=1+tau; % width of strip
18

19 %----- Draw strip and rotate
20 h=patch([0 Nx*latp/cos(angle*pi/180) Nx*latp/cos(angle*pi/180) 0],...
21 [0 0 Delta Delta],[0.7 0.7 1]);
22 rotate(h,[0 0 1],angle,[0 0 0])
23 vp=get(h,’Vertices’);
24

25 %----- Draw lattice
26 x=[]; for i=0:Nx; for j=0:Ny; x=[x;i j]; end; end
27 x=x*latp;
28 line(x(:,1),x(:,2),’linestyle’,’none’,...
29 ’marker’,’o’,’markerfacecolor’,’g’,’markersize’,6);
30

31 %----- Find lattice points that lie in strip
32 isp=isinpoly(x(:,1),x(:,2),vp(:,1),vp(:,2)); x(find(isp~=1),:)=[];
33

34 b=vp(2,1:2); % end point of line xn
35 %----- Draw perpendicular lines from points in strip to xn
36 xn=[0]; yn=[0];
37 for ix=1:length(x)
38 [intx,inty]=pline(b,x(ix,:));
39 xn=[xn; intx]; yn=[yn; inty];
40 end
41 line(x(:,1),x(:,2),’linestyle’,’none’,...
42 ’marker’,’o’,’markerfacecolor’,’w’,’markersize’,6);
43

44 %------ Label the graph
45 xnd=diff(xn);L=max(xnd); S=min(xnd);
46 for id=1:length(xnd)
47 if abs(xnd(id)-L)< 0.02 ,col=[0.6 0.6 0.6]; lab=’L’; else col=[1 0 0]; lab=’S’; end
48 line([xn(id) xn(id+1)],[yn(id) yn(id+1)],’color’,col,’linewidth’,2.0)
49 text(0.5*(xn(id)+xn(id+1)),-2,lab,’color’,col,’horizontalalignment’,’center’,...
50 ’Fontsize’,18,’FontName’,’Times’)
51 end
52 arrow([-2 5*latp],[-2 6*latp],8,’ends’,’both’)
53 text(-7,5.5*latp,’\surd(1+\tau^2)’,’Fontsize’,24,’FontName’,’Times’)
54 arrow(b,b*1.10,10)
55 text(b(1)*1.10,b(2)*1.0-0.2,’{\it x}_n’,’Fontsize’,24,’FontName’,’Times’,...
56 ’horizontalalignment’,’center’)
57 h=arrow(-0.1*b,-0.1*b+[0 1+tau],10,’ends’,’both’); rotate(h,[0 0 1],angle,[-0.1*b 0])
58 text(-0.1*b(1),-0.1*b(1)+2.5,’\Delta’,’Fontsize’,24,’FontName’,’Times’)
59 circ=4.5*latp; ax=circ*cos(angle*pi/180):0.005:circ;...
60 ay=sqrt(circ^2-ax.^2); line(ax,ay);
61

62 xn=xn./cos(angle*pi/180);
63

64 %----- Calculate scttareing from chain
65

66 figure; axes(’position’,[0.15 0.15 0.8 0.8])
67 Q=[0:0.01:20];
68 F=sum(exp(sqrt(-1)*xn*Q));
69 plot(Q,F.*conj(F))
70 set(gca,’FontName’,’Times’,’FontSize’,24,’Xtick’,[0 5 10 15 20])
71 xlabel(’Wavevector transfer (Å^{-1})’); ylabel(’Intensity’)
72

73 function [intx,inty]=pline(b,c)
74 %
75 % MATLAB function from:
76 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
77 %
78 % Calculates: Draws a perpendicular line from point c(x,y)
79 % to line that starts at origin and ends at point b(x,y)
80

81 if norm(c)==0
82 tc=0;
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83 elseif c(1)==0 & c(2)~=0
84 tc=pi/2;
85 else
86 tc=atan(c(2)./c(1));
87 end
88 tb=atan(b(2)./b(1)); dt=tc-tb;
89

90 intx=norm(c)*cos(dt)*cos(tb); inty=norm(c)*cos(dt)*sin(tb);
91 line([c(1) intx],[c(2) inty],’color’,’w’,’linewidth’,1.5)
92

93 function isin = isinpoly(x,y,xp,yp)
94 % ISIN = ISINPOLY(X,Y,XP,YP) Finds whether points with coordinates X and Y are inside
95 % or outside of a polygon with vertices XP, YP. Returns matrix ISIN of the same
96 % size as X and Y with 0 for points outside a polygon, 1 for inside points and
97 % 0.5 for points belonging to a polygon XP, YP itself.
98 % Copyright (c) 1995 by Kirill K. Pankratov
99 % kirill@plume.mit.edu, 4/10/94, 8/26/94.

100

101 %----- Handle input
102 if nargin<4
103 fprintf(’\n Error: not enough input arguments.\n\n’)
104 return
105 end
106 %----- Make the contour closed and get the sizes
107 xp = [xp(:); xp(1)]; yp = [yp(:); yp(1)];
108 sz = size(x); x = x(:); y = y(:);
109 lp = length(xp); l = length(x);
110 ep = ones(1,lp); e = ones(1,l);
111 %----- Calculate cumulative change in azimuth from points x,y to all vertices
112 A = diff(atan2(yp(:,e)-y(:,ep)’,xp(:,e)-x(:,ep)’))/pi;
113 A = A+2*((A<-1)-(A>1));
114 isin = any(A==1)-any(A==-1);
115 isin = (abs(sum(A))-isin)/2;
116 %----- Check for boundary points
117 A = (yp(:,e)==y(:,ep)’)&(xp(:,e)==x(:,ep)’);
118 fnd = find(any(A));
119 isin(fnd) = .5*ones(size(fnd));
120 isin = round(isin*2)/2;
121 %----- Reshape output to the input size
122 isin = reshape(isin,sz(1),sz(2));

Crystal truncation rod properties, Fig. 5.13 on page 171

1 function ctr
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Properties of the Crystal Truncation Rod
7

8 figure
9 set(gcf,’papertype’,’a4’,’paperunits’,’centimeters’,’units’,’centimeters’,...

10 ’position’,[0.1 -8 21 26],’paperposition’,[0.1 0.1 21 26]);
11

12 %Plot rod from flat surface without (beta=0) and with (beta=0.2) absorption
13

14 axes(’position’,[0.2 0.55 0.6 0.35])
15 axlm=[0 2 0.1 1000]; axis(axlm)
16 c1=[0.9 0.9 1];
17 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
18 [0 0 0 0],c1);
19

20 ell1=[0.01:0.001:0.99]; % beta=0, l range chosen to avoid Bragg peak at l=1
21 F_CTR=1./(1-exp(i*2*pi*ell1));
22 h1=line(ell1,F_CTR.*conj(F_CTR),’color’,’b’,’linewidth’,1.5,’linestyle’,’-’)
23 ell2=[1.01:0.001:1.99];
24 F_CTR=1./(1-exp(i*2*pi*ell2));
25 line(ell2,F_CTR.*conj(F_CTR),’color’,’b’,’linewidth’,1.5,’linestyle’,’-’)

mailto:kirill@plume.mit.edu
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26

27 ell=[0.01:0.001:1.99]; % beta=0.2, l range now includes Bragg peak at l=1
28 beta=0.2;
29 F_CTR=1./(1-exp(i*2*pi*ell)*exp(-beta));
30 h2=line(ell,F_CTR.*conj(F_CTR),’color’,’r’,’linewidth’,1.5,’linestyle’,’-.’)
31

32 set(gca,’Fontsize’,16,’FontName’,’Times’,’layer’,’top’)
33 [h,obj]=legend([h1 h2],’\beta=0’,’\beta=0.2’)
34 set(gca,’Fontsize’,18,’FontName’,’Times’)
35 set(gca,’FontName’,’Times’,’FontSize’,18)
36 xlabel(’{\it l} [r.l.u.]’); ylabel(’|{\it F }^{CTR}|^2’); box on
37 axis([0.0 2.0 0.1 1000])
38 set(gca,’Ytick’,[0.1 1 10 100 1000],’Yscale’,’Log’)
39

40 %Plot rod from flat surface + overlayer at different relative diplacements, z0
41

42 axes(’position’,[0.2 0.12 0.6 0.35])
43 axlm=[0 2 0.1 1000]; axis(axlm);
44 c1=[1 1 0.9];
45 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
46 [0 0 0 0],c1);
47

48 ell1=[0.01:0.001:0.99]; %l range chosen to avoid Bragg peak at l=1
49 F_CTR=1./(1-exp(i*2*pi*ell1));
50 line(ell1,F_CTR.*conj(F_CTR),’color’,’b’,’linewidth’,1.5,’linestyle’,’-’)
51 ell2=[1.01:0.001:1.99];
52 F_CTR=1./(1-exp(i*2*pi*ell2));
53 h1=line(ell2,F_CTR.*conj(F_CTR),’color’,’b’,’linewidth’,1.5,’linestyle’,’-’)
54

55 z0=0.05; % relative displacement of overlayer, z0=0.05
56 F_CTR=1./(1-exp(i*2*pi*ell1));
57 F_T=F_CTR+exp(-i*2*pi*(1+z0)*ell1);
58 line(ell1,F_T.*conj(F_T),’color’,’r’,’linewidth’,1.5,’linestyle’,’--’)
59 F_CTR=1./(1-exp(i*2*pi*ell2));
60 F_T=F_CTR+exp(-i*2*pi*(1+z0)*ell2);
61 h2=line(ell2,F_T.*conj(F_T),’color’,’r’,’linewidth’,1.5,’linestyle’,’--’)
62

63 z0=-0.05; % relative displacement of overlayer, z0=-0.05
64 F_CTR=1./(1-exp(i*2*pi*ell1));
65 F_T=F_CTR+exp(-i*2*pi*(1+z0)*ell1);
66 line(ell1,F_T.*conj(F_T),’color’,’g’,’linewidth’,1.5,’linestyle’,’-.’)
67 F_CTR=1./(1-exp(i*2*pi*ell2));
68 F_T=F_CTR+exp(-i*2*pi*(1+z0)*ell2);
69 h3=line(ell2,F_T.*conj(F_T),’color’,’g’,’linewidth’,1.5,’linestyle’,’-.’)
70

71 set(gca,’FontName’,’Times’,’FontSize’,18,’layer’,’top’)
72 xlabel(’{\it l} [r.l.u.]’); ylabel(’|{\it F }^{CTR}|^2’); box on
73 set(gca,’Fontsize’,14,’FontName’,’Times’)
74 [h,obj]=legend([h1 h2 h3],’{\it z}_0=0’,’{\it z}_0=0.05’,’{\it z}_0=-0.05’);
75 set(gca,’Fontsize’,18,’FontName’,’Times’)
76 axis([0. 2.0 0.1 1000])
77 set(gca,’Ytick’,[0.1 1 10 100 1000],’Yscale’,’log’)

Debye-Waller factor of aluminium, Fig. 5.16 on page 177

1 function DebyeWaller
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: The Debye-Waller factor for Aluminium
7 % Calls to: phiDebye
8

9 figure
10 set(gcf,’papertype’,’a4’,’paperunits’,’centimeters’,’units’,’centimeters’,...
11 ’position’,[0.1 -8 21 26],’paperposition’,[0.1 0.1 21 26]);
12

13 % Plot of phi(x) vs x.
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14

15 axes(’position’,[0.30 0.70 0.45 0.225]);
16 axlm=[0 8 0 1.1]; axis(axlm);
17 c1=[0.9 0.9 1];
18 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
19 [0 0 0 0],c1);
20

21 x=0.01:0.02:8;
22 for il=1:length(x), phi(il)=phiDebye(x(il)); end
23

24 line(x,phi,’color’,’b’,’linewidth’,1.5)
25 grid on
26 set(gca,’FontName’,’Times’,’FontSize’,16,’box’,’on’,’layer’,’top’)
27 ylabel(’$$\phi(\Theta/T)$$’,’interpreter’,’latex’); xlabel(’$$\Theta/T$$’,...
28 ’interpreter’,’latex’)
29

30 % Plot of sqrt(u^2) vs Temperature for Al
31

32 axes(’position’,[0.30 0.40 0.45 0.225]);
33 axlm=[0 1050 0 0.1]; axis(axlm);
34 c1=[1 0.9 1];
35 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
36 [0 0 0 0],c1);
37

38 Theta_Al=394; % Debye temperature of Al
39 A=27; % Atomic mass
40 nnd=4.04/sqrt(2); % Nearest neighbour distance
41 T=x*394;
42 B_Al=11492.*T.*phi/A/Theta_Al/Theta_Al+2873/A/Theta_Al;
43 rms=sqrt(3/8/pi/pi.*B_Al);
44 iT=find(T<933); iTg=find(T>=933);
45 line(T(iT),sqrt(2)*rms(iT)/4.04,’color’,’g’,’linewidth’,1.5)
46 line(T(iTg),sqrt(2)*rms(iTg)/4.04,’color’,’g’,’linewidth’,1.5,’linestyle’,’:’)
47

48 grid on
49 set(gca,’FontName’,’Times’,’FontSize’,16,’box’,’on’,’layer’,’top’)
50 xlabel(’Temperature [K]’,’position’,[500 -0.017 0])
51 ylabel(’$$\frac{\sqrt{\langle u^2 \rangle}}{a\sqrt{2}}$$’,...
52 ’interpreter’,’latex’)
53

54 % Temperature dependence at different Q’s
55

56 axes(’position’,[0.30 0.10 0.45 0.225]);
57 axlm=[0 1050 0 1.1];
58 axis(axlm);
59 c1=[1 1 0.9];
60 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
61 [0 0 0 0],c1);
62

63 I400=exp(-(8/4.04/4.04.*B_Al))./exp(-(8/4.04/4.04.*B_Al(1)));
64 I800=exp(-(32/4.04/4.04.*B_Al))./exp(-(32/4.04/4.04.*B_Al(1)));
65

66 line(T(iT),I400(iT),’color’,’r’,’LineWidth’,1.5)
67 line(T(iT),I800(iT),’color’,’r’,’Linestyle’,’--’,’LineWidth’,1.5)
68

69 grid on
70 set(gca,’FontName’,’Times’,’FontSize’,16,’box’,’on’,’layer’,’top’)
71 xlabel(’Temperature (K)’,’position’,[500 -0.2 0]);
72 ylabel(’Relative Intensity’)
73 text(650,0.30,’(8,0,0)’,’FontName’,’Times’,’FontSize’,16)
74 text(650,0.70,’(4,0,0)’,’FontName’,’Times’,’FontSize’,16)
75

76 function phi=phiDebye(x)
77 %
78 % MATLAB function from:
79 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
80 %
81 % Calculates: Evaluates the integral to calculate phi(x)
82 % Calls to: phiDebyeInt
83
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84 phi=quad(’phiDebyeInt’,0.000000001,x)./x;
85

86 function y=phiDebyeInt(xi)
87 %
88 % MATLAB function from:
89 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
90 %
91 % Calculates: Defines the integrabd used to evaluate phi(x)
92 % Note: Must be placed in a separate file called phiDebyeInt.m
93

94 y=xi./(exp(xi)-1);

Fibre diffraction from DNA, Fig. 5.28 on page 196

1 function dna
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Fibre diffraction pattern from DNA
7

8 [x,y]=meshgrid(-11:0.2:11,-11:0.2:11);
9

10 iw=20; %iw is the inverse width of a Bragg peak, here modelled as a Gaussian
11 z=zeros(size(x));
12 for il=-11:11
13 z=z+ abs((1+exp(i*il*2*pi*0.125)).*besselj(abs(il),x)).^2.*exp(-iw*(y+il).^2);
14 end
15

16 pcolor(x,y,z)
17 shading interp
18

19 axis equal; axis([-11 11 -11 11]); caxis([-0.1 2]); box on
20 set(gca,’FontName’,’Times’,’FontSize’,18,’Position’,[0.15 0.15 0.7 0.7])
21

22 colormap(1-gray)
23 caxis([-0.05 0.3])
24 set(gca,’dataaspectratio’,[1*34/20 1 1])

Crystal truncation rods from O on Cu(110), Fig. 5.31 on page 202

1 function cuoctr
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: CTR of O on Cu (110) and compares with data
7 % Calls to: ff
8 % Data: Feidenhans’l et al., Phys. Rev. B., vol. 41, page 5420 (1990)
9

10 %----- Cu real and reciprocal lattice parameters
11

12 ac=3.615; ar=2*pi/(ac/sqrt(2)); br=2*pi/ac; cr=2*pi/(ac/sqrt(2));
13

14 %(1,1) rod
15

16 figure; axes(’position’,[0.55 0.15 0.35 0.8]);
17 axlm=[0 1 6 100000 ];
18 axis(axlm)
19 c1=[0.9 0.9 1];
20 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
21 [0 0 0 0],c1);
22 set(gca,’layer’,’top’); box on
23

24 h=1; k=1; l=0.05:0.001:1.0; Q=sqrt(h^2*ar^2+k^2*br^2+l.^2*cr^2);
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25

26 %----- Cu form factor
27 a=[13.338 7.1676 5.6158 1.6735]; b=[3.5828 0.2470 11.3966 64.82]; c=[1.1910];
28 f_Cu=ff(a,b,c,Q);
29

30 %------ Cu Debye-Waller factor for bulk (B) and surface (S)
31 DW_Cu_B=exp(-0.55*(Q/4/pi).^2); DW_Cu_S=exp(-1.70*(Q/4/pi).^2);
32

33 %----- O form factor
34 a=[3.0485 2.2868 1.5463 0.8670]; b=[13.2771 5.7011 0.3239 32.9089]; c=[0.2508];
35 f_O=ff(a,b,c,Q);
36

37 %----- Bulk CTR
38 Phi=pi*(h+k+l); F_CTR=f_Cu.*DW_Cu_B./(1-exp(i*Phi));
39 line(l,4*abs(F_CTR).^2,’linestyle’,’-.’,’color’,’g’,’linewidth’,1.5);
40 set(gca,’FontName’,’Times’,’FontSize’,16,’Ytick’,[1e1 1e2 1e3 1e4 1e5],’Yscale’,’log’)
41 text(0.1,50000,’(b) (1,1) rod’,’FontName’,’Times’,’FontSize’,16)
42

43 %----- Add 1/2 a monolayer of Cu (no relaxation)
44 F_S=0.5*f_Cu.*DW_Cu_S*exp(i*pi*(h+k)).*exp(-i*2*pi*0.5*l);
45 F_T=F_CTR+F_S;
46 line(l,4*abs(F_T).^2,’linestyle’,’--’,’color’,’r’,’linewidth’,1.5);
47

48 %----- Add 1/2 a monolayer of Cu (relaxed to z0) plus O layer (relaxed to ť-z1)
49 z0=0.1445; z1=z0-0.133;
50 F_S=0.5*exp(i*pi*(h+k))*(f_Cu.*exp(-i*2*pi*(0.5+z0)*l).*DW_Cu_S...
51 +f_O.*exp(i*pi*k).*exp(-i*2*pi*(0.5+z1)*l));
52 F_T=F_CTR+F_S;
53 line(l,4*abs(F_T).^2,’linestyle’,’-’,’color’,’b’,’linewidth’,1.5);
54

55 %----- Add 1/2 a monolayer of Cu (relaxed to z0) plus O layer (relaxed to ť+z1)
56 z0=0.1445; z1=z0+0.133;
57 F_S=0.5*exp(i*pi*(h+k))*(f_Cu.*exp(-i*2*pi*(0.5+z0)*l).*DW_Cu_S...
58 +f_O.*exp(i*pi*k).*exp(-i*2*pi*(0.5+z1)*l));
59 F_T=F_CTR+F_S;
60 line(l,4*abs(F_T).^2,’linestyle’,’:’,’color’,’k’,’linewidth’,1.5);
61

62 data=[0.0787 4.5555;0.1517 3.8388;0.2247 3.5032;0.2978 3.1584;0.3539 3.0586;...
63 0.3708 2.8954;0.4382 2.6051;0.5169 2.3692;0.5787 2.1878;0.6517 1.9700;...
64 0.7360 1.9156];
65 line(data(:,1),10.^data(:,2),’marker’,’o’,’linestyle’,’none’,’markerfacecolor’,’w’)
66

67 %(1,0) rod
68

69 axes(’position’,[0.10 0.15 0.35 0.8]);
70 axlm=[0 1 6 100000 ];
71 axis(axlm)
72 c1=[1 1 0.9];
73 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
74 [0 0 0 0],c1);
75 set(gca,’layer’,’top’); box on
76

77 h=1; k=0; l=0.0:0.001:0.95; Q=sqrt(h^2*ar^2+k^2*br^2+l.^2*cr^2);
78

79 %----- Cu form factor
80 a=[13.338 7.1676 5.6158 1.6735]; b=[3.5828 0.2470 11.3966 64.82]; c=[1.1910];
81 f_Cu=ff(a,b,c,Q);
82

83 %----- Cu Debye-Waller factor for bulk (B) and surface (S)
84 DW_Cu_B=exp(-0.55*(Q/4/pi).^2); DW_Cu_S=exp(-1.70*(Q/4/pi).^2);
85

86 %----- O form factor
87 a=[3.0485 2.2868 1.5463 0.8670]; b=[13.2771 5.7011 0.3239 32.9089]; c=[0.2508];
88 f_O=ff(a,b,c,Q);
89

90 %----- Bulk unit cell SF
91 Phi=pi*(h+k+l); F_CTR=f_Cu.*DW_Cu_B./(1-exp(i*Phi));
92

93 line(l,4*F_CTR.*conj(F_CTR),’linestyle’,’-.’,’color’,’g’,’linewidth’,1.5);
94 set(gca,’FontName’,’Times’,’FontSize’,16,’Ytick’,[1e1 1e2 1e3 1e4 1e5],’yscale’,’log’)
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95 text(0.1,50000,’(a) (1,0) rod’,’FontName’,’Times’,’FontSize’,16)
96 ylabel(’Intensity (electron units)’,’Fontsize’,18)
97 text(1.15,2,’l (r.l.u.)’,’FontName’,’Times’,’FontSize’,18,...
98 ’HorizontalAlignment’,’Center’)
99

100 %----- Add 1/2 a monolayer of Cu (not relaxed)
101 F_S=0.5*exp(i*pi*(h+k))*f_Cu.*DW_Cu_S.*exp(-i*2*pi*(0.5+z0)*l);
102 F_T=F_CTR+F_S.*DW_Cu_B;
103 line(l,4*abs(F_T).^2,’linestyle’,’--’,’color’,’r’,’linewidth’,1.5);
104

105 %----- Add 1/2 a monolayer of Cu (relaxed to z0) plus O layer (relaxed to ť-z1)
106 z0=0.1145; z1=z0-0.133;
107 F_S=0.5*exp(i*pi*(h+k))*(f_Cu.*exp(-i*2*pi*(0.5+z0)*l).*DW_Cu_S...
108 +f_O.*exp(i*pi*k).*exp(-i*2*pi*(0.5+z1)*l));
109 F_T=F_CTR+F_S;
110 line(l,4*abs(F_T).^2,’linestyle’,’-’,’color’,’b’,’linewidth’,1.5);
111

112 %----- Add 1/2 a monolayer of Cu (relaxed to z0) plus O layer (relaxed to ť+z1)
113 z0=0.1145; z1=z0+0.133;
114 F_S=0.5*exp(i*pi*(h+k))*(f_Cu.*exp(-i*2*pi*(0.5+z0)*l).*DW_Cu_S...
115 +f_O.*exp(i*pi*k).*exp(-i*2*pi*(0.5+z1)*l));
116 F_T=F_CTR+F_S;
117 line(l,4*abs(F_T).^2,’linestyle’,’:’,’color’,’k’,’linewidth’,1.5);
118

119 %----- Plot data
120 data=[0.0226 1.8793;0.0960 1.9973;0.1695 2.2785;0.2429 2.4781;0.3220 2.7139;...
121 0.3955 2.8228;0.4689 2.9861;0.5480 3.1222;0.6158 3.2310;0.6949 3.4124;...
122 0.7740 3.6574];
123 line(data(:,1),10.^data(:,2),’marker’,’o’,’linestyle’,’none’,’markerfacecolor’,’w’)

In-plane Bragg reflections of O on Cu(110), Table 5.2 on page 201

1 function Iout=cuFS(hp,k)
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: In-plane Bragg peak intensities for O on Cu(110)
7 % Inputs: (hp,k), Miller indices of Bragg peak
8 % Outputs: Iout, Intensity
9 % Calls to: ff

10

11 %----- Cu real and reciprocal lattice parameters
12

13 ac=3.615; ar=2*pi/(2*ac/sqrt(2)); br=2*pi/ac; cr=2*pi/(ac/sqrt(2));
14

15 l=0; Q=sqrt(hp^2*ar^2+k^2*br^2+l.^2*cr^2);
16

17 %----- Cu form factor
18 a=[13.338 7.1676 5.6158 1.6735]; b=[3.5828 0.2470 11.3966 64.82]; c=[1.1910];
19 f_Cu=ff(a,b,c,Q);
20

21 %----- Cu Debye-Waller factor for bulk and surface
22 DW_Cu_B=exp(-0.55*(Q/4/pi).^2);
23 DW_Cu_S=exp(-1.70*(Q/4/pi).^2);
24

25 %----- O form factor
26 a=[3.0485 2.2868 1.5463 0.8670]; b=[13.2771 5.7011 0.3239 32.9089]; c=[0.2508];
27 f_O=ff(a,b,c,Q);
28

29 delta=0.031/(2*ac/sqrt(2));
30

31 F_1=f_Cu.*DW_Cu_S+f_O*exp(i*pi*k);
32 F_2=(-1)^(hp/2+k+0.5)*2.*f_Cu.*DW_Cu_B*sin(2*pi*hp*delta);
33 F_S=F_1+F_2;
34 Iout=1.047539547173480e-002*abs(F_S).^2;
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Form factor

1 function fofQ=ff(a,b,c,Q)
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: X-ray form factor as a function of Q
7 % Inputs: (a,b,c), coeffics. from ITC, Q
8 % Outputs: fofQ, form factor
9 % Note: Q is given by 4*pi*sin(theta)/lambda.

10

11 %----- Convert Q to be compatible with the definition
12 % in the International Tables of Crystallography
13

14 Q=Q/(4*pi);
15 fofQ=a(1)*exp(-b(1)*Q.^2)+...
16 a(2)*exp(-b(2)*Q.^2)+a(3)*exp(-b(3)*Q.^2)+a(4)*exp(-b(4)*Q.^2)+c;

Chapter 6: Diffraction by perfect crystals

Darwin curve including absorption, Fig. 6.10 on page 228

1 function darabs
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Darwin reflectivity curve of Si (111), including absorption
7

8 close all; clear all;
9 set(gcf,’papertype’,’a4’,’paperunits’,’centimeters’,’units’,’centimeters’)

10 set(gcf,’position’,[0.1 -8 21 26],’paperposition’,[0.1 0.1 21 26])
11

12 axes(’Position’,[0.2 0.60 0.6 0.40])
13 axlm=[-2 2 0 1.1]; axis(axlm);
14 c1=[0.9 0.9 1];
15 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
16 [0 0 0 0],c1);
17 set(gca,’layer’,’top’)
18

19 % Case 1: lambda=1.5405 Angs
20 r0=2.82E-5; % Thompson scattering length in Angs
21 V=160.1966; % unitcell vol. in Ang^3 e.g. 160.1966 for Si
22 d=3.13562; % d spacing for Si (111)
23 m=1; % order of reflection, 1= (111), 3=(333)
24 F_hkl=abs(4-4*i)*(10.54+0.25-i*0.33); % Complex structure factor for 111
25 F_0=8*(14+0.25-i*0.33); % Complex structure factor for 000
26 g=(2*d*d/m)*(r0/V)*F_hkl;
27 g0=g*(F_0/F_hkl);
28 [x,R]=darwin(g,g0,m); line(x,R,’color’,’c’,’linestyle’,’--’,’linewidth’,1.5)
29

30 axis([-2 2 0 1.1])
31 set(gca,’Ytick’,[0 0.5 1],’FontSize’,20,’FontName’,’Times’)
32 xlabel(’$$x=m\pi\frac{\zeta}{\mathrm g}-\frac{\mathrm g_0}{\mathrm g}$$’,...
33 ’interpreter’,’latex’,’position’,[0 -0.1 0]);
34 ylabel(’Intensity reflectivity’,’position’,[-2.75 0.5 0])
35 box on; grid on
36

37 % Case 2: lambda=0.70926 Angs
38 F_0=8*(14+0.082-i*0.071); % Complex structure factor for 000
39 F_hkl=abs(4-4*i)*(10.54+0.082-i*0.071); % Complex structure factor for 111
40 g=(2*d*d/m)*(r0/V)*F_hkl;
41 g0=g*(F_0/F_hkl);
42 [x,R]=darwin(g,g0,m);
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43 line(x,R,’color’,’b’,’linestyle’,’-’,’linewidth’,1.5);
44 text(-1.80,0.95,’(a)’,’FontName’,’Times’,’Fontsize’,24)
45

46 % Plot as a function of energy and angular variable in milli degrees
47

48 axes(’Position’,[0.2 0.08 0.6 0.40])
49 axlm=[-3 3 0 1.1]; axis(axlm);
50 c1=[1 1 0.9];
51 patch([axlm(1) axlm(2) axlm(2) axlm(1)],[axlm(3) axlm(3) axlm(4) axlm(4)],...
52 [0 0 0 0],c1);
53 set(gca,’layer’,’top’)
54

55 lambda=12.398/5.000; % 5 keV
56 theta=asin(m*lambda/2/d);
57 F_hkl=abs(4-4*i)*(10.54+0.38-i*0.8029); % Complex structure factor for 111
58 F_0=8*(14+0.3807-i*0.8029); % Complex structure factor for 000
59 g=(2*d*d/m)*(r0/V)*F_hkl;
60 g0=g*(F_0/F_hkl);
61 [x,R]=darwin(g,g0,m);
62 line(x*real(g/m/pi)*tan(theta)*180/pi*1e3,R,’color’,’b’,...
63 ’linestyle’,’--’,’linewidth’,1.5)
64

65 lambda=12.398/10.000; % 10 keV
66 theta=asin(m*lambda/2/d);
67 F_hkl=abs(4-4*i)*(10.54+0.1943-i*0.2169); % Complex structure factor for 111
68 F_0=8*(14+0.1943-i*0.2169); % Complex structure factor for 000
69 g=(2*d*d/m)*(r0/V)*F_hkl;
70 g0=g*(F_0/F_hkl);
71 [x,R]=darwin(g,g0,m);
72 line(x*real(g/m/pi)*tan(theta)*180/pi*1e3,R,’color’,’r’,...
73 ’linestyle’,’--’,’linewidth’,1.5)
74

75 lambda=12.398/50.000; % 50 keV
76 theta=asin(m*lambda/2/d);
77 F_hkl=abs(4-4*i)*(10.54+0.0027-i*0.0076); % Complex structure factor for 111
78 F_0=8*(14+0.0027-i*0.0076); % Complex structure factor for 000
79 g=(2*d*d/m)*(r0/V)*F_hkl;
80 g0=g*(F_0/F_hkl);
81 [x,R]=darwin(g,g0,m);
82 line(x*real(g/m/pi)*tan(theta)*180/pi*1e3,R,’color’,’g’,...
83 ’linestyle’,’-’,’linewidth’,1.5)
84

85 set(gca,’Xtick’,[-2 -1 0 1 2],’Ytick’,[0 0.5 1],’FontSize’,20,’FontName’,’Times’)
86 xlabel(’\omega [milli degrees]’);
87 ylabel(’Intensity reflectivity’,’position’,[-4.15 0.55 0])
88 box on; grid on
89 text(-2.85,0.25,’5 keV’,’FontName’,’Times’,’Fontsize’,18)
90 text(-2.10,0.15,’10 keV’,’FontName’,’Times’,’Fontsize’,18)
91 text(-1.30,0.05,’50 keV’,’FontName’,’Times’,’Fontsize’,18)
92 text(-2.70,0.95,’(b)’,’FontName’,’Times’,’Fontsize’,24)
93

94 function [x,R]=darwin(g,g0,m);
95 %
96 % MATLAB function from:
97 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
98 %
99 % Calculates: Darwin reflectivity R vs x (absorption effects included)

100

101 x_m=[-5:0.01:-1]; zeta=real((g*x_m+g0)/m/pi); xc_m=m*pi*zeta/g-g0/g;
102 rc_m=xc_m+sqrt(xc_m.^2-1);
103 x_t=[-1:0.01:1]; zeta=real((g*x_t+g0)/m/pi); xc_t=m*pi*zeta/g-g0/g;
104 rc_t=xc_t-i*sqrt(1-xc_t.^2);
105 x_p=[1:0.01:5]; zeta=real((g*x_p+g0)/m/pi); xc_p=m*pi*zeta/g-g0/g;
106 rc_p=xc_p-sqrt(xc_p.^2-1);
107 x=[x_m x_t x_p]; rc=[rc_m rc_t rc_p];
108 R=abs(rc).^2;
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Chapter 7: Photoelectric absorption

K absorption edge of Kr, Fig. 7.5 on page 250

1 function kedge
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Photoelectric absorption cross-section of Kr - comparison
7 % between hydrogen-like model of K shell contribution and the
8 % self-consistent Dirac-Hartree-Fock theory
9 % (C.T. Chantler, J. Phys. Chem. Ref. Data vol. 24, 71 (1995))

10 % Calls to: loaddata
11

12 [en,sigma,thom_comp]=loaddata; % load theoretical values
13

14 %----- Plot theoretical photoelectron and (Thomson+Compton) cross-sections
15

16 line(en,sigma,’linestyle’,’-.’); line(en,thom_comp,’linestyle’,’--’)
17

18 %----- Find L shell photoelectric contribution below 14.3 keV
19

20 xl=find(en<14.3); xg=find(en>14.32);
21 xlog=log10(en(xl));
22 ylog=log10(sigma(xl));
23 [P,S]=polyfit(xlog,ylog,1);
24 ylogfit=polyval(P,log10(en));
25 y=10.^ylogfit;
26 line(en(xg),y(xg),’linestyle’,’:’) % Plot L contribution for E>14.32
27

28 %----- Plot theorectical absorption for K shell from Stoppe theory
29

30 en=en(xg); y=y(xg);
31 r0=2.82e-5; % Thomson scattering length
32 ek=14.32; % K edge of Kr energy in keV
33 lambda=12.398./en;
34 xi=sqrt(ek./(en-ek));
35 f=2*pi*sqrt(ek./en).*exp(-4*xi.*acot(xi))./(1-exp(-2*pi*xi));
36 sigmaa=256/3.*lambda.*(ek./en).^2.5.*f*r0*1e8;
37 line(en,sigmaa+y,’color’,’r’,’linewidth’,2)
38 axis([5 40 50 100000])
39 set(gca,’FontName’,’Times’,’FontSize’,18,’Xtick’,[5 10 20 50],...
40 ’Xscale’,’log’,’Yscale’,’log’)
41 grid on; box on
42 xlabel(’Photon energy [keV]’);ylabel(’Absorption cross-section [barn]’)
43

44 text(6,150,’Thomson+Compton’,’FontName’,’Times’,’Fontsize’,18)
45 text(10,20000,’L edges’,’FontName’,’Times’,’Fontsize’,18,...
46 ’horizontalalignment’,’center’)
47 text(25,20000,’K + L edges’,’FontName’,’Times’,’Fontsize’,18,...
48 ’horizontalalignment’,’center’)
49

50 function [en,sigma,thom_comp]=loaddata
51 %
52 % MATLAB function from:
53 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
54 %
55 % Photoelectric and Thomson+Compton cross-sections for Kr
56

57 en=[5.3 5.66 6.05 6.47 6.92 7.39 7.9 8.45 9.03 9.65 10.3 11 11.8 12.6 13.5 14 14.3...
58 14.3 14.4 14.6 15.4 16.5 17.6 18.8 20.1 21.5 23 24.6 26.3 28.1 30 32.1 34.3 36.7 39.2];
59 sigma=[...
60 3.83e+004 3.20e+004 2.67e+004 2.23e+004 1.87e+004 1.57e+004 1.31e+004 1.09e+004...
61 9.04e+003 7.43e+003 6.11e+003 5.03e+003 4.14e+003 3.42e+003 2.82e+003 2.51e+003...
62 2.40e+003 2.37e+003 1.81e+004 1.74e+004 1.49e+004 1.25e+004 1.05e+004 8.87e+003...
63 7.42e+003 6.20e+003 5.17e+003 4.32e+003 3.60e+003 3.00e+003 2.48e+003 2.05e+003...
64 1.69e+003 1.40e+003 1.15e+003];
65 thom_comp=[...
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66 4.72e+002 4.49e+002 4.27e+002 4.04e+002 3.82e+002 3.61e+002 3.40e+002 3.20e+002...
67 3.00e+002 2.81e+002 2.63e+002 2.45e+002 2.29e+002 2.13e+002 1.98e+002 1.89e+002...
68 1.86e+002 1.85e+002 1.84e+002 1.81e+002 1.71e+002 1.58e+002 1.47e+002 1.36e+002...
69 1.26e+002 1.16e+002 1.07e+002 9.92e+001 9.18e+001 8.49e+001 7.85e+001 7.27e+001...
70 6.73e+001 6.24e+001 5.80e+001];

Chapter 9: Imaging

Numerical example of the reconstruction of a two-dimensional object from its Radon
transform, Fig. 9.5 on page 311

1 function Sinogram
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Numerical example of reconstruction of phantom
7 % from its Sinogram
8 % Calls to: radon, iradon (part of Matlab’s image processing toolbox)
9 close all; clear all;

10

11 set(gcf,’position’,[100 100 560*1.3 420*1.3])
12

13 xst=0.0; yst=0.075; xsp=0.36; xln=0.3; yln=0.3
14

15 % (c) Plot phantom model
16 axes(’position’,[xst yst 0.3 0.3])
17 a=imread(’p.jpg’); % Read in phantom (any suitable b+w jpeg will do)
18 imagesc(a’)
19 colormap(hot)
20 b=double(a); % Convert to double precision for following routines
21 axis([1 236 1 236]); daspect([1 1 1])
22 set(gca,’xticklabel’,[],’yticklabel’,[])
23 text(0.01,1.10,’(c) Model {\it f(x,y)}’,’FontName’,’Times’,’Fontsize’,14,...
24 ’units’,’normalized’)
25

26 % (d) Calculate and plot Sinogram of phantom
27 axes(’position’,[xst+xsp yst 0.3 0.3])
28 theta3=0:2:178;
29 [R3,xp]=radon(b,theta3);
30 imagesc(theta3,xp,R3);
31 axis([min(theta3) max(theta3) min(xp)+40 max(xp)-40])
32 set(gca,’xtick’,[0 50 100 150],’ytick’,[-100 -50 0 50 100],...
33 ’FontName’,’Times’,’FontSize’,12)
34 xlabel(’Projection angle \theta [Degs]’); ylabel(’Position on detector x\prime’);
35 text(0.01,1.10,’(d) Sinogram’,’FontName’,’Times’,’Fontsize’,14,’units’,’normalized’)
36

37 % (e) Reconstruct phantom from Sinogram and plot
38 axes(’position’,[xst+2*xsp yst 0.3 0.3])
39 [I3,H3]=iradon(R3,theta3,’Cosine’);
40 imagesc(I3’);
41 caxis(gca,[100 200]); axis([2 236 2 236]); daspect([1 1 1])
42 set(gca,’xticklabel’,[],’yticklabel’,[])
43 text(0.01,1.10,’(e) Reconstructed {\it f(x,y)}’,’FontName’,’Times’,...
44 ’Fontsize’,14,’units’,’normalized’)
45

46 % Add theta=0 projections
47 axes(’position’,[xst+0.10 yst+0.69 0.3*0.75 0.3*0.75])
48 hold on
49 axis([0 100 -100 100])
50 arrow3([0 -50],[100 -50],’r1.5’,4,10); arrow3([0 -25],[100 -25],’r1.5’,4,10)
51 arrow3([0 0],[100 0],’r1.5’,4,10); arrow3([0 25],[100 25],’r1.5’,4,10)
52 arrow3([0 50],[100 50],’r1.5’,4,10)
53 axis off
54 text(0.01,0.9,’(a) \theta=0’,’FontName’,’Times’,’Fontsize’,14,’units’,’normalized’)
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55

56 axes(’position’,[xst+xsp+0.05 yst+0.69 0.3*0.75 0.3*0.75])
57 a=imread(’p.jpg’);
58 imagesc(a’)
59 colormap(hot)
60 b=double(a); % Convert to double precision for following routines
61 axis([1 236 1 236]); daspect([1 1 1])
62 set(gca,’xticklabel’,[],’yticklabel’,[])
63

64 ha=axes(’position’,[xst+2*xsp yst+0.69 0.3*0.75 0.3*0.75])
65 iff=find(theta3==0); ifx=find(xp<-115 | xp>115);
66 xp(ifx)=[]; R3(ifx,:)=[];
67 line(1-(R3(1:end,iff)-min(R3(:,iff)))/max(R3(1:end,iff)),xp,’linewidth’,1.5)
68 axis([0 1.2 -120 120]); axis square; box on
69

70 set(gca,’xticklabel’,[],’yticklabel’,[],’ydir’,’reverse’,...
71 ’FontName’,’Times’,’FontSize’,10)
72 xlabel(’I/I_0’); ylabel(’Position on detector x\prime’)
73

74 % Add theta=90 projections
75 axes(’position’,[xst+0.10 yst+0.41 0.3*0.75 0.3*0.75])
76 hold on
77 axis([0 100 -100 100])
78 arrow3([0 -50],[100 -50],’r1.5’,4,10); arrow3([0 -25],[100 -25],’r1.5’,4,10)
79 arrow3([0 0],[100 0],’r1.5’,4,10); arrow3([0 25],[100 25],’r1.5’,4,10)
80 arrow3([0 50],[100 50],’r1.5’,4,10)
81 axis off
82 text(0.01,0.9,’(b) \theta=90^o’,’FontName’,’Times’,’Fontsize’,14,’units’,’normalized’)
83

84 axes(’position’,[xst+xsp+0.05 yst+0.41 0.3*0.75 0.3*0.75])
85 a=imread(’p.jpg’);
86 hi=surf(double(a)); shading interp; colormap(hot)
87 b=double(a); % convert to double precision for following routines
88 axis([1 236 1 236]); daspect([1 1 1])
89 set(gca,’xticklabel’,[],’yticklabel’,[])
90

91 ha=axes(’position’,[xst+2*xsp yst+0.41 0.3*0.75 0.3*0.75])
92 iff=find(theta3==90); ifx=find(xp<-115 | xp>115);
93 xp(ifx)=[]; R3(ifx,:)=[];
94 line(1-(R3(1:end,iff)-min(R3(:,iff)))/max(R3(1:end,iff)),xp,’linewidth’,1.5)
95 axis([0 1.2 -120 120]); axis square; box on
96

97 set(gca,’xticklabel’,[],’yticklabel’,[],’ydir’,’reverse’,...
98 ’FontName’,’Times’,’FontSize’,10)
99 xlabel(’I/I_0’); ylabel(’Position on detector x\prime’)

Wavefield propagation for a Fresnel zone plate, Fig. 9.15 on page 323

1 function Fresnel_ZP
2 %
3 % MATLAB function from:
4 % "Elements of Modern X-ray Physics" by Jens Als-Nielsen and Des McMorrow
5 %
6 % Calculates: Wavepropagation after a 1D absorption Fresnel zone plate
7 % Calls to:
8 close all; clear all; figure(1);set(gcf,’Position’,[0 0 600 800])
9

10 %Define focal length.
11 f = 1e5; % Focus length is 10 cm = 1e5 microns
12 lambda = 1e-4; % Wavelength is 1 \AA
13

14 % Define how many steps along the propagation distance & resolution
15 Prop_steps=500;
16 z = [0:1/Prop_steps:1]* f; % Propagate from 0 to f
17 fieldwidth = 100; % Total width of field (in microns)
18

19 % Define the Fresnel lens (symmetric around zero)
20 Nzones = 19; % Number of zones
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21 zone=sqrt(f*[1:Nzones]*lambda); % Zones on zone plate
22

23 Precision=2^13; % Precision is on x-axis
24 x=[0:1/Precision:1]*fieldwidth;
25 plate = ones(size(x));
26 current_zone = 1;
27 for n=1:length(x)
28 if abs(x(n))<zone(current_zone)
29 plate(n) = 0.5 - 0.5*(-1)^current_zone;
30 else
31 current_zone=current_zone+1;
32 plate(n) = 0.5 - 0.5*(-1)^current_zone;
33 end
34 if current_zone>Nzones,N=n;break,end
35 end
36 plate= [fliplr(plate) plate(2:length(plate))];plate= 1-plate;
37

38 x=[-1:1/Precision:1]*fieldwidth;
39 % Define incoming wave and create the complex field
40 ampin= plate; phin = 0.*plate; % absorption plate; use line below for phase plate
41 %ampin=[zeros(1,Precision-N) ones(1,2*N+1) zeros(1,Precision-N)]; phin=pi.*plate;
42 fieldin = ampin.*exp(sqrt(-1).*phin);
43

44 % Fourier space propagation
45 uin = fftshift(fft(fieldin)); % Go to fourier space
46 fpg = exp(-sqrt(-1)*pi*lambda*z’*((x).^2)/6); % Define matrix for different distances
47 uin = ones(size(z’))*uin;
48 uout = fpg.*uin; % Multiply fresnel propagator
49 fieldout = ifft((uout),[],2); % Go back to real space
50

51 ampplot = (abs(fieldout’));
52 fieldsize=size(fieldout);
53 Plotsize = [round(fieldsize(2)/2)-2000 round(fieldsize(2)/2)+2000 1 fieldsize(1)];
54

55

56 % Plot Fresnel lens (starting field)
57 axes(’Position’,[0.55 0.8 0.4 0.1]);
58 area(Plotsize(1):Plotsize(2),1-abs(fieldin(Plotsize(1):Plotsize(2))),...
59 ’FaceColor’,[0 0 0])
60 set(gca,’FontName’,’Times’,’Xtick’,[],’Ytick’,[]);
61 title(’Fresnel Zone Absorption Plate’); box on;
62

63 % Plot wavefield
64 axes(’Position’,[0.55 0.30 0.4 0.45])
65 imagesc(ampplot(Plotsize(1):Plotsize(2),Plotsize(3):Plotsize(4))’);
66 colormap jet;
67 set(gca,’xtick’,[],’ytick’,[],’FontName’,’Times’);
68 title(’Wave Propagation’);
69

70 % Plot Intensity profile
71 axes(’Position’,[0.55 0.10 0.4 0.15]);
72 plot(x(Plotsize(1):Plotsize(2)),ampplot(Plotsize(1):Plotsize(2),Plotsize(4)),’r-’);
73 axis([x(Plotsize(1)) x(Plotsize(2)) 0 6.0])
74 set(gca,’FontName’,’Times’);
75 title(’Amplitude profile’);
76 xlabel(’$$x$$ [$$\mu$$m]’,’FontName’,’Times’,’interpreter’,’latex’)
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2. Sources

2.1: Start from Eq. (1.1) and use the fact that

1 eV is equivalent to 1.602×10−19 J.

2.2: With ρ =24.8 m, I=0.2 A, and Ee=6 GeV,

P =1.2 MW.

2.3: For protons, γ = 7.4 × 103, ρ = 2.8 km, and

P=3.9 kW. For electrons, γ = 1.4 × 107, and

P=44 PW.

2.4: No. The characteristic energy is �ωc =

3�cγ3/(2ρ) = 44 eV corresponding to a

wavelength of λ=280 Å.

2.5: The formulae given in the question can be

rearranged to read ν = c/(λU(1 − β)), and with

λ = c/ν and 1 − β= 1/(2γ2) the desired result is

obtained.

2.6: Use Eq. (2.14) as your starting point, and

note that with the electron energy in GeV

1/(2γ2)= (0.511 ×10−3)2/ (2E2
e) =13.056×10−8/

E2
e . An additional factor of 108 is introduced

when converting from cm to Å.

2.7: (a) The formula for the fractional energy

change can be considered as a function G(ψ) of

the scattering angle ψ. As the initial photon

energy χi is much less than the electron energy

γi, and that βi is close to unity, one obtains that

G(ψ)= (1 − cosψ)/ (1 + (χi/γi) cosψ) which

clearly has a maximum when ψ = π. (b) With

the same approximations as in part (a), and

setting ψ = π, the fractional energy change is

2γ/[γ(1 − β)] = 2/(1 − β) = 4γ2. The X-ray

wavelength for the parameters given is 1 Å.

2.8: u = 4 × 107 J/m3=ε0c2〈B2〉av

=ε0c2B2
L
/2=ε0c2B2

u/2/4. ∴ Bu ≈ 20 T. With

K ≈ 10−3, and N = 104, the flux is of order 1011

photons/s/0.1%BW.

3. Reflection and refraction from
interfaces

3.1: Inside the material, mλ′= 2d sin θ′, and with

λ′= λ/n = λ/(1− δ) this becomes mλ= 2d (1− δ)
sin θ′. Since n cos θ′ = cos θ, we have sin θ′=√

1 − cos2 θ′ ≈ sin θ (1 − δ/ tan2 θ). Therefore

mλ= 2d sin θ (1 −δ/ sin2 θ), and the formula

stated in the question follows on making the

substitution 1/ sin θ = 2d/(mλ).

3.2: αc = 3 mrad, and ∴ α = 2.4 mrad. The

minimum penetration depth is

1/Qc=1/(2kαc) = 32 Å.

3.3: A plot of the square of the angular position

of the intensity maxima against the square of the

fringe order should produce a straight line with

an intercept of α2
c and a gradient of (λ/(2t))2.

3.4: 1.5 × 10−2, 2.3 × 10−3 and 6.6 × 10−4 for

m = 2, 3 and 4, respectively.

3.5: α = 2.5 mrad, and Ec=24.8 keV.

3.6: t(r) = r2/D, c.f. the equation immediately

below Eq. (3.42), and tav =
∫ d/2

0
2πr t(r)dr/
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∫ d/2

0
2πrdr = (d/8)α with α = d/D.

3.7: The number of lenses required is N=235.

The average thickness of a lens is tav =25 μm

within the 400 μm aperture. The average

transmission is 55%.

3.8: Footprint; 200 mm. ρtangential=2 km,

ρsagittal=5 cm. Alignment accuracy required:

0.025 mrad.

4. Kinematical scattering I:
non-crystalline materials

4.1: The intrinsic width in energy (FWHM) of

the inelastic line can be estimated by subtracting

in quadrature the resolution estimated from the

elastic line. This assumes that both the elastic

and inelastic lines may be approximated by

Gaussians. The FWHM of the momentum

distribution is then estimated to be ∼ 0.3 Å−1.

4.2: Assume that both electrons in the He atom

have the same form factor given by Eq. (4.9).

The desired result follows immediately, which

yields essentially perfect agreement when

compared with Fig. 4.5(a).

4.3: I(Q)= 2Z2 [1+ sin (Qa)/(Qa)]/ [1+

(Qa/20)2]4. Qa=0 for the first maximum.

Numerical plot reveals the second maximum at

Qa ≈ 6.75.

4.4: 2 f 2
1 + f 2

2 + 4 f1 f2 sin (Qa) / (Qa)+

2 f 2
1 sin (2Qa) / (2Qa).

4.6: Integration of ρ(r) over all space must yield

the total charge of 6 × 60 = 360 electrons for the

C60 molecule, and hence A=360.

4.7: Guinier approximation, yG= e−x2/5 = 0.7020

for x= 1.33. Exact, y = 3[sin x −x cos x ]/ x3 =

0.6954 for x= 1.33.

4.10: F (Q) ≈ [Vp −(1/2)
∫

(q · r)2dVp +...] /Vp

= 1− (q2/(6Vp))
∫

r2dVp = 1− q2R2
g/6, and the

result follows when substituting the form factor

into Eq. (4.22).

5. Kinematical scattering II: crystalline
materials

5.1: (a) d10 =
√

3/2, d11 = 1/2 (b) Let a∗
1
= (α,β)

and a∗2= (γ,δ), then use ai · a∗j = 2πδi j to

determine the unknown coefficients α, β, γ and

δ. (e) dhk =
√

3a/(2
√

h2 + hk + k2).

5.2: First show that sin2 θ is proportional to h2 +

k2 + l2. Then calculate the eight values of the

ratio (sin θi / sin θ1)2 for i= 1· · · 8, noting that θ

is half of the given scattering angles, and

compare with h2 + k2 + l2. This allows the peaks

to be indexed. Lastly compare with the selection

rules for simple cubic, bcc and f cc, from which

you should conclude that the sample has a

simple cubic lattice.

5.3: Use Eq. (5.34) which requires evaluating

the multiplicities of all reflections. Note that the

(300) and (221) have the same value of h2 + k2 +

l2.

5.4: Fh,k,l = 4( fNa − fH) for (h, k, l) all odd, and

Fh,k,l = 4( fNa + fH) for (h, k, l) all even. For

X-rays, f ∝ Z for Q=0, and since ZNa � ZH ,

both types of peaks are present. In the case of

neutrons, the fact that the (h, k, l) even peaks are

absent implies that the scattering lengths of Na

and H are of equal magnitude but of opposite

sign.

5.5: Use dhkl= 2π/|G|.
5.6: The (1,0,0), |F100|2=1; and the (0,0,2),

|F100|2=4, are the first two allowed reflections

that are closet to the origin.

5.7: By definition, M = BT (sin θ/λ)2

=BT (G/4π)2 =BT (h2 + k2 + l2)/(4a2). From Fig.

5.16 we obtain φ(Θ/T )= 0.55, which yields

BT = 0.32 Å2. Since e−M ≈ 1 − M, M =0.55

which when combined with the above expression

for M leads to the result that the (331) reflection

is the first to lose 5% of its intensity.

5.9: The contribution to the scattering amplitude

from the layers above z = 0 form a geometric

series ηe−i2πl + η2e−i4πl + · · · which can be

summed to yield ηei2πl/(1 − ηe−i2πl). Once this

amplitude has been added to the standard
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expression for the crystal truncation rod

scattering amplitude, the scattered intensity can

be calculated. For small η, the intensity at the

anti-Bragg point is ∼ 1/4 − η, from which it is

clear that roughness decreases the intensity in

the specular CTR rod.

5.10: The scattering amplitude is: 1/(1 − ei2πl)

+ei2πl/2, and the intensity at the anti-Bragg point

is zero. Thus at the anti-Bragg point l = 0.5 the

intensity will oscillate between 0 and |F(Q)|2 /4
during layer-by-layer growth allowing the

process to be studied.

6. Diffraction by perfect crystals

6.1: (a) The (400) is the first allowed symmetric

Bragg peak; see Section 5.1.7. (b) The key is to

use Eq. (6.1). From Table 4.1 the atomic form

factor is f (G400)=7.51. The Debye-Waller factor

DW = exp(−BT (sin θ/λ)2) at room temperature

is evaluated by taking BT = 0.33 (Table 5.1) and

sin θ/λ= G400/4π=0.3683, yielding

DW=0.9562. Thus F =4(1 + i) f (G400)

DW=57.45, and g = 2.6 × 10−6. (c) The required

amplitude reflectivity is 1/10. From Eq. (6.20)

this implies that x +
√

x2 − 1 = 10, or x ≈ 5. The

width of total reflection (Δx = 2) is 26.3 × 10−6

multiplied by 2
√

2/3 or 24.8 × 10−6 (Table 6.1).

The offset angle is then calculated as 5/2 times

24.8 × 10−6 multiplied by tan θ.

6.2: x ≤ −1, r is always real and negative and

therefore the phase is equal to π or −π, where in

our exposition we have made the latter choice;

|x| ≤ 1, the phase is equal to −acos

(x/(x2 + (
√

1 − x2)2)1/2) = −acos(x); x ≥ 1, r is

always real and positive and hence the phase

angle is zero.

6.3: Consider Fig. 6.5 and Eq. (6.20) from which

it should be clear that the correct factor is

obtained from the condition that (x −
√

x2 − 1)2

= 1/2 which has the solution x= 3/(2
√

2).

6.4: g is the amplitude reflectivity per layer. The

amplitude reduction at the n’th layer is ΔA =
−gAn, ⇒A(n) =A0 exp(−gn). After N = 1/g

layers the amplitude is reduced by a factor of

1/e. The amplitude extinction depth is therefore

Nd =d/g. The intensity extinction depth is found

from I(n) = I0 exp(−2gn) to be d/(2g).

6.5: Δθ [rad]=(ζtotal
D
/2) (|F0|/|F |) tan θ = (g /mπ)

(|F0|/|F |) tan θ =(g0 /mπ) tan θ where we have

used Eq. (6.28), (6.25) and (6.2), respectively.

With g0 = mπδ/ sin2 θ we obtain Δθ [rad]=δ

tan θ/ sin2 θ = 2δ/ sin 2θ as required.

6.6: (a) ΔE/E= cot θΔθ. (b) θ = 90◦ ⇒ λ = 2d =

0.5226 Å, or E= 23.72 keV. (c) μ−1(23.72 keV)=

1720 μm, from Eq. (6.33) Λext = 174 μm, which

is much less than the absorption length so

dynamical diffraction applies. From Eq. (6.26)

the relative bandwidth (FWHM) is 5.07 ×10−8

yielding a resolution of ΔE =1.2 meV.

6.7: We have from Eq. (6.1) g ≈ 2(a2/3)r0/(a
3)

4|1 + i|Z =8(
√

2/3) (r0/a) Z and an extinction

depth given by Λ = (a/
√

3)/(2g) = a
√

3/2

(1/16) 1/((r0/a)Z). Hence the extinction depths

are estimated to be ΛC= 0.57 μm, ΛS i= 0.57 μm,

and ΛGe= 0.27 μm, within a factor two of the

values obtained from a full calculation.

6.8: The tabulated value of the absorption length

at 12.4 keV is μ−1= 11 μm. The absorption

depth is (μ−1/2) sin θ ≈ 1 μm. The extinction

length (given in the text) is 8 μm. The scattering

is therefore kinematic, because absorption

prevents significant multiple scattering, and the

integrated intensity is proportional to |F |2.

6.9: w333/w111= (1/9) (|F333|/|F111|)
(tan θ333/ tan θ111) =(1/9) (8/(4

√
2)) ( f333/ f111)

(tan θ333/ tan θ111).

6.10: The asymmetry parameter is

sin(45◦)/ sin(15◦) ∼ 3, or its reciprocal, 1/3 . In

case (a) the beam incident on the second crystal

is spatially extended, so it can only accept a

narrow angular range equal to 1/
√

3 of the

symmetric Darwin width. I(θ) is therefore the

convolution of a top hat, say of height 1 and of

width 1 from the first crystal, with a top hat of

width 1/
√

3 from the second crystal. The

convolution is a parallelogram with baseline of

1+1/
√

3 and top width of 1−1/
√

3. With a

height of 1, the integrated intensity (area) is 1. In
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case (b) the convolution is also a parallelogram

with baseline
√

3+1 and top width of
√

3−1.

Requiring the same area means that this

parallelogram has a height of 1/
√

3.

7. Photoelectron absorption

7.1: Use Eq. (1.19) with σa = (μ/ρm) (M/NA)

from Eq. (1.18).

7.2: From Eq. (7.2), 1/μ= 50 μm.

7.3: 1/μ= 20 μm, which is shorter than the value

at 50 μm due to the presence of the Ga and As K

edges at 10.367 and 11.867 keV, respectively.

7.4: 1.7 m.

7.5: In the absence of any absorption edges, the

absorption length decreases as the cube of the

X-ray energy. The absorption length in air at 1

keV is approximately 1.7 mm.

7.7: The result follows from making the

substitution κ = 2/a in Eq. (4.9).

7.8: The total elastic scattering from an atom is

approximately Z(8πr2
0/3), and equating this to

Eq. (7.18) leads to the required result. The

absorption and scattering cross-section are

estimated to be equal at ∼ 1.87 keV, which is

much greater than the energy of the K edge,

justifying setting the Stobbe correction factor

f (ξ) equal to unity.

7.9: 0.02 atm.

7.10: The second neighbour shell is at a distance

of a/
√

2 = 6.48/
√

2 = 4.58 Å in good accord

with the data in Fig. 7.9.

7.11: (a) ε(Z)=0.0026Z−0.23. (b) EK(Ga)=

10.367 keV, EK (Ga)= 11.868 keV, both within 1

eV of their tabulated values.

8. Resonant scattering

8.1: Equation (8.13) can be rearranged to read

| f ′′| = E[keV] σa[Å2]/ 6.993 × 10−6, which

when substituted into Eq. (1.18) yields the

desired result.

8.2: (a) Conventional bcc unit cell has two atoms

with fractional coordinates of (0,0,0) and

(1/2,1/2,1/2). Thus Fhkl= fav. (1+exp(

iπ(h + k + l))) with fav. = ( fCu + fZn)/2. The

condition on the Miller indices is that (h + k + l)

must be even. (b) Fhkl= ( fCu ± fZn) where the +

and − refer to (h + k + l) even, and (h + k + l)

odd, respectively. (c) Ratio is approximated as

(30-29) /(30+29) ≈ 0.017.

8.3: (a) We have σa= (4πro/k) | f ′′| =2× 12.398

r0 [Å] | f ′′ | / E [keV]. For a composite material,

μ =
∑

j ρat, j σa, j = (σCu, j+σZn, j)/a
2. The values

of aμ at the four energies are 9.53, 9.24, 39.7

and 38.5 all multiplied by 10−6. (b) |F100|2: 6.95,

57.3, 68.4, 16.7; from Eq. (5.31), Isc/I0: 7.58,

62.0, 17.5, 4.29 all multiplied by 10−6. (c) 100

eV below the edge elastic scattering only and

photons of 8878.9 keV will be observed. 100 eV

above the edge in addition to the elastic

scattering there is also fluorescence at Kα =

8.048 keV and Kβ = 8.910 keV with an intensity

ratio of about 10 to 1.

8.4: (a) The beam divergence of the scattered

beam is 2 mrad, and fills the detector aperture

when the detector is placed a distance of L= 500

mm from the sample. (b) ΔΩ = πr2 /L2 = 3.14×
10−6. (c) From 8.3(b), Isc/I0 = 4.29 × 10−6. All

incoming photons will be absorbed in the thick

sample in symmetric Bragg reflection geometry.

30% will be re-emitted as fluorescence, and the

fraction ΔΩ /4π will reach the detector. Thus

I f /I0 ≈ 0.075 × 10−6, and the ratio of scattering

to fluorescence is ∼66.

8.5: The two possibilities are F111 = fZn + fS
e2π(1+1+1)/4 or F1̄1̄1̄ = fS + fZn e2π(1+1+1)/4.

Inserting fZn = f ′
Zn
+ i f ′′

Zn
, etc., and rearranging

leads to the desired result.

8.6: The result follows directly from the answer

to Exercise 8.5.

8.8: The calculated ratios are 1.58, 1, and 0.51,

in good agreement with the measured ratios.

9. Imaging

9.1: C = 1− e−(μ2−μ1)z2 if μ1 < μ2, and C = 1−
e(μ2−μ1)z2 if μ1 > μ2.
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9.2: C= 0.98, 0.64, 0.32, 0.24, ordered in terms

of increasing photon energy.

9.3: Taking the over all thickness of the chest to

be 30 cm, with two chest walls each of 2.5 cm,

and the rib bones to have a thickness of 1 cm

each, Cribs= 0.64, Ctumour= 0.30.

9.4: (a) 267, 385 and 526 eV for C, N and O,

respectively. (b) 0.52 and 7.4 μm for protein and

water, respectively.

9.6: The wedge angle is determined by tanω=√
2, so the wedge thickness is y =

√
2x, with x

denoting denoting the beam position. The

transmission T (x) = exp(-y/y0) with y0 = 184

μm. The refracted angle is α= δ tanω = λ2

[ρr0/(2π)]
√

2 = 5.5 × 10−6 radians.

9.7: The maximal intensity < y > is the overlap

integral of the triangular pattern with the

Gaussian centred at a triangle peak position.

When (σ/p) � 1 the overlap with neighbouring

triangles can be neglected, and one finds < y > =

(
√

2πσ)−1
∫ ∞
−∞ exp(−x2/(2σ2) T (x) dx with the

triangular function given by T (x) = 1 − (2/p)x

when |x| < p/2 or 0 otherwise. The integral is

readily evaluated to obtain the desired result.

9.8: For a crystal of around (500)3 unit cells, the

integrated intensity can be calculated from Eq.

(5.30), yielding ∼ 300 counts per second. If we

assume a detection limit of around 1 count per

second, then we can estimate by considering the

properties of | sin(x)/x|2 that around 4− 5 fringes

should be visible.

9.9: From D = 4MΔrM one finds the number of

zones M=500. The outer zone width ΔrM is

related to λ and f by 2
√

M ΔrM =
√
λ f . The

wavelength is determined by which depth of the

zones, t, provides a phase shift of π, i.e. tδk = π

or λ = π /(tρr0). The electron density in Au is

the number of electrons in the cubic f cc unit

cell, 4Z, divided by its volume, or 4.687 el. per

Å3, yielding λ= 2.38 Å. The focal length is equal

to 21 mm. The depth of focus is approximately

the resolution 1.22 ΔrM divided by the aperture

angle D/ f , or 12.8 μm.
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β−brass, 302

Ångström, 2

α-helix, 193

absorption, 5, 18, 29, 75, 239, 307

Auger electron, 19

coefficient, 18, 239, 308

composite material, 20

cross-section, 20, 23, 77, 239, 242, 246, 249,

275, 276, 281, 285, 343, 347

edge, 13, 240, 249, 281

EXAFS, 23, 251

isolated atom, 242

length, 221

NEXAFS, 251

photoelectric, 239

photoelectron, 20, 242

Stobbe correction, 248

XAFS, 251

absorption grating, 325

amide group, 193

amino acid, 191

analyser crystal, 319

annihilation operator, 243, 300, 356, 358

anode, 30

anomalous dispersion, 13

anomalous scattering, 275

Argand diagram, 292

ARPES, 268

asymmetric crystals, 208, 212, 229, 230, 232,

234

atomic basis, 148

atomic form factor, 11, 13, 75, 118

analytical approximation, 121

K shell electrons, 118

Auger electron, 19, 22

Baez, A., 313

Baker-Hausdorff theorem, 93, 173, 361

basis, atomic, 148

bending magnet, 30, 33, 40, 41, 59

characteristic energy, 38

ESRF, 41

flux, 39

spectrum, 39

Bessel function, 137, 194, 195

Bijvoet pairs, 289

Born approximation, 115

Bragg, W.H., 29

Bragg, W.L., 29

Bragg geometry, 208

asymmetric, 229

Bragg rod, 186

Bragg’s law, 14, 155

equivalence to Laue, 155

refractive correction, 111

Bravais lattice, 148, 204

bremsstrahlung radiation, 30, 162, 163

brilliance, 1, 32, 54, 57, 62, 64

free-electron laser, 1, 61, 62

synchrotron radiation, 1

undulator, 57

C60, 146

carbonyl group, 193

CAT scanning, 23, 307

407
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Cauchy’s theorem, 283

CCD, 315

CdTe

EXAFS, 257

nano-crystals, 257

centrosymmetric structure, 290

CF4 molecule, 123

characteristic frequency, 38

charge density wave, 271

charge-coupled device, 315

chiral, 292

circular dichroism, 261

circular polarization, 28, 38, 54, 261, 262, 340

classical radius of electron, 8

classical scattering, 5

coherence, 25, 57, 316, 329, 337

length, 25, 65

plane wave, 306

volume, 65, 306

coherent diffraction imaging, 329

spatial resolution, 335

commensurate structures, 164

compact light source, 62, 67

compound refractive lens, 106, 112

Compton scattering, 5, 15, 17, 121, 145, 239,

242, 250, 251

inverse, 62

length, 18

contact regime, 306, 307

conventional unit cell, 148, 159

convolution theorem, 150, 170, 324, 335, 340,

369

Coolidge, W.D., 30

core-hole lifetime, 286

Coulomb explosion, 65

creation operator, 243, 300, 356, 358

Crick, F.H.C., 194

critical angle, 25, 69, 71, 108, 199

critical opalescence, 129

cross-section, 343

absorption, 20, 77, 239, 242, 246, 249, 275,

281, 343, 347

crystal, differential, 179

differential, 343

differential scattering, 5

Thomson, differential, 352, 359

Thomson, total, 352

total scattering, 9, 279

crystal truncation rods, 169, 199, 201, 205,

212, 234

crystallite, 153, 179

crystallography, 147

two-dimensions, 197

CT scanning, 307, 310–312

Cu (110) surface, 199

cyclic frequency, 34

d spacing, 14, 150, 157

Darwin curve

angular width, 219

effect of absorption, 227

extinction depth, 221

integrated intensity, 222

measurement of, 230

reflectivity, 216

refractive offset, 211

relative bandwidth ζ, 207, 210, 218

Darwin theory, 212

Darwin width, 237

angular, 219

Diamond, 219

Ge, 219

relative bandwidth, 218

Si, 219, 227

Darwin, C.G., 208

Debye formula, 118

Debye model, 178

Debye-Scherrer cone, 188

Debye-Waller factor, 172, 173, 178, 201, 205,

256, 296, 361

density of states, 345, 348

diamond, 237

Darwin width, 220

structure, 160

diatomic molecule, 146

dichroism, 261

differential scattering cross-section, 5, 179, 343

diffraction, 29

by a crystal, 147

dynamical, 15, 208, 211

fibre, 191

grazing incidence, 198

kinematical, 15, 113, 147

orientational average, 115
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powder, 188

surfaces, 169, 172, 197

two dimensions, 197

two electrons, 115

diffraction limit, 54

dipole radiation, 8, 349

dipole transition, 263

Dirac delta function, 152, 158

direct lattices, 150

direct methods, 296

disordered materials, 128

dispersion corrections, 13, 76, 121, 275, 277,

288

dispersive geometry, 236

DNA, 194

Doppler effect, 34

double helix, 194

DuMond diagrams, 230

asymmetric Bragg, 234

symmetric Bragg, 232

symmetric Laue, 234

two crystals, 234

dynamical diffraction, 208, 211, 212

elastic scattering, 300, 343

electric dipole

moment, 350

radiation, 349

electromagnetic field, 2, 349, 355

current density, 350

energy density, 355

quantized form, 355

electron

Auger, 22

classical radius, 8

scattering length, 8

scattering of X-ray, 5

electron beam lithography, 314, 316

emittance, 54

equatorial plane, 191

evanescent wave, 25, 79, 133

Ewald sphere, 163

multiple scattering, 163

white beam, 162

Ewald, P.P., 209

EXAFS, 23, 251, 252, 282

CdTe, 257

χ(q), 252, 257

Debye-Waller factor, 256

effective pathlength, 256

experimental setup, 252

fluorescent method, 254

Kr, 22, 251

theory, 255, 256

transmission geometry, 252

extended face geometry, 184

extinction

depth, 220, 221

depth, GaAs, 221

primary, 183, 221

secondary, 183

face centred cubic structure, 155, 159, 199

far-field limit, 306, 307, 329, 337

fast Fourier transform, 334

Fermat’s principle, 104

Fermi energy, 268

Fermi pseudo-potential, 371

Fermi’s golden rule, 345

FFT, 334, 340

Fibonacci chain, 166

fibre diffraction, 191

filament, 30

fine structure constant, 18

fluorescence, 9, 316

fluorescent radiation, 20, 30, 263

flux, 5, 345

focal length, 69, 104, 106

focusing, 2, 104, 313

meridional, 108

sagittal, 108

tangential, 108

forbidden reflection, 160

form factor

analytical approximation, 121

atomic, 11, 13, 75, 118

K shell electrons, 118

molecule, 13, 123

SAXS, 136

Fourier slice theorem, 309, 310

Fourier transform, 11, 90, 120, 245, 363, 371

Fraunhofer diffraction, 337

Fraunhofer regime, 306, 329

free electron, 9
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free-electron laser, 1, 61, 335

brilliance, 61, 62

LINAC option, 61

SASE principle, 61

free-space propagation, 319, 320

Fresnel diffraction, 325

Fresnel equations, 78

Fresnel reflectivity, 81, 90, 94

Fresnel regime, 306, 307

Fresnel zone plate, 2, 106, 313, 314, 324, 342

binary approximation, 316

outermost width, 314

spatial resolution, 316

Friedel’s law, 289

full-field imaging, 315, 316, 325

GaAs, 163, 221, 223, 238, 272

structure factor, 163

Gauss’ theorem, 91

Gaussian

Fourier transform of, 364

integrals, 362

statistics, 361

Ge, 237

Darwin width, 220

structure, 160

structure factor, 160

geometric series, 52, 82, 158, 211

glasses, 113, 125, 129

golden ratio, 167

grating, 323, 325

absorption, 325

phase, 325

grating interferometry, 322, 325

grazing incidence geometry, 199

group velocity, 69

Guinier analysis, 137, 146

harmonic oscillator, 13

Heisenberg’s uncertainty relation, 56

helical undulator, 53

helix, 191

structure factor, 195

hexagonal lattice, 204

higher-order reflection, 225

holography, 337

Hounsfield, G., 307

icosahedral clusters, 131, 133

ideally imperfect crystal, 183

image reconstruction, 329

imaging, 23, 305

absorption contrast, 307, 309

CCD, 315

classification, 306

coherent diffraction, 329

contact regime, 306, 307

CT scanning, 307

diffraction based, 313

far-field limit, 306

Fraunhofer regime, 306

Fresnel regime, 306, 307

full field, 315, 316, 325

grating interferometry, 325, 329

holography, 337

KB mirrors, 313

lensless, 313, 329, 337

magnetic domains, 317

magnification, 315

microscope, 314

microscopy, 313

near-field limit, 307

objective lens, 315

oversampling, 334

phase contrast, 307, 318

phase retrieval, 329, 334

radiography, 307, 317

spatial resolution, 316, 317, 325

STXM, 315–317

tomography, 307, 317, 329

TXM, 315–317

XMCD, 316, 317

incommensurate structures, 164

inelastic scattering, 5, 15, 121, 145, 343

inelastic X-ray scattering, 237

InSb, 163

powder diffraction, 190

structure factor, 163

insertion device, see undulator, see wiggler, 43

integrated intensity, 179

extended face geometry, 184

mosaic crystal, 223

perfect crystal, 222

interaction Hamiltonian, 242, 300, 355, 357

interference, 115
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interference fringes, 325

interferometer, 319

inverse Compton scattering, 62, 67

isothermal compressibility, 129

K edge, 240, 241, 249

K shell, 118

KB mirrors, 313

Kiessig fringes, 83, 112

kinematical approximation, 15, 84, 86, 90, 113,

115, 147, 207, 210

including refraction, 212

kinoform lens, 106

Kirkpatrick, P., 313

Kramers-Kronig relations, 267, 283, 284, 287

Kronecker delta, 153

L edge, 240, 250, 266

laboratory time, 45

Langmuir layer, 97

lattice, 148

basis vectors, 148

Bravais, 148

direct, 150

planes, 150

sum, 14, 151, 157

vector, 14

Laue condition, 15, 151

equivalence to Bragg, 155

Laue geometry, 208, 234

Laue patterns, 163

Laue, M. v., 209

LEED, 199

lens, 313

lensless imaging, 313, 329, 337

levitation, 131

LHC, 66

LINAC, 61

Lindemann’s criterion, 179

line spectrum, 30

linear dichroism, 261

linear polarization, 3

Liouville’s theorem, 54, 230

liquid crystal, 98

liquid structure factor, 128

liquids, 113, 125, 129

lead, 133

metallic, 131

nickel, 131

supercooled, 129

longitudinal coherence length, 25, 65

Lorentz factor, 180

two dimensions, 185, 201

Lorentz force, 62

Lorentz transformations, 64

M edge, 265

MAD, 277, 296

magnetic domains, 317

magnetic scattering, 27, 267, 339

resonant, 302

matrix element, 242, 243, 345, 348, 355, 358

Mcleod Cormack, A., 307

meridional focusing, 108

meridional plane, 191

micelle, 142

Miller indices, 150, 157, 258

mirror, 2, 70, 112, 313

bandpass filter, 108

missing row structure, 202

molecular form factor, 13, 123, 146

CF4, 123

monochromatic beam, 3

monochromator, 1, 207, 220, 252

mosaic crystal, 182, 207

Moseley’s law, 22, 273

multilayer, 2, 85

absorption in, 86

interface roughness, 86

reflectivity, 86

multiple scattering, 113, 163, 208

multiplicity, 188

nano-crystals

CdTe, 257

near-edge structure, 251

near-field limit, 307

neutron

comparison with X-rays, 371

refractive index, 372

NEXAFS, 251

non-crystalline materials, 113, 128

non-dispersive geometry, 236

Nyquist frequency, 334
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object beam, 337

objective lens, 315

off-specular reflectivity, 91, 95

optical axis, 325, 327

optical path length, 104

optical theorem, 77, 242, 267

orientational average, 115

oscillator strengths, 277

oversampling, 334

pair production, 239, 251

Parratt reflectivity, 87

partial liquid structure factor, 129

Patterson function, 369

Pauli exclusion principle, 264, 300

penetration depth

reflectivity, 78

perfect crystal, 2, 207

perturbation theory, 242, 300, 345, 355

second order, 300

phase, 306

difference, 306

scattered wave, 306

phase contrast imaging, 318

free-space propagation, 320

grating interferometry, 325

phase gradient, 325

phase grating, 325

phase problem, 277, 295, 329, 334, 337

MAD solution, 296

phase retrieval, 329, 334

phase shift, scattering, 70

Phase space, 55

phase velocity, 69

phonon density of states, 176

phonons, 237

Debye model, 178

photoelectric absorption, 18, 239

photoelectron, 20, 268, 347

Coulomb interaction with ion, 243

photoemission, 268

photon, 3, 240, 243, 357, 358

photon degeneracy, 65

plane wave, 2, 5, 306, 322

point group, 148

polar crystal, 292

polarization, 3

circular, 28, 261

linear, 3

polarization factor, 9, 179, 210, 352, 359

polydispersivity, 141

polypeptide, 191, 193

Porod analysis, 139, 140

powder diffraction, 188

preferred orientations, 188

preferred orientations, 190

primitive unit cell, 148

principal value integral, 284

protein, 191

quasicrystals, 131, 164, 166

quasiperiodic lattice, 164

radial distribution function, 125, 129, 133

radiographs, 308, 310

radiography, 305, 307, 317

subject contrast, 340

radius of gyration, 138

Radon transform, 308–311

Rayleigh criterion, 104, 316

Rayleigh scattering, 280

reciprocal lattice, 14, 153

basis vectors, 14, 153

two dimensions, 154

vector G, 15, 153

reconstruction, 198

reference beam, 337

reflectivity, 23, 70, 78

amplitude, 78

box model, 98

critical angle, 69, 71

graded interface, 89

homogeneous slab, 81

kinematical, 84, 89

master formula, 90

multilayer, 85

off-specular, 91, 95

Parratt’s method, 87

penetration depth, 25, 78, 79

roughness, 90

specular, 81, 86, 91, 93, 95

thin slab, 84

total external, 69, 71

refraction, 23, 71, 209, 318
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refractive index, 9, 23, 69, 71, 305, 318

energy dependence, 13, 280

neutron, 372

with absorption, 75

resonant scattering, 9, 13, 275, 339

charge oscillator model, 277

estimate of f ′, 284

magnetic, 267

phase problem, 295

quantum mechanical description, 300

retarded time, 45

Rietveld refinement, 188

Röntgen, W.C., 1, 29

rotating anode, 30

roughness, 90

correlated, 94

uncorrelated, 94

sagittal focusing, 109

SASE principle, 61

satellite reflections, 166

SAXS, 128, 134, 331, 335

disc, 140

form factor, 136

Guinier analysis, 137

inter-particle interactions, 142

isolated particle, 136

micelle, 142

particle morphology, 139

polydispersivity, 141

polymer, 141

Porod analysis, 139

radius of gyration, 138

rod, 140

spherical particle, 137

vesicle, 142

scanning electron microscope, 314

scattering, 5

2D rods, 185

by a crystal, 14, 147

by a molecule, 13, 123

by an atom, 11, 118

by an electron, 5

classical, 5

dynamical, 15, 208, 211, 212

elastic, 5, 11, 118, 343

inelastic, 5, 15, 121, 343

kinematical, 15, 113, 115, 147, 207, 210,

212

liquids and glasses, 125

magnetic, 27

multiple, 113, 208

non-crystalline materials, 113

Rayleigh, 280

resonant, 9, 13

Thomson, 8

triangle, 11

scattering length, 5

Schulz distribution, 142, 146

shearing interferometer, 325

Si, 237

Darwin width, 220

structure, 160

structure factor, 160

sinogram, 311, 312

small-angle X-ray scattering, 128, 134, 331

Snell’s law, 25, 69, 71, 77

space group, 148

spatial resolution, 316, 317, 325, 335

speckle, 331

specular reflectivity, 81, 86, 91, 93, 95

spherical wave, 6

spin-orbit interaction, 241, 263

Stobbe correction factor, 247, 248

storage ring, 1, 30

structure factor

unit cell, 14, 151, 159, 209

STXM, 316, 317, 339

subject contrast, 340

sum rules, 265

supercooled liquids, 129

superlattice, 85

surface diffraction, 169, 172, 197

surface reconstruction, 199

surfactant, 142

symmetric crystals, 208, 212, 234

synchrotron, 1, 30

bending magnet, 30, 33, 40, 41, 59

cyclic frequency, 34

electron energy, 33

electron radius ρ, 33

storage ring, 1, 30

third generation, 1

undulator, 30, 43
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wiggler, 30, 59

synchrotron radiation, 1, 30

bending magnet, 40

βe, 37

brilliance, 1

circular arc, 33

Doppler effect, 34, 36

γ, 37

opening angle, 36

polarization, 38

pulse length, 40

radiation cone, 34

typical frequency, 38

synchrotron sources, 9

Talbot interferometer, 325, 329

Talbot length, 323

tangential focusing, 108

thermal diffuse scattering, 173

Thomson scattering, 8, 13, 113, 242, 251, 300

classical description, 349

cross-section, differential, 9, 352, 359

cross-section, total, 9, 352

length, 8, 352

quantum mechanical, 358

time

laboratory, 37, 45

retarded, 36, 45

tomography, 23, 307, 313, 317, 329

total external reflection, 25, 69, 71

transmittivity, 78, 79

transverse coherence length, 27, 65

triatomic molecule, 146

TXM, 316, 317

undulator, 1, 30, 43

K, 43

brilliance, 54, 57

coherent source, 61

electron displacement, 47

fundamental wavelength λ1, 44, 66

helical, 53

higher harmonics, 45, 47

monochromaticity, 49

off-axis spectrum, 49

radiation, 43

spatial period λu, 43

unit cell

conventional, 148, 159

lattice vectors, 14, 148

primitive, 148

structure factor, 14, 151, 159

vector potential, A, 3, 242, 300, 355, 357

vesicle, 142, 146

visibility, 327

water window, 317, 341

Watson, J.D., 194

wavefield propagation, 322

wavenumber, 2

wavevector, 3

wavevector transfer, Q, 11, 114

white line, 251, 276, 282

wiggler, 30, 59

Wigner-Seitz cell, 204

work function, 268

X-ray dichroism, 261

X-ray imaging, 305

X-ray interferometer, 325

X-ray lens

approximate shape, 106

compound refractive, 106

ideal shape, 104

kinoform, 106

silicon, 106

X-ray microscope, 314

STXM, 315–317

TXM, 315–317

X-ray microscopy, 313

diffraction based, 313

X-ray optics, 25, 101

compound lens, 106, 112, 313

focusing, 2, 104

Fresnel zone plate, 106, 313, 314

kinoform, 106

lens, 104

mirror, 108, 112

monochromator, 207, 220

sagittal focusing, 109

tangential focusing, 108

XAFS, 251

XMCD, 28, 261, 316, 317, 339
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XMLD, 267

XPS, 268

Zeeman effect, 263

zinc sulfide structure, 163

ZnS, 292

ZrTe3, 271
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List of symbols

α fine structure constant

αc critical angle

β imaginary part of deviation of refractive index from unity

βe electron velocity in units of c

δ real part of deviation of refractive index from unity

ΔΩ element of solid angle

ε̂ polarization unit vector of X-ray electric field

ε0 permittivity of free space

γ ratio of electron energy in storage ring to rest mass energy,
Ee

mc2

γ−1 opening angle of synchrotron radiation cone

� Planck’s constant

λ wavelength of X-ray

λ
1

fundamental wavelength of undulator radiation

λu undulator spatial period

λC Compton scattering length

Λext extinction depth

μ linear absorption coefficient for intensity

μ
0

permeability of free space
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ω angular frequency

ωo orbital angular frequency of electron in a synchrotron

ωut′ emitter phase

ω1t observer phase

Φ0 incident photon flux (photons/s/unit area)

ρ electron number density

ρat atomic number density

ρm atomic mass density

ρ(E) density of states

σa absorption cross-section

θ Bragg angle

ζD Darwin width, relative bandwidth

a(a†) annihilation (creation) operator

a0 Bohr radius

A atomic mass number

A vector potential of photon field

b scattering length

b asymmetry parameter

B
T

Debye-Waller factor

c speed of light

d lattice plane spacing

−e electronic charge

E photon energy

Ee electron energy

E electric field

E
0

magnitude of electric field

f (Q) atomic form factor (scattering factor)

f 0(Q) non-resonant atomic scattering factor

f ′ real part of atomic dispersion correction
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f ′′ imaginary part of atomic dispersion correction

F(Q) unit cell structure factor

FCTR(Q) crystal truncation rod structure factor

Fmol(Q) molecular structure factor

G reciprocal lattice vector

h, k, l Miller indices

H magnetic field

H
I

interaction Hamiltonian

H
rad

Hamiltonian of radiation field

I
0

incident photon intensity (photons/s)

Isc scattered photon intensity (photons/s)

k wavevector of X-ray

K undulator parameter

m mass of electron

mn mass of neutron

m
hkl

multiplicity of Bragg reflection

M
i f

matrix element between initial i and final f states

n refractive index

NA
Avogadro’s number

P polarization factor

P principal value

p momentum of electron

q wavevector of photoelectron

Q wavevector transfer (scattering vector)

r
0

Thomson scattering length (classical electron radius)

Rn lattice vector

v velocity of electron

vc volume of unit cell

w
D

Darwin width, angular

Z atomic number





e electron charge 1.602×10−19 C

� =
h

2π
Planck’s constant 1.055 ×10−34 J s

m electron mass 9.109×10−31 kg

mn neutron mass 1.675×10−27 kg

mp proton mass 1.673×10−27 kg

c speed of light 2.998×108 m s−1

ε
0

permittivity of vacuum 8.854×10−12 A s V−1 m−1

μ
0
=

1

ε
0
c2

permeability of vacuum 4π× 10−7 V s A−1 m−1

N
A

Avogadro’s number 6.022×1026 mols. kmole−1

k
B

Boltzmann’s constant 1.381×10−23 J K−1

a0 =
4πε0�

2

me2
Bohr radius 5.292×10−11 m

r
0
=

e2

4πε
0
mc2

Thomson scattering length 2.818×10−15 m

λC=
�

mc
Compton scattering length 3.860×10−13 m

1 Å Ångström 1×10−10 m

1 barn 1×10−28 m2
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