# ANALISIS KEBOCORAN TABUNG SINAR X DI INSTALASI RADIOLOGI RSPAU dr. S. HARDJOLUKITO DENGAN INSTRUMEN SURVEYMETER

#### **TUGAS AKHIR**

Diajukan Sebagai Salah Satu Persyaratan Untuk Menyelesaikan Pendidikan D3 Radiologi di Politeknik Kesehatan TNI AU Adisutjipto Yogyakarta



GHENA ICHLASUL ACHZA NIM.18230015

POLITEKNIK KESEHATAN TNI AU ADISUTJIPTO PROGRAM STUDI D3 RADIOLOGI YOGYAKARTA 2021

#### LEMBAR PENGESAHAN

Tugas akhir ini diajukan oleh:

Nama : Ghena Ichlasul Achza

NIM : 18230015

Program studi: D3 Radiologi

Judul : Analisis Kebocoran Tabung Sinar - X di Instalasi Radiologi

RSPAU dr. S. Hardjolukito Dengan Instrumen Surveymeter

Telah dipertahankan di hadapan dewan penguji dan di terima sebagai persyaratan yang diperlukan untuk memperoleh gelar Ahli Madya pada program studi D3 Radiologi, Politeknik Kesehatan TNI AU Adisutjipto Yogyakarta.

#### **DEWAN PENGUJI**

Pembimbing M. Sofyan, S.ST., M.kes

( Hstein )

Penguji 1 Rahmi

Rahmi Seftina, S.Pd., M.Si

Reel

Penguji 2

Redha Okta Silfina, M.Tr., Kes

Ruttos

Yogyakarta, 19 Juli 2021

AM STUDI D3 RADIOLOGI

elliskardvani, S.Pd., M.S

SURAT PERNYATAAN TIDAK MELAKUKAN PLAGIASI

Saya menyatakan bahwa Karya Tulis Ilmiah yang berjudul "Analisis

Kebocoran Tabung Sinar – X di Instalasi Radiologi RSPAU dr. S. Hardjolukito

Dengan Instrumen Surveymeter" ini sepenuhnya merupakan karya sendiri. Tidak

ada bagian di dalamnya yang merupakan karya orang lain dan tidak melakukan

penjiplakan atau pengutipan dengan cara-cara yang tidak sesuai dengan etika

keilmuan yang berlaku. Atas pernyataan ini saya siap menerima risiko atau sanksi

yang dijatuhkan kepada saya, apabila karya saya ini ditemukannya pelanggaran

etika keilmuan yang berlaku atau adanya klaim dari orang lain terhadap keaslian

karya saya ini.

Yogyakarta, 19 Juli 2021 Yang membuat pernyataan

Ghena Ichlasul Achza

ii

#### **ABSTRAK**

Menurut Peraturan Kepala (Perka) BAPETEN No. 15 Tahun 2014, informasi terkait pengukuran radiasi bocor tabung pesawat sinar x radiologi diagnostik dan intervensional, yaitu batas nilai kebocoran radiasi ialah sebesar 1 mGy dalam waktu 1 jam pada jarak 1 meter dari posisi fokus dengan kondisi kuat arus kontinyu maksimum pada kVp (*kilo volt peak*) maksimum. Kebocoran radiasi atau *leakage radiation* merupakan radiasi yang keluar dari tabung pesawat sinar x selain berkas utama atau berkas primer. Tujuan dilakukan uji kebocoran tabung yaitu menjamin bahwa setiap parameter penyinaran pada pesawat teruji akurasi, linieritas dan kestabilan fungsinya sesuai dengan spesifikasi alat dan bila terjadi penyimpangan harus berada dalam nilai batas toleransi yang disepakati.

Penelitian ini bersifat Kuantitatif dengan pendekatan Observasi. Penelitian ini dimulai dengan observasi yang dilakukan di Instalasi Radiologi RSPAU dr. S. Hardjolukito tahun 2021. Pendekatan observasi merupakan metode pendekatan yang di dapatkan dengan cara melihat dan melakukan pengamatan secara langsung dengan mencatat atau menggunakan alat bantu. Pengambilan data dimulai dengan melakukan penyinaran kemudian dilakukan penghitungan menggunakan surveymeter.

Uji kebocoran tabung sinar x konvensional menggunakan faktor eksposi 90 kV dan 50 mAs dengan jarak 100cm dan menggunakan alat ukur surveymeter. Uji tersebut dilakukan sebanyak 25 kali pada 5 titik mendapatkan rata-rata yaitu 0,0015933 pada sisi kanan, 0,00061066 pada sisi kiri, 0,0073333 pada sisi atas, 0,0030222 pada sisi depan, 0,0006048 pada sisi belakang tabung. Menurut PERKA BAPETEN No. 9 Tahun 2011 batas nilai kebocoran tabung yaitu 1 mGy/jam dengan jarak 1 meter dari *focal spot*. Hasil rata-rata pengukuran kurang dari 1 mGy/iam sehingga dikatakan tidak ada kebocoran.

**Kata Kunci:** Kebocoran Tabung, Surveymeter, Sinar X.

#### **ABSTRAC**

According to the Regulation of the Head of BAPETEN No. 15 of 2014, information related to the measurement of radiation leaks from diagnostic and interventional radiology X-ray tubes, namely the limit of radiation leakage value is 1 mGy within 1 hour at a distance of 1 meter from the focus position with the maximum continuous current at kVp (kilo volts peak) maximum. Leakage radiation is radiation that comes out of the X-ray tube in addition to the main beam or primary beam. The purpose of the tube leak test is to ensure that each radiation parameter on the aircraft is tested for accuracy, linearity and stability of its function according to the specifications of the tool and if there are deviations it must be within the agreed tolerance limit value.

This research is quantitative with an observational approach. This study began with observations made at the Radiology Installation of RSPAU dr. S. Hardjolukito in 2021. The observational approach is an approach method obtained by seeing and observing directly by taking notes or using tools. Data collection begins with irradiating and then counting using a surveymeter.

Leakage testing of conventional x-ray tubes uses an exposure factor of 90 kV and 50 mAs with a distance of 100cm and uses a survey meter. The test was carried out 25 times at 5 points to get an average of 0.0015933 on the right side, 0.00061066 on the left side, 0.0073333 on the upper side, 0.0030222 on the front side, 0.0006048 on the back side of the tube. According to BAPETEN PERKA No. 9 of 2011 the limit for tube leakage is 1 mGy/hour at a distance of 1 meter from the focal spot. The average measurement result is less than 1 mGy/hour so it is said that there is no leakage.

**Key Word :** Leakage, Surveymeter, x ray

# **KATA PENGANTAR**

Puji syukur penulis panjatkan kehadirat Allah SWT, yang telah melimpahkan rahmat, taufik, dan hidayah-Nya sehingga penulis dapat menyelesaikan Karya Tulis Ilmiah yang berjudul **Analisis Kebocoran Tabung**Sinar x di Instalasi Radiologi RSPAU dr. S. Hardjolukito dengan Instrumen
Surveymeter sebagai syarat kelulusan. penulis sampaikan penghargaan setinggitingginya kepada:

- Drs. Purwanto Budi Tjahjono, M.M. Apt. kolonel kes (purn) selaku Direktur Politeknik Kesehatan TNI AU Adisutjipto Yogyakarta.
- Letkol Kes. Hendro Budi P, selaku kepala Instalasi Radiologi RSPAU dr. S.
   Hardjolukito
- Delfi Iskardyani, S.Pd.,M. Si., selaku Ketua Program Studi D3 Radiologi
   Politeknik Kesehatan TNI AU Adisutjipto Yogyakarta.
- 4. M. Sofyan, S.ST., M.Kes sebagai pembimbing Karyatulis Ilmiah
- 5. Rrahmi Seftina, S.Pd., M.Si Selaku Dosen Penguji 1 Tugas Akhir.
- 6. Redha Okta Silvina, M.Tr,. Kes Selaku Dosen Penguji 2 Tugas Akhir.
- Kepada seluruh Radiografer hardjolukito yang telah membantu dan membimbing selama di lapangan.
- 8. Kepada orang tua serta keluarga yang telah memberi dukungan moral, semangat dan do'a yang tiada henti-hentinya.

Penulis menyadari bahwa masih ada banyak kekurangan dalam penyusunan laporan kasus ini. Oleh karena itu, penulis mengharapkan kritik serta saran yang

membangun guna memperbaiki laporan kasus ini kedepannya. Besar harapan penulis agar laporan kasus ini dapat bermanfaat bagi semua pihak.

Yogyakarta, 19 juli 2021

Penulis

# **DAFTAR ISI**

| LEMI  | BAR PENGESAHAN                                 | i    |
|-------|------------------------------------------------|------|
| SURA  | AT PERNYATAAN TIDAK MELAKUKAN PLAGIASI         | ii   |
| ABST  | TRAK                                           | iii  |
| KAT   | A PENGANTAR                                    | v    |
| DAF   | TAR ISI                                        | vii  |
| DAF   | TAR GAMBAR                                     | viii |
| DAFT  | ΓAR TABEL                                      | ix   |
| DAFT  | ΓAR LAMPIRAN                                   | x    |
| BAB 1 | I PENDAHULUAN                                  | 1    |
| A.    | Latar Belakang                                 | 1    |
| B.    | Perumusan Masalah                              | 3    |
| C.    | Tujuan Penelitian                              | 3    |
| D.    | Manfaat Penelitian                             | 3    |
| BAB 1 | II TINJAUAN PUSTAKA                            | 5    |
| 1.    | Sinar – X                                      | 5    |
| 2.    | Proses Terbentuknya Sinar x                    | 5    |
| 3.    | Komponen Pengatur dalam Rangkaian Arus Sinar x | 6    |
| 4.    | Faktor Expose (Penyinaran)                     | 8    |
| 5.    | Pengujian Pesawat Sinar x                      | 9    |
| 6.    | Surveymeter                                    | 11   |
| 7.    | Quality Control (QC)                           | 13   |
| 8.    | Kerangka Teori                                 | 16   |
| 9.    | Kerangka Konsep                                | 16   |
| 10.   | Hipotesis                                      | 16   |
| BAB 1 | III METODE PENELITIAN                          | 17   |
| A.    | Jenis dan Rancang Penelitian                   | 17   |
| B.    | Tempat dan Waktu Penelitian                    | 17   |
| C.    | Subjek Penelitian                              | 17   |
| D.    | Identifikasi Variabel Penelitian               | 17   |

| E.  | Definisi Operasional                            | 18 |
|-----|-------------------------------------------------|----|
| F.  | Instrumen Operasional dam cara pengambilan data | 18 |
| G.  | Jalannya Penelitian                             | 19 |
| H.  | Cara Analisis Data                              | 20 |
| I.  | Etika Penelitian                                | 22 |
| BAB | IV HASIL DAN PEMBAHASAN                         | 23 |
| A.  | Hasil                                           | 23 |
| B.  | Pembahasan                                      | 29 |
| BAB | S V SIMPULAN DAN SARAN                          | 30 |
| A.  | Kesimpulan                                      | 30 |
| В.  | Saran                                           | 30 |

# DAFTAR GAMBAR

| Gambar 1. Kerangka Teori  | 18 |
|---------------------------|----|
| Gambar 2. Kerangka Konsep | 19 |

# DAFTAR TABEL

| Tabel 3.1 | Contoh Tabel Pengambilan Data             | 20 |
|-----------|-------------------------------------------|----|
| Tabel 4.1 | Hasil Pengukuran Uji Tabung Kanan         | 25 |
| Tabel 4.2 | Hasil Pengukuran Uji Tabung Kiri          | 26 |
| Tabel 4.3 | Hasil Pengukuran Uji Tabung Atas          | 26 |
| Tabel 4.4 | Hasil Pengukuran Uji Tabung Belakang      | 27 |
| Tabel 4.5 | Hasil Pengukuran Uji Tabung Depan         | 27 |
| Tabel 4.6 | Hasil Perhitungan Kebocoran Dan Toleransi | 28 |

# DAFTAR LAMPIRAN

| Lampiran 1 Surat Perizinan Penelitian | 35 |
|---------------------------------------|----|
| Lampiran 2 Area Penelitian            | 36 |
| Lampiran 3 Instrumen Penelitian       | 37 |
| Lampiran 4 Surveymeter                | 38 |
| Lampiran 5 Instrumen Penelitian       | 39 |

#### **BABI**

#### **PENDAHULUAN**

#### A. Latar Belakang

Menurut peraturan Nomor 33 Tahun 2007 Pemerintah membuat aturan Tentang Keselamatan Radiasi Pengion Dan Keamanan Sumber Radioaktif untuk mengatur aspek keselamatan kerja radiasi. Surat Keputusan Kepala Bapeten Nomor 01/KaBapeten/V-99 Tentang kesehatan terhadap radiasi pengion disebut keselamatan radiasi, yang telah disepakati nilai batas dosis untuk pekerja radiasi < 50 mSv/tahun dan untuk masyarakat umum < 5 mSv/tahun. (Bapaten, 2003)

Pesawat sinar x perlu dilakukan seting faktor eksposi untuk mendapatkan sinar x yang dikehendaki. Faktor eksposi tersebut meliputi tegangan (kV), arus tabung (mA) dan waktu paparan (s) (Hasmawati, 2016). Tegangan tabung pesawat sinar x menjadi faktor utama yang harus dikontrol karena akan berpengaruh pada radiasi hambur. Radiasi hambur akan berpengaruh pada dosis radiasi yang diterima oleh pasien. Peningkatan tegangan tabung pada pesawat sinar x harus diimbangi dengan penggunaan nilai arus tabung pembangkit sinar x dan waktu penyinaran, sehingga akan diperoleh intensitas radiasi yang menghasilkan densitas bayangan yang cukup (Hasmawati, 2016).

Menurut Peraturan Kepala (Perka) BAPETEN No. 15 Tahun 2014, pengukuran radiasi kebocoran radiasi pada tabung pesawat sinar x terdapat batasan untuk nilai kebocoran radiasi sebesar 1 mGy/jam pada jarak 1 meter

dari *focal spot* dengan mA kontinyu maksimum pada kVp (*kilo volt peak*) maksimum. Kebocoran radiasi ialah radiasi yang keluar bukan radiasi primer. Hal tersebut mengakibatkan, jika terdapat radiasi yang bukan bersumber dari berkas utama, maka terjadi kebocoran pada tabung pesawat sinar x.

Pengukuran besaran paparan radiasi perlu digunakan alat ukur radiasi, seperti surveymeter. Surveymeter memiliki fungsi sebagai alat untuk mengukur besarnya paparan radiasi dan memberikan data hasil pengukuran berupa laju paparan dalam CPM(cacah per menit) (Dira Rizki Martem, 2015).

Surveymeter dapat memberikan data laju dosis radiasi di suatu area secara langsung. Perlu adanya proteksi radiasi untuk keselamatan kerja radiasi dan masyarakat umum. Proteksi radiasi bagi pekerja dan masyakarat di Instalasi Radiologi seperti halnya menutup pintu pemeriksaan, menyalakan lampu indikator pemeriksaan.

Menurut Risma Rani 2020 Tentang Uji Akurasi Alat Ukur Radiasi Pada Kasus Kebocoran Tabung Pesawat Mobile X-Ray Di BPFK Makassar, "Area pengujian pada kebocoran tabung pesawat sinar x dilakukan di sekitar tabung pesawat sinar x, yang bertujuan untuk mengontrol performa alat."

Tujuan dari uji kebocoran tabung untuk menjamin parameter penyinaran pada pesawat sinar x sudah teruji akurasi, linieritas dan kestabilan fungsinya. Hal tersebut sesuai dengan spesifikasi alat dan jika terdapat

penyimpangan pada pesawat sinar x harus berada dalam nilai batas toleransi yang disepakati. Dasar dari pengujian ini tercatat dalam Peraturan Kepala Bapeten Nomor 9 Tahun 2011, tentang Uji Kesesuaian Pesawat Sinar x Radiologi Diagnostik dan Intervensional. Hal itu menyebabkan, peneliti tertarik mengambil penelitian dengan judul Analisis Kebocoran Tabung Sinar x di Instalasi Radiologi RSPAU Dr. S. Hardjolukito Dengan Instrumen Surveymeter dengan tujuan untuk mengetahui cara analisis dan besaran dosis radiasi di instalasi radiologi RSPAU dr. S. Hardjolukito.

#### B. Perumusan Masalah

Rumusan Masalah pada penelitian ini, yang didasari Berdasarkan latar belakang diatas Apakah terjadi kebocoran tabung di Instalasi Radiologi RSPAU dr. S. Hardjolukito dengan Instrumen Surveymeter?

## C. Tujuan Penelitian

Tujuan dari penelitian ini adalah Mengetahui apakah terjadi kebocoran tabung di Instalasi Radiologi RSPAU dr. S. Hardjolukito dengan Instrumen Surveymeter

#### D. Manfaat Penelitian

Berdasarkan rumusan masalah pada penelitian ini dan tujuan yang telah tertulis, adapun manfaat penelitian yang diinginkan oleh penulis yaitu:

#### 1. Manfaat penulis

Penelitianini dapat memperluas pengetahuan penulis tentang analisis kebocoran tabung sinar x di Instalasi Radiologi RSPAU dr.

S. Hardjolukito dengan Instrumen Surveymeter.

# 2. Manfaat pembaca

Penelitianini berfungsi untuk memberikan informasi kepada masyarakat dan pekerja radiasi tentang kebocoran tabung yang dihasilkan.

# 3. Manfaat Rumah Sakit

Dapat menjadi evaluasi mengenai kebocoran tabungyang ada di Instalasi RSPAU dr. S. Hardjolukito.

## **BAB II**

#### TINJAUAN PUSTAKA

#### 1. Sinar - X

Radiasi dapat dibagi menjadi dua yaitu radiasi pengion dan radiasi nonpengion. Radiasi pengion merupakan pancaran gelombang elektron
magnetik jika menabrak atau menumbuk menabrak sesuatu benda atau zat
akan muncul partikel bermuatan listrik yang dinamakan ion. Peristiwa ini
dapat disebut sebagai ionisasi, Ion ini dapat memberikan pengaruh pada
bahan yang dilaluinya.

Menurut Rasad, 2015 "Panjang gelombang elektromagnetik dinyatakan dalam satuan angstrom 1A= cm. (1/100.000.000cm). Sinar x memiliki panjang gelombang yaitu 1/10.000 cm panjang gelombang cahaya, oleh karna itu panjang gelombang yang di hasilkan oleh sinar x dapat menembus benda-benda.

#### 2. Proses Terbentuknya Sinar x

Menurut (Rudi, Pratiwi dan Susilo, 2012) Tabung pesawat sinar x tersusun atas, tabung gelas hampa udara, anoda dan katoda. Ketika katoda diberi arus listrik dapat melepaskan beberapa elektron. Katoda dipanaskan dengan tegangan besar sehingga menghasilkan panas sebesar 20.0000°C sampai menyala dengan mengalirkan listrik yang bersumber dari transformator. Pada saat diberi tegangan tinggi antara anoda dan katoda maka elektron yang bersumber dari katoda akan ditarik ke anoda. Arus

elektron ini dikumpulkan dalam satu berkas dengan bantuan sebuah focusing cup.

Waktu elektron dengan kecepatan tinggi di dalam berkas tersebut menumbuk antikatoda, terbentuklah sinar x. Semakin tinggi nomor atom katoda maka semakin tinggi kecepatan elektron, sehingga daya tembus sinar x yang terjadi semakin besar. Antikatoda umumnya terbuat dari tungsten, sebab elemen ini titik leburnya tinggi dan juga nomor atomnya tinggi sebesar (34000°C) Awan-awan elektron dipaksa untuk dihentikan pada target (sasaran) sehingga terbentuk panas (99%) dan sinar x (1%). Panas yang tinggi pada tabung didinginkan dengan menggunakan pendingin minyak emersi / air( xrayindonesia, 2021). Terdapat beberapa syarat terbentuknya sinar x yaitu, adanya beda potensial tinggi, adanya ruang hampa udara, target tumbukan, sumber elektron, dan juga *focusing cup*.

#### 3. Komponen Pengatur dalam Rangkaian Arus Sinar x

# a. Transformator tegangan tinggi

Sumber tegangan tinggi yang diperlukan untuk menggerakan elektron-elektron dengan cepat melalui tabung sinar x ialah sebuah transformator yang sering disebut Trafo tegangan tinggi. Fungsi dari trafo tegangan tinggi ialah mengubah tegangan jala menjadi tegangan yang berorde 103 volt yang diperlukan untuk menjalankan tabung sinar x. Trafo ini merupakan trafo step-up.

## b. Pengatur Tegangan

Pengatur tegangan dapat menentukan kuat lemahnya medan listrik diantara katoda dan anoda sangat berpengaruh terhadap daya tembus berkas sinar x yang keluar. Semakin besar teganganyang diberikan maka medan listrik diantara anoda dan katoda juga semakin besar sehingga mempercepat elektron yang dihasilkan katoda menuju anoda. Secara tidak langsung jumlah elektron di anoda juga bertambah. Semakin banyak elektron yang terdapat pada anoda maka semakin banyak berkas elektron yang dipancarkan sehingga memiliki daya tembus yang cukup baik.

# c. Pengatur Arus Tabung

Pengatur arus pada tabung berfungsi untuk menentukan jumlah elektron menuju anoda. Arus yang melalui katoda dapat memanaskan filamen (kawat tungsten) yang menyebabkan elektron-elektron pada katoda mudah bergerak. Semakin besar arus yang diberikan pada katoda, elektron akan semakin mudah bergerak menuju anoda. Banyaknya elektron dapat berubah dengan mengubah suhu pada filamen yaitu dengan cara mengatur arus yang melalui tabung sinar x. (Widana, I wayan, 2008)

# 4. Faktor Expose (Penyinaran)

Faktor penyinaran pada pemeriksaan radiologi terdiri dari tegangan, arus, dan waktu yang diberikan antara katoda dan anoda di dalam tabung *Rontgen*. Tegangan yang diberikan akan menentukan kualitas sinar x yang

dihasilkan. mA merupakan satuan arus tabung, dan s ialah satuan waktu penyinaran.

#### 1. Tegangan listrik

Tegangan listrik ialah beda potensial yang diberikan antara katoda dan anoda di dalam tabung Rontgen. Tegangan listrik akan menentukan kualitas sinar x dan daya tembus sinar x, semakin tinggi besaran tegangan listrik yang diperlukan semakin besar pula daya tembusnya. Untuk menentukan tegangan listrik sebaiknya menggunakan tegangan optimal yang dapat menghasilkan detail obyek tampak jelas. Hal-hal yang dapat mempengaruhi tegangan tabung adalah : jarak pemotretan, ketebalan obyek, jenis pemotretan. Efek yang terjadi sehubungan dengan kenaikan tegangan listrik yaitu a. Energi radiasi sinar x akan meningkat, sehingga densitas pada film akan meningkat.

- b. Mengurangi kontras obyek.
- Mengurangi dosis radiasi pada kulit sedangkan pada gonat meningkat.

#### 2. Arus dan waktu penyinaran

Arus dan waktu penyinaran ialah jumlah perkalian arus listrik dan waktu penyinaran yang mana besaran arus ini menentukan kuantitas radiasi. Dalam setiap pemotretan pada berbagai bagian tubuh mempunyai besaran arus dan waktu tertentu. Pada dasarnya arus tabung yang dipilih ialah pada mA yang paling tinggi yang dapat

dicapai oleh pesawat, agar waktu eksposi dapat sesingkat mungkin, sehingga bisa mencegah kekaburan gambar yang disebabkan oleh pergerakan. Memerlukan Waktu eksposi yang cukup panjang pada teknik pemeriksaan yang khusus misalnya tomografi.

#### 5. Pengujian Pesawat Sinar x

Terdapat berbagai program jaminan mutu radiologi diagnostik, beberapa pengujian yang dilakukan yaitu :

- a. Uji penerimaan (Acceptance Test) dilakukan pada pesawat yang baru dipasang untuk menetapkan batasan kinerja alat dan untuk verifikasi terhadap spesifikasi teknis.
- b. Uji kesesuaian (Compliance Test) yang dilakukan secara periodik pada pesawat sinar x yang telah digunakan untuk pelayanan. Terdapat beberapa jenis pengujian yang termasuk dalam uji kesesuaian, yaitu:
  - Uji monitoring untuk menguji parameter-parameter vital yang dapat digunakan dalam pelayanan radiologi. Uji ini dilakukan dalam kurun waktu 2-3 bulan sekali.
  - 2) Uji tahunan (Annual test) untuk menguji seluruh parameter vital pesawat sinar x, pengujian ini dilakukan dalam kurun waktu 1-2 tahun sekali.
  - 3) Uji pesawat sinar x setelah diperbaiki atau terjadi penggantian ulang. Definisi kesesuaian (Compliance) ialah kesesuaian terhadap peraturan perundangan dan peraturan pelaksanaannya. Dalam hal pesawat sinar x merupakan kesesuaian dalam

perundangan keselamatan radiasi dan peraturan pelaksanaannya untuk peralatan pesawat sinar x. Tujuan dari uji kesesuaian pesawat sinar x ialah terjaminnya keselamatan radiasi terhadap pemanfaatan pesawat sinar x.

Terdapat dua pengaturan dalam pesawat sinar x ialah pengaturan arus filament (mA) dan pengaturan tegangan antara anoda dan katoda (kV). Pengaturan arus mA akan menyebabkan perubahan jumlah elektron yang dihasilkan filament dan intensitas berkas elektron sehingga mempengaruhi intensitas sinar x. Pengaturan tegangan (kV) akan menyebabkan perubahan gaya tarik anoda terhadap elektron sehingga kecepatan elektron menuju target akan berubah. Jika pengaturan kV semakin besar akan menghasilkan energi dan daya tembus yang semakin besar pula.

Kualitas radiografi ialah kemampuan radiografi dalam memberikan informasi yang jelas mengenai objek yang diperiksa. Kualitas radiografi ditentukan oleh beberapa komponen, yaitu densitas dan kontras. Pesawat sinar x konvensional ialah salah satu tipe alat pesawat sinar x yang berfungsi untuk mendiagnosi penyakit pada organ tubuh bagian dalam dengan bantuan pesawat sinar x dengan pembangkit tegangan tinggi. Menurut PERKA BAPETEN No. 15 Tahun 2014, Kebocoran radiasi ialah radiasi yang keluar dari tabung Pesawat Sinar x selain berkas utama. Kebocoran radiasi tabung pesawat sinar x dapat dihitung menggunakan persamaa rumus sebagai berikut:

$$L = x. \left(\frac{kV Max}{kV set}\right)^{2} \cdot \left(\frac{mA count}{mA set}\right) \cdot \left(\frac{1}{1000} \frac{mGy}{jam}\right)$$

#### Dimana:

L = Laju dosis terukur (mGy/jam)

 $x = \text{laju dosis} (\mu \text{Gy/jam})$ 

 $kV_{max}$  = kVp maksimum mesin (kV)

 $kV_{set}$  = kVp saat eksposi dilakukan (kV)

 $mA_{cont}$  = Arus kontinu alat (mA)

 $mA_{set}$  = pengaturan mA saat eksosi dilakukan (mA)

Pengaturan kuat arus waktu saat eksposi dilakukan Tingkat kebocoran radiasi di segala arah tidak melebihi batas nilai Kebocoran Radiasi sebesar 1 mGy/jam pada jarak 1 m dari *focal spot* dengan kondisi kuat arus kontinyu maksimun pada kVp maksimun. Batas nilai kebocoran tidak berlaku untuk Pesawat sinar x mammografi dan Pesawat Sinar x gigi intra-oral.

#### 6. Surveymeter

Salah satu instrumen yang diperlukan dalam sistem proteksi radiasi ialah Surveymeter yang memiliki fungsi untuk memonitor laju paparan radiasi dari suatu lokasi yang diperkirakan ada benda atau zat yang mengandung radioaktif. Surveymeter radiasi digunakan untuk mengukur tingkat radiasi dan biasanya memberikan data hasil pengukuran dalam laju dosis (dosis radiasi per satuan waktu), misal dalam µSv/jam. Surveymeter terdiri dari detektor dan peralatan penunjang elektronik lainnya (Abimanyu, 282: 2013). Hal penting yang harus diperhatikan dalam menggunakan surveymeter ialah memeriksa faktor kalibrasi, merupakan parameter yang mengkonversi nilai yang ditunjukkan oleh alat ukur menjadi nilai yang

sesungguhnya. Tanpa faktor kalibrasi nilai yang ditunjukkan oleh alat tidak memiliki makna. Hal yang harus diperhatikan ketika menggunakan surveymeter yaitu:

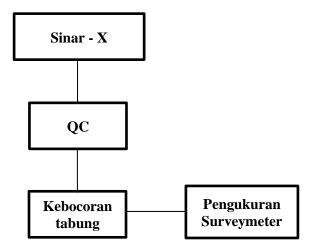
- a. Periksa Baterai: harus dilakukan untuk menguji kondisi catu daya tegangan tinggi detektor. Tegangan catu yang baik akan memberikan detektor peka atau sensitif terhadap radiasi yang masuk detektor.
- b. Perhatikan faktor pengali dan tampilan surveymeter. *Display* laju dosis kadang dalam satuan yang berbeda misal Sv/jam

Ketika melakukan uji coba pengukuran, nilai yang ditampilkan alat harus dikalikan dengan faktor kalibrasi yang ditetapkan pada alat, secara ideal faktor kalibrasinya bernilai satu, tetapi pada kenyataanya tidak banyak alat ukur yang memiliki faktor kalibrasi sama dengan satu. Nilai yang masih bisa diterima berkisar antara 0,8 sampai dengan 1,2 (Sugili, 2012).

#### 7. Quality Control (QC)

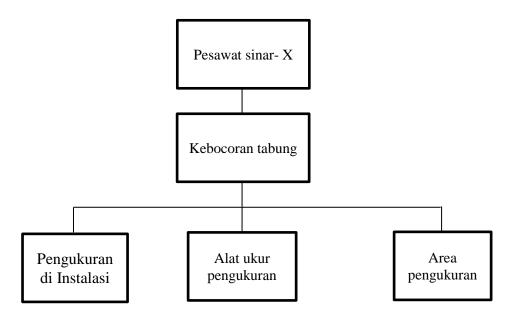
Menurut Risma Rani 2020 tentang Uji Akurasi Alat Ukur Radiasi dalam Kasus Kebocoran Tabung Pesawat Mobile X-Ray di BPFK Makassar, Quality Control (QC) dilakukan untuk memantau beberapa parameter setiap alat yang berhubungan dengan teknik pemeriksaan menggunakan peralatan sinar x agar tetap konsisten sesuai dengan kondisi yang diinginkan. Program Quality Control dilakukan dengan pengujian fungsi alat rontgen (compliance test). Adapun aspek-aspeknya meliput

- a. Nilai tegangan tabung (kVp) ialah nilai yang selalu dipilih oleh radiografer dalam setiap pemeriksaan. Nilai tegangan tabung yang dipilih menentukan besarnya energi dan daya tembus sinar x yang dihasilkam, maka dari itu generator sinar x harus terkalibrasi dengan baik. Pengukuran tegangan tabung sinar x dapat dilakukan dengan beberapa metode yaitu invasive dan non-invasive measurement.
- b. Linieritas paparan arus tabung sinar x Linieritas pemaparan (exposure linearity) ialah kemampuan suatu alat radiografi untuk menghasilkan keluaran radiasi yang konstan dari berbagai macam kombinasi arus tabung sinar x (mA) dan waktu paparan sinar x. Linieritas pemaparan harus dalam toleransi ±10% untuk masingmasing pasangan waktu paparan dengan mA yang ditentukan. Linieritas pemaparan diukur dengan alat dosimeter radiasi dengan beberapa macam pasangan nilai waktu paparan radiasi (s) dan mA. Nilai arus tabung sinar x berpengaruh pada nilai intensitas sinar x. Intensitas sinar x pada hasil citra radiograf mempengaruhi nilai kehitaman pada film (densitas). Selain berpengaruh pada nilai intensitas sinar x yang dikeluar oleh tabung sinar x, nilai arus tabung yang dipilih juga sangat berpengaruh terhadap terimaan dosis radiasi pasien.
  - c. Ketetapan Waktu pemaparan merupakan nilai yang harus dipilih radiografer untuk setiap pemeriksaan. Parameter ini akan menentukan berapa dosis radiasi yang di terima pasien dan densitas


optik dari gambaran yang dihasilkan. Metode pengukuran waktu paparan radiasi meliputi: Spinning Top untuk generator satu fasa dan 3 fasa/frekuensi tinggi. Kalibrasi waktu paparan sebaiknya dilakukan minimal 1 tahun sekali atau pada saat penggantian komponen pada pembangkit pesawat sinarX. Toleransi waktu paparan terukur harus dalam batas dosis yang di sepakati sebesar ±10% dari nilai yang ditampilkan pada display untuk waktu paparan lebih besar dari 10 ms.

- d. Kebocoran radiasi tabung sinar x ini untuk menentukan area dan nilai kebocoran radiasi yang terjadi pada rumah tabung sinar x. Uji kebocoran ini dapat dikerjakan bila telah dilakukan perawatan atau perbaikan terhadap rumah tabung sinar x. Pengujian dilakukan pada saat prosedur *warm up* alat sinar x telah berlangsung dan posisi *shutter* kolimator dalam keadaan tertutup. Melakukan eksposi dengan pengaturan tegangan tabung kurang berkisar ±10 kVp dari kVp maksimum yang terdapat pada pesawat sinar x dengan pengaturan arus tabung dan waktu eksposi (s) sebesar ±50 mAs.
- e. Luas lapangan penyinaran atau kolimasi pada tabung sinar x dapat di uji coba agar dapat menentukan aspek berikut ini : kalibrasi ukuran lapangan, pusat berkas cahaya, dan ketelitian arah berkas sinar x dengan berkas cahaya. Pada uji coba dapat diperiksa dengan menggunakan bantuan film radiograf. Jika pada film radiograf

cahaya penunjukan lapangan tidak sesuai dengan besar lapangan sinar x, menghasilkan pergeseran sekitar 0,5 cm masih dalam batas toleransi. Ketidak sesuaian besar lapangan kolimasi dengan ukuran berkas sinar x yang dikeluarkan mengakibatkan kesalahan pada pembuatan radiografi, dapat menimbulkan citra pada organ yang dimaksud dapat terpotong, sedangkan kemungkinan citra organ yang tidak diharapkan memungkinkan ditampakan pada film.


f. Pengukuran keluaran radiasi pada tabung pesawat sinar x dengan adanya pengaturan luas lapangan penyinaran harus sesuai dengan luas detektor pada pengaturan faktor eksposi (kVp, mA,s) dan fokus film distance (FFD) yang umum digunakan pada saat pemeriksaan radiologi.

# 8. Kerangka Teori



Gambar 2. Kerangka teori

# 9. Kerangka Konsep



Gambar 3. Kerangka konsep

# 10. Hipotesis

Untuk meningkatkan mutu citra radiografi perlu diperhatikan tentang alat utama pembentuk sinar x yaitu Tabung. Kebocoran tabung sinar x merupakan radiasi yang keluar bukan radiasi primer alat tersebut. Artinya, jika terdapat radiasi yang terdeteksi tidak bersumber dari berkas utama atau radiasi primer maka radiasi tersebut dapat dikatakan kebocoran radiasi. Batas nilai kebocoran radiasi yang di tentukan sebesar 1 mGy/jam pada jarak 1 meter dari *focal spot* dengan kondisi kV maksimum dan mA rendah.

#### **BAB III**

#### **METODE PENELITIAN**

#### A. Jenis dan Rancang Penelitian

Penelitian ini bersifat kuantitatif dengan pendekatan observasi. Penelitian ini dimulai dengan observasi dilakukan di Instalasi Radiologi RSPAU dr. S. Hardjolukito tahun 2021. Pendekatan observasi merupakan metode pendekatan yang didapatkan dengan cara melakukan pengamatan secara langsung di lapangan kemudian mencatat atau menggunakan alat bantu tulis untuk mendapatkan data (Sosiologis, 2018). Pengambilan data dimulai dengan melakukan penyinaran kemudian dilakukan penghitungan menggunakan surveymeter.

# B. Tempat dan Waktu Penelitian

Tempat penelitian dilakukan di Instalasi Radiologi RSPAU dr. S. Hardjolukito. Penelitian ini dilaksanakan pada bulan Juni-Juli 2021.

# C. Subjek Penelitian

Subjek penelitian merujuk pada kebocoran tabung sinar x di InstalasiRadiologi RSPAU dr. S. Hardjolukito dengan Instrumen Surveymeter.

#### D. Identifikasi Variabel Penelitian

#### 1. Variabel bebas

Tegangan tabung

## 2. Variabel Terikat

Kebocoran tabung sinar x

### E. Definisi Operasional

Definisi operasional menurut Sugiyono 2015, merupakan suatu perangkat dari nilai suatu objek yang memiliki variasi dari variabel penelitian. Definisi variabel penelitian harus jijabarkan secara jelas yang bertujuan untuk menyamakan persepsi pada pembaca. Variabel pada penelitian ini ialah sebagai berikut:

- Sinar X
   alat bantu yang digunakan untuk membantu dokter dalam menegakkan diagnosa.
- 2. Surveymeter : digunakan alat ukur untuk mengukur besaran radiasi yang ada di area pengukuran secara langsung. Hasil dari pengukuran dalam bentuk laju dosis (dosis radiasi per satuan waktu), misal dalam mrem/jam atau μSv/jam
- 3. Kebocoran Tabung : merupakan radiasi yang keluar dari tabung pesawat sinar x selain berkas utama atau berkas primer.

# F. Instrumen Operasional dan Cara Pengambilan Data

- 1. Pesawat sinar- X
- 2. Surveymeter
- 3. Pengambilan data

Pengambilan data dilakukan dengan alat bantu berupa surveymeter, yang dilakukan 5 kali percobaan pada 5 sisi tabung pesawat sinar x, seperti tabel 3.1 pada tabel seperti di bawah ini.

**Tabel 3.1** Contoh Tabel Pengambilan Data

# G. Jalannya Penelitian

# 1. Persiapan alat dan bahan

Alat dan bahan yang perlu disiapkan yaitu pesawat x-ray konvensional dan alat pengukur yaitu surveymeter.

# 2. Pengambilan data

Dilakukan di Instalasi Radiologi RSPAU dr. S. Hardjolukito pengambilan data memerlukan 75 kali eksposi dibagi ke dalam 5 titik pengukuran dalam jangka waktu 25 menit pada setiap titik kemudian istirahat 1 jam. setelah itu dilakukan pengambilan data pada titik selanjutnya, dikarenakan penggunaan Kv tinggi dan mAs rendah membuat alat bekerja lebih berat, sehingga ditakutkan menimbulkan kerusakan pada pesawat sinar x. Peralatan yang digunakan pada penelitian ini yaitu : Pesawat sinar – x simens opti 150/30/50, Surveymeter como 170 Sn.5151, Penggaris, Peralatan tulis untuk pencatatan.

### 3. Surveymeter

Surveymeter ialah alat ukur radiasi (AUR) yang lazim digunakan untuk pengukuran secara langsung dosis radiasi daerah kerja dalam besaran nilai paparan, laju paparan, kerma udara, ataupun dosis ekuivalen ambien. Menurut PERKA BAPETEN No.1/2006 alat ukur radiasi harus dikalibrasi setiap tahun.

#### H. Cara Analisis Data

Sumber data penelitian tindakan ini meliputi area Instalasi Radiologi, Surveymeter dan software pengolah data. Adapun teknik pengumpulan datanya dilakukan dengan cara sebagai berikut.

#### 1. Metode Kuantitatif deskriptif

Berdasarkan pendapat Kasiram, pada tahun 2008 "metode kuantitatif deskriptif merupakan proses untuk menemukan suatu ilmu pengetahuan yang dilakukan dengan menggunakan teknik pengolahan data berupa angka." Angka yang di maksutkan pada penelitian ini di dapatkan dari hasil pengukuran kebocoran tabung dengan menggunakan alat bantu surveymeter.

#### 2. Metode Observasi

Menurut Syafnidawati, 2020 "Observasi ialah pengumpulan data yang dilakukan dengan cara pengamatan langsung terhadap objek di lahan penelitian. Observasi dilakukan oleh peneliti dengan cara pengamatan dan pencatatan." Pengambilan data dilakukan terhadap 5 sisi tabung (sisi tabung kiri, sisi tabung kanan, sisi tabung belakang,

sisi tabung atas dan sisi tabung depan). Kemudian diberi jarak100cm dari masing masing tabung.

- 3. Pengukuran dengan surveymeter (µR/hr µsv/hr)
  - a. Cek baterai dari surveymeter yang akan digunakan, pastikan baterai cukup dan tersedia.
  - b. Cek faktor kalibrasi dan apakah masih berada pada masa berlakunya.
  - c. Pelajari letak posisi skala terkecil dan terbesar.
  - d. Ukurlah paparan radiasi background terlebih dahulu.
  - e. Catat nilai paparan background
  - f. Mulai lah mengukur dengan skala terbesar untuk menjaga surveymeter tidak over reading.
  - g. Setelah mengetahui kisaran bacaan, gunakan skala terkecil sehingga bacaan yang diperoleh merupakan bacaan paling sensitif, catat paparan beserta satuan yang digunakan.
  - h. Nilai bacaan terukur dikurangi dengan nilai background.
  - Kemudian nilai yang diperoleh setelah dikurangi background dikalikan dengan faktor kalibrasi.

Rumus penggunaan kebocoran tabung:

$$L = x. \left(\frac{kV \ Max}{kV \ set}\right)^{2}. \left(\frac{mA \ count}{mA \ set}\right). \left(\frac{1}{1000} \frac{mGy}{jam}\right)$$

$$X = \text{laju dosis} (\mu \text{Gy/jam})$$

 $kV_{max} = kVp$  maksimum mesin (kV)

 $kV_{set}$  = kVp saat eksposi dilakukan (kV)

 $mA_{cont}$ = Arus kontinu alat (mA)

 $mA_{set}$  = pengaturan mA saat eksosi dilakukan (mA)

#### I. Etika Penelitian

Etika ialah konsep nialai yang mengarah pada perilaku yang baik dan pantas berdasarkan nilai-nilai norma, moralitas, pranata, baik kemanusiaan maupun agama. Kode etik yang digunakan dalam penulisan ilmiah ialah merupakan aturan yang harus diperhatikan dan ditaati dalam penulisan karya ilmiah. Etika yang digunakan dalam penulisan karya tulis ilmiah ialah sebagai berikut:

- Penulisan dilakukan dengan rasa tanggungjawab, cermat, dan seksama
- 2. Karya tulis ilmiah bersifat original, bukan hasil jiplakan dari karya orang lain
- 3. Menjaga kebenaran, manfaat dan fakta
- 4. Menerima saran dan juga kritik dari pembaca
- 5. Bersifat terbukan dan menerima kritik dan saran.

#### **BAB IV**

#### HASIL DAN PEMBAHASAN

#### A. Hasil

1. Metode pengambilan data menggunakan suveymeter

Pengambilan data dilaksanakan di Instalasi Radiologi RSPAU dr. S. Hardjolukito pengambilan data memerlukan 75 kali eksposi dibagi ke dalam 5 titik pengukuran dalam jangka waktu 25 menit pada setiap titik kemudian istirahat 1 jam. setelah itu dilakukan pengambilan data pada titik selanjutnya, dikarenakan penggunaan Kv tinggi dan mAs rendah membuat alat bekerja lebih berat, sehingga ditakutkan menimbulkan kerusakan pada pesawat sinar x. Peralatan yang digunakan pada penelitian ini yaitu: Pesawat sinar – x simens opti 150/30/50, Surveymeter como 170 Sn.5151, Penggaris, Peralatan tulis untuk pencatatan. Selanjutnya dilakukan peletakkan detektor surveymeter pada 5 sisi yaitu sisi tabung kanan, sisi tabung kiri, sisi tabung depan, sisi tabung belakang dan sisi tabung atas.

Peletakkan detektor dibantu dengan *softbag* agar sisi bagian tabung sinar x sejajar dengan detektor surveymeter. Jarak antara surveymeter pada setiap sisi diukur sepanjang 100 cm. Pengaturan Kv dan mAs sudah di atur sebesar 90 kv dan 50 mAs. Setelah itu, diletakkan *handphone* di depan monitor baca alat *surveymeter* kemudian dilakukan perekaman gambar, bertujuan untuk melihat hasil bacaan pada saat sudah di *expose* oleh sinar x. Dikarenakan hasil bacaan surveymeter muncul pada monitor jika bebarengan dengan waktu ekspos.

Pengerjaan eksposi pada satu sisi kurang lebih memerlukan 25 menit, setiap satu kali eksposi diberi jangka waktu ke eksposi selanjutnya selama 5 menit, kemudikan eksposi kembali pada sisi tersebut sebanyak 5 kali. Ketika sudah dilakukan nya eksposi pada sisi tersebut, dijeda selama 30 menit ke sisi selanjutnya. Penggunaan waktu jeda seperti diatas, dilakukan sampai akhir pengambilan data. Dikarenakan untuk mengurangi kerja tabung terlalu berat dan agar tidak menimbulkan kerusakan pada pesawat sinar x.

#### 2. Data Lapangan

# a. Hasil Pengukuran

Dari hasil pengamatan dan penelitian diperoleh data dari pembacaan surveymeter di Instalasi Radiologi RSPAU dr. S. Hardjolukito seperti tabel dibawah ini:

Hasil dari pengukuran uji tabung sisi kiri dengan menggunakan 90 Kv dan Ma 100. mendapatkan hasil bacaan pada percobaan 1 sebesar 16,5, percobaan 2 sebesar 14,2, percobaan 3 sebesar 14,8, percobaan 4 sebesar 14,8, percobaan 5 sebesar 11,4. Hasil pengukuran tabung sisi kanan ditunjukkan pada tabel 4.1.

Tabel 4.1 Hasil Pengukuran Uji Tabung Kanan

| Kanan tabung        |           |           |           |           |           |
|---------------------|-----------|-----------|-----------|-----------|-----------|
| T., 4:1             | Percobaan | Percobaan | Percobaan | Percobaan | Percobaan |
| Indikaor            | I         | II        | III       | IV        | V         |
| Kv set              | 90        | 90        | 90        | 90        | 90        |
| Ma set              | 100       | 100       | 100       | 100       | 100       |
| Jarak               | 100 cm    |
| Ma cont             | 4         | 4         | 4         | 4         | 4         |
| Kv max              | 150       | 150       | 150       | 150       | 150       |
| Bacaan<br>(μSv/jam) | 16,5      | 14,2      | 14,8      | 14,8      | 11,4      |

Hasil dari pengukuran uji tabung sisi kiri dengan menggunakan 90 Kv dan Ma 100. mendapatkan hasil bacaan pada percobaan 1 sebesar 50,9, percobaan 2 sebesar 53,2, percobaan 3 sebesar 1457,3, percobaan 4 sebesar 59, percobaan 5 sebesar 54,4. Hasil pengukuran tabung sisi kanan ditunjukkan pada tabel 4.2

Tabel 4.2 Hasil PENGUKURAN UJI TABUNG KIRI

| Kiri tabung         |           |           |           |           |           |  |
|---------------------|-----------|-----------|-----------|-----------|-----------|--|
| Indikaor            | Percobaan | Percobaan | Percobaan | Percobaan | Percobaan |  |
|                     | I         | II        | III       | IV        | V         |  |
| Kv set              | 90        | 90        | 90        | 90        | 90        |  |
| Ma set              | 100       | 100       | 100       | 100       | 100       |  |
| Jarak               | 100 cm    |  |
| Ma cont             | 4         | 4         | 4         | 4         | 4         |  |
| Kv max              | 150       | 150       | 150       | 150       | 150       |  |
| Kv set              | 90        | 90        | 90        | 90        | 90        |  |
| Bacaan<br>(μSv/jam) | 50,9      | 53,2      | 57,3      | 59        | 54,4      |  |

Hasil dari pengukuran uji tabung sisi kanan dengan menggunakan 90 Kv dan Ma 100. mendapatkan hasil bacaan pada percobaan 1 sebesar 46,6, percobaan 2 sebesar 85,9, percobaan 3 sebesar 77,3, percobaan 4 sebesar 40,6, percobaan 5 sebesar 79,6. Hasil pengukuran tabung sisi kanan ditunjukkan pada tabel 4.1

**Tabel 4.3** Hasil Pengukuran Uji Tabung Atas

| Atas tabung |           |           |           |           |           |  |
|-------------|-----------|-----------|-----------|-----------|-----------|--|
| Indikaor    | Percobaan | Percobaan | Percobaan | Percobaan | Percobaan |  |
|             | I         | II        | III       | IV        | V         |  |
| Kv set      | 90        | 90        | 90        | 90        | 90        |  |
| Ma set      | 100       | 100       | 100       | 100       | 100       |  |
| Jarak       | 100 cm    |  |
| Ma cont     | 4         | 4         | 4         | 4         | 4         |  |
| Kv max      | 150       | 150       | 150       | 150       | 150       |  |
| Kv set      | 90        | 90        | 90        | 90        | 90        |  |
| Bacaan      | 46,6      | 85,9      | 77,3      | 40,6      | 79,6      |  |
| (μSv/jam)   |           |           |           |           |           |  |

Hasil dari pengukuran uji tabung sisi kanan dengan menggunakan 90 Kv dan Ma 100. mendapatkan hasil bacaan pada percobaan 1 sebesar 6,26, percobaan 2 sebesar 6,21, percobaan 3 sebesar 5,68, percobaan 4 sebesar 5,68, percobaan 5 sebesar 3,39. Hasil pengukuran tabung sisi kanan ditunjukkan pada tabel 4.4

Tabel 4.4 Hasil Pengukuran Uji Tabung Belakang

| Belakang tabung |           |           |           |           |           |
|-----------------|-----------|-----------|-----------|-----------|-----------|
| Indikaor        | Percobaan | Percobaan | Percobaan | Percobaan | Percobaan |
|                 | I         | II        | III       | IV        | V         |
| Kv set          | 90        | 90        | 90        | 90        | 90        |
| Ma set          | 100       | 100       | 100       | 100       | 100       |
| Jarak           | 100 cm    |
| Ma cont         | 4         | 4         | 4         | 4         | 4         |
| Kv max          | 150       | 150       | 150       | 150       | 150       |
| Kv set          | 90        | 90        | 90        | 90        | 90        |
| Bacaan          | 6,26      | 6,21      | 5,68      | 5,68      | 3,39      |
| (µSv/jam)       |           |           |           |           |           |

Hasil dari pengukuran uji tabung sisi kanan dengan menggunakan 90 Kv dan Ma 100. mendapatkan hasil bacaan pada percobaan 1 sebesar 34,3, percobaan 2 sebesar 36,6, percobaan 3 sebesar 14,8, percobaan 4 sebesar 24, percobaan 5 sebesar 26,3. Hasil pengukuran tabung sisi kanan ditunjukkan pada tabel 4.5

**Tabel 4.5** Hasil Pengukuran Uji Tabung Depan

| Depan tabung |           |           |           |           |           |
|--------------|-----------|-----------|-----------|-----------|-----------|
| Indikaor     | Percobaan | Percobaan | Percobaan | Percobaan | Percobaan |
|              | I         | II        | III       | IV        | V         |
| Kv set       | 90        | 90        | 90        | 90        | 90        |
| Ma set       | 100       | 100       | 100       | 100       | 100       |
| Jarak        | 100 cm    |
| Ma cont      | 4         | 4         | 4         | 4         | 4         |
| Kv max       | 150       | 150       | 150       | 150       | 150       |
| Kv set       | 90        | 90        | 90        | 90        | 90        |
| Bacaan       | 34,3      | 36,6      | 14,8      | 24        | 26,3      |
| (μv/jam)     |           |           |           |           |           |

### b. Hasil perhitungan

Pada hasil pengukuran kebocoran tabung diatas perlu dilakukan pengolahan data dengan cara penggunaan rumus perhitungan sebagai berikut L = x.  $\left(\frac{kV\ Max}{kV\ set}\right)^2$ .  $\left(\frac{mA\ count}{mA\ set}\right)$ .  $\left(\frac{1}{1000}\frac{mGy}{jam}\right)$ .

Contoh penggunaan rumus:

$$L = 50.9 \cdot \left(\frac{150}{90}\right)^{2} \cdot \left(\frac{4}{100}\right) \cdot \left(\frac{1}{1000} \frac{mGy}{jam}\right).$$

$$L = 50.9 \cdot (1.66)^{2} \cdot (0.04) \cdot \left(\frac{1}{1000} \frac{mGy}{jam}\right).$$

$$L = 50.9 \cdot (2.755) \cdot (0.04) \cdot \left(\frac{1}{1000} \frac{mGy}{jam}\right).$$

$$L = 5.60918 \cdot \left(\frac{1}{1000} \frac{mGy}{jam}\right)$$

$$L = 0.00560918 \cdot \frac{mGy}{jam}$$

Hasil dari pengukuran uji tabung sisi kiri, kanan, sisi belakang, sisi atas, sisi depan mendapatkan hasil rata-rata pada sisi kiri sebesar 0,0061066, percobaan sisi kanan sebesar 0,0015933, percobaan pada sisi belakang sebesar 0,0006048, percobaan sisi atas sebesar 0,0073333, percobaan sisi depan sebesar 0,0030222. Dengan mendapatkan nilai rata-rata keseluruhan 0,01865. Dengan nilai ketelitian pada sisi kiri 0,0001303, pada sisi kanan 0,0000564, pada sisi belakang 0,000058, pada sisi atas 0,0509524 ditunjukkan Pada Tabel 4.6

**Tabel 4.6** Hasil Perhitungan Kebocoran Dan Toleransi

|                          | Kebocoran Tabung |            |                  |           |            |
|--------------------------|------------------|------------|------------------|-----------|------------|
| Percobaan ke             | Sisi Kiri        | Sisi Kanan | Sisi<br>Belakang | Sisi Atas | Sisi Depan |
| 1                        | 0,0056555        | 0,0018333  | 0,0006955        | 0,0051777 | 0,0038111  |
| 2                        | 0,0059111        | 0,0015777  | 0,00069          | 0,0095444 | 0,0040666  |
| 3                        | 0,0063666        | 0,0016444  | 0,0006311        | 0,0085888 | 0,0016444  |
| 4                        | 0,0065555        | 0,0016444  | 0,0006311        | 0,0045111 | 0,0026666  |
| 5                        | 0,0060444        | 0,0012666  | 0,0003766        | 0,0088444 | 0,0029222  |
| Rata – rata              | 0,0061066        | 0,0015933  | 0,0006048        | 0,0073333 | 0,0030222  |
| rata-rata<br>keseluruhan | 0,01865          |            |                  |           |            |
| Ketelitian               | 0,0001303        | 0,0000564  | 0,000058         | 0,0509524 | 0,000862   |

#### B. Pembahasan

Penelitian ini dilakukan pada tanggal 21 Juli 2021 di Instalasi Radiologi RSPAU dr. S. Hardjolukito. Alat yang di gunakan pada pengambilan data ini yaitu, pesawat sinar x konvensional, *surveymeter* Como 170 Sn.5151, penggaris, *softbag*, alat tulis dan *handphone*. Pesawat sinar x diatur dengan Besar Tegangan sebesar 90 kVdan 50 mAs. Penggunaan faktor *expose* tersebut berdasarkan pada PERKA BAPETEN 22 No 9 tahun 2011 tentang Uji Kesesuaian Pesawat Sinar x Radiologi Diagnostik menyatakan bahwa agar dapat diketahui besar nilai penyimpangan tegangan tabung dalam batas normal maka digunakan KVtinggi dan mAs rendah. Pada 5 sisi yaitu kiri, kanan, belakang, depan, belakang.

Setelah mendapat hasil di lapangan, selanjutnya pengolahan data dengan penggunaan rumus kebocoran tabung, pada setiap sisi dilakukan perhitungan dan diambil rata-rata. Pada perhitungan rata-rata dapat di simpulakan bahwa Setelah dilakukan pengujian didapatkan nilai pada indikator yang tidak di dapatkan kebocoran karena hasil perhitungan uji

kebocoran <1 mGy/jam PERKA BAPETEN No. 9 Tahun 2011. Nilai ratarata yang diperoleh pada sisi kiri sebesar 0,0061066, percobaan sisi kanan sebesar 0,0015933, percobaan pada sisi belakang sebesar 0,0006048, percobaan sisi atas sebesar 0,0073333, percobaan sisi depan sebesar 0,0030222. Dengan mendapatkan nilai rata-rata keseluruhan 0,01865. Dengan nilai ketelitian pada sisi kiri 0,0001303, pada sisi kanan 0,0000564, pada sisi belakang 0,000058, pada sisi atas 0,0509524.

Hasil rata-rata pengukuran menurut jurnal analisa uji kesesuaian pesawat sinar x radiografi menurut ujang wiharja, 2019 sebesar 0,0245 mGy jam dengan menguji pada 5 sisi tabung yaitu, sisi tabung kiri, sisi tabung kanan, sisi tabung depan, sisi tabung belakang, dan sisi tabung atas. Berdasarkan hasil penelitian tersebut, tabung pada pesawat sinar x di Instalasi Radiologi RSPAU dr. S. Hardjolukito tidak mengalami kebocoran, berdasarkan dari nilai penelitian yangdilakukan kurang dari 1 mGy/jam. Pada jurnal Analisa Uji Kesesuaian Pesawat Sinar X Radiografi oleh Ujang Wiharja, 2019 mengukur pada 5 sisi terdapat nilai rata-rata yaitu 0,0245 mGy/jam sedangkan nilai lolos uji yang diijinkan yaitu ≤ 1 mGy/jam. Nilai pada uji di atas tidak terjadi kebocoran. Hal ini menandakan bahwa pesawat sinar x tersebut masih dalam batas aman, mengacu pada PERKA BAPETEN No. 9 Tahun 2011 1 mGy/jam pada jarak 1 meter dari focal spot.

#### **BAB V**

#### SIMPULAN DAN SARAN

#### A. Kesimpulan

Uji kebocoran tabung sinar x konvensional di dapatkan dari pengaturan expose sebesar 90 kV dan 50 mAs dengan jarak 100cm. Diukur menggunakan surveymeter. Uji tersebut dilakukan sebanyak 25 kali pada 5 titik yang di dapatkan nilai kebocoran rata-rata  $0,00610 \frac{mGy}{jam}$  pada sisi kanan,  $0,00150 \frac{mGy}{jam}$  pada sisi kiri,  $0,00733 \frac{mGy}{jam}$  pada sisi atas,  $0,00302 \frac{mGy}{jam}$  pada sisi depan,  $0,00060 \frac{mGy}{jam}$  pada sisi belakang tabung. Tidak mengalami kebocoran, ditandai dengan hasil pengukuran rata-rata tidak sampai  $1 \frac{mGy}{jam}$  sehingga menurut PERKA BAPETEN No. 9 Tahun 2011  $1 \frac{mGy}{jam}$  pada jarak 1 meter dari focal spot.

## B. Saran

- Sebaiknya untuk memilih surveymeter memperhatikan faktor kalibrasi minimal telah dikalibrasi setiap 1 tahun, sesuai dengan perka BAPETEN No.1 tahun 2006, Tentang Laporan Dosimetri, Kalibrasi Alat Ukur Radiasi Dan Keluaran Sumber Radiasi Terapi, Standarisasi Radio Nuklida.
- Untuk peneliti selanjutnya diharapkan memperhatikan faktor tegangan dan kuat arus pada pesawat sinar x , dikarenakan kebocoran tidak dipengaruhi oleh faktor tabung itu sendiri.

#### **DAFTAR PUSTAKA**

- Arifin, Achmad. *Etika dan Kode Etik Penulisan Ilmiah*. Diakses pada 27 maret 2021
- BAPETEN, 2013. Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 4

  Tentang Proteksi dan Keselamatan Radiasi dalam Pemanfaatan Tenaga

  Nuklir. Jakarta: BAPETEN
- BAPETEN, 2015 protokol uji profisiensi pengujian pesawat sinar x mobile, Jakarta
- Dira Rizki Martem , Dian Milvita , Helfi Yuliati , Dyah Dwi Kusumawati, 2015,

  \*Pengukuran Dosis Radiasi Ruangan Radiologi Ii Rumah Sakit Gigi Dan

  \*Mulut (Rsgm) Baiturrahmah Padang Menggunakan Surveymeter Unfors
  Xi, Vol. 4, No.4, Jurusan Fisika FMIPA Universitas Andalas, Padang
- Hasmawati, 2016, Skripsi Analisis Dosis Paparan Radiasi Sinar x Diunit Radiologi Rs. Bhayangkara Makassar, Makasar.
- Irwan M. Katili, Andrey Nino kurniawan, Nanang Sulaksono Uji Kesesuaian

  Pesawat Sinar x Merk GE Type XR 6000 di Laboratorium Jurusan Teknik

  Radiodiagnostik dan Radioterapi Politeknik Kesehatan Kemenkes

  Semarang, Semarangs
- Laitabun, Y.M., Heri, S., dan Choirul, A., 2013, *Pengukuran Laju Paparan Radiasi Sinar x pada Ruang Operator RSUD. Prof. Dr. W. Z. Johannes Kupang*, Youngster Physics Journal, Vol.2, No.1, Fisika Undip, hal 49-52.

- Rudi, Pratiwi dan Susilo, 2012, *Pengukuran Paparan Radiasi Pesawat Sinar x di Instalasi Radiodiagnostik untuk Proteksi Radiasi*, Unnes Physics Journal,
  Vol.1, No1, Jur. FisikaUnnes, hal 20-24.
- Sugili, Putra. 2012. Kalibrasi Surveymeter 14C Dengan Alat Ukur Radiasi Standar Radiometer PH. 40.GL-L.Yogyakarta
- Surat Keputusan Kepala Bapaten Nomor 01-P/ Ika-Bapaten/1-03. 2003. *Tentang Pedoman Dosis Radiognostik*. Jakarta.
- Syahria, Evi Setiawati dan K Sofjan Firdausi *PEMBUATAN KURVA Isodosis*\*Paparan Radiasi Di Ruang Pemeriksaan Instalasi Radiologi RSUD

  \*Kabupaten Kolaka Sulawesi Tenggara Instalasi Radiologi

  (Radiodiagnostik), RSUD kabupaten Kolaka Sulawesi Tenggara
- Syarif, Muhammad Boddy, 2013, Pengaruh Radiasi Hambur Terhadap Kontras

  Radiografi Akibat Variasi Ketebalan Obyek Dan Luas Lapangan

  Penyinaran, Universitas Hasanuddin.
- Wiharja Ujang , Abdul Kodir Al Bahar,2019,*Analisa Uji Kesesuaian Pesawat Sinar* x *Radiografi*, Universitas Krisnadwipayana,Jakarta

# LAMPIRAN

# **Lampiran 1.** Surat perizinan penelitian

RSPAU dr. SUHARDI HARDJOLUKITO KORDIK

NOTA DINAS Nomor: B/ND- 84 NI/2021/Kordik

: Yth. Ka. Instalasi Radiologi Kepada : Sub Komite Penelitian Dari

: Ijin penelitian Perihal

- Dasar. Menindaklanjuti disposisi Kepala RSPAU dr. S. Hardjolukito Nomor Agenda 525 tanggal 4 Juni 2021 surat dari Poltekes TNI AU Adisutjipto Nomor B/18/VI/2021/RAD tanggal 2 Juni 2021 perihal Permohonan Ijin Penelitian.
- Sehubungan dengan hal tersebut di atas, disampaikan bahwa mahasiswa di bawah ini:

: Ghena Iclasul Achza Nama peneliti

: D-III Farmasi Program Studi

: Poltekes TNI AU Adisutjipto Instansi

: Analisis kebocoran Tabung Pesawat Sinar-X di Judul Penelitian Instalasi Radiologi RSPAU dr. S. Hardjolukito.

Akan melaksanakan penelitian di RSPAU dr. S. Hardjolukito, Mulai tanggal 14 - 28 Juni 2021 mohon koordinasi untuk pelaksanaan kegiatan tersebut dengan tetap melaksanakan protokol kesehatan.

Demikian, mohon menjadi periksa. 3.

> Yogyakarta, 22 Juni 2021 a.n. Ka Kordik Sub Komite Penelitian,

drg. Purnama Jaya, Sp. PM. Letkol Kes NRP 528362

Lampiran 2. Ruang Penelitian



Lampiran 3. Instrumen Penelitian



Lampiran 4. Surveymeter



Lampiran 5. Instrumen Penelitian

